Check for
updates

ELSEVIER

Journal of Clinical Epidemiology 152 (2022) 238—247

Journal of
Clinical
Epidemiology

REVIEW ARTICLE

The majority of 922 prediction models supporting breast cancer decision-
making are at high risk of bias
Tom A. Hueting”, Marissa C. van Maaren™", Mathijs P. Hendriks™", Hendrik Koffijberg®,

Sabine Siesling

a,b,*

*Department of Health Technology & Services Research, Technical Medical Centre, University of Twente, Enschede, The Netherlands
°Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands
“Department of Medical Oncology, Northwest Clinics, Alkmaar, The Netherlands

Accepted 20 October 2022; Published online 27 October 2022

Abstract

Objectives: To systematically review the currently available prediction models that may support treatment decision-making in breast

cancer.

Study Design and Setting: Literature was systematically searched to identify studies reporting on development of prediction models
aiming to support breast cancer treatment decision-making, published between January 2010 and December 2020. Quality and risk of bias
were assessed using the Prediction model Risk Of Bias (ROB) Assessment Tool (PROBAST).

Results: After screening 20,460 studies, 534 studies were included, reporting on 922 models. The 922 models predicted: mortality
(n = 417 45%), recurrence (n = 217, 24%), lymph node involvement (n = 141, 15%), adverse events (n = 58, 6%), treatment response
(n = 56, 6%), or other outcomes (n = 33, 4%). In total, 285 models (31%) lacked a complete description of the final model and could not be
applied to new patients. Most models (n = 878, 95%) were considered to contain high ROB.

Conclusion: A substantial overlap in predictor variables and outcomes between the models was observed. Most models were not re-
ported according to established reporting guidelines or showed methodological flaws during the development and/or validation of the
model. Further development of prediction models with thorough quality and validity assessment is an essential first step for future clinical
application. © 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommo

ns.org/licenses/by/4.0/).
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1. Introduction

Breast cancer is the most commonly diagnosed cancer in
women worldwide. Disease severity and treatment options
for breast cancer depend on various factors such as subtype,
tumor stage, personal context, and genetic characteristics
[1]. The heterogeneity of breast cancer challenges clini-
cians to optimize treatment for each individual patient. Pros
and cons of different treatment options (i.e., improvement
of prognosis vs. (late) adverse events) should be considered
before treatment initiation on an individual patient level.
Clinical prediction models can support clinical decision-
making by estimating individual predictions on certain out-
comes using combinations of different relevant patient and
disease characteristics.

Multiple prediction models have been available to guide
treatment decision-making for breast cancer patients in the
past years. For example, Predict [2] is a prediction model
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What is new?

Key findings

e An abundance of clinical prediction models are
available to support treatment decisions for breast
cancer patients.

e The majority of clinical prediction models are
poorly reported, show methodological flaws, or
are at high risk of bias.

What this adds to what is known?

o This review systematically identified and critically
appraised clinical prediction models that were
developed to support treatment decisions in breast
cancer patients.

What is the implication/what should change now?

e Development of new clinical prediction models
should adhere to established methodological
guidelines and need to be reported completely
and transparently

e Existing models require thorough quality and val-
idity assessment prior to their use in clinical
practice.

that has been available as an online model to support
decision-making on adjuvant treatment strategies. The use
of Predict or other similar tools such as CancerMath [3]
or the Nottingham Prognostic Index [4] has been recom-
mended in international guidelines [5]. Yet there are more
treatment decisions for breast cancer patients that could
be well supported by prediction models. There may be
potentially valuable models already available that are not
currently used because their quality and reliability are
unclear.

Before prediction models may be implemented in clin-
ical practice, multiple steps should be performed. These
methods include the steps for development, internal valida-
tion, external validation, updating, and impact assessment
of prediction models [6—9]. Ideally, the development and
validation of a model should be described according to
the guideline for transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis
(TRIPOD) [10].

Previous systematic reviews have been conducted to
assess clinical prediction models for breast cancer, but
seem to have identified older and potentially outdated
models and only a limited number of recently developed
prediction models, possibly by only including models that
predict a specific outcome, such as mortality or recurrence
[11]. However, with regard to the application of prediction
models aimed at supporting decision-making in breast

cancer care, it is currently unknown how many different
models have been developed, which outcomes can be
(accurately) predicted and with which variables the out-
comes can be predicted. We therefore aimed to systemat-
ically review prediction models that may be used to
support treatment decision-making in breast cancer pa-
tients and to assess the quality of studies reporting on
the development and (internal) validation of prediction
models.

2. Methods

The systematic review study protocol has been registered
in the International Prospective Register of Systematic Re-
views (registration number: CRD42020134826). The
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses checklist for transparent reporting of system-
atic reviews and meta-analysis was followed for reporting
the results (Supplementary data S2) [12].

2.1. Search strategy

Medline (Pubmed) and Embase (Elsevier) were searched
for studies published between January 1, 2010, and
December 31, 2020. The search strategy was constructed
using validated search filters to find prognostic prediction
studies (Supplementary data S1) [13].

2.2. Study selection

Studies were included if they reported the development
of a prediction model intended to be used for treatment
decision-making in patients (both men and women) who
have been diagnosed with breast cancer. Such outcomes
include survival (overall or disease-specific), recurrence
([loco]-regional or second primary breast cancer), metas-
tasis (including contralateral lymph nodes), adverse events,
quality of life, and treatment response. Included studies
must be aimed at providing predictions for breast cancer
patients using a combination of two or more predictor vari-
ables, possibly demonstrated by providing a calculation
method (i.e., logistic regression, neural network). Studies
can report the development of multiple prediction models.
We defined separate models when either the predictor-
outcome association was different, or when the predictor-
outcome association was the same, but a different baseline
hazard or intercept was reported. Conference abstracts were
excluded from the review as they are unable to provide suf-
ficient details regarding the development and initial valida-
tion of the model in order to assess its quality. Two types of
prediction models were distinguished, diagnostic and prog-
nostic models. Diagnostic models aim to estimate the likeli-
hood for currently having the outcome, whereas prognostic
models aim to estimate the probability of the outcome at a
specified future time. Subsequently, separate studies were
searched for that described the external validation of one
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or more of the included models. The external validation
studies were identified by searching via Google Scholar
for studies citing the study describing the development of
the model. The process of including and excluding studies
for the review was performed by one reviewer (T.A.H.). To
ensure that the study selection process was performed
appropriately by one reviewer, a second reviewer
(M.C.v.M.) performed the same process for a random sam-
ple of 1,600 studies. Discrepancies were resolved after dis-
cussions between the two reviewers.

2.3. Data extraction

Data extraction was performed using the checklist for
critical appraisal and data extraction for systematic reviews
of prediction modeling studies (CHARMS) [14].

The definition of the same predictors sometimes varied
between different studies. For instance, HER2-status could
be defined as negative or positive, or could be incorporated
in a subtype variable including both HER2 and hormonal
receptor status. We decided to report the definition of the
predictor as reported in the study.

To assess whether the sample size was likely sufficient
to develop the model, the events per variable (EPV) were
estimated for each model. The EPV is a traditional criterion
that is used to estimate how many predictors could be

included in the multivariable analysis. Even though the
EPV has its limitations, it provides a rough indication of
whether the sample size was sufficient [15]. The sample
size is likely to be insufficient with an EPV <10. An
EPV between 10 and 20 could be sufficient, but is still
fairly low, and an EPV >20 is likely to be sufficient.

2.4. Risk of bias (ROB)

To assess whether reviewed studies are at low or high
ROB, the Prediction model Risk Of Bias Assessment Tool
(PROBAST) was used [16]. The PROBAST tool includes
20 signaling questions in four domains: participants, pre-
dictors, outcome, and analysis. In addition, an overall
conclusion regarding low or high ROB for the reviewed
prediction models was determined. The participants domain
covered the ROB related to study data and the methods
used to enroll study participants. The predictors domain
covered ROB caused by the measurement and definition
of predictors. The outcome domain assessed the
ROB caused by the estimation and definition of the
outcome. The analysis domain covered the ROB related
to the statistical methods used to develop and validate the
model (Box 1).

Data extraction and the ROB assessment were performed
for all prediction models by one reviewer (T.A.H.). For a

1. Participants

clusion and exclusion criteria.

2. Predictors

3. Outcome

predictor measurement and outcome occurrence.

4. Analysis

model correspond with the results from the analysis.

Box 1 The Prediction model Risk Of Bias Assessment Tool (PROBAST).

The PROBAST was developed to critically appraise the development and validation of prediction models. Even
though the PROBAST can be used to assess both risk of bias (ROB) and concerns regarding applicability, it was mainly
used in this review to assess the ROB. The PROBAST aims to judge the ROB in four domains. Each domain has a set of
signaling questions that needs to be answered with either “(Probably) Yes,” “(Probably) No,” or ‘“No information.”
The ROB is subsequently judged as low, high, or unclear. The following domains are identified by the PROBAST:

The first domain has two signaling questions regarding the appropriateness of used data sources and the applied in-

This domain includes three signaling questions regarding uniformly described predictors, predictor assessment, and
availability of predictors at the time the model is intended to be used.

The outcome domain has six signaling questions regarding its determination, definition, and time interval between

The analysis domain has nine signaling questions regarding the statistical methods used to develop and validate the
model. Topics include the sample size, handling of continuous predictors, inclusion of patients in the analysis, dealing
with missing data, avoidance of univariable analysis, dealing with complexities in the data, appropriateness of perfor-
mance measures, dealing with overfitting, underfitting, and optimism in the model, and whether the weights in the final

All signaling questions should be answered with ““(Probably) Yes” for a low ROB rating. At least one ‘‘(Probably) No”
results in a high ROB, and at least one ““No information” (and no “‘(Probably) No” results in an unclear ROB rating.
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subset of 20 models, these processes were also performed by
a second reviewer (M.C.v.M.) to identify potential discrep-
ancies and to verify the quality of the review activities. Based
on the similarities in ROB assessment between the two re-
viewers, the subset of 20 models assessed by the second
reviewer was deemed sufficiently large to ensure high quality
data extraction and ROB assessment.

3. Results

The search strategy identified 20,460 studies, of which
the titles were screened. The abstract was screened for
studies that could not be excluded based on the title alone.
Subsequently, 1,345 studies were selected for full-text
screening. Finally, a total of 534 studies were included, re-
porting on 922 models. The inclusion and exclusion criteria
of the different studies and the reasons for excluding studies
are shown in Figure 1.

3.1. Predictors

A total of 228 different model predictors were identified
in the included 922 models. A total of 14 predictors were
used in more than 100 different models: age (n = 426,
48%), tamor size (n = 373, 40%), lymph node involvement
(n = 337, 37%), tumor grade (n = 297, 32%), ER-status
(n = 187, 20%), HER2-status (n = 158, 17%), surgery

Search EMBASE +
MEDLINE

(n = 149, 16%), radiotherapy (n = 141, 15%), chemo-
therapy (n = 141, 15%), subtype (n = 132, 14%), PR-
status (n = 130, 14%), metastasis (n = 123, 13%), and ge-
netic risk score (n = 115, 12%). In the supplementary
materials (S4, sheet “predictors’), an overview of all pre-
dictors per outcome is displayed. The five most common
predictors per outcome are shown in Table 1.

3.2. Outcome

The included studies described models that were devel-
oped to predict the following outcomes: mortality (n = 417,
45%), recurrence(-free survival) (n = 217, 24%), lymph
node involvement (n = 141, 15%), adverse events
(n = 58, 6%), treatment response (n = 56, 6%), and other
outcomes (n = 33, 4%) such as menopausal status, quality
of life, surgical margin, receiving treatment, cosmetic
outcome, nipple-areola complex invasion. The number of
models per outcome is displayed in Table 1.

The majority of the models predicted similar outcomes,
although the models often differed in the specific definition
of the outcome (i.e., lymph node involvement could include
both sentinel and non-sentinel lymph node involvement), or
the models used different inclusion and exclusion criteria to
develop the model. Out of the 922 models, 693 (75%) were
prognostic, and 229 (25%) were diagnostic models. The de-
tails of all included models were added as an additional
spreadsheet in supplementary material S4.

20460 studies
screened

19115 excluded ]

o e o .

1345 studies reviewed

.

N

/Studies excluded (n=811): \

Goal was not to develop a model for new patients (n=292, 36%)
Validation study without model update (n=179, 22%)

Predicted outcome out of scope (n=88, 11%)

Articles reporting on methods used for the development and
validation of models, tests, scores. (n=84, 10%)

Duplicates (n=68, 8%)

Breast cancer was not the primary target group for the model
(n=52, 6%)

Model predicted risk of breast cancer (n=21, 3%)

Commentary, conference abstract (n=14, 2%)

Model using 1 predictor (n=13, 2%) /

534 studies included
reporting 922 models

Fig. 1. Flowchart of study inclusion and exclusion criteria.
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Table 1. Overview of models by outcome
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Models Average
Outcome Specified outcome (n = 922) C-index Most common predictors (n (X%))
Mortality Overall survival 316 0.740 Age (184 (58%)), Tumor size (146 (46%)), Lymph node
involvement (126 (40%)), Tumor grade (126 (40%)),
Metastasis (82 (26%))
Disease specific 94 0.763 Tumor grade (64 (68%)), Tumor size (62 (66%)), Age (54 (57%),
survival Lymph node involvement (50 (53%)), ER status (39 (41%))
Other cause specific 7 0.746 Age (7 (100%)), Tumor size (7 (100%), Surgery (4 (57%)),
survival Chemotherapy (3 (43%)), Marital status (3 (43%))
Recurrence Recurrence (free 132 0.769 Lymph node involvement (54 (41%)), Age (42 (32%)), Tumor size
survival) (38 (29%)), Grade (35 (27%)), Genetic risk score (27 (21%))
Locoregional 33 0.728 Age (27 (82%)), Tumor grade (24 (73%)), Tumor size (19 (58%)),
recurrence Lymph node involvement (18 (55%)), Hormonal therapy (17
(52%))
Metastasis 45 0.760 Lymph node involvement (30 (67%)), Tumor size (21 (47%)), Age
(16 (36%)), Genetic risk score (13 (29%)), Subtype (7 (16%)),
Lymphovascular invasion (7 (16%))
Contralateral 7 0.589 Age (6 (86%)), Histology (5 (71%)), Radiotherapy (5 (71%)),
recurrence Tumor size (4 (57%)), ER status (3 (43%)), Grade (3 (43%)),
Surgery (3 (43%)), Hormonal therapy (3 (43%)), Family History
(3 (43%))
Lymph nodes  Lymph node 83 0.791 Tumor Size (31 (37%)), Age (27 (33%)), Lymph node status (21
involvement (25%)), Grade (21 (25%)), Lymphovascular invasion (19
(23%))
Sentinel lymph node 13 0.763 Age (5 (38%)), Lymphovascular invasion (5 (38%)), Tumor size (3
involvement (23%)), ER status (3 (23%)), PR status (3 (23%)), HER2 status
(3 (23%)), Tumor location (3 (23%)), Multifocality (3 (23%))
Non-sentinel lymph 45 0.758 Lymph node involvement (21 (47%)), Lymphovascular invasion
node involvement (20 (44%)), Diameter largest lymph node (17 (38%)), Tumor
size (13 (29%)), Lymph node ratio (11 (24%))
Treatment Pathologic complete 56 0.812 ER status (21 (38%)), HERZ2 status (20 (36%)), Tumor size (16
response response (29%)), KI67 (15 (27%)), Age (9 (16%)), PR status (9 (16%)),
Grade (9 (16%))
Adverse events Lymphedema 15 0.775 BMI (10 (67%)), Radiotherapy (10 (67%)), chemotherapy (10
(67%)), Surgery (6 (40%)), Age (5 (33%)), Lymph nodes
dissected (5 (33%)), Lymph node surgery (5 (33%))
Cardiovascular 9 0.780 Age (8 (89%)), Chemotherapy (3 (33%)), BMI (2 (22%)), Tumor
complications size (1 (11%)), Surgery (1 (11%))
Pain 7 0.703 Preoperative pain (5 (71%)), BMI (4 (57%)), Age (3 (43%)),
Lymph nodes dissected (3 (43%)), Postoperative pain (2
(29%))
Other adverse 27 0.711 Age (10 (36%)), BMI (9 (32%)), Smoking status (8 (29%)),
events® Comorbidities (8 (29%)), Radiotherapy (7 (25%))
Other outcomes Menopausal status 8 0.814 Age (8 (100%)), BMI (4 (50%)), Chemotherapy (3 (38%)),
Hormonal therapy (3 (38%)), FSH (3 (38%))
Quality of life 8 Not applicable Age (6 (75%)), Chemotherapy (5 (63%)), Hormonal therapy (5
(63%)), Radiation therapy (5 (63%)), Stage (5 (63%)), Surgery
(5 (63%)), Complications (5 (63%)), menopausal status (5
(63%)), Ambulatory (5 (63%)), Charlson Deyo score (5 (63%)),
Education (5 (63%)), Postoperative length of stay (5 (63%))
Surgical margin 6 0.726 Tumor grade (2 (33%)), lymph node involvement (2 (33%)), ER-
status (2 (33%)), Tumor size (2 (33%)), Her2-status (2 (33%)),
PR-status (2 (33%)), Metastasis (2 (33%)), Histology (2
(33%)), Multifocality (2 (33%))
Treatment as the 7 0.705 Age (4 (57%)), Tumor size (3 (43%)), ER status (2 (29%)), Race
outcome (2 (29%)), Radiotherapy (2 (29%))
Good cosmetic 2 0.790 Lymphovascular invasion (2), Multifocality (1 (50%)), total tumor

(Continued)
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Table 1. Continued

Models Average
Outcome Specified outcome (n = 922) C-index Most common predictors (n (X%))
outcome load (1 (50%)), Tumor size (1 (50%)), ER status (1 (50%)),
Lymph node involvement (1 (50%)), Grade (1 (50%))
Nipple-areola 2 0.879 Distance from nipple (2 (100%)), Lymph node involvement (1

complex invasion

(50%)), Tumor size (1 (50%)), Location (1 (50%)), Imaging
outcome (1 (50%)), Multicentricity (1 (50%))

The details of all included models were added as an additional spreadsheet in supplementary material S4.
@ Other adverse events include pneumonitis, necrosis, seroma, infection, exposure, explantation, overall complication, falls, symptomatic skel-

etal events, fibrosis, rash, fatigue, neutropenia, and cognitive impairment.

3.3. Modeling methods

Relevant findings related to methods used to develop and
validate the prediction models were rated (Table 2). To
develop diagnostic models, logistic regression was mostly
used (n = 197 [86%]). For prognostic models, Cox regres-
sion was used in 510 (74%) of the models. The majority of
models were developed using data from patients in Asian
(n = 319, 35%), North-American (n = 262, 28%), or Eu-
ropean (n = 183, 20%) countries. A total of 429 (47%)
models were developed with patient data from multiple
centers, and 386 (42%) models were developed with data
from a single institution.

The median number of participants used to develop a
model was 699 (IQR 272— 2970), with a median number
of events of 130 (IQR 58—416). Regarding the sample sizes
used to develop the models, the EPV could not be deter-
mined for 269 (29%) models, 162 (18%) models were
developed with an EPV <10, and 159 (17%) models with
an EPV between 10 and 20. The remaining 332 (36%)
models were developed with an EPV >20.

For 525 (57%) of the developed models, it was unclear
how the developers dealt with missing data in the derivation
dataset, 297 (32%) of the models were developed using
complete-case analysis, and only 80 (9%) of the models were
developed using an imputation (i.e., multiple or single)
method to deal with missing data as recommended by the
TRIPOD statement [10]. A total of 285 (31%) models were
not reported with sufficient information to apply the model
in practice. This was mostly caused by the absence of either
the predictor coefficients (n = 119, 13%), the baseline hazard
(n = 96, 10%), or the intercept (n = 51, 6%).

3.4. Risk of bias

The models were rated as either low (n = 27, 3%), high
(n = 878, 95%), or unclear (n = 17, 2%) ROB. The major-
ity of the models were considered at high ROB, mainly due
to the assessment of the domain ‘analysis’ in the PRO-
BAST tool. Figure 2 shows the general assessment of the
ROB and supplementary table 1 displays the ROB assess-
ment per model. Discrepancies in ROB assessments per-
formed by the two reviewers were sometimes found
between answers of signaling questions, but the assessment

for each PROBAST domain was similar for all studies that
were assessed by both reviewers. The studies with a low
ROB were added in supplementary table S3.

Reasons for defining PROBAST domains to be unclear
or high risk were often similar for different models.
Figure 3 represents the ROB stratified per outcome. An un-
clear or high ROB in the outcome domain occurred more
often in models predicting recurrence or adverse events
compared to the other models. Only 50% and 47% of the
models predicting recurrence and adverse events were
deemed at low ROB in the outcome domain where this per-
centage was 93%, 87%, 96%, and 73% for mortality, lymph
node involvement, response, and other outcomes, respec-
tively. The reason for this difference is mostly due to differ-
ences in methods to define the outcome (i.e., assessment via
telephone follow-up) or to lack of description on the inten-
sity and method of the follow-up. Notably, the ROB for the
‘analysis’ domain was defined as high for the majority of
the models (95%). Common reasons for the high ROB con-
cerned inadequate dealing with missing data, using univari-
able analysis to select candidate predictors, or not dealing
with overfitting or optimism in the model. Out of all the
models that were high ROB in the analysis domain, 82%
showed concerns on two or more of the signaling questions,
whereas the PROBAST tool advises to assign high ROB
already if one of the signaling questions is not appropriately
addressed.

3.5. Model performance

The most commonly applied measure to assess the perfor-
mance of the model concerned model discrimination.
Discrimination was quantified using the C-index in the
development of 814 (88%) of the models. The C-index could
vary widely based on the outcome predicted by the model,
the predictors incorporated in the final model, and the
methods used to develop and validate the model. The average
C-index per predicted outcome is shown in Table 1. The C-
index was used in 96 (72%) of the external validation studies.
Finally, there were 72 models for which a C-index was as-
sessed at both model development and external validation.
On average, the C-index at external validation (0.71)
was lower than during model development (0.77). Only
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Table 2. Summary of extracted items for all included models.

Diagnostic models

Prognostic models

Total included models

Item (N = 229) (N = 693) (N = 922)

Modeling method
Cox regression 0 (0%) 510 (74%) 510 (55%)
Fine and Gray model 0 (0%) 25 (4%) 25 (3%)
Logistic regression 197 (86%) 93 (13%) 290 (31%)
Linear regression 2 (1%) 9 (1%) 11 (1%)
Machine learning 25 (11%) 41 (6%) 66 (7%)
Other® 4 (2%) 13 (2%) 17 (2%)
Unclear 1 (0.4%) 2 (0.3%) 3(0.3%)

Location of participants used to develop the model

Asian
North-American
European
South-American
African
Oceania
Multiple continents
Unclear
Database used to develop the model
Single center
Multicenter
Registry
Unclear
Participants in derivation cohort (n)
<100
100 — 200
200 — 500
500 — 1,000
1,000 — 10,000
>10,000
Unclear
Events per variable
<10
10 — 20
20 — 50
>50
Unclear
Dealing with missing data
Excluded patients with missing data
Imputation (multiple, random, mean, single)
Unknown modeled as covariate
No missing data
Unclear
Model performance (discrimination)
Quantified
Not quantified
Model performance (calibration)
Plot (observed vs. expected)
Hosmer—Lemeshow goodness of fit test
Other®

121 (563%)
35 (15%)
61 (27%)

1 (0.4%)
1 (0.4%)
0 (0%)
4 (2%)
6 (3%)

149 (65%)
52 (23%)
23 (10%)

5 (2%)

24 (10%)
50 (22%)
67 (29%)
39 (17%)
40 (17%)
9 (4%)
0 (0%)

55 (24%)
45 (20%)
62 (27%)
40 (17%)

27 (12%)

61 (27%)
9 (4%)
4 (2%)
1 (0%)
154 (67%)

215 (94%)
14 (6%)

89 (39%)
11 (5%)
3 (1%)

199 (29%)

227 (33%)

121 (17%)
4 (1%)

1 (0.1%)

3 (0.4%)
16 (2%)

122 (18%)

237 (34%)
105 (15%)
249 (36%)
102 (15%)

16 (2%)
63 (9%)
143 (21%)
130 (19%)
196 (28%)
119 (17%)
26 (4%)

107 (15%)
114 (16%)
84 (12%)
146 (21%)

242 (35%)

236 (34%)
71 (10%)
8 (1%)

7 (1%)
371 (54%)

599 (86%)
94 (14%)

419 (60%)
22 (3%)
44 (6%)

319 (35%)

262 (28%)

183 (20%)
5 (1%)

2 (0.2%)

3 (0.3%)
20 (2%)

128 (14%)

386 (42%)
157 (17%)
272 (30%)
107 (12%)

40 (4%)
113 (12%)
210 (23%)
169 (18%)
236 (26%)
128 (14%)

26 (3%)

162 (18%)
159 (17%)
146 (16%)
186 (20%)

269 (29%)

297 (32%)
80 (9%)
12 (1%)

8 (1%)

525 (57%)

814 (88%)
108 (12%)

508 (55%)
33 (4%)
47 (5%)

(Continued)
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Table 2. Continued

Diagnostic models
Item (N = 229)

Total included models
(N = 922)

Prognostic models
(N = 693)

Unclear 126 (55%) 208 (30%) 334 (36%)
Validation method
Apparent 41 (18%) 73 (11%) 114 (12%)
x-fold cross validation 20 (9%) 27 (4%) 47 (5%)
Bootstrap 30 (13%) 108 (16%) 138 (15%)
External validation cohort 29 (13%) 147 (21%) 176 (19%)
Temporal validation cohort 12 (5%) 29 (4%) 41 (4%)
Split sample 61 (27%) 171 (25%) 232 (25%)
Combination of multiple methods 22 (10%) 85 (12%) 107 (12%)
Unclear 14 (6%) 53 (8%) 67 (7%)
Model is reproducible
No 79 (34%) 206 (30%) 285 (31%)
Yes 150 (66%) 487 (70%) 637 (69%)

The details of all included models were added as an additional spreadsheet in supplementary material S4. Percentages added together may not

be equal to 100% due to rounding

@ Other modeling methods include classification and regression trees (CART), parametric survival regression, principal component analysis, and

structural equation modeling.

b Other calibration methods include the use of a table, description of observed vs. expected, or a bar chart.

a minority of models were externally validated. At the time
of development, 176 (19%) of the models were validated us-
ing an external validation cohort. Subsequently, 82 (9%) of
the models were externally validated in a separate study.
Where 41 (50%) models were externally validated in multi-
ple studies. The identified external validation studies were
added to the supplementary data table.

4. Discussion

This systematic review identified a total of 534 studies
published between 2010 and 2020, reporting the develop-
ment of 922 different models. The patient’s age, tumor size,
and lymph node involvement were the most common

Overall
Analysis

Outcome

Predictors

Participants

0 200 400 600 800 1000

Low = Unclear mHigh

Fig. 2. Risk of bias by PROBAST domains. A rating of high was given
for a subdomain when at least one signaling question was answered
with a ““No.”” A low risk of bias rating was given if all signaling ques-
tions were answered with “Yes.”” An unclear risk of bias is assigned if
at least one signaling question could not be answered, and if the re-
maining signaling questions were answered with “‘yes.”

predictors and were used in more than a third of the models.
Models were categorized as either predicting a prognostic
(n = 693, 75%) or a diagnostic (n = 229, 25%) outcome,
The quality of the identified models was poor as only 35
models (4%) were developed with appropriate statistical
methods according to the PROBAST tool, and only 27
models (3%) were deemed at low ROB overall.

Predictors used in the identified models were overlap-
ping to a large extent. This makes sense as these predictors
were proven to provide significant prognostic information
regarding relevant health outcomes. ER status is an
example of a predictor that was often used to predict
different outcomes. ER status was mostly entered in the
model as a dichotomous variable (i.e., negative, or posi-
tive). Even though the registration of such predictors as
dichotomous variables is commonly applied and accepted,
the dichotomization of continuous variables is regarded as
bad practice [17]. As multiple predictors are commonly
accepted as dichotomous variables in clinical practice, the
use of these variables was not a reason for a high ROB rat-
ing as suggested in the PROBAST tool. Accepted dichoto-
mous variables were ER status, PR status, HER2-status,
KI67 status, and tumor stage. Even though the use of the
EPV criterion is regarded as suboptimal [15], the EPV
could not be determined for 269 models (29%) mainly
due to the lack of reporting on the number of events.

This review identified a disproportionate number of
models predicting the same outcome. The majority of iden-
tified prediction models in breast cancer were developed
using suboptimal or inappropriate methodology. This result
aligns with previous findings in other disease areas. The re-
view by Damen et al. assessed 363 prediction models for
cardiovascular disease and concluded that the most models
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Fig. 3. Risk of bias assessment per outcome. LNI, lymph node involvement. A rating of high was given for a subdomain when at least one signaling
question was answered with a ““No.”" A low risk of bias rating was given if all signaling questions were answered with ““Yes.” An unclear risk of bias is
assigned if at least one signaling question could not be answered, and if the remaining signaling questions were answered with *‘yes.”

were reported inadequately according to the CHARMS
checklist [18]. A more recent systematic review of predic-
tions models for diagnosis and prognosis of COVID-19
found all models to be at high ROB [19]. A systematic re-
view by Phung et al. on prognostic models for breast cancer
focused more on their performance [11]. Even though only
58 models were identified, the authors concluded that the
performance for most models was suboptimal in indepen-
dent cohorts, which could have been expected as the
methods for development of most models were also subop-
timal. Clearly, the lack of adequate reporting and the meth-
odological shortcomings for the development of prediction
models is not specific for breast cancer, but seems to be a
common problem within clinical research. Adherence to re-
porting guidelines such as the TRIPOD is necessary to
improve the quality of developed prediction models. A lim-
itation of this review concerns the fact that a subset of 1,600
of the identified studies in the search strategy was assessed
by a second reviewer. From this subset of 1,600 studies, on-
ly three studies were additionally included for full-text
analysis. For this reason, we do not expect that the review
protocol led to exclusion of relevant studies. In addition,
referenced models in studies reporting on the validation
of prediction models, as well as references in previous sys-
tematic reviews on breast cancer prediction models were
assessed to minimize the risk of missing relevant studies.
The same limitation is applicable to the data extraction
and ROB assessment. In our study, a second reviewer as-
sessed 20 prediction models to assess the data extraction
process and the ROB assessment (using the PROBAST).

No model would have been rated differently even though
some differences were found on the signaling questions.
Despite the fact that performing data extraction in duplicate
would ensure fewer errors, it is unlikely that this would
have changed the conclusions of the review [20]. Poten-
tially relevant studies describing the development or update
of a model might have been missed during the review due
to the exclusion of studies reported in languages other than
English or Dutch. Besides, the most recently developed
models that have been published since January 1, 2021
were not included in the review.

One of the most important findings in this review con-
cerns the high proportion of models regarded at high
ROB. The majority of the models were at high ROB due
to the ‘analysis’ domain, in which the ROB due to statisti-
cal methods is assessed. Still, a high ROB rating does not
necessarily mean that the model has no or limited clinical
value and a low ROB rating does not automatically consti-
tute a valuable model. For instance, studies reporting on the
update of the Predict model were rated as low ROB
(Supplementary data S3), but an external validation study
demonstrated suboptimal performance of the model in
different patient groups [21,22]. Besides, each model only
predicts a single outcome, whereas clinical decision-
making also requires individual estimates of other relevant
outcomes such as adverse events. Before clinical use of a
model can be justified, different steps have to be taken
for the development, internal and external validation, up-
date, and impact assessment. Even then, the model needs
to be trusted and understood by clinicians or adopted in
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clinical guidelines, and both the preferences and context of
the patient should be taken into account before widespread
implementation of a model is accepted in daily clinical
practice. Nevertheless, the development of a valuable
model starts with a good performance on internal valida-
tion, carried out with the appropriate statistical methods.
Further (external) validation of the models may ultimately
conclude whether the models may be generalized to
different patient cohorts and perhaps different health care
settings [23]. Even when models were proven to perform
sufficiently well in external populations, additional (clin-
ical) evaluations should be performed to assess the clinical
and health impact of a prediction model [24]. Besides, with
changing regulations in the European Union, the majority
of prediction models in the current review are very likely
to require certification as a medical device according to
the Medical Devices Regulation before clinical use is
enabled [25]. The fact that such a low number of models
(n = 27, 3%) were considered to be reported adequately
based upon the model development stage underpin the need
for improved reporting of prediction model development,
perhaps now more than ever.

5. Conclusion

Many prediction models have been published during the
past decade to predict outcomes related to breast cancer
treatment. Nearly all published prediction models identified
were deemed as high ROB. Mainly due to a lack of
adequate reporting, many prediction models could not be
implemented in clinical practice as the studies did not pro-
vide sufficient data for external validation studies or an
impact assessment. Future studies should focus on
improving currently available models, either by identifying
specific subgroups for which no model is applicable, or by
performing the required steps before clinical adoption can
be justified (i.e., external validation and impact assessment)
rather than developing more new models.
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