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Abstract. In this paper, macroscopic behavior obtained from crystal plasticity finite element simula-

tions of irregularly shaped 3D and 2D volume elements (VEs) are compared. These morphologically

periodic VEs are generated using the open-source software library Voro++. Periodic boundary con-

ditions are utilized to homogenize the material response employing a prescribed macroscopic defor-

mation gradient tensor. To accelerate the assignment of periodic boundary conditions, a conformal

mesh is employed by which periodic couples of faces on the hull of the volume element have identical

mesh patterns. In the simulations, plane strain conditions are assumed, which means that the average

thickness strain in 3D VEs is set to zero. However, grains are allowed to strain in the thickness direc-

tion. In the case of 2D VEs, plane strain elements are used. The principal goal of this comparison is

to evaluate the accuracy of 2D VEs simulations. In the current study, two kinds of 2D VEs are gener-

ated: 1) Slicing 3D VEs normal to the thickness direction, 2) Separately generating 2D VEs. The first

method corresponds to sectioning 3D microstructures using EBSD. This approach is generally used

as an assumed more accurate alternative to 2D VEs. Based on the results, there is a large gap between

the flow curves of 2D and 3D VEs. Additionally, 2D sectioning of 3D VEs does not necessarily end

up in higher precision in material behavior predictions.

Introduction

Multiscale modelling is one of the most widely used methods to characterize the influence of hetero-

geneities in the microstructure on the response of the polycrystalline material. It is used as a bridge

between various scales since macro-models are insufficient to express microstructural effects. The

crystal plasticity finite element method (CPFEM) is one of the aforementioned numerical tools to

capture the influence of mechanical anisotropy of crystals as well as intra-grain interactions on the

local and global material behavior. This method is based upon the concept of representative volume

elements (RVEs) first introduced by Hill [1]. It represents a material point with a finite size volume

that is representative of material behavior at macroscale.

There are a vast number of studies focusing on the application of the crystal plasticity finite el-

ement method to various problems. Although many research studies emphasize on 2D RVEs with

planar assumptions, the application of 3D RVEs has gained some attention recently. Lewis and Gelt-

macher [2] used a 3D spatial and crystallographic reconstruction of an austenitic steel microstructure

using optical microscopy, serial sectioning, and electron backscatter diffraction. Kim et al. [3] used

3D RVEs to capture the Bauschinger effect in dual-phase steels. The generated model was utilized

to simulate the mesoscale mechanical response of the real microstructure. Anbarlooie et al. [4], em-

ployed finite element based analysis of 2D and 3D RVEs to predict dual-phase steels response and

damage initiation. Lim et al [5] performed large-scale CPFEM simulations on single and polycrystals

to capture mesh sensitivity and RVE sizes. Christoudoulou et al. [6] investigated the impact of crys-

tallographic orientation on the growth of intergranular voids using a dilatational visco-plasticity fast
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Fourier transform-based framework. Mayeur and McDowell [7] used a 3D crystal plasticity model for

Ti-6Al-4V. Their model was capable of reproducing the experimental data. In this study, it is remarked

that the simplified 2D slip geometry models are insufficient to capture the full range of responses for

Ti-64 since they do not account for all aspects of the texture. Ramazani et al. [8] used a correlation

factor between 2D and 3D stresses since they found 2Dmodelling approaches not capable of obtaining

the flow curve of material precisely. Besides, Thomser [9] shows that flow curves of 2D RVEs under-

estimate the experimental results. In the study of Qayyum et al. [10], 3D RVE simulation results are

compared with those of 2D RVEs, constructed by slicing 3D RVEs in depth. Based on their study, 2D

RVEs can be used in finite element simulations once the global deformation behavior is considered.

However, 3D RVEs simulations are necessary to determine the local deformations accurately.

To summarize, the application of 2D RVEs seems to be inadequate to predict the realistic material

behavior during deformation. In this paper, averaged macroscopic flow curves are compared for 2D

and 3D irregularly shaped volume elements (VEs) using plane strain condition. The Voronoi-based

volume elements are generated using Voro++ software library [11] and used in crystal plasticity finite

element simulations. Plane strain condition in 3D is employed via setting the average thickness strain

to zero. This assumption is activated by means of plane strain elements in 2D. To generate 2D VEs,

sectioned 3D VEs normal to the thickness direction, as in the case of experimental practice, are used.

In parallel, 2D VEs are generated independently; since the non-homogeneous grain size distribution

over the 2D sections introduces an extra implicit resource of anisotropy. The results are also compared

with the stress-strain plots of separately generated 2D VEs.

Theory

In this section, the governing equations for the utilized rate-independent finite strain crystal plasticity

model that has been implemented as the user defined material model in finite element simulations is

summarized [12].1 Let referential and spatial configurations denoted by B0 and B, respectively. The
material points in the reference configuration B0 be denoted byX ∈ B0 which are mapped onto points

x ∈ B at time t ∈ R+ in the current configuration B by the invertible nonlinear deformation map

ϕ(X, t) with x = ϕ(X, t). The deformation gradient F and its Jacobian determinant J are defined

by F = ∇0ϕ(X, t) = ∂x/∂X and J = detF , respectively. In the crystal plasticity model, plastic

deformation occurs because of crystallographic slip that happens on slip systems whilst neglecting

other deformation mechanisms such as twinning or transformation induced plasticity effects. Thus,

F is decomposed multiplicatively into elastic part F̂ e, which represents elastic stretching and lattice

rotation with reference to intermediate configuration, and plastic part F p, which denotes the plastic

deformation resulting from dislocation glide, as follows

F = F̂ e · F p . (1)

Using the definition of the total velocity gradient L = Ḟ · F−1 along with Eq. (1) amounts to the

following additive decomposition into elastic L̂e and plastic L̂p parts

L = L̂e + L̂p . (2)

Letting the slip system α be defined with the two orthogonal unit vectors s(α) and m(α), which re-

spectively denote the associated slip direction and the slip plane normal, and γ̇(α) denote the (positive)

1Let a and b denote two first-order, and A and B, and C three second-order tensors. Using Einstein’s summation

convention on repeated indices, C = A · B represents the single contraction product with Cik = AijBjk. d = A : B
represents the double contraction product with d = AijBij , where d is a scalar. E = A⊗B, F = A⊕B, andG = A	B
represent the tensor products with Eijkl = AijBkl, Fijkl = AikBjl, and Gijkl = AilBjk, where E, F, and G represent

fourth-order tensors. The tensor product of a and b yields A = a ⊗ b with Aij = aibj . Ȧ, A> and A−1 denote the

material time derivative, the transpose, and the inverse of A, respectively. sym(A) gives the symmetric part of A with

sym(A) = [1/2][A+A>]. Finally, 1 denotes the second-order identity tensor.
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Table 1: Selected material parameters for Aluminum with FCC crystal structure.

property symbol unit magnitude

Young’s modulus E [GPa] 72

Poisson’s ratio ν [−] 0.33

Length of Burgers vector b [mm] 2.86×10−7

Initial dislocation density ρ0 [mm−2] 105

Saturation dislocation density ρ∞ [mm−2] 1011

Saturation shear strain γ∞ [−] 10

Initial critical resolved shear strength τ0 [MPa] 100

shear rate on the same slip system, the plastic part of the total velocity gradient tensor L̂p is given by

the following sum [13, 14] over each slip system for α = 1, 2, . . . n

L̂p =
n∑

α=1

γ̇(α) s(α) ⊗m(α) . (3)

In order slip to be activated on the slip system α, the associated resolved shear stress should reach

the associated slip resistance τ
(α)
f with ϕ(α) = 0 where ϕ(α) = τ (α) − τ

(α)
f ≤ 0. The resolved shear

stress is calculated using Schmid’s law by projection of the (true) Cauchy stress tensor σ onto the slip

system with τ (α) = s(α) · σ ·m(α).

A hypoelastic relation links the lattice corotational rate of Cauchy stress tensor
O
σ to the elastic

part of the rate of deformation tensor, which, in view of Eq. (2) is defined as De := sym(L̂e) =

sym(L− L̂p), with

O
σ = Ce : De . (4)

Here, Ce denotes the constant elastic stiffness tensor. With assumption of elastic isotropy and the

definitions Ivol := [1/3]1⊗1, Idev := I−Ivol and I = [1/2][1⊕1+1	1], we haveCe := 3KIvol+2µIdev.
Here, K and µ denote bulk and shear moduli, respectively, which are related to Young’s modulus E
and Poisson’s ratio ν with K = [1/3]E/[1 − 2ν] and µ = [1/2]E/[1 + ν]. The work-hardening
is considered to happen by impediment of dislocation motion by increase of the forest dislocation

density. Therefore, a Taylor-type hardening law [15] is used with

τ
(α)
f = τ0 + µb

√√√√ n∑
β=1

Q(αβ)ρ(β) . (5)

In Eq. (5), τ0 is the lattice friction, b the Burgers vector length, ρ
(β) the total dislocation density of

the slip system β and Q(αβ) the interaction matrix between the slip systems which characterizes the

strengthening of slip system α due to increase of dislocation density on slip system β.
Finally, the following saturation-type evolution equation determines the rate of dislocation density

ρ(α) on each slip system α

ρ̇(α) =
γ̇(α)

γ∞
[ρ∞ − ρ(α)] . (6)

At each slip systemα, an identical initial dislocation density ρ0 is assumed. Here ρ∞ denotes saturation

dislocation density whereas γ∞ the saturation shear strain [16]. In this model, isotropic elasticity has

been used, and the associated material parameters which have been used in the application problems

of this work are listed in Table 1.
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Numerical Studies

Microstructure Generation. In this step, arbitrarily shaped volume elements (VEs) are generated

based on Voronoi tessellation using Voro++ [11]. Voro++ provides a radical Voronoi tessellation

starting from a randomly generated set of seed points whose number corresponds to the number of

cells obtained. In this research, a uniform size distribution in 3D is intended; therefore, the radius for

each cell has been chosen as unity. However, due to the randomness involved in the location of seed

points, this still results in a cell size distribution. Although this might be more realistic in comparison

with an actual microstructure in the current numerical study, this introduces an unintentional (and not

controlled) extra variance in cell size. In order to avoid this, Lloyd’s algorithm [17] is implemented as

an iterative tool to Voro++. This algorithm works by replacing the seed locations iteratively with the

centroid of the generated cells. Consequently, after each iteration, the size of the cells becomes more

uniform. There is, however, no check for stopping criteria relating to the uniformity of cell size; rather,

a predetermined number of iterations are used with different initial seeds in obtaining a regularized

structure. The number of iterations is referred to as the Lloyd factor in the following.

In the current study, a Lloyd factor of 300 has been chosen for unit cell generations. An example

of the VEs with 125 grains that are not necessarily constrained in a cube is depicted in Fig. 1. The VEs

are periodic, which means that for each of the exterior faces of the VE, there exists an identical face

periodically placed on the other side of the hull. To apply periodic boundary conditions in Abaqus, a

conformal mesh is generated by which the mesh pattern of each face on the hull is mapped to its pair.

Once the VE is meshed, through prescribing a macroscopic deformation gradient tensor, the displace-

ment of the periodically located nodes on the hull of the VE is constrained. Grains orientations are

assigned using randomly generated but uniformly distributed Euler angles. Since this paper’s primary

goal is to compare the outcomes of crystal plasticity finite element simulations in 2D and 3D space, a

cut of 3D VE perpendicular to thickness direction depicted in Fig. 2a has been made, Fig. 1(b). Based

on this image, there exists heterogeneity in grain size distribution on the cut. Another 2D VE has been

generated separately with the same number of grains per 3D VE length in each direction, Fig. 1(c).

Afterward, the number of grains that possess a specific volume fraction is depicted in histogram bins

in Fig. 2. Fig. 2(a) shows that grain size distribution is restricted within a short interval. According to

this figure, for the cut of 3D VE (Fig. 2(b)), a wide grain size distribution is observed, whereas for the

independently created 2D VEs (Fig. 2(c)), the grain size is distributed relatively uniform.

(a) (b) (c)

Fig. 1: Periodic volume elements used in this study. (a) 3D raspberry microstructure with 125 grains

with a Lloyd factor of 300, (b) a 2D section of the 3D volume element (Lloyd=300), (c) Separately

generated 2D raspberry microstructure with a Lloyd factor of 300. Fig. 2 gives associated grain size

distribution.

Furthermore, inverse pole figures for the unit cells are illustrated as individual points depicting

individual grain orientations in Fig. 4. According to this image, Euler angle distribution is almost

uniform in the case of 3D VE, whereas there is a non-homogeneous distribution captured for 2D

volume elements.
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(a) (b) (c)

Fig. 2: Statistical overview of the number of grains versus their volume fraction for 3D sections and

2D volume elements (for 2D with a unit out-of-plane dimension assumption) generated separately and

by means of sectioning 3D volume elements. The grain size varies considerably for each grain in the

cut model although the background 3D generation has a higher uniformity.

Simulations with FEM. Once the model is generated, the behavior of the material is defined by

means of the crystal plasticity model at individual integration points. For 3D VE simulations, plane

strain condition is assumed, whichmeans that although the individual grains are allowed to strain in the

thickness direction, the average strain in the thickness direction is zero. It is worth mentioning that ten-

node tetrahedral elements C3D10 have been used in these simulations. For the case of 2D simulations,

six-node quadratic plane strain elements called CPE6 have been employed. Besides a final engineering

strain of 0.1 has been prescribed in the loading direction. Once the simulations are accomplished, an

averaging is performed on the strain and stress fields based upon the method introduced by [18].

Results and Discussions

Plane strain analysis results on 2D and 3D volume elements are implemented in this section. Three-

dimensional VEs with 5 × 5 × 5 grains are generated three times with randomly attributed grains
orientations. Plane strain assumption is considered by which the average strain in the thickness direc-

tion is set to zero. In addition, 3D VEs are sectioned at mid-surface normal to the thickness direction.

This procedure of creating 2D VEs is inspired by the standard experimental approach, which uses an

Inverse Pole Figure (IPF) map from Electron Backscatter Diffraction (EBSD) analysis conducted on

the sample cut plane. Afterwards, 2D VEs are generated independently with 5 × 5 grains. The av-
eraged true stress versus true strain in the loading direction is displayed in Fig. 3. In this image, the

mean value of three VEs in 3D and 2D, as well as the deviations, is depicted. Based on this figure,

for 3D VEs, the deviation from the mean value is small, which means that 5× 5× 5 grains in 3D can

be representative of macroscopic material behavior, and the chosen volume element is representative.

Fig. 3 implicates that three-dimensional VE is hardening much more noticeably compared to 2D ones.

This behavior might be attributed to the additional slip that occurs in the thickness direction (average

plane strain direction in 3D), but more research is necessary. As mentioned in the previous section, the

assumption of plane strain in 3D is employed on the average strain in the thickness direction. It means

that although the average plane strain condition holds, the grains are allowed to strain in the thick-

ness direction. The extra slip in the 3D case results in higher statistically stored dislocations (SSDs)

densities and higher hardening of the material compared to 2D plane strain simulations.

In the literature, sectioning 3D RVEs by means of EBSD is sometimes recommended as a re-

placement for independently generated 2D RVEs. This method is assumed to result is approximations

closer to 3D ones. However, Fig. 3 shows that using 2D VEs that are generated as cuts of 3D using

EBSD does not necessarily result in predictions that are closer to 3D hardening values.
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In the elastic part, isotropic elasticity is used, which means that all simulations are expected to

behave identically in this regime. In the elastic regime displayed in Fig. 3, all of the curves are over-

lapping as anticipated, and the slope of the elastic region (Fig. 3(a)) is higher than Young’s modulus

of the material. This slope can be found using Hooke’s law in plane strain conditions. This slope can

be simply computed using E/[1− ν2] = 80.799 GPa, which is equal to the prediction of this paper.

Fig. 3: Averaged true stress-true strain curves in the loading direction.

Conclusion

In this paper, crystal plasticity finite element simulations are implemented on three and two-dimensional

irregularly shaped VEs. Plane strain assumption is used in the simulations to assess whether it gives

an acceptable approximation of material behavior or not. Based on the outcomes, there is a significant

discrepancy between the simulations in 2D and 3D space. On the other hand, the approach of using

2D cuts of the microstructure generated by EBSD images does not improve the approximations.
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Appendix

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Inverse pole figure displaying a point-wise distribution of grain orientations. (a) for the 125-

grain 3D VEs, (b) 3D VE cuts and (c) separately generated 2D VE.
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