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Abstract: Leaf area index (LAI), one of the most crucial vegetation biophysical variables, is required 
to evaluate the structural characteristic of plant communities. This study, therefore, aimed to 
evaluate the LAI of ecoregions in Iran obtained using Sentinel-2B, Landsat 8 (OLI), MODIS, and 
AVHRR data in June and July 2020. A field survey was performed in different ecoregions 
throughout Ardabil Province during June and July 2020 under the satellite image dates. A Laipen 
LP 100 (LP 100) field-portable device was used to measure the LAI in 822 samples with different 
plant functional types (PFTs) of shrubs, bushes, and trees. The LAI was estimated using the 
SNAPv7.0.4 (Sentinel Application Platform) software for Sentinel-2B data and Google Earth Engine 
(GEE) system–based EVI for Landsat 8. At the same time, for MODIS and AVHRR, the LAI prod-
ucts of GEE were considered. The results of all satellite-based methods verified the LAI variations 
in space and time for every PFT. Based on Sentinel-2B, Landsat 8, MODIS, and AVHRR applica-
tion, the minimum and maximum LAIs were respectively obtained at 0.14–1.78, 0.09–3.74, 0.82–
4.69, and 0.35–2.73 for shrubs; 0.17–5.17, 0.3–2.3, 0.59–3.84, and 0.63–3.47 for bushes; and 0.3–4.4, 
0.3–4.5, 0.7–4.3, and 0.5–3.3 for trees. These estimated values were lower than the LAI values of LP 
100 (i.e., 0.4–4.10 for shrubs, 1.6–7.7 for bushes, and 3.1–6.8 for trees). A significant correlation (p < 
0.05) for almost all studied PFTs between LP 100-LAI and estimated LAI from sensors was also 
observed in Sentinel-2B (|r| > 0.63 and R2 > 0.89), Landsat 8 (|r| > 0.50 and R2 > 0.72), MODIS (|r| > 
0.65 and R2 > 0.88), and AVHRR (|r| > 0.59 and R2 > 0.68). Due to its high spatial resolution and 
relatively significant correlation with terrestrial data, Sentinel-2B was more suitable for calculating 
the LAI. The results obtained from this study can be used in future studies on sustainable range-
land management and conservation. 
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1. Introduction 
Leaf area index (LAI) is defined as a one-sided leaf area per unit area of land [1,2]. 

Knowledge of the LAI is used in many disciplines, including investigation of stresses 
caused by environmental conditions, estimation of evapotranspiration, respiration, car-
bon and nutrient cycle, net primary production, and rainfall interception by woody 
plants [3]. Direct and indirect methods estimate the vegetation LAI in the field [4]. Direct 
methods are laborious and time-consuming; however, they provide reliable LAI estima-
tions and are used to validate indirect methods [5]. A common method of re-
mote-sensing-based (indirect) methods in estimating the LAI is to establish a physical 
relationship between the LAI and various vegetation indices extracted from visible 
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near-infrared (VNIR) and short-wavelength infrared (SWIR) bands, including enhanced 
vegetation index (EVI), soil-adjusted vegetation index (SAVI), and normalized difference 
vegetation index (NDVI) [6]. These high multispectral- and hyperspectral-based indices 
significantly enhance the quality of monitoring the health of natural ecosystems and de-
tecting the changes in vegetation biophysical characteristics [6,7].  

Over the past decades, many efforts have focused on LAI estimation using 
ground-based field measurements (direct method) and remote sensing data (indirect 
method) [8,9]. Remote sensing methods have unique advantages in estimating the LAI 
over a large area. For example, the LAI obtained from optical remotely sensed data serves 
as a pivotal variable to estimate the aboveground biomass of forest stands [10]. Recently, 
indirect optical methods without contact with leaves, based on the radiation transmission 
and gap fraction theory, an array of commercial optical instruments, such as Plant Can-
opy Analyzer (LI-COR, Lincoln, NE, USA), DEMON (CISRO, Center for Environmental 
Mechanics, Canberra, Australia), Ceptometer (Decagon Device, Pullman, WA, USA), and 
digital camera with a fisheye lens, have been developed to estimate the effective LAI 
[6,7]. Due to the surface heterogeneity (different types of mixed coatings in pixel images) 
and temporal variability of plants in different growing seasons, the maximum accuracy 
of estimating the LAI by remote sensing data can only reach about 50% [8]. Therefore, it is 
necessary to increase the accuracy of estimating the LAI at different time–space scales. In 
estimating the LAI using remote sensing methods, it is always assumed that the leaves 
are homogeneously distributed, and the values obtained are known as the effective LAI 
[11].  

In LAI values greater than 3, NDVI loses its sensitivity to changes in leaf green index 
or becomes saturated [2,12]. Therefore, in high LAI values, it is recommended to use the 
EVI instead the NDVI. The EVI affords thorough figures on spatial and temporal varia-
tions of vegetation, and it reduces the problems of impurities that the NDVI causes [13]. 
According to the remote sensing method in LAI estimation, vegetation includes all green 
factors, such as under forest canopies, including subfloors [7]. The LAI estimated using 
the Laipen LP 100 (LP 100) device is pure. After considering the type of plant under study 
and determining a coefficient in the obtained value, it becomes the effective LAI. Remote 
sensing observations are sensitive to the effective LAI [14]. The difference between the 
actual and effective LAI may be determined by the population index [15], which varies 
approximately between 0.5 (highly clustered canopies) and 1 (leaves with random dis-
tribution) [16].  

In the remote sensing method, LAI retrieval has been achieved in medi-
um-resolution spatial satellite images such as Sentinel-2 (with a resolution of 10 m [17]) in 
the SNAPv7.0.4 (Sentinel Application Platform) software, Landsat 8 OLI (with a resolu-
tion of 30 m) with the EVI in the Google Earth Engine (GEE) system [14], ready-made 
MODIS satellite products (with a resolution of 500 m; [18–20]), and ready product of 
AVHRR (with a resolution of 5566 m [21]). For Sentinel-2B, an operational LAI product 
associated with a quality indicator is provided through the SNAP toolbox and produced 
through a neural network trained by simulated spectra generated from well-known ra-
diative transfer models (RTMs) [22]. Chen et al. [23] found that the estimated LAI in im-
ages with a larger scale has an error of about 25%–50% due to surface heterogeneity. Liu 
et al. [24] also concluded that the LAI values obtained from MODIS images are consist-
ently underestimated. Claverie et al. [21] used Sentinel-2B and Landsat 8 images to esti-
mate the LAI and vegetation indices in the boreal forests of Finland. Their results showed 
that the obtained values were significantly different. They also showed the better per-
formance of the Sentinel-2B image for the 705 nm red-edge bands. Brown et al. [25] es-
timated the LAI and chlorophyll content of vegetation using Sentinel-2 images. Chrysafis 
et al. [26] also concluded that the recovered LAI using Sentinel-2 images in a mixed 
Mediterranean forest region in Greece showed that the model obtained from the selection 
of spectral variables produced the most accurate LAI predictions with a coefficient of 
determination (R2) of 0.85. Ovakoglou et al. [27] attempted to enhance the spatial resolu-
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tion of the MODIS LAI product to the Landsat 8 resolution level. The estimated LAI 
values highly correlated with field-measured LAI during the dry period (0.72 < r < 0.94).  

The coarse spatial resolution of satellite-based products does not authorize distinc-
tive vegetation types within mixed pixels. Investigating only the prevailing type per pixel 
has two major shortcomings: (a) the LAI of the prevailing vegetation type is contami-
nated by a spurious signal from other vegetation types, and (b) at the global scale, large 
regions of discrete vegetation types are ignored. To accurately estimate the LAI with 
remote sensing, spatial, temporal, and spectral resolutions at different scales must be 
carefully selected [9]. In this regard, the main purpose of this paper was to assess the 
performance of four sensors with different resolutions (i.e., Sentinel–2B (10 m), Landsat 8 
(30 m), MODIS (500 m), and AVHRR (5566 m)) in estimating the LAI. LAI maps were 
plotted on all of these sensors as a reference for remote sensing data analysis with field 
data. This study provides a quantitative assessment of the quality of different sensors in 
estimating the LAI for the different scientific communities and software users. 

2. Materials and Methods 
2.1. Studied Area 

Ardabil Province (1.80 million km2) is located northwest of Iran (Figure 1). The 
studied area has a mountainous texture with high elevation differences, and the rest is 
plain and flat. The elevation varies from 20 to 4811 m above sea level (masl). Analysis of 
the Ardabil Province Meteorological Organization’s statistics attributed the highest mean 
annual precipitation (between 400 and 500 mm) to Mt. Sabalan (western part of the 
province). A moderate value of mean annual precipitation is also observed for southern 
regions (350 mm), and its lowest allocated to the north of the province (210 to 240 mm). 
Moreover, the mean minimum and maximum temperatures are 1.50 and 20.50 °C, re-
spectively [28–30]. Mostafazadeh and Mehri [31] also reported two main regimes for the 
precipitation seasonality of the province: a short dry season (seasonality index (SI) = 0.2–
0.3) and a wet season (SI = 0.6). The rivers and water bodies of this province include Aras, 
Qarasu, Balkhlychay, Givichay, Shahrood, Qezelozen, Neur, and Shourabil lakes, which 
play a significant role in the formation of the climate and the moisture source of the 
province. Moreover, the Caspian Sea has a significant effect on its climatic regimes [16]. 
Given that the growing and the rainy season is from late March at low altitudes to 
mid-September at high elevations, the best time to collect data is June to July [32].  

Some of the ecoregion covers contain geographically distinct sets of communities, 
natural species, and sub-ecoregions, which are dominated by three plant functional types 
(PFTs), including shrubs, bushes, and trees. A woody plant with a height of less than 50 
cm and a size of small to medium is considered a shrub. Meanwhile, a woody plant with 
a height of 50–7 m and plenty of branches growing from both the ground and stiff stems 
is considered a bush. Finally, a woody plant with a height of more than 7 m, a single 
elongated stem, and few or no branches on its lower part is considered a tree. These PFTs 
were considered for the target ecoregions [14,32,33], distributed in Andabil, Bile-
savar-Khoroslo, Darband Hir, Germi, Hashtjin, Hatam Meshasi forests, Khalkhal forests, 
Kowsar, Namin, and Neur Lake highlands (Figure 1). 
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Figure 1. A general schematic of the location of Ardabil Province, its elevation, synoptic stations, 
and ground truth points. 

2.2. Methodology 
2.2.1. Field Data Collection (LP 100 Device) 

The field-based observations were recorded using the LP 100 device (Figure 2) 
during June and July 2020. The LP 100 device was applied to 160 shrubs, 117 bushes, and 
455 trees throughout the studied ecoregions (Table 1). Therefore, in total, 822 ground 
truth points were sampled. Ecoregions that included only shrubs, bushes, and trees’ 
dominance were selected (Figure 1) because of LP 100 limitation for LAI estimation for 
other PFTs (i.e., grasses, forbs, and dwarfs plant species). The LAI of the Hir, Neur, 
Kowsar, Meshginshahr, and Namin ecoregions were estimated in June 2020, and the 
others were studied in July 2020. The collected samples were representative of each 
ecoregion. All recorded values were transferred to the computer system. Then, the 
FluorPen software was applied to obtain the final LAI. It is noteworthy to note that the 
mean LAI of those PFTs located in one pixel was compared with the mean LAI estimated 
by different remote sensing methods of the same pixel.  
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Table 1. Sampling number for each plant functional type (PFT) at the studied ecoregions. 

PFTs Number of Samples Ecoregion (Sub-Ecoregion) Sampling Month in 2020 

Shrubs 

13 Andabil July 
13 Hashtjin (Aghdagh, Berandagh) July 
28 Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh, Shormineh, Chenarlagh) July 
26 Kowsar (Mashkoul) June 
15 Hatam Meshasi June 
65 Namin Highlands June 

Sum 160 samples   

Bushes 

48 Neur June 
9 Bilesavar-Khoroslo July 
13 Germi July 
13 Andabil July 
10 Hashtjin (Aghdagh, Berandagh) July 
10 Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh, Shormineh, Chenarlagh) July 
5 Hatam Meshasi June 
9 Namin Highlands June 

Sum 117 samples   

Trees 

55 Darband Hir June 
10 Neur June 
16 Germi July 
49 Andabil July 
121 Hashtjin (Aghdagh, Berandagh) July 
73 Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh, Shormineh, Chenarlagh) July 
61 Kowsar (Mashkoul) June 
70 Hatam Meshasi June 
90 Namin Highlands June 

Sum 545 samples   

The ground sampling of three vegetation forms (shrubs, bushes, and trees) was 
conducted, taking into account the large pixel size of the selected sensors. Accordingly, 
the selected plants were first selected in large homogeneous areas; the size of these areas 
is much larger than the pixels of the selected sensors. Second, the studied PFTs were also 
tried to be selected at a distance from each other, so that they were representative of the 
average of the large area, which was selected. However, in general, the other vegetative 
forms (grasses and forbs) in the study area and the limitation of the device used (Laipen 
LP 100) are still a problem, which has not been possible to cover due to the limitations of 
this study. 

Unlike other similar LAI measuring instruments, LP 100 is accurate in most daylight 
conditions, and there is no need to cover the cloud or a specific angle of the sun (Laipen 
LP 100 Manual [34]). Empirical law states the relationship between the intensity of light 
absorbed by the passage of homogeneous objects without scattering and the properties of 
matter modified by Monsi-Saeki. Therefore, the following equations are presented to 
correct the estimated radiation intensity under the vegetation canopy [35]: 

I = I0e(−KLAI) (1)

𝐿𝐴𝐼 = −𝐿𝑛( 𝐼𝐼 )/𝐾 (2)

where I is the radiation intensity in the lower part of the vegetation, and I0 is the radiation 
intensity in the upper part of the vegetation. K is the extinction factor depending on the 
vegetation canopy shape, orientation, and position. Given that the radiation intensity 
decreases from top to bottom during its penetration, according to the Beer–Lambert law, 
it is necessary to use a correction factor to estimate the LAI of certain species [1]. 
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Top View 

Front Side 

LAI Side View 

 

 

Figure 2. Elements of LP 100 device (left) and its correct position for calculating ALAI (right) 
(Laipen LP 100 Manual, 2015). 

As shown in Figure 2, the LP 100 device is placed in the plant’s shade and under the 
leaf due to the measurement of the LAI under heterogeneous cover with direct sunlight. 
To estimate the LAI in each ecoregion, all PFTs were also considered. As the angle of 
view of the LAI sensor is open (112° on the horizontal axis), it is necessary to prevent 
direct light entering into the restriction cup. In other words, overexposure to an LAI 
sensor can misinterpret actual light conditions. Therefore, before each measurement, it is 
essential to place the device, as shown in Figure 2, to follow the standard principles. It is 
noteworthy that the results of LP 100 validation were already verified through the Viti-
Canopy app (r > 0.91; R2 > 0.83; RMSE < 0.51) [14]. 

2.2.2. Image Selection and Image Preprocessing 
The Sentinel-2B satellite has visible, near-infrared, and shortwave infrared (SWIR) 

sensors [36]. One of the advantages of using Sentinel-2B and Landsat 8 images is the high 
resolution of the images. In addition, the Sentinel-2B data are available for download 
from the European Space Agency Copernicus Open Access Hub 
(https://scihub.copernicus.eu/dhus/#/home; accessed on 28 November 2020). Using Sen-
tinel-2B images with high revision time and images with a spatial resolution up to 10 m at 
no cost increases the accuracy of analysis of biophysical variables, such as the LAI.  

The Sentinel-2B images were obtained from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu; accessed on 28 November 2020) concurrent with the 
growth time of the PFTs and the field survey (June and July 2020, Table 2). At the same 
time, Landsat 8 images were taken from the USGS website and the GEE system. Landsat 
8 images corrected in the GEE system are free [36]. Preprocessing was considered to ex-
tract the information from the images used accurately. To this end, atmospheric correc-
tion due to the effect of the atmosphere on the reflection of surface phenomena and its 
effect on the obtained result was considered [35]. Radiometric corrections also must be 
made to check for changes in the landscape, exposure, geometric visibility, weather con-
ditions, and sensor noise [34].  

For Sentinel-2B images, radiometric corrections, such as the calculation of radiance 
and atmospheric correction, were performed using the software. The Sen2Cor processor 
algorithm is a combination of the most advanced methods for modifying the Sentinel-2B 
atmosphere and comes with a module that fits the category. Images or products provided 
by GEE do not require preprocessing, such as geometric or radiometric correction, which 
is its advantage [36]. 

The SNAPv7.0.4 software was used to estimate the LAI from Sentinel-2B images af-
ter calling the images and atmospheric correction in the Sen2Cor plugin and then 
resampling it to an image with an accuracy of 10 m. Furthermore, for the Landsat 8 im-
age, the EVI was selected to calculate the LAI in the GEE system. After calling the Land-
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sat 8 images with clouds less than 45% in Google Earth Engine, the EVI was calculated 
using the following formula [37]: EVI = .  ×( )( .  × .  × )  (3)

LAI = 3.618 × EVI − 0.118  (4)

where EVI, NIR, RED, and BLUE are respectively indicated as the enhanced vegetation 
index, near-infrared band, red band, and blue band. 

Table 2. Selected satellite images and products. 

Satellite/Sensor Date Website/Products 

Sentinel-2B 

June–July 2020 

http://scihub.copernicus.eu (accessed on 
28 November 2020) 

Level-1C 

Landsat 8 OLI 
https://earthexplorer.usgs.gov/ (accessed 

on 28 November 2020) - 

MODIS * Terra + Aqua-4-Day L4Global 500 m MCD15A3H 
AVHRR (LAI_PAL_BU_V3) 5566 m LAI_FAPAR/V5’ 

* The LAI product has reached stage 2 validation. More details on MODIS land product validation 
for LAI/FPAR data products are available on the MODIS land team validation site. MCD15A3H 
Version 6 (MODIS) Level 4 Medium Resolution Imaging Spectrometer, Combined Fraction of 
Photosynthetic Active Radiation (FPAR), and LAI are a combined 4-day dataset of 500 m pixels. 

The algorithm selects the best available pixels from the four MODIS sensors on 
NASA’s Terra and Aqua satellites every 4 days. To convert the MODIS data scale, a cor-
rection factor of 0.1 was considered according to the information in its product 
(https://modis-land.gsfc.nasa.gov; accessed on 1 December 2020).  

The methodological flowchart of the current research is shown in Figure 3. 
 

 

Figure 3. Methodological flowchart of the present study. 
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2.2.3. Statistical Analysis and Validation 
For the accuracy assessment, the mean LAI extracted from LP 100 in each homoge-

neous pixel size of 30 m was compared with the mean LAI extracted from remote sens-
ing. The results were initially evaluated to investigate the degree of agreement between 
estimated LAI using remote sensing methods and field measurements (LP 100) by cal-
culating the correlation coefficient (r). The Pearson and Spearman tests were respectively 
used to investigate the correlation state for the normal and non-normal data. The data 
were examined for normality at a significance level of p < 0.05 using the Shapiro–Wilk test 
(IBM SPSS, Version 26). The LAI data extracted from all sensors in the shrub and Landsat 
8 and MODIS in the bush were normally distributed. Besides, the LAI data extracted 
from Sentinel-2B and AVHRR in the bush and the LAI data extracted from all sensors in 
the tree were non-normal. The LAI data for June were normally distributed except for 
MODIS-LAI, and all LAI data extracted from all sensors in July were non-normal. 

The coefficient of determination (R2) and five error evaluation criteria were also 
calculated to achieve the accuracy of the methods used ([38,39]; Equations (5)–(9)). In 
general, a higher R2 (near one) indicates more accuracy and a lower error [26]. MAE 
(mean absolute error) (Equation 5( )) gives the mean magnitude of estimation errors, and 
MBE (mean bias error) (Equation (4)) is the mean estimation error representing the sys-
tematic error of an estimation method under or over the LP 100 measurement. RMSE 
(root mean square error) is also calculated according to Formula (9). 

In situations where MAE and MBE are equal or close to zero, it shows that the 
method used simulates reality well, and by moving away from zero, it shows a small 
quantity of accuracy or much deviation [40]. MAE = ∑ |(LAI − LAI )| /n  (5)MBE = (LAI − LAI ) /n)  (6)

MBias (Equation (7)) is expressed as the ratio of LAI remote sensing to the LAI of the 
LP 100 device. MBias equal to 1, less than 1, and more than 1, respectively, indicate per-
fect, low, and high estimates. MBias equal to 1 dedicates the closer estimation to the LP 
100 values, thereby reflecting the high reliability of the estimates. 

MBias = LAI / LAI  (7)

The RBias (Equation (8)) checks for systematic LAI errors obtained using remote 
sensing methods. 

RBias = ( (LAI − LAI ) / (LAI )) (8)

RMSE stands for root mean square error. The RMSE represents the mean of the er-
rors available. It can be used as an essential indicator when our goal is to assess the ac-
curacy of the entire data. Being lower (close to zero) means lower error. 

RMSE = (LAI − LAI ) /n (9)

In these equations, n represents the total number of data, 𝐿𝐴𝐼  is the LAI obtained 
from remote sensing sensors, and 𝐿𝐴𝐼  is the LAI obtained from LP 100. 

3. Results 
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The statistical description based on remote sensing methods for different sampling 
months and different PFTs (shrubs, bushes, and trees) are presented in Tables 3 and 4. In 
addition, the maps of LAI calculation using different sensors are shown in Figure 4. The 
scatter plot of sensor-based LAI values according to field-based values for different PFTs 
and months is respectively shown in Figures 5 and 6. The results of the accuracy assess-
ment for each studied PFT and month are summarized in Table 5 and Figure 7. The re-
sults confirmed the spatial and temporal changes of the LAI in Ardabil Province. The 
lowest LAI has spread from the north to the center and a small part of the province’s 
south.  

The lowest and highest mean LAIs obtained in June using Landsat 8 images and 
Sentinel-2B were 0.67 and 3.13, respectively. In addition, in July, the lowest and highest 
mean LAIs were estimated to be 0.09 and 3.13, respectively, using Landsat 8 and Senti-
nel-2B. The lowest and highest mean LAIs based on the PFTs of shrubs using Sentinel-2B 
were 0.09 and 3.74, respectively. The lowest and highest mean LAIs in bushes using Sen-
tinel-2B, respectively, were 0.21 and 4.40, and in trees using the Sentinel-2B and AVHRR 
images, they were estimated at 0.3 and 4.40, respectively. The correlation between the 
LAI obtained from the LP 100 device and the Sentinel-2B images in the shrubs and 
bushes showed a relatively high correlation coefficient (|r| > 0.63) with a corresponding 
RMSE < 1.37. 

Table 3. Descriptive statistics of estimated LAI using LP 100 and different sensors extracted for 
sampling points in different months. 

        Months 

LAIs 

June 2020 July 2020 

Min Mean Max Min Mean Max 

LP 100 2.60 3.74 5.30 3.60 4.13 5.83 
Sentinel-2B 1.53 1.92 3.13 0.09 1.24 3.13 
Landsat 8 0.67 0.90 1.40 0.31 0.68 1.20 
MODIS 0.76 1.29 2.71 0.40 0.60 1.40 
AVHRR 0.92 2.55 2.80 0.35 0.71 1.17 

Table 4. Descriptive statistics of estimated LAI using LP 100 and different sensors extracted for 
sampling points in different PFTs. 

      PFTs 

LAIs 

Shrubs Bushes Trees 
Min Mean Max Min Mean Max Min Mean Max 

LP 100 0.40 2.71 4.10 2.30 5.00 6.40 2.80 4.00 6.80 
Sentinel-2B 0.09 1.11 3.74 0.21 2.07 4.40 0.30 1.70 4.40 
Landsat 8 0.88 0.35 1.49 0.27 0.73 1.44 1.95 0.82 0.27 
MODIS 0.20 0.99 2.13 0.29 1.14 3.43 0.70 2.40 4.30 
AVHRR 0.35 1.12 2.73 0.63 1.35 3.47 0.30 0.90 2.70 
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Figure 4. LAI estimated respectively in June and July 2020 using Sentinel-2 (A,B), Landsat 8 (C,D), 
MODIS (E,F), and AVHRR (G,H). 

Table 5. Accuracy assessment results for sampling months, PFTs, and different sensors. 
 Error Statistics Sensors MAE MBE MBias RBias RMSE 

  Sentinel-2B 0.33 −0.24 0.51 −0.49 1.09 

Sampling 
Month 

June 
Landsat 8  0.36 −0.36 0.28 −0.72 1.21 
MODIS 0.30 −0.28 0.43 −0.57 1.04 
AVHRR 0.30 −0.28 0.44 −0.56 1.01 

 Sentinel-2B 0.48 −0.45 0.29 −0.71 1.34 

July 
Landsat 8 0.54 −0.54 0.15 −0.85 1.45 
MODIS 0.54 −0.54 0.15 −0.85 1.45 

 AVHRR 0.57 −0.57 0.19 −0.80 1.47 
  Sentinel-2B 0.23 −0.16 0.36 −0.64 0.86 

PFT 

Shrub 
Landsat 8  0.20 −0.18 0.27 −0.73 0.77 
MODIS 0.20 −0.16 0.34 −0.66 0.78 
AVHRR 0.19 −0.14 0.44 −0.56 0.72 

 Sentinel-2 0.44 −0.37 0.43 −0.57 1.37 

Bush 
Landsat 8 0.54 −0.54 0.18 −0.82 1.59 
MODIS 0.49 −0.48 0.28 −0.72 1.48 
AVHRR 0.48 −0.05 0.29 −0.71 1.45 

 Sentinel-2B 0.45 −0.40 0.37 −0.63 1.28 

Tree 
Landsat 8  0.50 −0.50 0.21 −0.79 1.39 
MODIS 0.47 −0.46 0.27 −0.73 1.30 

 AVHRR 0.45 −0.45 0.30 −0.70 1.25 
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Figure 5. Comparison of LP 100 and estimated LAI in different PFTs: (A) shrub, (B) bush, and (C) tree. 
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Figure 6. Comparison of LP 100 and estimated LAI using Sentinel-2, Landsat 8, MODIS, and AVHRR in June (A) and July (B) 2020. 
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Figure 7. Accuracy assessment of studied sensors in different sampling months (A, B) and PFTs (C, D, E). 

4. Discussion 
Estimation and evaluation of LAI, one of the most important structural characteris-

tics of forest ecosystems, provides much information related to forest dynamics, photo-
synthesis rate, evaporation and transpiration, net primary production, energy, and car-
bon exchange coefficient between vegetation and atmosphere [24]. For the estimation of 
the LAI due to spatial and temporal changes in vegetation canopy, remote sensing 
methods are low-cost methods for calculating the LAI on a large scale. Despite the high 
accuracy of direct methods in estimating LAI, they are often time-consuming, costly, and 
destructive, especially if the level of the studied area is significant. Calculating the LAI 
based on remote sensing methods and some field methods (e.g., LP 100) is based on the 
relationship between the LAI and the radiation reflectance characteristics of the canopy 
measured by sensors. Therefore, sensor-derived data are affected by atmospheric dis-
turbances, sensor characteristics, and sensor accuracy [41–43]. The mean LAI in Landsat 8 
was 0.90 in June and 0.68 in July [14]. Overall, in June, the LAI values were estimated to 
be greater than in July. These results were attributed to the higher levels of vegetation 
greenness in June, as dedicated by Zhu et al. [44], who reported the special impacts of 
different seasons on LAI estimation (p < 0.001).  

The results showed a relatively high correlation between the LAI calculated using 
the LP 100 device and the remote sensing images in all three vegetation forms (Figure 5). 
According to the scatter plots in Figure 6, the correlation between LAI values obtained 
from LP 100 and Sentinel-2B, Landsat 8, and AVHRR images in June, which is the time to 
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examine the forms of shrubs and bushes, was negative. A positive correlation was also 
reported with the trees collected in July. 

Since the pixel value of remote sensing images is averaged from adjacent pixels, it is 
unlikely to be error-free, so the relationship between them was inversely estimated. The 
vegetative forms registered in June were bushes and shrubs having leaves smaller than 
those of trees. Then more light passes through them, and the amount of LAI obtained is 
less than trees. In general, when the LP 100 device is placed under the leaves of the 
plants, due to the smaller size and lower layers of the leaves, more light hits the device 
and is less reflected. However, in trees, the upper layers of the leaves prevent more light 
from reaching the device. The relationship between the obtained values between tree 
vegetation forms and remote sensing images was to be reported positive, as trees act like 
remote sensing images due to larger leaves and less light passing through them. These 
images estimate the LAI from the top of the crown.  

According to the literature [4], measuring the LAI using different tools leads to un-
derestimating about 15%–25% of the actual value of the LAI. However, in this study, due 
to the calibration of the LP 100 device, the accuracy of this device was measured to be 
higher than the remote sensing methods. There was an underestimation in LAI values in 
the remote sensing methods compared with LP 100. Myneni et al. [18] reported a non-
significant correlation between texture variables and effective LAI in evergreen stands 
through mapping the LAI by linking the spectral, spatial, and temporal information of 
Landsat 8, IKONOS, and MODIS. Lee et al. [10] also found higher importance of bands in 
the red-edge and shortwave-infrared than near-infrared bands by comparing the hy-
perspectral and multispectral data for LAI assessment. 

Meyer et al. [45] showed that the vegetation indices created in the infrared bands are 
more closely related to the LAI. In addition, the prediction models obtained from Landsat 
8 data were slightly different from Sentinel-2, and most bands of Sentinel-2B are com-
patible with Landsat 8 [46]. Sajadi et al. [47] used ETM+, OLI, MODIS, and AVHRR sen-
sors to compare and analyze the NDVI time series. According to the MAE and RMSE, the 
Landsat 8 sensor had better performance than other selected sensors. In addition, the 
AVHRR sensor had similar results to Landsat 8, and the MODIS series had lower per-
formance than other sensors in all vegetation classes. Claverie et al. [21] also showed that 
Sentinel-2B imagery outperformed Landsat 8. Chrysafis et al. [26], in a Mediterranean 
mixed-forest area in Greece, concluded that the model obtained from the LAI retrieved 
using Sentinel-2B images and the selection of spectral variables was the most accurate 
LAI prediction (R2 of 0.85). Liu et al. [24] and Propastin and Erasmi [48] concluded that 
the LAI values obtained from MODIS images are consistently underestimated. What is 
more, for wheat LAI retrieval, Yi et al. [49] compared two MODIS land surface reflectance 
data collections. They found the preferred ability of the 8-day composite data for LAI es-
timation, thanks to their reduced cloud and aerosol impacts after composting. Therefore, 
the potential of MODIS data in LAI assessment desires supplementary survey and anal-
ysis. 

AVHRR was widely used because of its high temporal and moderate spatial (1.1 × 
1.1 km) resolutions. Nevertheless, when we use a ready-made AVHRR sensor product, 
the resolution of this product (LAI_FAPAR/V5’) in estimating the LAI reaches about 5.5 
km. Moreover, the prospect of LAI estimation in simple methods necessitating less 
ground truth points was confirmed by Qi et al. [8] through combining the bidirectional 
reflectance distribution function (BRDF) model and traditional LAI-VI empirical relation 
in the AVHRR imagery. Sajadi et al. [47] also indicated that the AVHRR product has a 
higher temporal resolution. However, its inherent characteristics, such as low spatial 
resolution, have led to exhibiting noisy behavior in the dataset. Other features, such as 
design and the significant water vapor absorption due to a broader bandwidth than other 
sensors, have exhibited noisy behavior in the dataset. MODIS sensor products, including 
vegetation indices, LAI-photosynthetic radiation fraction, and surface reflection at dif-
ferent spatial and temporal resolutions, have high potential in estimating LAI [49]. 
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Analysis of spectral surface reflectance from Landsat 8 with changes in spatial resolution 
shows that pixel heterogeneity diminishes at a coarser resolution, and the reflectance is 
comparable with the MODIS NBAR reflectance product [50]. 

In remote sensing methods in estimating the LAI, since light has a reciprocal rela-
tionship within the crown, satellite data are affected by atmospheric disturbances, the 
accuracy and specifications of the sensor type, and the process of receiving signals [51]. 
The relationship between remote sensing and ground-based methods was linear in all 
cases. In addition, the results showed a positive correlation between them in the trees and 
a negative one in the shrubs and bushes. Moreover, an MAE of less than 0.54 and an 
RMSE of less than 1.59 indicated reliable results for the studied months and PFTs. MBE 
and RBias were calculated for LAI remote sensing (Sentinel-2B, Landsat 8, MODIS, and 
AVHRR) per month and different PFTs (RBias < −5.60; −0.01 < MBE < −0.57). MBias values 
between 0.94 and 0.19 indicate an acceptable agreement between remote-sensing- and 
ground-based measurement data [39]. In addition, MAE less than 0.57 and RMSE less 
than 1.47 showed reliable results for the studied months and different PFTs. Comparing 
RMSE among Sentinel-2B, Landsat 8, MODIS, and AVHRR sensors, AVHRR products 
had a more minor error (0.72) than other images.  

5. Uncertainties, Limitations, and Future Work 
Using satellite data at different temporal and spatial resolutions to estimate LAI may 

lead to uncertainties and limitations. Spatial scaling issues in the context of validating 
estimated LAI in this research need minute detail in the future. As Chen et al. [23] noted, 
the validation of LAI products with different resolutions (moderate: 100–1000 m and 
coarse: >1 km) is a challenging concern, and they inherently have significant uncertainties 
owing to the miscellaneous nature of the earth’s surface. Comparisons of LAI values from 
four studied sensors with those aggregated from LP 100 verified the feasibility of LAI 
deriving, but a few errors still exist. Therefore, developing a model that combines the 
advantages of both experimental and physical models has a high potential to improve the 
accuracy of LAI estimation in different temporal–spatial scales for mixed ecosystems. It is 
noteworthy that the geographic coordinates of the ground area and the pixel may be 
formally the same. However, the real positions of the ground area may be slightly dif-
ferent due to different approaches to geometric rectification and different geodetic mod-
els, sensor peculiarities, solar position, relief, and so on. Besides, pixels from different 
bands are almost the same, but commonly, they can differ slightly in their exact positions 
and areas. In the present paper, these uncertainties were not resolved. Due to the large 
surface area of pixels, slightly more unrealistic values were estimated from sensors, such 
as Landsat 8 and Sentinel-2B with higher spatial resolution. Fensholt et al. [52] showed 
that there is around a 2%–15% overestimation within MODIS LAI standard products due 
to a moderate offset unable to be explained by model or input uncertainties. Chen et al. 
[50] pointed out the 50% to 70% accuracy of AVHRR and SPOT (Satellite Pour 
l’Observation de la Terre) in LAI estimation due to the surface heterogeneity caused by 
mixed covers. The bias was mainly due to the uncertainty in the atmospheric correction 
of Landsat images, but the surface heterogeneity in mixed cover types also caused bias in 
AVHRR calculations. They attributed the leading cause of random errors to pixels with 
mixed cover types. Korhonen et al. [20], using band 1 of Sentinel-2B, reported an R2 of 
0.73 and an RMSE of 19.60% for boreal forest canopies. They stated that the atmospheric 
scattering of close pixels could affect the reflection spectrum measured at the field dia-
gram surface; this effect may be more pronounced in heterogeneous landscapes. 

In our research, all used images are characterized by moderate or low levels of spa-
tial resolution. At best (Sentinel-2B), a pixel covers an area of about 100 m2 (10 m × 10 m). 
Such an area may be with several trees, bushes, grass, and forbs. They may represent 
different taxa of plants. Vegetation composition and plant density may change signifi-
cantly from one pixel to another. This issue could cause some uncertainties. 
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The time between the ground data collection and image acquisition is an important 
factor in estimating the LAI. These findings are not without problems. Moreover, that is 
why we tried to make the ground data collection time as consistent as possible with the 
imaging dates. The results of Zheng and Moskal [9] showed that in Canada, the estimated 
LAI data matched the ground data, providing better results. The LAI is usually charac-
terized by attributes of the site, stands, and species [53]. In the present research, only the 
site (different ecoregions) was considered, and other attributes were not investigated. To 
appropriately interpret the obtained results, it is suggested that the types of species of 
each PFT would be studied in the future, which has not been performed in this study. 
Future research could also be continued to implement a suitable method for calculating 
the LAI in the whole province, which includes describing the land cover types to assess 
the similarity in the architectural behavior of canopies in different climatic zones.  

Examining the efficiency of hyperspectral aerial cameras based on VNIR and SWIR 
is recommended for further evaluation. In addition, using a suitable sensor of LAI esti-
mation to determine the relationship between LAI and net primary production could be 
considered for further research. Definitely, using more samples on a larger scale and 
conducting research in other regions of Ardabil Province, as well as investigating the use 
of accurate atmospheric corrections and other methods, such as nonlinear or nonpara-
metric regression, can provide the possibility of estimating this important ecological in-
dex with greater certainty at the regional level. 

6. Conclusions 
The leaf area index (LAI) is one of the most critical indicators in plant ecology that 

shows the production capacity of the habitat and its response to environmental changes. 
Predicting the LAI can be used for various land and vegetation management. The most 
important advantage of using remote sensing methods is the measurement distance in a 
short time for the whole province and the ability to repeat and monitor changes. Of 
course, to determine the accuracy of measurement in these methods, using different di-
rect estimation methods will always maintain its position. We evaluated the utility of 
Sentinel-2B, Landsat 8, MODIS, and AVHRR for estimating the LAI in forests and 
rangelands of Ardabil Province, Northwestern Iran. The capability of different images to 
estimate the LAI and the accuracy of LP 100 as a modern device was investigated.  

The mean LAI values extracted by Sentinel-2B, Landsat 8, MODIS, AVHRR, and LP 
100 were, respectively, 1.92, 0.90, 1.29, 2.55, and 3.74 for June 2020 and 1.24, 0.68, 0.60, 
0.71, and 4.13 for July 2020. All sensors underestimated the LAI in comparison with LP 
100. The results of the accuracy assessment criteria showed various results and efficien-
cies. In terms of different studied months, the lowest MAE, MBE, MBias, RBias, and 
RMSE were found for MODIS (0.30), Sentinel-2B (−0.24), Landsat 8 (0.28), Sentinel-2B 
(−0.49), and AVHRR (1.01) in June. Meanwhile, in July, in that respect, the lowest value of 
statistical errors was found for Sentinel-2B (0.48), Sentinel-2B (−0.45), Landsat 8 (0.15), 
Sentinel-2B (−0.71), and Sentinel-2B (1.34). Furthermore, among three studied PFTs, the 
lowest MAE, MBE, MBias, RBias, and RMSE were respectively characterized for AVHRR 
(0.19) in shrubs, AVHRR (−0.05) in bushes, Landsat 8 (0.18) in bushes, AVHRR (−0.56) in 
shrubs, and AVHRR (0.72) in shrubs. The achieved results could assist in the efficient 
selection of proper Sentinel-2B multispectral bands and spectral indices for LAI retrieval 
in large areas, such as Ardabil Province. 
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