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� The introduction of gradient structure
brings the inhomogeneous
deformation among different layers,
and the induced strain gradient can
achieve the purpose of work
hardening.

� GNDs accumulation can be observed
at the interface of two different ratio
components.

� The addition of the number of
gradient cycles enables the material
to get another large-scale strain
gradient across the microstructure.
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Gradient structured materials have been proven to have excellent mechanical properties, such as
strength–ductility synergy and excellent strain hardening. In this study, the deformation mechanism of
heterostructured bulk aluminum with submicron deformation mechanisms was investigated using a
mechanism-based strain-gradient plasticity model, whose gradient information was obtained using a
discrete gradient computation method. The model was then used to simulate bending of the material
and investigate extra strain hardening. The microstructure of the material was characterized using elec-
tron backscattered diffraction analysis. The complicated dislocation reactions occurring during the defor-
mation of multilayer deposition material were determined from the simulation results. The distribution
and evolution of geometrically necessary dislocations (GNDs) were numerically determined. The simula-
tion results demonstrate that the GNDs and the number of material gradient cycles have a direct
influence on plastic hardening. Inclusion of more layer periods in the material resulted in additional
large-scale strain gradient across its thickness. The results of this study advances the understanding of
the underlying deformation mechanisms that control ductility and strengthening over periods and gra-
dients and provides the possibility of obtaining multilayer materials with exceptional mechanical
properties.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The trade-off between strength and ductility has always been a
challenging problem in material science. Numerous attempts have
been made through microstructure design to realize the synergy
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between these two mechanical properties. Gradient-structured
metals show excellent performance in this respect [1,2]. The struc-
tural gradient results in a plastic strain gradient [3–5], which can
result inmanyadvantages, suchashigher strength [6,7] andductility
[8], good fatigue resistance [9]. Gradient nanograined (GNG)materi-
als, inwhich thegrain size gradually varies froma fewnanometers at
the surface to a fewmicrons inside thematrix, have shown excellent
strength–plastic synergy [7]. For example, the yield strength of GNG
copper bars is about 130MPa, twice that of coarse-grained (CG) cop-
per bars, and maintaining a ductility of approximately 30% [10]. By
introducing a gradient structure into an interstitial-free (IF) steel
sheet, its yield strength is 1.6 times higher than its CG counterpart
while the elongation is unhindered [11]. These results show that
the unique microstructure of gradient structure metals results in
an excellent strength–ductility synergy [12–14].

Upon plastic deformation, stress and strain heterogeneity medi-
ated by structural gradients activate new dislocation mechanisms,
which in turn lead to size-dependent strengthening of the material
[15]. From a microscopic perspective, the plastic deformation of
metals is characterized by the formation and aggregation of a large
number of dislocations. There are two different manifestations of
dislocations [16]: statistically stored dislocations (SSDs), which
evolve from random trapping processes during plastic deforma-
tion, and geometrically necessary dislocations (GNDs), which
appear in strain gradient fields due to geometrical constraints of
the crystal lattice. Owing to the gradient distribution of the phase,
nonuniform deformation occur at different levels during the defor-
mation process. The incompatibility of hard-zone and soft-zone
deformations in a material leads to gradients during plastic defor-
mation [17]. In Fig. 1a [14], GNDs emanate from Frank–Read
sources within the soft region and pile up at its boundary with
an adjacent hard region. In the soft zone, these dislocations create
long-range back stress that prevents glide of the trailing GNDs;
thus, significantly strengthening the soft zone. The back stress is
in the direction opposite to that of the applied stress. In addition
to this, the accumulation of GNDs produces a concentrated forward
Fig. 1. Schematic of two sources of geometrically necessary dislocations: (a) piling
up of geometrically necessary dislocations in the soft zone producing back stress in
the soft zone and forward stress in the hard zone [14], (b) a gradient of slip on the a
slip system along the x1 direction causes storage of geometrically necessary
dislocations [16].

2

stress at the zone boundary, which is opposite to the back stress. At
the boundary of the region, the backward and forward stress cancel
each other. This improves the yield strength of the heterogeneous
material, while an increase in the internal stress after yield results
in strain hardening that retains or even improves plasticity [18]. In
addition to the microstructure, the strain gradient in the material
is also closely related to the loading condition. Metals exhibit
strong strain gradient plasticity during non-uniform plastic defor-
mation such as bending [19,20], torsion [21], and indentation [22].
For example, during bending, the dislocation density is directly
related to the gradient of plastic deformation with distance. As
shown in Fig. 1b [16], a gradient of slip @ca=@x1 along the x1 direc-
tion on the a slip system results in the formation of GNDs with

their density given byqG ¼ 1
b

@ca
@x1

� �
, where b is the Burgers vector.

Physically based constitutive models are often used to study the
effects of multiple mechanisms on the mechanical behavior of
materials. The rule of mixtures (ROM) has been applied in the field
of composite materials to obtain the mechanical response of
gradient-structure materials [23,24]. However, Zhu et al. [17] have
shown that heterogeneous materials exceed ROM because of the
excellent synergies delivered by the heterogeneous regions. Finite
element simulations can be used in gradient-structure materials by
adding constraints between the multiple regions [25,26]. However,
GNDs caused by nonuniform deformation are often ignored. Zhang
et al. [27] introduced a scalar measure of the plastic strain gradient
into the hardening rate and, based on a simplified one-dimensional
gradient theory, verified that the additional strength indeed
depended on the plastic strain gradient. However, the mechanical
mechanism of gradient plasticity between different components
and the direction of the gradient have not been clearly explained.

In this study, heterostructured aluminum with a controllable
gradient structure was prepared using the powder assembly
method, as shown in Fig. 2a. To validate our design concept and
explore the role of GNDs in the strength gained by multilayer
deposition-mediated heterostructured bulk aluminum.
Mechanism-based strain gradient plasticity (MSGP) [28] was
adopted, which can reflect the strengthening of strain gradient
caused by heterogeneous structure on material deformation. The
mechanical response and deformation characteristics of multi-
period heterostructured bulk aluminum (Al/7055) under bending
conditions were studied. Since the sample is not melted during
preparation. Therefore, additional hardening caused by segregation
precipitation of the second phase was ignored in this study. Metals
with a gradient structure exhibit higher gradient plasticity when
deformed under a bending load [19,20]. It was found that the gradi-
ent structure has a particular influence on the deformation behavior
of the components, which is mainly caused by the internal stress
generated by heterogeneous deformation. The validity of the finite
element model was verified by comparing it with experimental
results. The gradient plasticity simulations thus performed provides
insights in the exploration of strength gradient optimization.

2. Theoretical aspects

The classical elastic–plastic theory only considers SSDs and not
GNDs. The deformation-compatible GND mechanism primarily
controls the size-effect of the material, and the GND density is
related to the strain gradient. In the following, we present the
building blocks of MSGP in the lines of [28,29].

2.1. MSGP hardening model

According to the Taylor dislocation model, the relationship
between shear flow-stress s and dislocation density q can be
expressed as [16].



Fig. 2. Design of heterostructured bulk Al with controllable gradient structure. (a) Schematic of the fabrication process. Different ratios of Al/Al alloy flaky powders are pre-
mixed in an ethanol solution, followed by vacuum filtration, and finally hot-pressed at 500 MPa (at 673 K). (b) Different ratios of Al/Al alloy flaky powders. (c) After hot
compression, the aluminum sheet was annealed for 2 h (at 723 K) and further hot-rolled (90% thickness reduction at 723 K).
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s ¼ alb
ffiffiffiffi
q

p ð1Þ
where l is the shear modulus of the matrix, a is an empirical

constant of approximately 0.3 [30], and b is the magnitude of the
Burgers vector.

Assuming qS and qG to be the densities of SSDs and GNDs,
respectively, the total dislocation density q can be expressed as.

q ¼ qS þ qG ð2Þ
The GND density and equivalent strain gradient are related by

the following relationship:

qG ¼ r
� gp

b
ð3Þ

where r
�
is the Nye factor used to measure the degree of non-

uniform plastic deformation (its value for a face-centered cubic
(FCC) crystal is about 1.9 [31]). gp is the equivalent strain gradient,
which is calculated after the material yields.

The relationship between tensile flow-stress and shear flow-
stress is as follows:

rF ¼ Ms ¼ Malb
ffiffiffiffi
q

p ð4Þ
where M is Taylor factor; M= 3.06 for a FCC material [32].
From Eqs. (1) to (4), we get:

rF ¼ Malb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ r

� gp

b

r
ð5Þ

The contribution of SSDs to the flow stress can be obtained by
uniformly deforming a material under uniaxial tensile or compres-
sion loading. This is because, under such a condition, qG= 0. In such
a scenario, rF reduces tor1D

F , i.e.

r1D
F ¼ Malb

ffiffiffiffiffiffi
qS

p ð6Þ
Thus, qS can be determined from (5) as.

qS ¼ ½ rF

Malb
�
2

ð7Þ

Here, the conventional uniaxial curve is expressed in terms of
the equivalent plastic strain in the form of a hardening law. Thus,
r1D

F can be obtained by fitting the uniaxial stress–strain curve; r1D
F

may be related to the SSD density as.

qS ¼
rref f p e

�p� �
Malb

2
4

3
5

2

ð8Þ
3

Substituting Eq. (8) back into (5), one obtains.

rF ep;gpð Þ ¼ Malb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rref f p e

�p� �
Malb

2
4

3
5

2

þ r
� gp

b

vuuut ð9Þ

where gp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4gp)gp

q
with.

gp
ijk ¼

@�pik
@xj

þ @�pjk
@xi

� @�pij
@xk

ð10Þ

Based on the above formulas, the flow stress according to the
Taylor dislocation model can be expressed as.

rF ep;gpð Þ ¼ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f p e

�p� �2
þ lgp

r
ð11Þ

where l is the intrinsic material length, which depends on the
elasticity (l), plasticity (rref ), and Burgers vector (b) [33].

l ¼ M2a2b r
�
l=rrefð Þ2 ð12Þ

Typically, for metals, the Burgers vector b is of the order of 10�1

nm, and l=rref is of the order of102. Moreover, a is approximately
0.3. This implies that the intrinsic material length is of the order of
a micron.

We assume the following isotropic hardening law,

r ¼ rY 1þ Ee
�p

rY

 !N

ð13Þ

The reference stress is defined as rref ¼ rY E=rYð ÞN

andf p e
�p� �

¼ e
�p þ rY=E
� �N

.

Moreover, it was assumed that the intrinsic material length did
not change during the deformation process. If the characteristic
deformation scale of the material is significantly larger than the
intrinsic material length, the strain gradient term lgp in formula
(11) can be ignored, and, consequently, the flow stress reduces to

that of the classical elastic–plastic theory, i.e.,rF ¼ rref f pðe
�pÞ.

2.2. Calculation of the plastic strain gradient

The discrete gradient method proposed by Liszka and Orkisz
[34] was adopted for the strain gradient calculation. First, the
plastic strain rate was assumed to be a sufficiently differentiable
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function, i.e., _epij rð Þ . The first-order Taylor series expansion around
point r0 ¼ x0; y0f g is.

_epijðrÞ ¼ _epijðr0Þ þ C � Dr þ OðD2Þ ð14Þ
where C represents the unknown gradient vector, i.e.

C ¼ f _epij;1ðr0Þ; _epij;2ðr0Þg
> ð15Þ

In Eq. (14), Dr is defined as Dr ¼ fDx;Dyg>
withDx ¼ x� x0,Dy ¼ y� y0. AndD2 ¼ Dx2 þ Dy2. A set of linear
equations can be derived by writing Eq. (14) for each Gauss point
around a central Gauss point where the gradient is to be realized.
Since the number of such Gauss points n is unknown, the equations
processed are integrated into an overdetermined linear system to
increase approximation accuracy. Hence, the solution requires a
minimization procedure. For this purpose, we define a function f
such that.

f ðCÞ ¼
Xn
k¼1

½
_eqij ðr0Þ � _epijðrkÞ þ C � Drk

D3
k

�
2

ð16Þ

where 1 = D3
k denotes the weighting factor. The desired gradi-

ents were determined by minimizing f Cð Þ using@f=@C ¼ 0. The
USDFLD subroutine found in the ABAQUS software was used for
this purpose.
Fig. 3. Calculation of strain gradient (Num_GP: the number of Gauss points within the I
calculation of the strain gradient calculation, (b) gradient calculation at point i (regular fin

4

It must be mentioned that during the calculation of the gradient
at a point i, all the Gauss points in the model were not used since
that would have required significant storage and computing
power. Instead, as shown in Fig. 3, an interaction radius R was
defined, and the Gauss points within the interaction radius were
used to calculate the gradient at point i. Gradient calculations at
the Gauss points were conducted at the end of each step and finite
increment of the plastic strain. Subsequently, the calculated gradi-
ents were passed back to the main constitutive calculation module.

3. Materials and experimental methods

Chemical or structural gradients are introduced into engineer-
ing materials to improve their mechanical properties [35]. The
introduction of structural gradients can overcome the performance
limitations of traditional material systems, alleviate stress concen-
tration, and produce specific functions.

In the present study, the metallic materials with tunable struc-
tural gradients were prepared using the concept of bottom-up
manufacturing, which had been reported in our previous work
[36]. This allows the mode and sequence of the gradient structure
to be arbitrarily controlled. First, different types of metal sheets
were prepared using the ball-milling method. Sheets, several hun-
dred nanometers thick, were evenly mixed in an ethanol medium
and then filtered under vacuum. The composite powder assembly
process allowed us to accurately adjust the layer composition
nteraction region; Max_GP: the total number of Gauss points): (a) flowchart for the
ite element mesh), (c) gradient calculation at point i (Irregular finite element mesh).



Fig. 4. Microstructure of the heterostructured bulk aluminum (Al/7055): (a) backscatter electron (BSE) images and hardness of periodic gradient materials with three cycles
(GC3) and six cycles (GC6), (b) electron backscattered diffraction (EBSD) images of one cycle GC6, (c) enlarged views of some of the regions of the EBSD image, and (d) grain
size distribution plot.
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and thickness. In this study, we used 7055 aluminum alloy and
pure aluminum (99.9% purity) for the hard and soft regions, respec-
tively, and obtained a transition zone by changing their relative
proportions. For this, combinations of 75% aluminum alloy + 25%
pure aluminum, 50% aluminum alloy + 50% pure aluminum, and
25% aluminum alloy + 75% pure aluminum were used.

Backscatter electron (BSE) and electron backscattered diffrac-
tion (EBSD) were used to characterize the microstructure of the
heterogeneous material. Fig. 4a shows the BSE images of the mate-
rials with three cycles (GC3) and six cycles (GC6) and the corre-
sponding hardness distribution. The absence of sharp interface in
BSE image is attributed to the elemental diffusion upon hot work-
ing [36]. Fig. 4b shows the grain orientation distribution of the GC6
material with one cycle wherein the microstructure is regularly
distributed with a change in the hardness, grains with sizes
below � 150 nm cannot be resolved by EBSD probably due to large
Fig. 5. (a) Experimentally obtained and simulated stress–strain curves of the hard (70
material model schematic (Transitioning from the hard phase aluminum alloy 7055 to th
three gradient cycles (GC3). (e) Schematic of a material model with six gradient cycles

5

residual stress in the as-fabricated samples. Based on the process-
ing technique and EBSD image, we believe that the large-grained
strips are mainly composed of the 7055 aluminum alloy. Fig. 4c
shows enlargement of grains with approximately 100% aluminum
alloy, 50% aluminum alloy + 50% aluminum alloy, and 100% alu-
minum in the three locations. As shown in Fig. 4d, the grain size
measured by EBSD varies between 1 and 2 lm. It is necessary to
consider the strain gradient plasticity and intrinsic material length
during deformation.
4. Microstructural modeling

To obtain the material parameters for the simulation, the
mechanical responses of the hard and soft phases were studied
using micropillar compression tests. For this, pure aluminum and
7055 aluminum alloy micropillars with a diameter of 2 lm and a
55) and soft (Al) phases. (b) Finite element model for bending tests. (c) One-cycle
e soft phase Al and then to the hard phase). (d) Schematic of a material model with
(GC6).



Fig. 6. Influence of intrinsic material length on the macroscopic mechanical
behavior studied using the Taylor dislocation model.
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height of 6 lm were prepared using a focused ion beam (FIB, FEI
Scios) and were then compressed at a strain rate of 5 � 10-4 s�1

under a nanometer informer with a flat punch tip. Continuous stiff-
ness measurement (CSM) was used to monitor the change in con-
tact stiffness during the compression test at a harmonic frequency
of 75 Hz and an amplitude of 2 nm. The true stress and true strain
were obtained by dynamically recording the load and displace-
ment of the head according to the method developed by Greer
et al. [37]. Fig. 5a shows the stress–strain diagrams obtained both
from the test and the simulation. The obtained elastic modulus,
yield stress, hardening exponent and strain gradient theory related
parameter of the soft phase (Al) were E = 54 GPa, Y = 400 MPa,

N = 0.03, M = 3.06, r
�
= 1.9, and l = 0.05 lm, respectively. For the

hard phase (7055 alloy), the corresponding values were E = 50

GPa, Y = 450 MPa, N = 0.09, M = 3.06, r
�
= 1.9, and l = 0.05 lm.

Although the elastic modulus increases due to compression, such
a change was ignored and, instead, the initial elastic moduli were
used.

The effects of the number of periods and stress distribution as
well as the distribution of GNDs between two adjacent layers were
studied using finite element simulations. Three-point bending sim-
ulations were performed using ABAQUS/Standard [38] combined
with the user subroutine module (UMAT + USDFLD). To better
study the effect of the strain gradient along the depth of the mate-
rial, a 2D plane-strain geometric model was used for the simula-
tions. The gradient structure of the material in the thickness
direction was represented by an ideal model of uniform layer tran-
sitions [27,39]. As shown in Fig. 5a, the parameters of the hard and
soft phases were inverted. The properties of each layer were inter-
polated and matched to those of the real material according to the
ratio of soft and hard phases in them. Fig. 5c–e show schematics of
the material model with one, three, and six cycles, respectively.
Fig. 7. Simulation and Experiment: force–displacement curve.
5. Results and discussion

5.1. Macroscopic mechanical behavior

The role of GNDs in mechanical responses is explained by the
mechanism-based strain gradient plasticity. The extra hardening
behavior can be reflected by geometrical dislocations by changing
intrinsic material lengths (l). Effects of a change in the intrinsic
material length scale was studied with the GC3 material model.
The intrinsic material lengths used for this purpose were (i)
l = 0 lm, (ii) l = 0.05 lm, (iii) l = 0.1 lm, and (iv) l = 0.15 lm,
and the results are shown in Fig. 6.

Two observations could be made from Fig. 6. First, the mechan-
ical response with the inclusion of GNDs shows a higher strength
than the conventional plastic case (l = 0). Second, the strength of
the material is directly correlated to the magnitude of l.

Three-point bending tests were performed on specimens GC3
and GC6. The test specimens were 1.2 mm thick and 3 mm wide.
The span between two consecutive support points was 20 mm.
And the radius of the indenter was 1.5 mm. For comparison, bend-
ing simulations on the corresponding two material models with
similar conditions were also conducted. In addition to this, bending
simulations were also performed on material models with the
properties of pure Al and 7055 Al alloy. The results are shown in
Fig. 7. Based on this, it can be observed that gradient materials
exhibit excellent mechanical properties, which is consistent with
previous experiments [36]. In particular, the strength of GC3 was
higher that of pure aluminum. Moreover, when the material cycle
was increased to six cycles, its strength became similar to that of
7075 Al alloy. In addition to this, it was observed that, for the same
ratio of the soft and hard phases, the greater is the dislocation
6

density accumulated during the deformation process, the higher
the strength of the material.
5.2. Micromechanical behavior

For a given material thickness, the number of cycles is one of
the main factors affecting the performance of controllable gradient
materials. Three-point bending simulations were carried out using
two material models with different numbers of cycles (GC3/GC6)
but with the same overall size. Owing to the different number of
gradient periods, model with more cycles has smaller transition
layer thicknesses for the same material size. In this section, we dis-
cuss the plastic deformation behavior of homogeneous materials
(pure 7055 Al alloy), GC3, GC6, and the characteristics of the Taylor
strengthening mechanism. Fig. 8 shows the strain distribution
cloud diagram of the three material models under different
deflections.



Fig. 9. Variation of strain with depth in single phase, GC3, and GC6 at different
deflections.
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With an increase in the deflection from 1 mm to 3 mm, the
strains at the bottom of GC3 and GC6 became uneven. In contrast,
even though the corresponding strain in the single-phase material
increased with an increase in the deflection, it remained even. In
addition, it can be observed that the strain distribution is related
to the number of cycles. When the bending deflection was 2 mm,
an unevenness in the strain distribution at the bottom of GC3
appeared to have initiated whereas it was fully developed in the
case of GC6. To further study the distribution of strain in the bulk
of the material, strain values within a depth of 600 lm to 1200 lm
(neutral axis and below) were extracted from the surface. Fig. 9
shows the variation of these strains with depth in the three models
under different deflections.

At 1 mm deflection, strains in all the three models increased in a
perfectly linear manner with depth. Next, when the deflection
increased to 2 mm, the variation in the strain in GC6 showed sig-
nificant fluctuation whereas the fluctuation was minor in GC3.
Ultimately, when the deflection was increased to 3 mm, the strain
distributions in both GC3 and GC6 fluctuated considerably, and the
amount of fluctuation was higher in GC6. The above results indi-
cate that the periodic gradient structure of the material affects
the strain distribution and, unlike in the case of a single phase
material, prevents the deformation from proceeding evenly. The
uneven strain distribution is conducive to the generation of dislo-
cations, thus providing an additional strengthening effect and
increasing the work-hardening capacity of the material.

Mathematically, the strain gradient of the slip system is closely
related to dislocations. Fig. 10a and 10b show the distribution of
GND in GC3 and GC6. Fig. 10c and 10d show the variation in the
GND density with depth. It is clear from these figures that the dis-
tribution of GND is also strongly correlated to the microstructure
of the material.

The distribution of GNDs were observed to be relatively more
uniform in GC6. As shown in Fig. 10c, the number of peaks in the
GND distribution increases with an increase in the number of lay-
ers. Upon calculating the mean GND density in GC6 and GC3, it was
observed that increasing the number of cycles from three to six is
beneficial for generating more strain gradient and increasing the
Fig. 8. Strain distribution maps of single phase (

7

average density of GND, which results in a significant improve-
ment in the strength.

The constituents of periodic gradient materials form a gradient
structure that then periodically repeats across the sample. Fig. 10d
shows the variation of GND density with distance from the neutral
axis both within a period and across layers in GC6. The existence of
a double gradient provides new possibilities for obtaining materi-
als with exceptional mechanical properties.

The distribution of GND in the fabricated materials was also
studied. For this, the analysis tool for electron and X-ray diffraction
(ATEX) [40] was used to process the EBSD data and obtain the GND
map. In this process, Burges vector length of aluminum was used
for calculate GND density. And the magnitude of Burgers vector b
is approximately 0.286 nm [28]. As shown in Fig. 11a, the obtained
GND distribution map was divided into fifty equal regions, and the
values at five random points with relatively concentrated GNDs
hard), GC3, and GC6 at different deflections.



Fig. 10. GND distribution in heterostructured bulk Al with controllable gradient structure. (a) three cycle gradient (GC3) and (b) six cycle gradient (GC6). (c) Variation in the
GNDs density with depth in GC3 and GC6. (d) Dual gradient effect in periodic gradient materials.

Fig. 11. (a) GND distribution map divided into fifty regions. (b) Variation of GND density with depth obtained from the simulation results. (c) Variation of GND density with
depth direction obtained from the EBSD results.
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Fig. 12. (a) Variation in the volume fraction of the hard phase with depth (Y-axis). (b) The influence of k to force–displacement curve. (c) Average SSD density. (d) Average
GND density.

Fig. 13. (a) Schematic of the interaction radius R. (b) Variation of the geometrically necessary dislocation density between the two layers of the material. (c) Bending force–
displacement curves corresponding to different interaction radii (R). (d) Magnified view of a portion of the force–displacement curve.
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were selected from each region to obtain the corresponding mean
GND density.

Fig. 11b and 11c show the variation of GND density with depth
in GC6 obtained from the finite element simulations and the EBSD
data, respectively. Therein, it can be observed that the GND density
fluctuates with depth in both the simulation and experimental
results. GNDs in Fig. 11c does not have a gradient distribution as
the simulation results, and is not strictly increased first and then
decreased. This may be due to the fact that the material has been
rolled and hardened before bending. Thus, the hardness difference
ratio of each layer is reduced. Notably, the GND density obtained
from the EBSD results is approximately two orders of magnitude
higher. This is due to the fact that dislocations generated during
material preparation were not considered in the simulations. How-
ever, the effect is reflected in the material parameters obtained by
compression experiments.

5.3. Gradient design of heterostructured bulk Al

The change in the volume fraction distribution of the soft and
hard phases affects the mechanical properties of gradient struc-
tured materials. The experimental and simulated models showed
linear changes in the material volume fraction. The heterogeneous
gradient gradually varied from 100% 7055 Al alloy to 100% pure Al
with depth (Y-axis). The volume fraction of the hard phase is given
by.

VH ¼ 1� y
h

� �k
ð17Þ

where k is the volume fraction index, h is the thickness of
material.

A bending simulation was performed on the heterogeneous alu-
minum with one cycle. Fig. 12a shows the variation in the volume
fraction of the hard phase with depth for different values of k. From
this, it can be observed that with an increase in the value of k, vol-
ume fraction of the hard phase decreases. As shown in Fig. 12b, the
material model with a larger value of k had a lower strength, but
the difference was not as large as that obtained from ROM. In other
words, when the value of k is higher, despite its lower intensity.
But stronger dislocation reinforcement makes up for the strength
gap due to different hard phase volume fractions. Fig. 12c and
12d show variation of the SSD and GND densities averaged over
the entire bending model with k at different bending deflections.
From these results, it can be said that an increase in the volume
fraction index of the hard phase results in an increase in the dislo-
cation density, which further contributes to the material stress.

6. Conclusion

In this study, the mechanical properties of heterostructured
bulk aluminum (Al/7055) with three and six gradient cycles were
investigated. Their microstructures were characterized by electron
backscattered diffraction, and the distribution of geometrically
necessary dislocations along the thickness of the material was
investigated and discussed through numerical simulations. The
selection of the intrinsic material length and influence of the
recently developed gradient calculation method on the simulation
results were also studied. The following conclusions could be
drawn:

� Disregarding the change in the intrinsic length scale of the
materials results in a significant difference in the macroscopic
response. To accurately describe the gradient effect in gradient
structure materials, the intrinsic gradient of the length-scale
parameters must be considered.
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� The introduction of a gradient structure in metal matrix com-
posites results in inhomogeneous deformation across the differ-
ent layers, and the induced strain gradient can help improve the
amount of work hardening. Through bending tests and simula-
tions, we found that the number of material gradient cycles had
a direct influence on the mechanical response.

� GNDs were found to accumulate at the interface between the
metal matrix and the reinforcement. Moreover, modification
of the microstructure by incorporating a periodic structure
helped achieve large-scale strain gradient across the material.
This double strain-gradient effect provides a basis for the prepa-
ration of composite materials.

� To study the influence of the change of phase volume fraction
on mechanical properties, a distribution equation was proposed
for the hard and soft phases in the form of the volume fraction
exponent. The simulation results show that the dislocation den-
sity increases when the volume fraction of the harder phase is
less.
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Appendix

Heterostructured aluminum with a controllable gradient struc-
ture was prepared using the powder assembly method. The per-
centage of hard and soft phases in the two adjacent layers were
different. The other mechanical properties were then reflected. In
addition, it balances the strength and toughness of the material.
To study the distribution of dislocations in two adjacent layers,
we extracted a part of the model containing two layers of compo-
nents in one cycle. Different interaction radii (R) were selected to
control the size of the gradient, and their influence on the numer-
ical simulation was studied. As shown in Fig. 13a, the number of
Gauss points included in the gradient calculation is dependent on
the value of R. However, the disadvantage of using a larger radius
is that more material components would have to be included. After
the weighted average, the difference in the strain gradient may be
offset, and the distribution tends to be averaged, which is not
desired. On the other hand, the number of Gauss points obtained
by using a small value of R is insufficient to account for the influ-
ence region around the deformed region.

The weighted average method we used solves this problem, and
the influence of the radius on the result converges to the desired
range.

As shown in Fig. 13b, upon increasing the value of the interac-
tion radius initially equivalent to the size of one element to that of
five elements, GND density first increases and then decreases. Con-
vergence is achieved only when the interaction radius lies between
2 and 2.5 times the element size. Accordingly, the GND density
thus evaluated first increases with depth until it reaches the
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interface (where its value is maximum) and then decreases owing
to the transition to the next layer.

Fig. 13c shows the influence of the interaction radius on the
macroscopic properties of the material. When R = 0, i.e., strength-
ening due to GNDs is ignored, the force required to bend the mate-
rial decreases significantly. When R lied between 0.01 and 0.05, the
influence was similar to that of GNDs, and all the curves seemed to
coincide with minor variation amongst them.
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