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Abstract. Industrial Control Systems (ICSs) rely on insecure protocols and
devices to monitor and operate critical infrastructure. Prior work has demon-
strated that powerful attackers with detailed system knowledge can manipulate
exchanged sensor data to deteriorate performance of the process, even leading
to full shutdowns of plants. Identifying those attacks requires iterating over
all possible sensor values, and running detailed system simulation or analysis
to identify optimal attacks. That setup allows adversaries to identify attacks
that are most impactful when applied on the system for the first time, before
the system operators become aware of the manipulations.
In this work, we investigate if constrained attackers without detailed system
knowledge and simulators can identify comparable attacks. In particular, the
attacker only requires abstract knowledge on general information flow in the
plant, instead of precise algorithms, operating parameters, process models,
or simulators. We propose an approach that allows single-shot attacks, i.e.,
near-optimal attacks that are reliably shutting down a system on the first try.
The approach is applied and validated on two use cases, and demonstrated
to achieve comparable results to prior work, which relied on detailed system
information and simulations.

Keywords: ICS · control loop graph · attack · limited knowledge.

1 Introduction

Attacks on Industrial Control Systems (ICSs) have been thoroughly investigated in
the post-Stuxnet era. Different initiatives such as Mitre’s ATT&CK for ICS and
SANS Institute’s ICS Cyber Kill Chain have emerged to systematically analyze ICS
attacks [6,23]. After a decade of research, it became clear that the difficulty of ICS
attacks is not the execution itself but the preparation [12]. The latter stages of an ICS
attack are considered easy because most industrial protocols lack security services such
as message encryption and authentication, Programmable Logic Controllers (PLCs)
remain operational for years without software updates, unprotected Human-Machine
Interfaces (HMIs), and many more. The difficulty about preparing an ICS attack is due
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the complexity of ICSs that can have hundreds of components (e.g., sensors, setpoints,
actuators) and knowing what to target and how to target it is considered far from trivial.

Most research on ICSs security argues, or simply assumes, that detailed knowledge
about the system is a requirement for a successful compromise. In this work, we challenge
such a claim by considering an attacker whose goal is to destabilize the physical process
using only limited process knowledge. Despite this preparation constraint, the attack (1)
must target one component only once (single-shot); and (2) must have a fast effect after
the attack execution (near-optimal). The first requirement aims at executing stealthy
and hard to detect attacks. The second requirement discards attacks whose impact take
a long time, increasing the chance of detection and defensive reaction. More precisely, we
call ‘near-optimal’ the top-3 fastest attacks under the same system and attack conditions.

Previous research has identified the data sources required by an attacker to prepare a
successful attack against ICSs [12]. For instance, PLC configuration, HMI/Workstation
configuration, historian configuration, network traffic, system/component constraints,
and piping and instrumentation diagrams (P&IDs). The main argument being that
only through the combination of multiple data sources, an attacker is able to reach the
level of “process comprehension” required to launch an attack. Previous works confirm
this claim. We analyzed the attack preparation phase of several papers and categorized
their requirements according to the data sources presented in [12]. Table 1 shows that
previous works use multiple data sources to prepare an ICS attack.
In this work, we propose a new approach that only requires limited knowledge of

the system’s architecture, and still allows to identify near-optimal single-shot attacks.
Our approach requires an abstract representation of the information flow in the system
- which sensors and setpoints influence which control decision, which actuators are
controlled by which control function. We show how to obtain this information (e.g.,
from P&IDs), and how to express it in an abstract graph representation. We then
leverage the accumulated knowledge on IT software weaknesses and apply it to the ICSs
domain. In particular, we use weaknesses from Mitre’s Common Weakness Enumeration
(CWE) database, and translate them to specific graph patterns. Our goal is to look
for these patterns in the ICS graph to identify suitable targets. From this set of targets,
the attacker picks one (e.g., randomly) and executes his ‘one-shot’ attack.
We evaluate our approach using a simulated ICS known as the Tennessee East-

man Plant (TEP). We used two different implementations of the TEP and build the
corresponding CCL graphs. Our analysis of the graphs reveals weaknesses which we
hypothesize are the components in best capacity to compromise the availability of the
plant. We then execute simulations to test our hypotheses. We found out that there
is a correlation between the targets automatically chosen by our approach and the
components that, according to the simulations, are prone to cause a shutdown of the
plant. Although different security aspects of the TEP have been studied in the past,
most of them have run simulations under very limited conditions [13,15]. To gain more
confidence in our results, we executed 748 individual simulations under 14 different
conditions that account for 2.52 years of simulated time.
Summarizing, our two main contributions are as follows. (1) We present a novel

method to identify near-optimal single-shot attacks on ICSs. Unlike previous offensive
approaches, our work uses limited process knowledge, thus, offering new insights about
the actual security risks in ICSs. (2) To validate our approach, we executed, documented,
and published the most extensive set of simulated attacks on the TEP to date. The code,
results of each simulation, and screenshots are provided in the corresponding repositories.
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Table 1: Comparison of the required attacker knowledge in previous works. Data
sources are based on the process knowledge data source taxonomy from [12]. P&ID:
Piping and Instrumentation Diagram, PLC: Programmable Logic Controller, HMI:
Human-Machine Interface, WS: Workstation.

Data source
Work

[2] [3] [7] [8] [9] [13] [15] [16] [19] [28] Our

PLC configuration X X
HMI/WS configuration X X X X
Historian configuration X X X X X X X X
Network traffic X X
P&ID X X X X X X X X

2 Background

2.1 Closed Control Loops

Closed Control Loops (CCLs) constitute a basic programming pattern for ICSs. A CCL
is comprised of four basic components, namely, a setpoint, a sensor, a control function,
and an actuator (e.g., valve, heater, light, etc.). The CCL’s control function receives
inputs from the environment through sensors, compares them with pre-established
setpoints, and reacts with a compensatory action intended to minimize the difference.
The compensatory action is executed by an actuator in order to control the physical
variable measured by the sensor (e.g., pressure, temperature, illumination, etc.). Figure 1
depicts the simplest form of a CCL.

asp

se

f

Fig. 1: A CCL comprised of a setpoint (sp), a sensor (se), a control function (f), and
an actuator (a). Solid lines represent communication in the cyber domain whereas
the dashed line represents interaction in the physical realm.

The control function is a software component typically running in high availability
embedded systems such as Programmable Logic Controllers (PLCs). Control functions
implement the control logic; for example, arithmetic operations, rate limiters, and
other kinds of data processing functions. From the function’s perspective, hardware
devices such as sensors and actuators are abstracted simply as variables to be read
and written. It is worth noting that in distributed control systems these variables might
not necessarily reside on the same PLC. Therefore, the communication to and from
the control function might require network transmissions.

Advanced CCL configurations are often needed, e.g., to cope with system disturbances.
One of such configurations is called cascade control, where one control function adjusts the
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setpoint of another control function [32]. This dynamically computed setpoint is called a
calculated setpoint. In contraposition, we denote user-defined setpoints as static setpoints.
Although we typically make an explicit distinction between static setpoints and calculated
setpoints, in what follows, we use the word setpoint to refer to either of them when such a
distinction is irrelevant. Graphically, an example of cascade control is shown in Figure 2a.

Another advanced CCL configuration is called override control. In this setting, one
control function manipulates one variable during normal operation, however, a second
control function can take over during abnormal operation to prevent some safety, process,
or equipment limit from being exceeded [32]. The notion of normal and abnormal
operation is dependent on the physical process under control. The variable under control
by two or more control functions is typically used to manipulate one actuator or calculated
setpoint. Figure 2b shows a graphical representation of the override control technique.

It is also common to find setpoints and sensors shared between two or more control
functions, as shown in Figure 2c and Figure 2d, respectively. Shared setpoints provide
a convenient centralized configuration for multiple control functions at once. The
motivation behind shared sensors is similar to that of shared setpoints, which in addition
reflects the fact that typically there are limited instances of physical sensors in the
system under control. An arbitrary number of the CCL configurations shown in Figure 2
can be used to control ICSs [29].

f fcs

(a) Cascade control.

f f
a
cs

(b) Override control.

f f
ss
cs

(c) Shared setpoint.

f fse

(d) Shared sensor.

Fig. 2: Advanced CCL configurations. Color code: gray: static setpoint (ss), blue: control-
ling function (f), red: actuator (a), purple: sensor (se), and yellow: calculated setpoint (cs).

2.2 Process Knowledge Data Sources

Process comprehension is the main challenge attackers need to overcome to design
successful and efficient attack strategies. Based on their capabilities, attackers can access
different data sources of the targeted system, from collecting network captures to full
access to an operator’s workstation. Each data source provides a different view of the sys-
tem. Depending on the attacker’s interests, they could find some data sources more useful
than others. We follow the data source taxonomy presented in [12] and describe the infor-
mation that can be derived from them. The data sources explored in their work include:

PLC Configuration. PLCs are one of the most valuable components of ICSs. As they run
the control logic that governs the process, they contain all the mechanisms to manipulate
the system’s physical properties. An attacker can learn the system’s control logic and
understand what sensors and network messages could jeopardize the system more quickly.

HMI/Workstation configuration. HMIs are a valuable target for attackers because
they typically run on Windows-based machines and have a comprehensive view of the
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system, as it was shown in the Ukraine power grid incident [18]. Attackers with access
to HMIs have a larger view of the system than individual PLCs. Attackers with access
to HMIs could infer a more general view of the system, such as the type of industry
they control [28].

Historian configuration. Historian data is also a valuable data source for attackers.
As historians store previous traces of the system, they provide helpful information for
attackers to understand the nominal behavior of the system. Historians are particularly
valuable for model learning and the design of stealthy attacks [19].

Network traffic. Network flows describe how devices interact with each other. Attackers
can sneak into the system’s network and passively learn patterns of the system’s
behavior. Networks provide a source of realistic attack vectors that can drive the system
into unsafe states [8,9].

Piping and Instrumentation Diagram (P&ID). P&IDs show the functional relationship
between the main components of the system, including piping, instrumentation and
control devices. Attackers could learn valuable information about operational equipment
and deduce which computing devices are worth being attacked.

3 Identifying Near-Optimal Single-Shot Attacks

3.1 System Model

In this work, we focus on generic Industrial Control Systems (ICSs) implemented using
a common programming pattern known as Closed Control Loop (CCL). The structure
of CCLs is typically comprised of 4 components: a control function, a setpoint, a sensor,
and an actuator. Control functions run in high availability embedded systems such as
PLCs. Setpoints, sensors, and actuators are abstracted as variables that serve as inputs
and outputs for control functions. The system might be distributed, meaning that the
components of a single CCL reside on different PLCs but are interconnected through
a communication network and exchange messages using standard ICS protocols (e.g.,
Modbus, EtherNet/IP, BACnet).

3.2 Attacker Model

Attacker Goal. We consider an attacker that aims to lead to process damage (e.g., an
emergency process shutdown) as fast as possible (as with longer attacks, the likelihood
of detection rises).

Attacker Capabilities. To achieve this goal, the attacker will manipulate the values
reported by a specific sensor (which simplifies the analysis, consistent with related
work [13,15], and also limits the discussion to attacks on single sensors). Exactly how
the sensor is manipulated is out of scope. Prior work has demonstrated many ways
to achieve this via physical-layer manipulations [30], traffic manipulations [15], or
direct attacks on the PLCs or other hosts [1]. In prior work, a number of approaches
to select values to spoof have been discussed. In this work we use the constant and
minimum/maximum value attack from [7,31].
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Attacker Knowledge. As obtaining information on the target process is costly (e.g.,
reconnaissance effort, bribes, industrial espionage), the attacker aims to minimize the
type of information required to successfully run an attack. In particular, we assume
an attacker that only has access to an abstract P&ID. We will show later how from
this diagram a CCL graph can be derived.

Lack of Simulation. In particular, the attacker does not have access to detailed physical
process simulation environments. This implies (combined with the lack of detailed
knowledge on the attacked process) that the effect of the attacker’s manipulations
cannot be reliably predicted in advance.

3.3 Research Questions and Challenges

Given this system and attacker model we address the following research question:

Given the set of all ICS sensors in the target system, how can the attacker identify the
sensor to manipulate to achieve a near-optimal single-shot attack, with limited knowledge
on the attacked process and system (i.e., a CCL graph)?

Here we motivate the single-shot and near-optimal attack requirements in detail.

Need for Single-Shot Attacks. While the system under attack does not use process-aware
attack detection systems [31], the human operators will eventually detect anomalous
system conditions. Once anomalous system conditions are detected, a full-scale forensic
investigation would be launched, which would remove the attacker’s ability to launch
further attacks. This means that the attacker will have to ideally perform an efficient
attack on their first try. We call such attacks single-shot attacks.

Near-Optimal Attacks. Out of a large set of possible attacks within our attacker model,
we expect there to be an attack that is optimal in the sense that its sensor manipulation
leads to the fastest possible intended effect (i.e., shutdown of the process). But there
might be other attacks that are nearly as fast. For the purpose of our evaluation, we
introduce the concept of near-optimal attacks. In particular, when ranking all possible
attacks by their expected shutdown time, we call the three best attacks near-optimal.
We will also discuss alternative efficiency comparisons later in our discussion.

Challenge. We note that prior ICS security research argues (or simply assumes) that
detailed knowledge about the system under attack is a requirement for a successful
compromise [12]. So the main challenge we will have to solve is to leverage the limited
process knowledge (i.e., high-level CCL graph) to identify suitable sensors to attack —
without using attacker-side simulations to predict the outcome of process manipulations.
If a near-optimal attack is reliably conducted on the first shot (even with limited
knowledge on the system), our solution is considered successful.

3.4 Identifying Near-Optimal Single-Shot Attacks in CCL Graphs

We model ICSs as graph data structures that abstract the configuration of their closed
control loops (CCLs). The graph abstraction of a single ICS might consist of multiple
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subgraphs. There are 5 types of nodes in our graphs that match the 5 components
of CCLs: static setpoints, sensors, control functions, actuators, and calculated setpoints.
Formally, an ICS is modeled as a directed graph G(V,E) where V is a nonempty

set of vertices (or nodes) and E is a set of edges. Every edge has exactly two vertices
in V as endpoints. The direction of every edge e∈E models the way information flows
in the graph. There are 5 partitions SS, SE, F , A and CS in V , that segregate the 5
types of nodes (static setpoint, sensor, control function, actuator, and calculated setpoint,
respectively), such that SS∪SE∪F∪A∪CS=V . It is worth noting that although
we assume knowledge about the type of the nodes (e.g., sensor), we do not require
further details about them (e.g., temperature sensor, pressure sensor, etc.).

There are different options to create CCL graphs. It is possible to extract the CCL
graph of ICSs from P&IDs. These diagrams show interconnected physical instruments
and might contain information about the CCLs used in the ICS. Figure 3 shows an exam-
ple of a P&ID in Figure 3a, and its corresponding CCL graph abstraction in Figure 3b.
Moreover, there are other options to create CCL graphs. For instance, it is possible
to create a CCL graph exclusively from network traffic in the BACnet protocol [11].
A use case from a real BACnet system is discussed and exemplified in Sect. 6.

(a) P&ID of a chemical plant.

F₄ˢᵖ

y4

yA3
sp

V2

V1

Loop pmax

y5

y7 V3

psp

4

Loop
1

Loop
2

Loop
3

(b) Graph abstraction of the control
system derived from the P&ID.

Fig. 3: Piping and instrumentation diagram (P&ID) of an ICS and its corresponding
graph abstraction.

The proposed approach starts by searching for specific patterns in CCL graphs. These
patterns relate to well understood weaknesses originally analyzed in IT systems. After
that, a post-processing step is needed to filter out non-sensor targets. This is important
since according to our attacker model only sensor nodes will be targeted. Finally, the at-
tacker has to choose among the pre-selected sensors and has only one opportunity to com-
promise its integrity. In the next sections, we explain how to execute near-optimal single-
shot attacks and exemplify the proposed approach using the system presented in Figure 3.

Pattern Matching We propose to use the accumulated knowledge about software
weaknesses in the IT domain and transfer it to the ICSs domain. In particular, we
leverage Mitre’s Common Weakness Enumeration (CWE) database, which specifies
common IT weaknesses. While we later use several of those CWE patterns in our imple-
mentation, here we focus on two entries which proved particularly useful experimentally.
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Our goal is to provide an intuitive comprehension of the proposed approach without
limiting its applicability to a specific subset of weaknesses. More formally, we identify
each pattern Pi with an index i=1,...,n. Each pattern matching query on the graph
returns a subset Si⊆V of matching nodes using pattern Pi.

CWE-1108: Excessive Reliance on Global Variables. “The code is structured in a way that
relies too much on using or setting global variables throughout various points in the code,
instead of preserving the associated information in a narrower, more local context.” [22].

Global variables are generally considered a bad software engineering practice. Their
main disadvantage is that malicious or benign-but-buggy changes to them will propagate
and possibly disrupt many parts of the code. Global variables can be observed in CCL
graphs mainly due to shared setpoints and/or sensors. As explained in Sect. 2, these
are typical ways to combine CCLs in ICSs (see e.g., Figure 2c and Figure 2d).

A suitable algorithm to identify global variables in CCL graphs is the out-degree
centrality. This algorithm assigns a score to each node by counting their number of
outgoing edges. More formally, for every node v∈V \F , the out-degree of v is denoted
as d+(v). We explicitly disregard function nodes in set F since this particular weakness
is exclusively about variables. We select as potential targets those nodes whose value
d+(v)≥τ , for a context dependent threshold τ .

CWE-1109: Use of Same Variable for Multiple Purposes. “The code contains a callable,
block, or other code element in which the same variable is used to control more than
one unique task or store more than one instance of data.” [22].

Overloading a variable with multiple responsibilities might unnecessarily increase
the complexity of the code around it. Such complexity becomes an indirect security
issue since it can hide potential vulnerabilities.

In control engineering, the usage of override controllers deliberately creates a pattern
in which two or more control functions manipulate a single variable (see Sect. 2,
Figure 2b). The manipulated variable is commonly of type actuator or calculated
setpoint. Due to the widespread implementation of override controllers in ICSs, it is
possible to find this pattern in real CCL graphs.

The automated identification of override controllers in a CCL graph can be done
by computing the in-degree centrality of every node v∈V \F . This algorithm assigns
a score to each node by counting their number of incoming edges. As in the previous
case, we explicitly disregard function nodes in set F since this particular weakness
is exclusively about variables. We denote the number of incoming edges of a node as
d−(v). Thus, we look at nodes whose d−(v)≥τ , where typically τ=2.

Post-processing According to our attacker model, it is a requirement to target nodes
of type sensor only. Although some of the nodes that satisfy a weakness-related pattern
might be of type sensor other node types could be chosen too. In fact, it is common to
find setpoint nodes as global variables and actuator nodes as multi-purpose variables.

For each node v∈Si, we first check whether v∈SE. If v is of type sensor then v
is added to the result set Ri⊆SE. Else, we search for every sensor u∈SE, such that
there is a path from u to v, and add u to the result set Ri. The pseudocode of this
algorithm is listed in Alg. 1.
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Algorithm 1 Pattern matching post-processing.

input: set Si⊆V of nodes identified using Pi.
output: set Ri⊆SE of candidate sensor targets according to Pi.
Ri=∅
for all v∈Si do

if v∈SE then
Ri=Ri∪{v}

else
for all u∈SE do

if exist path(from:u, to:v) then
Ri=Ri∪{u}

end if
end for

end if
end for

Single-Shot Attacks After the pattern matching phase, the attacker has to choose
one target from all the result sets obtained. To choose one target from ∪ni=1Ri, we
assign each sensor a score depending on how many result sets Ri they occur in. The
reasoning behind this scoring system is that the sensors that have been identified by
more weakness-related patterns have a greater chance of attack success. This selection
criteria creates a subset of targets T⊆∪ni=1Ri among which only one has to be selected.
Without further insights about the targeted infrastructure besides the CCL graph, it is
hard to provide a meaningful sensor selection strategy from T . However, we hypothesize
that T (1) will be smaller that the original sensor set; and (2) will contain only sensors
capable of causing near-optimal shutdown times (SDTs). A smaller subset to choose
sensors from, gives the attacker a probabilistic advantage over, e.g., an attacker that
has to choose a sensor from the whole sensor set SE. Moreover, since we hypothesize
that all sensors in T are capable of causing near-optimal SDTs, a simple (e.g., random)
selection strategy is suitable from the attacker’s perspective.
To compromise the integrity of a sensor, the attacker overwrites legitimate sensor

readings in such a way that all linked control functions will take the attacker’s desired
value instead. This value is fixed throughout the whole period of the attack, however,
the attacker is free to choose the value at will.

3.5 Motivating Example

Figure 3a shows the model of a chemical plant originally described in [25]. Four chemical
components referred to as A, B, C, and D, are part of the process. The first three
components are combined in the reactor to create the final product D. The goal of
the software controlling the plant is to keep a stable high quality production rate while
minimizing the waste of raw material. There are four control functions that take as
input the values coming from three sensors and four setpoints (1 calculated setpoint and
3 static setpoints). The output of the functions aims to control three valves in the plant.

From a security perspective, there are several details of the plant that a potential
attacker would like to know to execute an attack. For example, the types of sensors (i.e.,

pressure, temperature), the chemical reaction carried out by the plant (i.e., A+C
B−→D),
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the maximum pressure supported by the reactor (3,000 kPa), etc. Detailed process
knowledge has been used in previous works to exemplify simulated attacks against
this chemical plant [7,13]. Our approach, however, assumes limited process knowledge.
More precisely, we only assume access to the CCL graph of the targeted infrastructure
(Fig. 3b), which lacks all of the previously mentioned details.

Figure 3b depicts the CCL graph of the chemical plant, which can be easily derived
from its piping and instrumentation diagram. This graph shows two kinds of CCL
combinations: (1) a shared sensor y5 between control functions Loop 4 and Loop 2 ;
and (2) a cascade control in which control function Loop 4 sets a calculated setpoint
F4sp to control function Loop 1.
The proposed approach looks for weakness patterns in the chemical plant’s CCL

graph that could identify suitable sensors to target. The search for multi-purpose
variables (functions excluded) aims at nodes whose in-degree is greater or equal than
two; no results are produced in this case. The search for global variables (functions
excluded) looks for nodes whose out-degree is greater than a predefined threshold τ .
All setpoints have an out-degree of one which makes them unfit to be labeled as global
variables. However, the three sensors y4, y5, and y7 have an out-degree of 1, 2, and
1, respectively. This small sensors sample shows an average out-degree of 1.33 with
standard deviation of 0.58. Defining τ as the sum of the average and one standard
deviation (τ = 1.91) sets node y5 as a potential target according to the proposed
approach. The result set would have sensor y5 as an ideal candidate to target in this
particular infrastructure. This result is concordant with previous works which state
that “[i]n general we found that the plant is very resilient to attacks on y7 and y4...
If the plant operator only has enough budget to deploy advanced security mechanisms
for one sensor (e.g., tamper resistance, or TPM chips), y5 should be the priority” [7].

4 Implementation

We implemented the proposed approach on top of Neo4j version 4.1.2 [24]. Neo4j is
a noSQL database engine specialized in graph data structures. Neo4j offers a natural
way to store CCL graphs and a high level query language that allows us to perform
complex queries in just a few lines of code.

We assume that the attacker already has access to the CCL graph of the targeted
infrastructure and has persisted it in a Neo4j database. Without any further knowledge,
the selection of the sensors to attack is done through a set of queries on the graph.
Such queries must be written in Neo4j’s query language called Cypher Query Language.
Figure 4 depicts the overall process to obtain a subset Ri of candidate sensor targets
according to a pattern Pi.

Our implementation includes a pre-processing stage that pre-computes information
required in the pattern matching phase. Since both weakness-related patterns discussed
in Sect. 3.4 are based on the in- and out-degree centrality algorithms, the pre-processing
stage consists of queries that assign the in- and out-degree to every node in the graph.
Both queries are shown in Appendix A code listing 1.1.

The pattern matching phase consists in finding nodes that satisfy a specific condition
in the graph’s topology. These particular conditions pinpoint nodes of interest from the
attacker’s perspective. For the sake of brevity, here we discuss two weaknesses, namely,
global variables and multi-purpose variables. Global variables are nodes whose out-degree
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is greater than a context dependent threshold τ . In our implementation, we define τ
as the average plus one standard deviation of the out-degree of nodes segregated per
type. Code listing 1.2, in Appendix A, shows the query for the global variable pattern.

The second pattern matching query looks for multi-purpose variables (e.g., override
controllers). This pattern is simpler since we only need to find nodes with an in-degree
greater or equal than 2. Code listing 1.3, in Appendix A, shows the query used to find
the multi-purpose variable pattern.

Lastly, the post-processing phase replaces non-sensor nodes found during the pattern
matching phase, with sensor nodes that have a path to them, thus, influencing their
behavior. This ensures that the list of targets for each weakness-related pattern is
comprised exclusively of sensor nodes. Code listing 1.4 (Appendix A) shows the main
task of the post-processing query. This query looks for all sensor nodes (src) that have
a path to the node of interest (dest), regardless of the length of the path.

List of
targets

Pre-
processing

Pattern
matching

Post-
processingNeo4j

Fig. 4: Implementation of the proposed approach.

5 Experimental Evaluation

We evaluate the proposed approach in a realistic industrial control system. We use this
environment to perform experimental attacks against all relevant sensors to obtain
a ground-truth about the severity of the attacks in terms plant availability. Due to the
large number of attacks required to obtain the ground-truth, we opted for a simulated
environment where the attacks can be executed without safety concerns. The simulated
plant is known as the Tennessee Eastman Plant and has been extensively used in
previous cybersecurity research [7,13,15,16,28].

5.1 Tennessee Eastman Plant

The seminal 1993 paper by Downs and Vogel describes the Tennessee Eastman Plant
(TEP) [10]. Their description includes, among other details, the expected input and
output of the plant, each step of the process from start to end, and the hardware
available to control the process. The control hardware includes 41 sensors and 12
actuators, depicted in Appendix E (Figure 9). Their paper describes 20 disturbances
commonly found in real chemical plants. For instance, sticky valves, changes in chemical
reaction kinetics, and random variations in the composition of input streams. Each
disturbance has a unique numeric identifier in the range [1–20]. Finally, there are
process operating constraints (e.g., maximum reactor temperature, maximum reactor
pressure, etc.) that must be satisfied at all times or the plant shuts down. Downs and
Vogel present the challenge of implementing a control strategy for the TEP. To ease
engagement in the challenge, the authors provide software source code to simulate the
core components of the TEP such as the sensors, actuators, disturbances, and process
operating constraints, leaving space for the missing control strategy.
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Several authors have proposed control strategies for the TEP [17,20,21,26]. The main
difference between control strategies are the robustness against external disturbances,
the optimization objectives, and the mechanisms to set the production rate. The TEP
challenge is considered an open-ended problem without a unique correct solution [20].

In this work, we perform an extensive analysis of two control strategies for the TEP
in terms of plant availability upon sensor integrity attacks. The first strategy, proposed
by Larsson et al. [17], is available in the MATLAB/Simulink environment [27]6. The
second strategy, proposed by Luyben et al., is available in the Fortran programming
language [20]. We translated it to the MATLAB/Simulink environment and published it7.

5.2 Experimental Attacks

All simulations are executed on the MATLAB/Simulink environment. Specifically, we
use MATLAB version R2015a running on Windows 10. The simulations are configured
to run for 72 hours under attack. However, some of the attacks cause violations in the
process operating constraints. As a consequence, some simulations stop earlier than
expected. We refer to the time elapsed since the beginning of the attack and until the
simulation stops as the shutdown time (SDT).

An experiment is a set of simulations using the same environmental conditions (i.e.,
disturbances) and attack strategy. In our experiments, we execute simulations with and
without disturbances. The disturbances considered are those in the range [1–13] and are
executed one at a time. According to the original TEP paper, disturbances in the range
[14–20] should be used in conjunction with other disturbances [10]. The combinatorial
explosion of such constraint deters us from executing simulations with disturbances in
the range [14–20]. The attack strategy is the way in which the attacker chooses the value
used to compromise the integrity of sensors. We use three different attack strategies. First,
assuming that the attacker does not have any knowledge about the targeted sensor, we
choose the constant 127. This number is small enough to fit in 1 byte (signed int) which en-
sures that most industrial protocols will deliver the malicious value in a single packet, thus,
executing a stealthy attack. For the second and third attack strategies, we assume that the
attacker knows historic sensor readings, in which case we choose the minimum and max-
imum values observed per sensor. Although this additional knowledge is not required by
our approach, we use these attack strategies to compare our results with previous works.

After the experimental setup has been defined, we execute the attacks against each
sensor, one at a time, and record its SDT (or 72 hours if no shutdown happens). If
a simulation finishes at 72 hours, we assume that the attack does not cause a shutdown.
The experiment finishes when all sensors used by the control strategy have been attacked.
We rank the targets according to their SDT to identify the fastest SDT in the experiment
and the sensor that causes it. We refer to them as the optimal SDT and the optimal target,
respectively. In general, we refer to the top-3 fastest attacks as near-optimal attacks.

To put our results in perspective, we compare the chances of achieving a near-optimal
attack of an attacker using our approach (with the capabilities described in Sect. 3.2)
and an attacker who picks, uniformly at random, one sensor to target (we assume that
both attackers use the same attack strategy). Hereafter, we refer to the latter simply
as the random attacker.

6 Simulation and results available at https://gitlab.com/eastman_tennessee/larsson.
7 Simulation and results available at https://gitlab.com/eastman_tennessee/luyben.

https://gitlab.com/eastman_tennessee/larsson
https://gitlab.com/eastman_tennessee/luyben
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Control Strategy #1 The control strategy by Larsson et al. [17], uses only 9
actuators and 16 sensors out of the 12 actuators and 41 sensors available in the
TEP. Additionally, there are 20 control functions, 9 static setpoints, and 12 calculated
setpoints. The CCL graph of this control strategy is comprised of 66 nodes divided
in 3 subgraphs. An illustration of the graph is shown in Appendix B (Figure 5).

We use the queries detailed in Sect. 4 to identify potential targets. First, we compute
the in- and out-degree centrality for all the sensors, setpoints, and actuators. Then, we
run the pattern matching queries that aim at finding global variables and multi-purpose
variables. The first query identifies the calculated setpoint number 12 (located in the
middle of the largest subgraph) as a global variable. Although there are 16 sensors used
in this control strategy, the post-processing phase identifies that only one of them has
a path to the global variable: sensor 17 (i.e., R1={17}). Such a path can be visually
confirmed following the direction of the edges in Figure 5. No multi-purpose variables
are identified in this control strategy (i.e., R2=∅) Thus, the final target set T={17}
contains only one sensor, which makes the target selection easier for a single-shot attack.

We hypothesize that sensor 17 is a near-optimal target for control strategy #1. To
test our hypothesis we execute 28 experiments comprised of 448 individual simulations
that account for 11,047.465 simulated hours (∼1.26 years). For the first two experiments
we use the constant value attack strategy. In one of the experiments we set ideal environ-
mental conditions (no disturbance) and in the other experiment we enable disturbance
#8. We choose disturbance #8 because previous works have used exclusively this
disturbance for their experiments. The results of the first two experiments are shown in
Table 2. Regardless of the environmental conditions, the results are consistent in the top
half of the table with greater variations in the bottom half. In these two experimental
settings, a random attacker would have 1/16 chances (≈ 6%) of choosing sensor 40
(which does not cause a shutdown), and 3/16 (≈ 18%) of choosing a near-optimal
target. Considering only the 15 sensors that do cause a shutdown, a random attacker
would achieve an average SDT of 2.66 hours without disturbance and 2.52 hours under
disturbance #8. On the other hand, an attacker using our approach has to choose one
sensor from T ={17}, thus, ensuring 100% chance of finding a near-optimal target with
a SDT of 0.192 hours in both cases (≈ 11 minutes) and a difference of about 5 minutes
behind the optimal target (sensor 9 with SDT of 0.101 hours.).

Previous works have used the minimum and maximum value attack strategies against
this control strategy. Unlike previous works that have used only one environmental condi-
tion to execute their experiments (disturbance #8), we execute our experiments under 13
different environmental conditions (including disturbance #8) to gather data from more
diverse scenarios and gain more confidence in our results. Disturbance #6 is excluded
because it is not supported by this particular control strategy, which means that a shut-
down happens even without any attacks [17]. Due to space constraints, we summarize our
results per attack strategy, which shows the average SDT and standard deviation for each
sensor among all the simulations. The results, detailed in Tables 3 and 4, show that sensor
17 is a near-optimal target with an average SDT of 1.21 hours and 1.07 hours, respectively.
For the minimum value attack strategy, a random attacker would achieve an average SDT
of 24.23 hours, whereas in the maximum value attack strategy an average SDT of 24.87
(excluding sensor 1). Finally, for both the minimum and maximum attack strategies,
sensor 17 is ranked in the second position. This confirms that sensor 17 is a near-optimal
target not only during specific plant conditions, but in many different situations.
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Table 2: Experiments using the constant value attack strategy under two different
environmental conditions. Sensor 17, identified as a near-optimal target, is highlighted.

No disturbance Disturbance 8

Sensor SDT (h) N Sensor SDT (h) N

9 0.101 9 0.101
14 0.181 14 1.181
17 0.192 17 0.192
11 0.426 11 0.427
8 0.431 8 0.430
4 0.526 4 0.526
31 0.557 31 0.560
12 0.569 12 0.567
3 1.604 3 1.607
2 1.757 2 1.614
15 2.126 15 2.052
1 7.335 5 5.644
5 7.609 7 6.971
10 8.182 10 7.249
7 8.297 1 9.691
40 72 (no shutdown) 40 72 (no shutdown)

Table 3: Summary of experiments
considering the minimum value attack
strategy under 13 different environmen-
tal conditions. Sensor 17, identified as
a near-optimal target, is highlighted.

Sensor Avg. SDT (h) N Std. Deviation

4 0.79 0.67
17 1.21 0.76
9 2.06 0.73
8 2.66 0.41
3 4.11 0.35
2 4.55 0.75
7 7.70 2.19
12 7.97 2.25
14 8.94 2.39
15 11.18 3.96
5 14.53 17.49
31 55.15 27.74
11 66.64 19.31
40 66.69 19.14
10 66.73 19.02
1 66.78 18.82

Table 4: Summary of experiments
considering the maximum value attack
strategy under 13 different environmen-
tal conditions. Sensor 17, identified as
a near-optimal target, is highlighted.

Sensor Avg. SDT (h) N Std. Deviation

9 0.57 0.19
17 1.07 0.14
4 1.27 0.21
3 2.60 0.42
8 2.83 0.46
2 3.32 0.66
12 5.44 1.36
14 8.79 2.45
15 11.10 4.36
5 12.64 17.91
31 56.78 27.62
11 66.59 19.50
10 66.64 19.34
40 66.70 19.10
7 66.73 19.00
1 72 (no shutdown) 0.00
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Control Strategy #2 The second control strategy, proposed by Luyben et al. [20],
uses 10 sensors and 10 actuators from those available in the plant. This control strategy
requires 13 static setpoints, 13 control functions, and 1 calculated setpoint. In total, the
CCL graph is comprised of 47 nodes. The overall CCL graph of the system (depicted
in Figure 6 in Appendix C), has 6 subgraphs.

As in the previous control strategy, we use the queries detailed in Sect. 4 to identify sen-
sor targets, starting with the computation of the in- and out-degree centrality for all the
sensors, setpoints, and actuators. The query regarding global variables identifies sensors
8, 12, and 15 (i.e., R1={8,12,15}). The query regarding multi-purpose variables identi-
fies actuators 1, 2, 7, and 11. The post-processing phase looks for sensor nodes that have
a path to these actuators and identifies sensors 8, 12, 15, and 29 (i.e., R2={8,12,15,29}).
As described in Sect. 3.4, the final targets subset T contains those sensors identified
by most weakness-related patterns. In this particular case, T ={8,12,15} because these
sensors occur in both R1 and R2. Finally, the attacker selects one target t∈T at random.

We hypothesize that sensors 8, 12, and 15 are near-optimal targets against control
strategy #2. To test our hypotheses we execute 30 experiments comprised of 300 indi-
vidual simulations that account for 11,079.163 simulated hours (∼1.26 years). As in the
previous control strategy, we begin with two experiments using the constant value attack
strategy under two different environmental conditions. The first experiment without any
disturbance and the second experiment under disturbance #8. The results of the first
two experiments, detailed in Table 5, show no significant differences between both plant
conditions. In these environmental conditions, the random attacker has a 30% chance of
choosing a near-optimal target (3 out of 10 sensors), and the same chances of choosing a
sensor that do not cause a shutdown. On the other hand, an attacker using our approach
has a 66% chance of finding a near-optimal target (2 out of 3 sensors) since sensors 12 and
15 are near-optimal but not sensor 8. The random attacker can achieve an average SDT
of 1.59 hours without disturbance and 1.51 hours under disturbance #8 (excluding the 3
sensors that do not cause a shutdown). On the other hand, an attacker using our approach
achieves an average SDT of about 0.50 hours in both cases; more than 1 hour faster.

As for control strategy #1, we execute additional experiments using the minimum
and maximum attack strategies. This time we use all disturbances in the range [1–13]
because this control strategy is able to handle all of them. Thus, we execute two attack
strategies over 14 environmental conditions (no disturbance + 13 disturbances), which
adds up to 28 additional experiments. Again, due to space constraints, we summarize
our results per attack strategy. Tables 6 and 7 show the average SDT and standard
deviation for each sensor attack throughout all the simulations. As in the first two
experiments, for the minimum and maximum attacks, the random attacker has 30%
chance to find a near-optimal target but also 30% chance of finding a target that does
not cause a shutdown. For our attacker, however, the chances of finding a near-optimal
target differ per attack strategy. The minimum value attack gives our attacker only
1 out of 3 chances of finding the near-optimal sensor 15 (33%); a marginal benefit with
respect to the random attacker. However, our attacker does not have the 30% risk of
a no-shutdown attack. After excluding the 3 sensors that do not cause a shutdown,
the average SDT of the random attacker is 20.75 hours; significantly larger than the
average SDT of 4.4 hours for our attacker. For the maximum value attack, our attacker
has 2 out of 3 chances of picking a near-optimal target After excluding the 3 sensors
that do not cause a shutdown, the average SDT of the random attacker is 25.96 hours.
On the contrary, an attacker using our approach achieves an average SDT of 1.96 hours.
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Table 5: Experiments using the constant value attack strategy under two different en-
vironmental conditions. The 3 sensors identified as near-optimal targets are highlighted.

No disturbance Disturbance 8

Sensor SDT (h) N Sensor SDT (h) N

7 0.144 7 0.144
15 0.161 15 0.161
12 0.311 12 0.311
9 0.440 9 0.440
8 1.031 8 1.032
11 2.486 11 2.647
23 6.549 23 5.844
18 72 (no shutdown) 18 72 (no shutdown)
29 72 (no shutdown) 29 72 (no shutdown)
30 72 (no shutdown) 30 72 (no shutdown)

Table 6: Summary of experiments
considering the minimum value attack
strategy under 14 different environmen-
tal conditions. The 3 sensors identified
as near-optimal targets are highlighted.

Sensor Id. Avg. SDT (h) N Std. Deviation

15 0.65 0.20
9 1.28 0.51
7 1.72 0.79
12 4.25 1.72
8 8.29 1.98
23 63.03 22.83
30 66.01 16.82
29 72 (no shutdown) 0.00
11 72 (no shutdown) 0.00
18 72 (no shutdown) 0.00

Table 7: Summary of experiments
considering the maximum value attack
strategy under 14 different environmen-
tal conditions. The 3 sensors identified
as near-optimal targets are highlighted.

Sensor Id. Avg SDT (h) N Std. Deviation

12 0.69 0.16
15 0.70 0.07
9 1.09 0.40
8 4.48 0.55
23 52.01 29.46
7 55.30 27.60
29 67.46 16.97
30 72 (no shutdown) 0.00
11 72 (no shutdown) 0.00
18 72 (no shutdown) 0.00

6 Discussion

CCL Graphs. The first challenge faced by graph-based studies is the creation of the
graph itself. There are different possibilities to create CCL graphs like those used in this
work. Piping and Instrumentation Diagrams (P&IDs) are a suitable alternative because
ICS documentation can be obtained through a variety of illegal means (e.g., phishing,
social engineering, bribes) or simply downloaded from public repositories [14]. The cre-
ation of a CCL graph from a P&ID could even be automated using diagram digitization
techniques such as [5].

Another way to create CCL graphs leverages the rich semantics of some industrial
communication protocols. A concrete example is the BACnet protocol (ISO 16484-5),
commonly used to automate diverse services in hospitals, airports, and other buildings [4].
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In these environments, the CCL programming pattern is extensively used. For that
reason, the BACnet protocol implements an application layer object called Loop, which
eases the implementation of CCLs. This object contains properties that point to other
BACnet objects abstracting CCL components such as sensors, setpoints, and actuators.
Since BACnet objects are regularly exchanged through the network, it is possible to
create CCL graphs in a fully automated way simply by sniffing the traffic [11]. We used
this method to create the CCL graph of a real BACnet system comprised of more that 20
buildings located at the University of Twente. We can confirm that this method is capable
of creating large CCL graphs (4,771 nodes) just by passively listening the network traffic.
In Appendix D we show three subgraphs obtained during our analysis and a plot of the
node discovery rate during our 7-week long experiment (Figures 7 and 8, respectively).
In general, we note similar structures in the BACnet graphs and the TEP graphs, which
suggests the possibility to apply the proposed approach to other systems besides ICSs.

Additional CWE Weaknesses. To describe the proposed approach, we elaborate on two
weaknesses from Mitre’s CWE database, in particular, global variables (CWE-1108)
and multi-purpose variables (CWE-1109) [22]. We emphasize these two because they
proved particularly useful to find weaknesses in both TEP implementations analyzed
in our evaluation. Although it is not our goal to provide an exhaustive list of software
weaknesses that can be mapped to ICSs, here we discuss additional weaknesses that
could be observed in CCL graphs.

Circular dependencies (CWE-1047) happen when “[t]he software contains modules in
which one module has references that cycle back to itself.” [22]. In ICSs, circular dependen-
cies can occur, for example, through control functions that write their output to a calcu-
lated setpoint node that, in turn, is the input of another control function node and so on,
until at some point the sequence of references return to the initial node. Although none of
the CCL graphs analyzed showed a circular dependency pattern, we found a similar struc-
ture in the BACnet system previously discussed. We illustrate it in Appendix D Figure 7b.

Deep nesting (CWE-1124) manifests in software that “contains a callable or other
code grouping in which the nesting / branching is too deep.” [22]. The software imple-
mentation of ICSs might contain a deep nesting weakness whenever a long sequence
of closed control loops are chained together. For example, several cascade controllers
concatenated. In this setting, the precise definition of ‘long sequence’ is determined
by a context dependent threshold.

Countermeasures. The most promising way to thwart our described approach to identify
near-optimal single-shot attacks would be by preventing the attacker’s ability to gain
knowledge of the CCL graph representation of the targeted infrastructure in the first
place. However for many ICSs, P&IDs are publicly available, which an attacker can use
to generate a corresponding CCL graph as we described before. Therefore, it would be
necessary to keep such P&IDs secret and to protect them from being leaked to attackers.
We stress here that further protective measures might be needed to prevent an attacker
from being able to generate the CCL graph through possibly other information such as,
in the case of building automation systems, using the BACnet protocol, for which eaves-
dropping on the traffic is already sufficient to automatically generate CCL graphs [11].

Our approach relies on identifying specific weakness patterns in the CCL graph which
can be matched with well-known software weaknesses in the IT domain (e.g., via Mitre’s
CWE database). Therefore, if a CCL graph does not contain any of these matching
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weaknesses, then our approach would fail in identifying near-optimal single-shot attacks
with a better probability than by simply picking any sensor from the set of all sensors
at random. This means that if an attacker cannot be prevented from creating the CCL
graph, then another way to thwart our method would be by ensuring that the CCL graph
contains no weakness patterns. One option to achieve this would be by performing a re-
engineering on the software controlling the ICS (as we saw, several control strategies are
possible for ICSs such as the TEP). However, designing security-aware control strategies
that also meet operational and economic requirements is cumbersome [15] and completely
avoiding certain weakness patterns could even be impossible in certain settings.

If all of the above fails and the attacker is able to perform the identified near-optimal
single-shot attack, then an operator can try to detect the attack as soon as possible
by using monitoring systems to detect manipulated sensor values [7]. However, the
detection time of such systems can be in the order of hours, which would be too slow
to detect near-optimal attacks which, depending on the concrete case, can potentially
bring down the ICS within minutes. An idea to improve the detection would be to
tighten the monitoring specifically at those components in the ICS that our CCL-graph
based attack method matches with known software weaknesses.

7 Related Work

Several researchers have analyzed different security aspects of the TEP. Here we focus in a
subset of those works that have studied diverse attacks against the TEP. In [15], the goal
was to get insights on the resilience of the physical process under attack. Similar to our at-
tacker model, they focused on compromising sensors and identifying those in best capacity
to cause a shutdown on the targeted infrastructure. In this particular case, the targeted
infrastructure was Larsson’s implementation of the TEP, described in our evaluation as
control strategy #1. Aligned with our results, they found out that sensors 4, 9, and 17
are the best targets under the minimum and maximum value attack strategies. However,
they reached that conclusion by using much more knowledge than our approach, i.e., a
fully-fledged simulation of the targeted infrastructure. For an attacker to be able to build
an accurate simulation of the targeted infrastructure, he would need access to at least,
full PLC(s) configuration, P&IDs, and documentation about the system’s constraints.
In another work, the goal was to find out the right time to launch an attack on

individual sensor signals to cause a shutdown of the targeted infrastructure [16]. In this
case, again, the target was Larsson’s implementation of the TEP. The authors focused
on DoS attacks on sensor signals, which forces control functions to use a stale value
from the sensor. Under the assumption that launching sensor attacks at minimum or
maximum peaks is the fastest way to cause a shutdown of the plant, the goal was to
identify such peaks in real time. They approached this challenge using the Best Choice
Problem (BCP) methodological framework. Using different learning windows, they
identified sensors 4, 9, and 17 as the best candidate targets (i.e., fastest SDT). To execute
this approach a potential attacker might need at least network traffic access, a notion
about the physical process and its potential disturbances (e.g., from P&IDs), and ideally,
some historic data. Moreover, this approach has three main disadvantages besides the
increased attacker knowledge about the plant. First, it is focused on identifying the
right time to launch an attack but does not indicate the optimal target. Launching
an attack on the wrong target might not cause any impact whatsoever on the plant.
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Only after executing attacks on all sensors it becomes clear which of them are optimal,
which is unrealistic. Second, the time to attack is lengthy (this includes the learning
window and the selection of the moment to launch the attack), ranging from 9.61 hours
to 27.17 hours in their experiments. Third, in some circumstances their approach might
not reach a conclusion, in which case the attacker “has to choose a clearly suboptimal
candidate (last sample in the attack window) or decide to not launch an attack.” [16].

The works in [7] and [13], analyze diverse attacks against a simplified version of the
TEP. Both works incorporate detailed knowledge from the process dynamics to execute
optimal attacks. An attacker leveraging the techniques proposed in these 2 works would
require at least access to the PLC(s) configuration, historic data, and documentation
about the system’s constraints. We deem the simplified version of the TEP so small
that we use it only in our motivating example (Sect. 3.5). However, as we showed, our
approach is also applicable to this plant and our results match the results obtained
by previous works, but using limited knowledge.

No previous security works have used the TEP implementation by Luyben et al. [20],
possibly because the code was only available in the Fortran programming language. We
hope that our contribution in translating the code to MATLAB eases the challenging
task of evaluating ICS security research for future works.

8 Conclusion

In this work, we investigated if constrained attackers without detailed system knowledge
and simulators can identify near-optimal attacks. In contrast to attacks in prior work
(that require precise algorithms, operating parameters, process models or simulators), in
our approach the attacker only requires abstract knowledge on general information flow in
the plant. Based on that information, we construct a CCL graph, and apply graph-based
pattern matching based on several weakness patterns from the CWE database.
Our resulting approach provides us with one (or more) sensors to attack. Experi-

mentally, we applied and validated our approach on two use cases, and demonstrated
that the approach successfully generates single-shot attacks, i.e., near-optimal attacks
that are reliably shutting down a system on the first try.

Our positive results in finding near-optimal targets with limited knowledge suggest
that the difficulty of preparing ICS attacks is lower than previously thought. We not
only showed that the graph analysis can be automated, but that the graph creation
can be automated too (e.g., using BACnet network traffic). This significantly lowers
the bar for ICS attacks and calls for a reassessment of the actual security risks in ICSs.

Acknowledgments. This work is partially funded by the Costa Rica Institute of
Technology.
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Appendix A Pattern Matching Queries in CQL

Cypher Query Language (CQL) queries used to implement the proposed target iden-
tification approach.

MATCH (n)
WHERENOT n :FUNCTION TYPE
SET n . indegree = size ( ( n)<− [ ]−());

MATCH (n)
WHERENOT n :FUNCTION TYPE
SET n . outdegree = size ( ( n)− [ ]−>());

Listing 1.1: Pre-processing stage: setting the in- and out-degree centrality to variable
nodes.

MATCH (n :NODE TYPE)
WITH AVG(n . outdegree ) as average ,

stDev (n . outdegree ) as stdev
MATCH(m:NODE TYPE)
WHEREm. outdegree > ( average+stdev )
RETURN m;

Listing 1.2: Global variable pattern matching.

MATCH(n :NODE TYPE)
WHERE n . indegree >= 2
RETURN n ;

Listing 1.3: Multi-purpose variable pattern matching.

MATCH ( s r c : Sensor ) , ( dest { id :NODE ID})
WHERE ( s r c )−[∗]−>( dest )
RETURN src ;

Listing 1.4: Finding paths from sensors to non-sensor nodes chosen during the pattern
matching phase.
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Appendix B CCL Graph of Control Strategy #1

Figure 5 shows the CCL graph of the first control strategy, proposed by Larsson et
al. [17]. This control strategy uses 16 sensors and 9 actuators from those available in the
plant. It also uses 9 static setpoints, 20 control functions, and 12 calculated setpoints.
The resulting CCL graph is comprised of 66 nodes.

Fig. 5: CCL graph of control strategy #1. The color of each node represents its type,
as described in Figure 2. The name of each node corresponds to the variable name
in the original MATLAB code.
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Appendix C CCL Graph of Control Strategy #2

Figure 6 shows the CCL graph of the second control strategy, proposed by Luyben et
al. [20]. This control strategy uses 10 sensors and 10 actuators from those available in
the plant. It also uses 13 static setpoints, 13 control functions, and 1 calculated setpoint.
The resulting CCL graph is comprised of 47 nodes.

Fig. 6: CCL graph of control strategy #2. The color of each node represents its type,
as described in Figure 2. The name of each node corresponds to the variable name
in the original Fortran code.
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Appendix D BACnet System

In Figure 7, we visualize three subgraphs we automatically extracted from real-world
BACnet traffic. In Figure 8, we provide a plot of the node discovery rate during our
experiment.
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Appendix E Tennessee Eastman Plant

Figure 9 shows a diagram of the hardware components available in the Tennessee
Eastman Plant.

Fig. 9: Tennessee Eastman Plant diagram taken from the original publication [10].
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