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T raditionally, scientific research is based on primary data specifically collected
for the aim of the study through standard, validated techniques such as ran-

domized controlled trials, experiments, questionnaires, or interviews. Primary data
sets consist of information that was systematically collected from the source, to
answer pre-defined research questions or test hypotheses (Hox & Boeije, 2005).
According to the First Law of Medical Informatics (van der Lei, 1991), data should
only be used for the purpose for which they were originally collected. However,
the increasing availability of clinical data, the widespread adoption of new tech-
nologies such as data mining and machine learning, and the possibility to link and
combine individual patient data from different sources, have made data reuse a
rapidly growing area with high potential for clinical practice and scientific research
(de Lusignan & van Weel, 2006; Kassam-Adams & Olff, 2020; Olff, 2020). Data
reuse, or secondary data use, refers to the use of data for purposes other than
primarily intended (Safran, 2017). Clinical data reuse is believed to potentially im-
prove health care quality and management, reduce health care costs, and enable
more effective clinical research and population health management (Meystre et al.,
2017).

Clinical data collection (e.g., through trials) is time consuming and costs have
been rising for decades (Berndt & Cockburn, 2013; Collier, 2009; Peek & Rodrigues,
2018). This has led researchers and informaticians to explore alternatives such
as real-world, routine data available from, for example, electronic health records
(EHRs) and health insurance claims databases. Such sources contain rich, often
longitudinal, data that are routinely recorded at the point of care (Sherman et al.,
2016). Thanks to this, routine data may also lead to results that generalize better
to the general population than results based on trial data, as clinical trial conditions
and participants may differ significantly from those in practice (Peek & Rodrigues,
2018; Sherman et al., 2016; Weinfurt et al., 2017).

From an academical point of view, data reuse is expected to lead to more effi-
cient research processes, faster and more generalizable clinical evidence, improved
patient identification, and more precise epidemiological estimates (Coorevits et al.,
2013). The idea of data reuse is further strengthened by the active call for sus-
tainable research. In order to promote maximum use of resources, researchers
are encouraged to make use of existing data available from, for example, open pa-
tient cohorts and research data depositories and to make their own data (openly)
available for reuse and for the validation and reproducibility of results. To stimulate
scientific data reuse, the FAIR Data Principles were formulated and an action plan
was published by the European Commission Expert Group on FAIR data in 2018
(European Commission Expert Group on FAIR Data, 2018). FAIR stands for Find-
ability, Accessibility, Interoperability, and Reusability, and the principles emphasize
the machine-driven discovery and reuse of data, as computers are increasingly used
to deal with the large volumes of data becoming available.

1.1. Data sources

M ajor sources of clinical data are routine data recorded as part of ongoing patient
care and research data specifically collected for scientific purposes.
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1.1.1. Routine data

T he amount of available routinely collected care data is vast and ever-growing,
thanks to the use of EHRs and the availability of (linkable) administrative and

health insurance claims databases (Safran, 2017). Deeny and Steventon (2015)
divide routine data into administrative data, clinically generated data, and patient-
generated data. Administrative data, such as diagnosis related groups (DRG) coded
insurance claims data, are collected during the routine administration of delivered
care. Clinically generated data, such as coded diseases and symptoms or labora-
tory test results, are collected by health care workers as part of the diagnosis or
treatment process. Patient-generated data (either clinically or individually directed)
can be patient-reported (e.g., derived from patient-reported outcome measures or
patient narratives) or non-traditional self-measurement data (e.g., derived from e-
health apps or wearables). The main benefits of routine data are their wide cover-
age, longitudinality, low self-report bias, and the simple fact that they are routinely
available (van Dalen et al., 2014).

In hospitals alone, 97% of all the data produced each year remains unused
(Cornell University et al., 2019). The general consensus is that this wealth of infor-
mation, sometimes referred to as a “by-product of care”, can and should be put to
better use. In clinical practice, integrating available care data and analytics as part
of the care trajectory may support medical professionals by providing insights en-
abling predictive, individualized, and efficient care (Cornell University et al., 2019).
Clinical data can be used in the development of decision support systems, for exam-
ple for the early detection of diseases or for referring patients to the most suitable
treatment. Pakhomov et al. (2007) demonstrated, for example, that textual input
from EHRs could be used to effectively identify patients with heart failure, whereas
He et al. (2012) used narratives extracted from the open questions of an e-health
survey to screen trauma survivors for PTSD. Clinical data can also be deployed to
provide patient-specific, or personalized, care, for example by allowing for case or
peer comparison and by gaining insight in the effectiveness of possible treatment
or prescription options for similar patients or patient groups (Meystre et al., 2017;
Safran, 2017). Towards improving health care quality, patterns and deviations in
routine care can lead to the identification of opportunities for care improvement,
for example to prevent medication errors (Spencer et al., 2014).

1.1.2. Research data

T hanks to initiatives such as Research Data Netherlands (https://researchdata.
nl/, a Dutch coalition of data archives promoting the sustainable archiving and

reuse of research data) and Narcis (https://www.narcis.nl/, the research data portal
from Dutch universities), Dutch researchers are encouraged to secure, share, and
reuse research data. Global examples are DataCite (https://datacite.org/), a global
non-profit organization providing DOIs (persistent identifiers) for research data, and
DataCite’s service Re3data, listing over 2,000 global research data depositories.

Health research data are generally collected through health surveys, clinical tri-
als, cohort studies, or patient-reported outcomes or experience measures. These
data are often well-defined and highly structured. In mental health research, pa-

https://researchdata.nl/
https://researchdata.nl/
https://www.narcis.nl/
https://datacite.org/
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tient narratives or treatment records form an additional, rich source of information.
However, such data are more difficult to reuse and share due to their unstructured
format and privacy sensitive contents.

1.2. Structured versus unstructured data

S tructured data are considered the most convenient for secondary purposes in
direct care, such as offering decision-support (Meystre et al., 2017) or assessing

compliance to medical guidelines (Vuokko et al., 2015). Care data can be structured
using classification systems or standardized forms, thanks to which structured pa-
tient data offer more uniform documentation and higher quality, more complete, in-
formation (Vuokko et al., 2015). Commonly used classification systems in medicine
are, for example, the International Classification of Diseases (ICD; World Health Or-
ganization, 2004), the Diagnosis-Related Groups classification system for hospital
reimbursements (DRG; Hasaart, 2011), the International Classification of Primary
Care (ICPC; Lamberts & Wood, 1987), and the Diagnostic and Statistical Manual for
Mental Disorders (DSM; American Psychiatric Association, 2013). Such controlled
terminologies allow for the exchange and comparison of health care data across
different care settings and systems (Meystre et al., 2017).

Despite the advantages of structured data, the majority of clinical data consists
of unstructured text. A study on US hospital EHR data revealed that only a third
of the data was stored in a structured format, versus two-thirds of unstructured
text (Cannon & Lucci, 2010). Apart from the formal classification systems, all kinds
of useful information and medical concepts can be encoded in and extracted from
unstructured data. For example, annotating the occurrence and frequency of key-
moments or breakthroughs in psychiatric treatments (e.g., Nijdam et al., 2013),
or distinguishing different types of narrative processing (e.g., Sools et al., 2015),
results in new, structured data sets based on which new knowledge and insights
can be generated. In order to structure and process the large volumes of data
becoming available and convert those into useful information, new technologies
such as artificial intelligence (AI) are increasingly used (Cornell University et al.,
2019).

1.3. New technologies

T o efficiently extract information stored in free text, unstructured text data can
be processed automatically using natural language processing (NLP) and text

mining (TM), converting the data to a more structured format (Meystre et al., 2017;
Vuokko et al., 2015). NLP is typically conducted as a first step to clean and prepro-
cess the data and convert it to structured information. NLP applications can be as
simple as searching text data for a list of pre-specified key words and calculating
the frequency or proportion of occurrence of each key word. Speech data can be
processed on the level of textual content or using speech features that capture one’s
manure of speaking. To be able to process the contents, speech is first converted
to text, ideally using automatic speech recognition (ASR).

The features extracted from text and speech data can then be used as input
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for (text) data mining and machine learning (ML) algorithms (see Chapter 3 for an
extensive description of NLP, TM, and ML). A popular ML approach to organize data
is supervised classification, which involves assigning objects to a set of predefined
class labels using a classification model trained on existing, labeled data (Bird et
al., 2009). The use of an automated classifier not only lowers the cost of manual
annotation (Sebastiani, 2002) but was also found to result in a more reliable and
precise extraction of clinical information than manual classification (Friedman et al.,
2004). Moreover, modern techniques enable the extraction of information not easily
processed or noticed by human encoders, and certainly not on a large scale, such
as speech characteristics (e.g., speech rate, pitch, or quality, see more in Chapter
5).

1.4. Critical elements and challenges for data reuse

A ll in all, data reuse is expected to lead to improved efficiency, quality, and effec-
tiveness of both clinical practice and health care research, and to assist in the

discovery of new knowledge (Safran, 2017). However, when reusing (routine) data
for research, one should keep in mind that the data were often not originally col-
lected, organized, and optimized for the intended research purposes. This may lead
to uncertainties and challenges regarding data quality, completeness, and privacy
(Sherman et al., 2016).

1.4.1. Data quality

D ata quality is a critical element in secondary data use. Much has been written
about the quality of routine data. Overhage and Overhage (2013) described a

range of intentional and unintentional issues occurring in routine clinical data, such
as inaccuracies due to efforts to maximize reimbursement (also termed ‘upcoding’;
Verheij et al., 2018), due to the requirement of specific diagnostic codes to mo-
tivate the use of certain tests or procedures, or due to simple data entry errors.
Consequently, diagnostic and procedure codes are often biased, underspecified,
and lack the detailed and accurate information needed by, for example, scientists,
policymakers, and clinicians (Meystre et al., 2017).

Data quality can also be problematic in the literal sense, for example the quality
of audio and video recordings initially made for research or monitoring purposes.
Especially when reusing old, analog recordings, sound or image quality may be
poor due to the use of basic recording equipment or may diminish over the years
due to the transitory nature of analog material. Recording quality may have been of
less importance for the primary purpose, while essential for the secondary purpose.
In such cases, new technologies such as ASR might not be applicable to convert
the data, forcing data reusers to return to traditional methods such as manual
transcription. This is illustrated in Chapter 5.

1.4.2. Completeness

C linical information is documented by health professionals for clinical use (e.g.,
to track the patient’s conditions and to inform each other) or billing purposes
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(Meystre et al., 2017). Consequently, data are mainly recorded from the clini-
cian’s perspective instead of the patient’s perspective (Deeny & Steventon, 2015)
and seem to lack both the detail and the outcome measures needed for effective
research (Meystre et al., 2017; Safran, 2017). Research data, for example col-
lected through randomized controlled trials, give a more complete and balanced
overview of a patient’s characteristics (Overhage & Overhage, 2013; Peek & Ro-
drigues, 2018). However, the scope of such trials is often limited, focusing on
a small selection of patients treated in specific care settings, for a confined time
period.

As stated by Vuokko et al. (2015), successful secondary use requires complete
and interoperable patient records. A way to increase the scope and completeness of
patient information is to combine routine or research data with supplementary care
data available from other sources within and outside the care system. For example,
in-depth EHR data can increasingly be linked to more superficial longitudinal claims
databases, which provide additional information regarding diagnoses, specialized
treatment, or clinical outcomes (Lin & Schneeweiss, 2016; Safran, 2017). Similarly,
survey or clinical trial data may be supplemented with EHR data to gain more insight
in the care trajectories or diagnostic profiles of patients, and to study differences
between patient groups. As such, linking data helps to fill the gaps and increase
the scope of the original data set (Weber et al., 2014), as is shown in Chapter 2.

1.4.3. Privacy

F inally, privacy and security are dominant aspects when reusing health data
(Safran, 2017). Especially when data derived from multiple sources are linked,

de-identification or anonymization becomes increasingly complex (Weber et al.,
2014). This is even more challenging when working with text data or audio or
video recordings, which are difficulty to de-identify without removing or distorting
valuable information such as voices, facial expressions, or body language.

Modern techniques based on NLP and ASR are successfully applied in text and
audio de-identification tools (e.g., Kayaalp et al., 2015; Cohn et al., 2019). However,
de-identification is not the same as anonymization, and with text or audio data the
risk and consequences of re-identification are high (Meystre et al., 2017). When
working with sensitive clinical information, such as patient narratives or clinical
notes, it therefore could be sensible to do a ‘blind’ analysis, i.e., analyze the data
on location without having insight in the actual contents, as is done in Chapter 4.
A new initiative which promotes local data reuse is the Personal Health Train (PHT;
Deist et al., 2020) by the Dutch Health Research Infrastructure (HealthRI, https:
//www.health-ri.nl/). The PHT enables researchers to work on sensitive health data
from various sources without the need to transport and centralize the data into one
database. Instead, data analysis takes place locally at the source, which makes
reuse of privacy sensitive data safer. This is especially useful when working with
data that are hard to anonymize, such as the mental health data used in this thesis.

https://www.health-ri.nl/
https://www.health-ri.nl/
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1.5. General aims and outline

A ll in all, expectations of data reuse and its effect on scientific research and clin-
ical practice are high, and much has been written on the topic. However, most

research on clinical data reuse is found to report on how reuse is supposed to impact
health care (e.g., care processes, quality, and outcomes) instead of truly realizing
and demonstrating data reuse and its (dis)advantages in practice (Vuokko et al.,
2015). Data quality, completeness, and privacy are critical and often challenging
elements when reusing data. New technologies such as AI may provide solutions
for these challenges, for example in extracting and encoding information from un-
structured data sets, enriching limited data sets by linking them to data from other
sources, and processing privacy sensitive narratives. However, successful applica-
tion and adoption of such technologies depends on their availability and usability
for care providers and researchers without a technical background. A major goal
to be achieved is to provide clinicians with efficient, intuitive tools to support their
own clinical research and to do research in real care settings (Meystre et al., 2017).

The overall aim of this thesis was to investigate how new technologies such
as AI can contribute to the successful reuse of clinical data towards improving
(mental) health care practice and research. This thesis gives a broad overview
of clinical data reuse in practice, illustrating the challenges encountered and solu-
tions available when reusing existing care data sets for secondary purposes. Data
reuse is demonstrated using both routine care and research data sets. The data
sets originate from different care settings and different phases in the care pro-
cess, ranging from routinely recorded general practitioner (GP) visits, online intake
questionnaires for patient referral in mental health care, face-to-face specialized pa-
tient treatment sessions, and administrative hospital claims records. Data formats
range from coded diagnoses to patient narratives and audio recordings of therapy
sessions. The challenges encountered when reusing these data include poor data
quality, lack of sufficiently detailed information, missing outcome scores, and pa-
tient privacy. We made use of new (AI) technologies such as machine learning, text
and audio mining, and data linkage to deal with these challenges. In other cases,
we returned to traditional methods such as the manual transcription of low-quality
audio recordings instead of using ASR.

The first study presented in this thesis (Chapter 2) examines the usability (fit-
ness for purpose) of routinely recorded care data to identify patients with complex
diseases and to estimate the prevalence of such diseases in the general population.
This study describes the development and validation of a patient selection algo-
rithm using ICPC coded GP contacts and disease episodes, combined with a simple
keyword search in the disease episode titles included in primary care EHRs. As the
primary care data lacked the diagnostic outcome data needed to validate the selec-
tion algorithm, the data set was enriched with outcome data from secondary care
by linking the primary care data to a nation-wide hospital claims database covering
DRG coded and ICD-10 coded diagnoses.

Chapter 3 provides an elaborate description of supervised text classification and
the value of this popular text mining technique for (psychological) research. To
make this method available for researchers and care professionals with little to no
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experience in computer science, statistical modeling, or programming, an Auto-
mated Supervised Text Classification Tool (ASTeCT) was developed and tested by
reusing narrative data collected through a health promotion instrument previously
used for a psychological study. This tool enables users to easily and safely apply
supervised text classification directly to their own text data set and generate their
own classification models.

In Chapter 4 we use the supervised text classification tool introduced in Chapter
3 to automatically screen for multiple mental and substance use disorders using the
textual responses on a patient intake questionnaire. Outcomes could be used to
support care providers in the intake process and refer patients to the most suitable
treatment. To deal with privacy issues associated with patient-written narratives,
the tool was run blind, in the local environment of the data owner offering web-
based treatment.

Chapter 5 illustrates the development of a multimodal (text and audio) super-
vised classification model based on existing, hand-coded, clinical trial data. The
aim of this study was to develop a model to automatically recognize hotspots (key
elements of the used exposure therapy) based on text and speech features, which
might be an efficient way to track patient progress and predict treatment efficacy.
This study shows the challenges and lessons learned when reusing audio data of
poor recording quality.

In Chapter 6, we explore how visualization of outcomes of the standardized NLP
tool LIWC (Linguistic Inquiry and Word Count) can be used to explore differences in
narrative styles, reusing the same psychological research data as in Chapter 3. This
study shows how visualizations can lead to additional information on existing data
sets and provide directions for future research in both the visualization of narrative
structure and the field of narrative psychology.

Finally, Chapter 7 provides a summary and integrated discussion of the findings
of this thesis.
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Abstract
This study assesses the usability (fitness for purpose) of routinely recorded
primary care and hospital claims data for the identification and validation of
patients with complex diseases such as primary Sjögren’s syndrome (pSS).
pSS is an underdiagnosed, long-term autoimmune disease that affects par-
ticularly salivary and lachrymal glands. We identified pSS patients in pri-
mary care by translating the formal inclusion and exclusion criteria for pSS
from secondary care into a patient selection algorithm using data from Nivel
Primary Care Database (PCD), which covers 10% of the Dutch population be-
tween 2006 and 2017. As part of a validation exercise, the pSS patients
found by the algorithm were compared to Diagnosis Related Groups (DRGs)
recorded in the national hospital insurance claims database (DIS) between
2013 and 2017. International Classification of Primary Care (ICPC) coded
general practitioner (GP) contacts combined with the mention of “Sjögren” in
the disease episode titles, were found to best convert the formal classification
criteria to a selection algorithm for pSS. A total of 1,462 possible pSS patients
were identified in primary care (mean prevalence 0.7‰, against 0.61‰ re-
ported globally). The DIS contained 208,545 patients with a Sjögren related
DRG or ICD-10 code (prevalence 2017: 2.73‰). A total of 2,577,577 patients
from Nivel PCD could be linked to the DIS database. In total, 716 of the linked
pSS patients (55.3%) were confirmed based on the DIS. Our study found that
GP electronic health records (EHRs) lack the granular information needed to
apply the formal diagnostic criteria for pSS. The developed algorithm resulted
in a patient selection that approximated the expected prevalence and patient
characteristics, although only slightly over half of the possible pSS patients
were confirmed using the DIS. Without more detailed diagnostic information,
the fitness for purpose of routine EHR data for patient identification and val-
idation could not be determined.
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2.1. Introduction
2.1.1. The diagnosis of Sjögren’s syndrome

P rimary Sjögren’s syndrome (pSS) is an underdiagnosed, long-term autoimmune
disease that affects particularly salivary and lachrymal glands but that may in-

volve any organ and system (Daniels & Fox, 1992). Despite generally benign, pSS
may be characterized by severe rare complications including non-Hodgkin’s lym-
phoma (NHL) with an unneglectable impact on patients’ quality of life (Brito-Zeron
et al., 2016; Cafaro et al., 2019) To date, health policy and management research
for pSS are quite rare, especially on pSS diagnosis and management in primary
health care (Seghieri et al., 2019).

A study on the epidemiology of Sjögren’s syndrome by Patel and Shahane (2014)
concluded that: “there is no accepted universal classification criterion for the diag-
nosis of Sjögren’s syndrome. There are a limited number of studies that have
been published on the epidemiology of Sjögren’s syndrome, and the incidence and
prevalence of the disease varies according to the classification criteria used. The
data is further confounded by selection bias and misclassification bias, making it
difficult for interpretation.” [p.247]. In fact, international consensus on the classi-
fication criteria for pSS was only reached in 2016, resulting in the American College
of Rheumatology/European League Against Rheumatism (ACR/EULAR) classifica-
tion criteria for pSS (Shiboski et al., 2017), making it difficult to estimate the exact
prevalence of the disease. Consequently, estimates of the prevalence of pSS vary
greatly across studies (ranging from 0.11‰ to 37.9‰), depending on the setting
and the definition used and the population investigated (Qin et al., 2015).

Besides population, geographical, and diagnostic differences, diagnosis may be
delayed or patients may be misclassified as another rheumatic disease due to the
insidious onset and the broad spectrum of clinical manifestations of the disease.
In addition, Sjögren’s Syndrome (SS) can occur on its own (primary SS) or in as-
sociation with other systemic autoimmune diseases (secondary SS). Given the vast
availability of electronic health records (EHRs) for the general population, computa-
tional phenotyping may help to improve the diagnosis and timely referral of patients
with complex diseases such as pSS to the medical specialist. Computational pheno-
typing algorithms are automated patient selection algorithms to identify a patient
population of interest (Wiley, 2020). Such algorithms are increasingly used to iden-
tify and characterize patients with complex medical conditions from heterogeneous
EHR data in order to improve efficiency of health care delivery and clinical outcomes
(Chen, 2018).

2.1.2. Primary care data

P rimary care EHRs are a rich source of information about people´s health and
health service utilization. In countries with a gatekeeping system, general prac-

titioners (GPs) have a fixed practice population and they are normally the first point
of contact with the health care system. Routinely recorded electronic health care
data in primary care may be used to develop early detection models or estimate
population prevalences for diseases such as pSS defined as “complex with rare com-
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plications” (Romão et al., 2018) and in general, to study the disease in a “real life”
situation, outside the setting of a specialized clinical center (Maciel et al., 2018).

In the Netherlands, and in many other countries in Europe (e.g., the United
Kingdom, Italy, and Spain), primary care practices use an EHR system to record the
care delivered to their patients and the health problems presented (Verheij et al.,
2018). The diagnoses that are recorded can be assessed by the GP, but also in other
sectors of the health care system, such as medical specialists. For many diseases,
GPs are unable to diagnose the patients themselves so patients are referred to a
medical care specialist for diagnosis and treatment. Diagnoses recorded in the GP
EHR data are therefore not necessarily diagnoses made by the GPs but also include
those of other health care specialists.

Two characteristics make it worthwhile to investigate primary care EHR data in
relation to Sjögren’s syndrome:

1. The GP is the first point of contact with the health care system. This allows
us to identify the patient’s first symptoms and to analyze the care trajectories
that eventually lead to the diagnosis of Sjögren and its treatment in primary
care and eventually in secondary care.

2. There is a fixed patient list. This means that the data recorded in primary
care are population based and that there is an epidemiological denominator
available.

One of the difficulties in identifying patients with pSS, or any other relatively rare
disease, from EHRs is the coding system used in primary care. GPs in the Nether-
lands use the International Classification of Primary Care (ICPC) coding system to
record diagnoses and symptoms. The ICPC coding system was especially devised
for primary care settings (Lamberts & Wood, 1987). In contrast with for example
the International Classification of Diseases coding system used in secondary care
(ICD; World Health Organization, 2004), ICPC has separate entries for symptoms
(such as belly ache) and for diagnoses (such as urinary tract infection). However,
as there are only about 700 separate entries, the level of granularity of ICPC coded
primary care records is lower than that of the ICD coded records in secondary care
(Cardillo et al., 2015).

Due to the low granularity of the ICPC coding system, there is no separate
ICPC code for pSS. pSS is recorded under “Musculoskeletal disease other (L99)”,
as are for example Systemic Lupus Erythematosus and Systemic Sclerosis, which
are autoimmune disorders that can occur in association with Sjögren’s syndrome
(Pasoto et al., 2019). An important consequence for our purposes is the fact that
there is no simple way to identify pSS patients from primary care EHRs and no gold
standard available to validate any patient selection made based on alternative rules
or criteria. However, this information may be available from other sources, such as
insurance claims data from secondary care.

2.1.3. Secondary care data

A s the GP is the first point of contact in the Netherlands, undiagnosed patients
will first visit their GP with any complaints typical for Sjögren’s syndrome. When
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the GP suspects Sjögren’s syndrome, the GP will refer the patient to the Rheumatol-
ogist, Internist, or Ophthalmologist for specialized care and diagnosis. After formal
diagnosis, general care for Sjögren’s patients consists of follow-up appointments
(medical checkups) with the medical specialist and symptomatic treatment (e.g.,
artificial tears or artificial saliva to reduce the symptoms of drought). After first
description of these drugs by the specialist, repeat prescriptions are generally pre-
scribed by the GP. The medical specialist informs the GP of the diagnosis made,
which is then included by the GP in the patient’s primary care EHR. The fact that
all suspected Sjögren’s patients are eventually referred to secondary care for diag-
nosis and treatment means that all Sjögren’s patients should ultimately show up
in secondary care records. Diagnostic information can be retrieved from hospital
claims data using two classification systems; the diagnosis related groups (DRG)
for hospital reimbursements and aforementioned ICD coding system for diseases.
Both systems contain explicit codes for Sjögren’s disease.

This study investigates to what extent routinely recorded EHR data can be used
to identify patients with complex diseases. To this aim we first examined how for-
mal inclusion and exclusion criteria for pSS could be translated into a computational
phenotyping algorithm to identify pSS patients in primary care. As the primary care
data do not contain a gold standard to validate the algorithm, we secondly assessed
whether secondary care data could be used as an alternative validation method, by
comparing the resulting patient selection with DRG and ICD codes retrieved from
hospital claims data. In order to assess the overall fitness for purpose of routinely
recorded health care data for the identification of patients with complex diseases
such as pSS, we finally compared prevalence rates and patients’ demographic char-
acteristics to those reported in literature.

2.2. Methods
2.2.1. Data sets
General practitioner electronic health records
Nivel is a research institute that is part of the Dutch national health knowledge
infrastructure. Nivel is commissioned by the Dutch Ministry of Health to collect data
from EHRs in primary care, in Nivel Primary Care Database (Nivel PCD). Nivel PCD
collects routinely recorded data from health care providers to monitor the health
of patients and the utilization of health services in a representative sample of the
Dutch population. Data are extracted periodically, and patients can be followed
through the health care system longitudinally when the Nivel data is linked to other
national databases.

For this study, data were extracted for the years 2006-2017, containing consul-
tations, diagnoses, prescriptions, referrals, and patient characteristics (Nivel, n.d.).
Diagnoses are recorded routinely in general practices and GPs use the ICPC clas-
sification system. Due to privacy regulations, the database contains no informa-
tion stored in free text fields, apart from the titles of the disease episodes. This
project has been approved by the governance bodies of Nivel PCD under no. NZR-
00317.057.
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Hospital claims database
The national claims data set is provided by Diagnosis Related Groups Information
System (DIS) and is accessible and linkable through Statistics Netherlands, a gov-
ernment institution that makes data available for policy development and scientific
research. The data set includes claims data, using the DRG classification system
for hospital reimbursements (Hasaart, 2011), for all hospitals in the Netherlands.

DRG codes were available for the years 2013-2017 at the time of research
(November 2019). DRG codes for Sjögren’s syndrome are recorded under three
medical specialisms; Rheumatology (DRG code 0324-03-00-0308), Internal Medicine
(DRG code 0313-05-00-0524), and Ophthalmology (DRG code 0301-40-00-0404).
For the most recent years (2016-2017), ICD-10 codes are increasingly available,
although not complete. The ICD-10 code for Sjögren’s syndrome is M35.0 (some-
times recorded as M350).

Population
In the Netherlands, all non-institutionalized inhabitants are compulsorily listed with
a general practice, even if they do not visit their GP regularly. Nivel PCD contains
primary care data of 1.7 million individuals (10% of the Dutch population), enlisted
in approximately 500 GP practices. The practices included in Nivel PCD and patients
enlisted in each practice may vary over the years. Patients can be tracked over time
and linked to other sources based on pseudonymized citizen numbers. In total we
analyzed the EHRs of 3,056,928 unique patients enlisted in any practice included in
Nivel PCD over the years 2006-2017. The DIS database contains DRG coded insur-
ance claims data for 12,991,265 unique patients who consulted a medical specialist
in the Netherlands between 2013-2017.

2.2.2. Developing the algorithm

T he first aim of this study was to assess whether primary care electronic health
care data could be used to identify pSS patients from primary care electronic

health care records. The formal ACR/EULAR classification criteria for pSS were used
as a starting point to define inclusion and exclusion criteria for patient selection,
but additional information available from the primary care database, such as drug
prescriptions and disease episode titles, was also explored.

Formal classification criteria for Sjögren’s syndrome
Inclusion criteria The ACR/EULAR criteria (Shiboski et al., 2017) include pa-
tients who report at least one symptom of ocular or oral dryness and score above
a certain threshold on certain weighted criteria items. Ocular or oral dryness is
assessed by diagnostic questions regarding recent eye complaints, use of artificial
tears, reporting of dry mouth, and difficulty swallowing food. The weighted criteria
concern labial salivary gland histopathology, anti-SSA/Ro antibodies, ocular staining
score, Schirmer’s test, and unstimulated whole saliva flow rate.

Exclusion criteria The ACR/EULAR criteria (Shiboski et al., 2017) exclude pa-
tients with a prior diagnosis of the conditions: history of head and neck radiation
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treatment, Active hepatitis C infection (with confirmation by polymerase chain re-
action), AIDS, Sarcoidosis, Amyloidosis, Graft-versus-host disease, or IgG4-related
disease.

Secondary Sjögren’s syndrome In order to distinguish specifically primary Sjö-
gren’s syndrome, Systemic Lupus Erythematosus, Systemic Sclerosis, and Rheuma-
toid Arthritis should additionally be excluded (Pasoto et al., 2019).

Data recorded in primary care
To identify the possible pSS patients, the formal criteria were translated into a set
of rules relating to coded diagnoses, comorbidities, and diagnostic test results. We
additionally explored drug prescriptions and disease episode titles. These rules
were applied in the form of automated queries on the database. Except for the
disease episodes title, no free text fields could be used.

ICPC codes In secondary care the patients with pre-specified diseases can be
included and excluded using ICD-10 codes. To apply the ACR/EULAR criteria to pri-
mary care data, the ICD-10 codes were converted to the corresponding ICPC codes
using the WHOFIC Thesaurus ICPC2-ICD10 (WHO Collaborating Centre for the Fam-
ily of International Classifications, 2012). The resulting ICPC codes were applied to
ICPC coded GP contacts (e.g., consults, prescriptions) and disease episodes.

Diagnostic test results The ACR/EULAR criteria (Shiboski et al., 2017) mention
several diagnostic tests that can aid in the diagnosis of pSS. Although Nivel PCD
contains a range of diagnostic test results, these cover only the results of tests
issued or conducted by GPs. Diagnostic test results are recorded in Nivel PCD using
NHG lab codes, defined by the Nederlands Huisartsen Genootschap (Dutch College
of General Practitioners) for the classification of laboratory and other diagnostic
tests and results (Westerhof & Bastiaanssen, 2011). It was checked how many of
the diagnostic tests defined by Shiboski et al. (2017) were recorded in Nivel PCD.

Prescriptions The prescriptions in Dutch primary care are coded using the inter-
national Anatomical Therapeutic Chemical (ATC) Classification system for medicines
(WHO Collaborating Centre for Drug Statistics Methodology, n.d.). In order to
strengthen the patient selection, we examined the use of certain medication known
to be much used by pSS patients (Ramos-Casals et al., 2020). These are Artificial
tears (ATC S01XA20), Hydroxyclorochine (ATC P01BA02), Cortisone (ATC H02AB10
/ S01BA03), Pilocarpine (ATC N07AX01), and Ciclosporin (ATC S01XA18). Espe-
cially the combined use of Artificial tears, Hydroxychlorochine, and Pilocarpine was
expected to be a strong indicator of pSS.

Disease episode titles Finally, a text query was applied on all disease episode
titles recorded between 2006 and 2017. The text query was based on a number of
variations in spelling of the word “Sjögren” (namely “sjogren”, “sjorgen”, “sjogern”,
“sjögren”, “sjorgren”, “sjoegren”, “sogren”) in the disease episode titles in Nivel
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PCD. The text strings of found cases were then manually checked and scored as
to whether they described primary Sjögren syndrome by two of the authors as:
1) ‘primary Sjögren’; 2) ‘perhaps primary Sjögren’; or 3) ‘not Sjögren’ or explicitly
‘secondary Sjögren’. All cases in which the term Sjögren was followed by a question
mark were assigned to category 2. Cases explicitly described as secondary were
scored as category 3. This, however, does not necessarily mean that all cases with
score 1 are indeed primary Sjögren cases.

2.2.3. Validating the algorithm

A s there is no formal diagnosis available to use as a gold standard to validate the
developed algorithm, the second aim of this study was to assess to what extent

hospital claims data, which contain more fine-grained DRG treatment and ICD-10
diagnosis codes for Sjögren, might be suitable as an alternative validation method.
We additionally compared prevalence rates and demographic characteristics of pSS
patients identified in primary and secondary care with those reported in literature.

Data linkage
EHR data of patients from Nivel PCD were linked to insurance claims data available
from the DIS database on the basis of pseudonymized national citizen numbers. A
Sjögren related DRG or ICD-10 code was regarded as a formal diagnosis used to
confirm whether pSS patients in found in primary care were also recorded as pSS
patients in secondary care.

Because Nivel PCD covers 10% of the Dutch population and the DIS database
covers 100% of the Dutch population, it was expected that 10% of the patients
found in the DIS database would be retrieved from Nivel PCD. Linkage is done using
the patients’ citizen service number (BSN), a unique personal number allocated to
every registered Dutch citizen. The BSN is used by all recognized care providers,
such as GPs, hospitals, and health insurance companies, to identify patients that
need care. The BSN is included in Nivel PCD since the year 2014 and as such is
not known for patients who did not consult the GP after 2013. For these patients,
linkage on BSN level is not possible, leading to a linkage loss of around 10%.

Validation scores
Based on the linked data set, it is possible to compare the pSS patients found with
the algorithm from Nivel PCD with formal diagnoses based on recorded DRGs and
ICD-10 codes related to Sjögren within the health insurance claims data set. Based
on the combined data sets each patient is flagged as a true positive, true negative,
false positive, or false negative, as shown in Table 2.1:

• True positives (𝑇𝑝): labelled as pSS by the algorithm, confirmed based on
DRG codes secondary care claims database.

• True negatives (𝑇𝑛): not labelled as pSS by the algorithm (hence not included
in our data set), confirmed based on absence of DRG code related to Sjögren
recorded in the secondary care claims data.
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Table 2.1: Comparison of identified patients in Nivel and DIS databases

Patient pSS Nivel PCD pSS DIS database Check

1 Yes No 𝐹𝑝
2 Yes Yes 𝑇𝑝
... No Yes 𝐹𝑛
X No No 𝑇𝑛
Note. pSS = primary Sjögren’s syndrome. Nivel PCD = Nivel Primary Care Database, DIS
= Dutch National Insurance Claims Database, 𝐹𝑝 = False positives, 𝑇𝑝 = True positives,
𝐹𝑛 = False negatives, 𝑇𝑛 = True negatives.

• False positives (𝐹𝑝): labelled as pSS by the algorithm but not confirmed based
on DRG codes secondary claims database.

• False negatives (𝐹𝑛): not labelled as pSS by the algorithm, but DRG codes
related to Sjögren recorded in the secondary claims database.

The total number of 𝑇𝑝s, 𝑇𝑛s, 𝐹𝑝s, and 𝐹𝑛s can be used to calculate the accu-
racy and other performance scores of the algorithm:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑝 + 𝑇𝑛
𝑇𝑜𝑡𝑎𝑙 (2.1)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑝
𝑇𝑝 + 𝐹𝑛 (2.2)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑛
𝑇𝑛 + 𝐹𝑝 (2.3)

𝑃𝑜𝑠𝑡𝑖𝑣𝑒 𝑃𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑇𝑃
𝑇𝑝 + 𝐹𝑝 (2.4)

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) = 𝑇𝑛
𝐹𝑛 + 𝑇𝑛 (2.5)

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (2.6)

Prevalence rates
The prevalence rates are reported from the year 2011. The current Nivel PCD
started in 2010, but as this was still a transition year, data for 2010 should be used
with caution. The former database, known as the Netherlands Information Network
database (LIN; Schweikardt et al., 2016), constituted of a different set of patients,
practices, and reference population. This makes prevalence rates calculated from
both databases incomparable.

The prevalence rate is calculated for each year by dividing the number of newly
identified or existing pSS patients by the number of patients of the population in
that year.
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𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 = 𝑁(𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 𝑜𝑟 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑆𝑆 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠)
𝑁(𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) × 1000

(2.7)

2.3. Results
2.3.1. Patient selection algorithm

S everal patient selection approaches (e.g., based on diagnoses, comorbidities,
diagnostic test results, prescriptions, and disease episode titles) were compared

to find the most applicable rules for the phenotyping algorithm. Details of the data
set and the final phenotyping algorithm are provided in Appendix 2-A.

ICPC codes
Table 2.2 lists the ICPC codes (including counts) used to include and exclude pa-
tients with diseases related to Sjögren’s syndrome based on the ACR/EULAR criteria.

Diagnostic test results
Of the diagnostic tests used for diagnosing pSS defined by Shiboski et al. (2017), the
NHG lab codes include only the autoantibodies anti-Ro/SSA. Schirmer’s test, salivary
flow and ocular staining tests are generally conducted by the Rheumatologist or
Ophthalmologist and as such are not recorded in primary care. Therefore test
results were not used as input for the patient selection algorithm. After finalizing the
patient selection, we did check for how many patients autoantibodies anti-Ro/SSA
values were recorded in Nivel PCD; this was only for four of the 1,462 selected pSS
patients.

Prescriptions
In addition to the ICPC codes, we assessed the use of Artificial tears, Hydroxychloro-
chine, Cortisone, Pilocarpine, and Ciclosporin, and the combined use of Artificial
tears, Hydroxychlorochine, and Pilocarpine in specific. However, these medications
are barely prescribed by the GP in the Netherlands. For example, for all Dutch
patients in Nivel PCD in the period 2006-2017 (N = 3,056,928), prescription rates
for Cortisone (N = 308), Pilocarpine (N = 200), and Ciclosporin (N = 143) are low.
When applying the combination of the three prescribed medications to the final
patient selection, only 24 of the patients that met the defined pSS selection criteria
from Table 2.2 remained. The (combined) prescription use thus does not seem to
be a feasible selection criterion for pSS.

To gain insight in the prescriptions that were used a lot by possible pSS pa-
tients, Table 2.3 shows the prescriptions with the highest recording rates over the
complete period. In total 928 different medications were prescribed to the pos-
sible pSS patients found in Nivel PCD. Of these, especially artificial tears, proton
pump inhibitors (Omeprazole and Pantoprazole), beta blocking agents (Metopro-
lol), and thyroid hormones (Levothyroxine) were highly used. Apart from artificial
tears, these are among the highest used drugs in the general population and are
probably related to other morbidities than pSS.
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Table 2.2: Inclusion and exclusion criteria applied to Nivel PCD

Disseases (ICPC code) N(patients)

Inclusions

Patient has one Other musculoskeletal diseases (L99) 347,082
or more of: Other disease eye (F99) 267,361

Non-Hodgkin’s disease (B72.02) 3,674

Exclusions

Patient has one Hepatitis (incl. hepatitis C infection) (D72) 8,580
or more of: Other infections of the lungs (R83) 62,091

HIV (B90) 3,045
Sarcoidosis (B99) 4,913
Graft-versus-Host disease (A87) 22,345
Amyloidosis (T99) 23,526
IgG4-related disease (B99) 4,913

Exclusions secondary Sjögren*

Patient has: Rheumatoid arthritis (L88) 31,472
Note. ICPC = International Classification of Primary Care.

* Two of the three exclusion criteria for secondary Sjögren defined by Pasoto et al. (2019),
Systemic Lupus and Systemic Sclerosis, could not be excluded because these are recorded
under the ICPC code L99 (“Musculoskeletal disease other”), which is also the ICPC code
for Sicca/Sjögren.

Disease episode titles
In total, one of the defined variations of the word ‘Sjögren’ occurred in the disease
episode titles of 3,259 unique patients. The majority of GPs used the term ‘Sjogren’
(N = 2,944), followed by ‘Sjögren’ (N = 256), and various misspellings ‘Sjorgen’ (N
= 31), ‘Sjoegren’ (N = 16), ‘Sogren’ (N = 7), ‘Sjogern’ (N = 3), and ‘Sjorgren’ (N =
2).

The distinction between primary and secondary Sjögren was not often explicitly
made in the episode texts. For only 71 patients Sjögren was specifically defined as
primary (indicated by ‘prim’, ‘prim.’, or ‘primary’) and for 65 patients as secondary
(indicated by ‘sec’, ‘sec.’, or ‘secondary’). When the GP was unsure of a patient
having Sjögren this was often indicated by a question mark: e.g., ‘Sjögren?’ (N =
348). However, as the episode titles are free text fields, the variation in used text
strings was high and each patient was assigned to one of the categories manually
by taking into account the complete textual context.

Text strings interpreted as primary Sjögren were mainly clear and short state-
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Table 2.3: Top 10 of in total 928 unique prescriptions used by pSS patients

ATC code Description N(records)

S01XA20 Artificial tears and other indifferent preparations 11,838
A02BC01 Omeprazole 7,584
A02BC02 Pantoprazole 5,483
C07AB02 Metoprolol 4,415
H03AA01 Levothyroxine 4,327
B01AC06 Acetylsalicylic acid 4,262
C10AA01 Simvastatin 4,090
P01BA02 Hydroxychloroquine 3,752
C03AA03 Hydrochlorothiazide 2,946
N05CD07 Temazepam 2,905
Note. ATC = Anatomical Therapeutic Chemical Classification system for medicines.

ments such as ‘m. Sjögren’, ‘morbus Sjögren’, and ‘Sjögren’s syndrome’, without the
mention of any secondary diseases (Table 2.2). Text strings interpreted as perhaps
Sjögren contained words such as ‘suspicion of Sjögren’ or ‘possibly Sjögren’, or the
use of a question mark. Text strings interpreted as not or secondary Sjögren clearly
stated ‘no(t) Sjögren’, ‘secondary Sjögren’, ‘Sjögren’ combined with one of the sec-
ondary diseases, or regarded a family member having Sjögren or the patient only
being afraid of having Sjögren. This resulted in the following counts per category:
1) ‘primary Sjögren’ (N = 2,319); 2) ‘perhaps primary Sjögren’ (N = 672); or 3) ‘not
Sjögren’ or explicitly ‘secondary Sjögren’ (N = 268).

Final algorithm
The selection criteria based on the formal ACR/EULAR classification criteria (listed
in Table 2.2), combined with the mention of “Sjögren” (or variations) in the disease
episode titles were found to be the most suitable identifiers for pSS in primary care
EHRs. To be defined as pSS patient, one or more of the ICPC inclusion criteria
should be recorded in the patient journal in the defined period and “Sjögren” (or
variations) should be mentioned in the disease episode titles. Only a record of one
or more of the inclusion criteria and no mention of “Sjögren” (N = 623,700), or vice
versa (N = 729), was not sufficient to be included as a pSS patient. Any patients for
which any of the exclusion criteria were recorded were subsequently excluded from
the selection. This resulted in a total sample of 1,462 plausible pSS patients that
were retrieved from Nivel PCD, leading to a prevalence of 0.81 per 1,000 patients
in 2017.

The flowchart in Figure 2.1 shows the inclusion and exclusion rules applied to
the total number of patients extracted from the primary care database for the years
2006-2017 (N = 3,056,928). Of these, 625,809 patients visited the GP for one or
more of the diseases related to Sjögren (L99, F99, or B72.02). Since it is possible
for patients to visit the GP for either one or multiple defined diseases in the given
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Figure 2.1: Flowchart of inclusion and exclusion criteria applied to Nivel PCD data (cumulative numbers)

period, the flowchart displays cumulative numbers per inclusion and exclusion step
instead of absolute numbers per disease (which can be found in Table 2.2).

First, 347,082 patients were included because they visited the GP for com-
plaints recorded under “Other musculoskeletal diseases” (ICPC code L99). Second,
275,958 additional patients recorded under “Other disease eye” (ICPC code F99)
were included, leading to 623,040 patients with codes L99 or F99. Third, an ad-
ditional 2,769 non-Hodgkin’s disease (ICPC code B72.02) patients were included,
leading to a total of 625,809 included patients who met at least one of the inclusion
criteria.

Of these, only 2,109 also had “Sjögren” or any of the defined textual variations
mentioned in the disease episode titles, leading to 2,109 remaining patients. Of
these in total 321 patients were excluded because they visited the GP for one or
more of the defined exclusion diseases (D72, B90, R83, B99, T99, or A87), leaving
1,788 patients. Finally, 326 of these patients were excluded as these were recorded
as having Rheumatoid Arthritis (ICPC code L88), which was defined as a criterion
for secondary Sjögren’s disease, leaving 1,462 pSS patients.

2.3.2. Algorithm validation

T he claims data indicate that on average around 54,000 unique patients per year
visit the hospital for a treatment recorded under one of the Sjögren related

DRGs or the ICD-10 code for Sjögren. Based on the estimated global prevalence of
61 per 100,000 (e.g., Qin et al., 2015) and a total Dutch population of 17 million, we
would expect slightly over 10,000 patients. Table 2.4 shows the number of patients
for whom Sjögren related DRGs were recorded in the years 2013-2017, or who had
an ICD-10 recorded Sjögren diagnosis in the years 2016-2017. The majority of
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Table 2.4: Number of pSS patients in secondary care

N(unique patients)

DRG ICD-10 Total
Rheuma- Internal Ophthal- M35.0, unique Population
tology Medicine mology M350 patients Reference prevalence

Year (N=10,045) (N=1,447) (N=201,648) (N=34,933) (N=208,545) populationa (per 1,000)

2013 4,740 703 56,862 n.a. 60,995 16,779,575 3.64
2014 5,089 629 53,250 n.a. 57,656 16,829,289 3.43
2015 5,073 584 50,439 n.a. 54,854 16,900,726 3.25

2016 4,870 550 46,044 22,104 50,427 16,979,120 2.97
(1.30)b

2017 4,896 554 42,277 18,958 46,621 17,081,507 2.73
(1.11)b

Note. DRG = Diagnosis Related Groups, ICD-10 = International Classification of Diseases. DRG data is available
from 2013, one year after the implementation of the updated DRG system in 2012.

a Retrieved from StatLine Open Data provided by Statistics Netherlands (https://opendata.cbs.nl/statline), retrieved
November 2019.

b Prevalence based only on patients with recorded ICD-10 code for Sjögren.

the identified patients were treated at the Ophthalmology department, followed by
Rheumatology and Internal Medicine.

As the number of Sjögren patients in secondary care defined based on DRG and
ICD-10 codes is higher than expected, we compared the recorded DRGs with the
available ICD-10 codes as the ICD-10 codes are more explicit diagnoses and DRG
codes might be too broad. In the years for which ICD-10 codes were available
(2016 and 2017), much overlap was found between the Sjögren DRGs recorded in
the Rheumatology and Internal Medicine departments. For Rheumatology, 4,397 of
the 4,870 (90.3%) patients for which a Sjögren related DRG was recorded also had
the ICD-10 Sjögren diagnosis recorded in 2016. For 2017 this was the case for 4,501
of the 4,896 patients with a Rheumatology DRG (91.9%). For Internal Medicine 444
of the 550 (80.7%) patients had both the Sjögren related DRG and ICD-10 diag-
nosis code in 2016, and 458 of the 554 (82.7%) in 2017. For the Ophthalmology
department this overlap was a lot smaller; only 17,806 of the 46,044 (38.7%) pa-
tients with a Sjögren DRG in 2016 and 14,596 of the 42,277 (34.5%) patients with
a Sjögren DRG in 2017 also had the ICD-10 code for Sjögren recorded. For the
patients for which no Sjögren ICD code was recorded, the ICD code was mainly
missing, or referred to an “Unspecified Illness” (R69), Myositis Ossificans Progres-
siva (M61.19), Congenital malformation syndromes predominantly associated with
short stature (Q87.1), or Other disorders of lacrimal gland (H04.1). Especially the
latter was highly recorded for patients with a Sjögren DRG at the Ophthalmology
department.

To check whether the Sjögren DRGs for each department included any diseases
related to Secondary Sjögren, we checked for the presence of ICD-10 codes related
to the three secondary diseases listed in Table 2.2 among the patients with Sjögren
related DRGs in the period 2016-2017. For the Internal Medicine department, none

https://opendata.cbs.nl/statline
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Figure 2.2: Linkage process primary and secondary care data

of the patients with a Sjögren DRG was diagnosed with any of the secondary dis-
eases. For the Rheumatology department, 75 unique patients were diagnosed with
Rheumatoid Arthritis and ≤ 10 patients with Systemic Lupus Erythematosus or Sys-
temic Sclerosis. For the Ophthalmology department, ≤ 10 patients were diagnosed
with Systemic Lupus Erythematosus or Systemic Sclerosis and none with Rheuma-
toid Arthritis.

Linked patients

F or 208,545 of the 12,991,265 unique patients who visited a medical specialist in
any hospital in the Netherlands between 2013-2017, a Sjögren related DRG or

ICD-10 code was recorded. In total, 2,577,577 of the 3,056,928 patients included in
Nivel PCD could be linked to the secondary care data in the DIS database. Among
the linked patients, 30,086 of the initial 208,545 patients with a Sjögren related
DRG or ICD-10 code from the DIS database remained, against 1,296 of the 1,462
pSS patients found in Nivel PCD, as shown in Figure 2.2.

Validation scores

T he matrix in Table 2.5 visualizes the performance of the algorithm applied to
Nivel PCD by comparing the patients found in Nivel PCD to the formally diag-

nosed patients in the DIS database. The cells contain the true and false positives
and negatives. The number of true positives (𝑇𝑝) shows that 716 out of the 1,296
(55.3%) linked patients that were likely to have pSS in Nivel PCD, indeed visited
the hospital medical specialist for a Sjögren related treatment (DRG) between 2013-
2017 or were recorded as a Sjögren patient (ICD-10) during a visit to the hospital
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Table 2.5: Confusion matrix

Formal pSS diagnosis (DIS)

pSS Non-pSS Total

Possibly pSS pSS 716 (𝑇𝑝) 580 (𝐹𝑝) 1,296
(Nivel PCD) Non-pSS 29,370 (𝐹𝑛) 2,546,911 (𝑇𝑛) 2,576,281

Total 30,086 2,547,491 2,577,577
Note. pSS = primary Sjögren syndrome, Nivel PCD = Nivel Primary Care Database, DIS
= Dutch National Insurance Claims Database, 𝑇𝑝 = True positives, 𝐹𝑛 = False negatives,
𝐹𝑝 = False positives, 𝑇𝑛 = True negatives

in 2016-2017. 580 of the 1,296 linked patients remained unconfirmed based on the
DRG data set, meaning that these pSS patients did not visit the hospital for a Sjö-
gren related treatment in the years 2013-2017 or did not receive a formal diagnosis
recorded by a specialist (ICD-10 codes) in the years 2016-2017.

Table 2.5 shows 580 of the 1,296 linked patients who were identified as possible
pSS patients based on Nivel PCD data were not confirmed based on information from
the DIS database. These may not be pSS patients, or pSS patients that did not visit
a hospital for a Sjögren related treatment in the years 2013-2017. Of the 580
unconfirmed pSS patients in primary care, 213 visited the hospital in the defined
period for other DRGs (e.g., Cataract (N = 71), Chest pain (N = 65), Perceptive
hearing loss (N = 46), or Osteoarthritis of the knee (N = 41)), whereas 367 did not
visit the hospital at all. 29,370 of the 30,086 patients who visited the hospital for
a Sjögren related treatment were not identified as a possible pSS patient in Nivel
PCD. The values from the matrix lead to the following performance scores; Accuracy
(92.4%), Sensitivity/recall (2.38%), Specificity (99.98%), PPV/precision (55.25%),
NPV (98.84%), 𝐹1-score (4.56%).

Patient characteristics

T able 2.6 shows the mean age and gender of the total population included in
Nivel PCD and for the selected pSS patients over the years. It also shows the

number of new and known pSS patients for each year. The number of new patients
in a given year is the number of patients for which “Sjögren” was mentioned for
the first time in the ICPC episode title in that year. The total number of patients
in a given year is the number of new patients in that year added to the number of
patients known from previous years.

As the first year of diagnosis we used the first date in which a record was found
in the journal in which “Sjögren” was mentioned in the ICPC text episode title.
This date was unknown for 810 pSS patients, probably because the diagnosis was
made before the patient had been listed as patient in the practice for which data is
included in the database. For the patients for which this date could be retrieved,
the majority was between 50-70 years of age at the first year of diagnosis (see



2.3. Results

2

29

Ta
bl
e
2.
6:
N
iv
el
PC
D
sa
m
pl
e
an
d
po
pu
la
tio
n
ch
ar
ac
te
ris
tic
s

Ye
ar

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

To
ta
l

To
ta
ls
ub
je
ct
s
in
da
ta
ba
se

Po
pu
la
tio
n

16
4,
67
8

22
1,
88
7

21
7,
02
5

28
8,
79
5

88
5,
22
6

1,
31
3,
60
7

1,
55
8,
19
2

1,
80
3,
69
6

1,
87
0,
27
9

1,
92
6,
81
7

1,
89
0,
69
0

1,
81
0,
85
1

3,
05
6,
92
8

G
en
de
r*

M
al
e

81
,9
18

10
9,
25
3

10
6,
61
7

14
2,
13
4

43
5,
82
2

64
7,
14
9

76
7,
07
2

88
8,
69
2

92
2,
46
0

95
2,
15
1

93
4,
12
0

89
4,
86
3

Fe
m
al
e

82
,7
55

11
2,
62
8

11
0,
40
7

14
6,
66
0

44
9,
40
4

66
6,
45
8

79
1,
12
0

91
5,
00
3

94
7,
40
7

97
4,
60
0

95
6,
20
3

91
5,
74
5

U
nk
no
w
n

5
6

1
1

0
0

0
1

41
2

66
36
7

24
3

Ag
e

M
ea
n

37
.1
8

37
.8
0

38
.7
6

39
.0
0

39
.0
7

39
.7
2

39
.5
3

40
.0
5

43
.7
9

44
.7
7

42
.8
6

43
.4
7

SD
21
.9
4

22
.3
1

22
.3
8

22
.4
1

22
.7
2

22
.9
1

22
.8
7

23
.3
1

82
.0
3

89
.8
0

62
.1
5

68
.2
4

Se
le
ct
ed
pS
S
pa
tie
nt
s

N
ew

17
29

39
37

40
61

48
58

56
61

77
68

To
ta
l

88
8

91
7

85
6

99
3

1,
03
3

1,
09
4

1,
14
2

1,
20
0

1,
25
6

1,
31
7

1,
39
4

1,
46
2

1,
46
2

N
on
-p
at
ie
nt
s

16
3,
79
0

22
0,
97
0

21
6,
16
9

28
7,
80
2

88
4,
19
3

1,
31
2,
51
3

1,
55
7,
05
0

1,
80
2,
49
6

1,
86
9,
02
3

1,
92
5,
50
0

1,
88
9,
29
6

1,
80
9,
38
9

Pr
ev
al
en
ce

-
-

-
-

-
0.
83

0.
73

0.
67

0.
67

0.
68

0.
74

0.
81

(p
er
1,
00
0)

G
en
de
r

M
al
es

10
0

10
7

11
3

11
8

12
2

12
4

13
3

14
2

14
8

15
7

16
7

17
7

17
7

Fe
m
al
es

78
8

81
0

84
3

87
5

91
1

97
0

1,
00
9

1,
05
8

1,
10
8

1,
16
0

1,
22
7

1,
28
5

1,
28
5

Ag
e*

M
ea
n

54
.7
4

55
.8
1

56
.7
3

57
.6
2

58
.8
2

59
.5
5

60
.3
5

61
.1
5

62
.0
5

62
.8
1

63
.6
5

64
.4
3

SD
33
.5
6

33
.1
0

32
.4
9

32
.0
5

31
.5
4

30
.8
9

30
.4
1

29
.8
5

29
.3
7

28
.8
5

28
.2
1

27
.7
8

N
ot
e.
pS
S
=
Pr
im
ar
y
Sj
ög
re
n
sy
nd
ro
m
e.

*
Th
is
is
th
e
m
ea
n
ag
e
of
th
e
pa
tie
nt
s
in
cl
ud
ed
in
th
e
da
ta
ba
se
in
th
e
co
nc
er
ni
ng
ye
ar
.
W
e
do
no
tr
ep
or
tm

ea
n
ag
e
in
ye
ar
of
fir
st
di
ag
no
si
s
he
re
,b
ec
au
se
th
e
fir
st
di
ag
no
si
s
ye
ar
is
un
kn
ow
n
fo
r
a
la
rg
e
gr
ou
p
of
pa
tie
nt
s
w
ho
w
er
e
di
ag
no
se
d
be
fo
re

in
cl
us
io
n
in
N
iv
el
PC
D
(N
=
81
0)
.



2

30 2. Fitness for purpose of routinely recorded health data

Figure 2.3: Age distribution at first diagnosis year

Figure 2.3, with a mean of 65.8 years (SD 15.1).

Prevalence rates

T able 2.6 displays the prevalence rates, in which the total and new number of
pSS patients are compared to the total patient population in Nivel PCD. These

rates show the prevalence has slightly increased in the most recent years, after a
slight decrease in the first years of the new database. On average the prevalence
of pSS patients in Nivel PCD was 0.7‰.

2.4. Discussion

T his study illustrates the potential use of routinely recorded primary and sec-
ondary care EHR data to identify and validate patients with complex diseases

such as pSS. A patient selection algorithm was developed based on known inclusion
and exclusion criteria used in the diagnosis of patients with Sjögren’s syndrome.
ICPC coded diseases combined with keywords extracted from episode text titles
were found to be the most suitable for identifying possible pSS patients in primary
care, resulting in 1,462 possible pSS patients identified in primary care. The pa-
tients selected by the algorithm were compared to patients treated for Sjögren’s
syndrome in secondary care, resulting in a confirmation of 716 of the 1,296 linked
pSS patients (55.3%).

The first part of our study focused on the question how formal inclusion and
exclusion criteria for pSS used by medical specialists in secondary care could be
applied to EHR data recorded in primary care. The exact ACR/EULAR classification
criteria for pSS could not be easily applied to the available primary care data. The
ICPC codes are less granular than the specified ICD-10 codes used in secondary
care, and cover more diseases than the ones specified as a single inclusion or
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exclusion criterion. In addition, GPs often record only the main ICPC disease codes
and not always the more specific sub codes. This complicated the inclusion and
exclusion of explicit sub diseases such as Hepatitis C infection, which was now
excluded using the overarching main category “Hepatitis”. Another consequence
of the broader ICPC codes was that secondary Sjögren’s diseases Systemic Lupus
Erythematosus and Systemic Sclerosis could not be excluded, as these are both
recorded under ICPC code L99 (Musculoskeletal disease other), which is also the
code generally used for Sjögren’s Syndrome. The translation of the formal disease
based classification criteria to criteria applicable to primary care data thus may have
resulted in a less precise selection of pSS patients.

Consequently, the selection of pSS patients based on ICPC codes only was not
specific enough. Combining the ICPC codes with a mention of Sjögren in the disease
episode title narrowed the selection down to more a plausible number of patients.
Besides the ICPC disease codes and the episode titles, we examined ATC coded
medication prescribed by the GP that was expected to be frequently used by pSS
patients, and NHG coded diagnostic test results conducted by the GP. However,
prescription rates for the defined medications were quite low. This could be because
this type of medication is not used a lot in the Netherlands, possibly because some
are not covered by the general health insurance, or because these are prescribed
by specialists in the hospital and not by the GP (and therefore cannot be retraced
in our database). With regard to the diagnostic tests, it was found that only one of
five tests that can be used to diagnose pSS (Shiboski et al., 2017) is used by GPs
in the Netherlands, and recordings of their use are very limited. Although primary
care EHRs are quite extensive, only a limited amount of the information needed to
apply the formal diagnostic criteria for pSS was available in primary care. Based
on the information that was available in the GP records, an alternative phenotyping
algorithm could be developed to define a plausible set of pSS patients.

The second part of our study focused on the question of whether DRG and ICD
codes retrieved from hospital claims data could be used to validate the primary care
algorithm and resulting patient selection. The number of Sjögren related DRGs in
the DIS database seems highly inflated when compared to known global prevalence
estimates. When using both the DRGs and ICD-10 codes recorded at the Rheuma-
tology, Internal Medicine, and Ophthalmology departments, the relative number of
pSS patients found and the corresponding prevalence rates are much higher than
those found in Nivel PCD and reported by Qin et al. (2015).

There may be several reasons for this overestimation in secondary care. First, it
may be the consequence of strategic recording behavior. DRGs that are used as a
basis for reimbursement (as is the case for the DIS database) have been found to be
at risk for upcoding (Steinbusch et al., 2007; Verheij et al., 2018). A second reason
could be that the recorded DRGs may only be indicative of a suspected Sjögren
diagnosis, for which the treatment results turn out to be negative. However, the
comparison of DRGs with the ICD-10 diagnosis codes recorded at each department
for the years 2016 and 2017 showed a high overlap between the DRGs and ICD
codes recorded at the Rheumatology and Internal Medicine departments. This may
indicate that the DRGs of these departments do not suffer from upcoding and reflect
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the formal diagnoses recorded by means of the ICD code. This does not seem to
apply to the Ophthalmology department, for which less than half of the recorded
DRGs overlapped with the ICD codes.

Another reason for the high number of pSS patients recorded in the claims data
set might be that the DRGs include cases of primary as well as secondary Sjögren.
A check for the presence of ICD-10 diagnosis codes related to secondary Sjögren
diseases showed that the DRGs recorded at the Rheumatology department included
a small number of patients (N = 75) diagnosed with the secondary Sjögren disease
Rheumatoid Arthritis. The other secondary diseases were only recorded for very
little (N ≤ 10) patients at the Rheumatology and Ophthalmology departments. No
patients with secondary Sjögren diseases were included in the DRGs recorded at
the Internal Medicine department. This shows that the DRGs include mainly pri-
mary and only very few secondary Sjögren’s patients. Although DRGs from hospital
claims data may not provide sufficiently accurate diagnostic information to be reli-
ably used for the validation of patient selection algorithms, our analyses did show
that, especially for Rheumatology and Internal Medicine, DRGs are a suitable alter-
native for ICD codes when ICD codes are not available.

Despite the high number of recorded Sjögren DRGs, the comparison of pSS
patients found in primary care with those treated in secondary care resulted in a
relatively low number of confirmed patients. There may be several explanations for
this:

1. Some patients found via the algorithm in general practice may not have been
referred to specialized care (yet). This is a plausible explanation, as the av-
erage time to diagnosis of Sjögren’s syndrome, the time it takes for a patient
to be referred to a specialist to get a formal diagnosis, is known to be long.

2. Some patients’ last visit to the hospital for a Sjögren related treatment had
taken place before 2013.

3. Some patients have received secondary care treatment (DRGs) or diagnosis
(ICD-10 codes) other than the ones defined by us.

4. Despite meeting the criteria from the algorithm, some of these patients may
not have been pSS patients, meaning the algorithm incorrectly identified some
patients as possible Sjögren patients. In order to examine this further, the
characteristics of the confirmed and unconfirmed patient groups were com-
pared (check for significant differences).

5. In spite of claims regulations, DRG groups in claims data may not represent
true pSS patients.

In future research we will first focus on exploring and confirming these possible
explanations by comparing the primary and secondary care characteristics of the
confirmed and unconfirmed pSS patients. Second, we aim to fine-tune the patient
selection algorithm for primary care and the resulting patient selection by studying
the characteristics of the pSS patients that were included in the DIS database but
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that were not found in Nivel PCD based on the initial selection criteria. This may re-
sult in additional pSS identifiers in primary care, to be implemented in an improved,
more precise algorithm for the selection of pSS patients in general practice. Third,
we will develop a timeline displaying the average combined primary and secondary
care trajectory of pSS patients in the Netherlands, using the linked Nivel PCD and
DIS data of the confirmed pSS patients. This timeline will provide more insight into
the used health care and the diagnostic process.

When looking at the prevalence rates based on the Dutch primary care database,
we see the average prevalence based on our final algorithm (0.7‰) is comparable
to the global population prevalence of 0.61‰ reported by Qin et al. (2015). Our
mean age at diagnosis (Figure 2.3) is comparable to the average age of 56.16 years
reported by Qin et al. (2015). The female:male ratio in our sample is 7:1, which
is to be expected as pSS primarily affects peri- and postmenopausal women. Our
female:male ratio is lower than the ratio in the prevalence data reported by Qin
et al. (2015), which was 11:1. The proportion and characteristics of the pSS pa-
tients in primary care identified by the phenotyping algorithm are thus mostly in line
with those reported in literature. The number of pSS patients in secondary care,
however, highly exceeded the number expected based on the general population
prevalence. Even when using only ICD-10 codes, which might be a more accurate
source of diagnostic information, the prevalence found for the Netherlands still ex-
ceeds global estimates. There is not enough information to assess whether this
discrepancy can be attributed to the sources and methods used to identify pSS pa-
tients in secondary care or the possibility that literature reported global prevalence
rates might not be accurate for the Netherlands. This has a major impact on our
study results in that it is unclear whether insurance claims records are a suitable
source to compare and confirm the results obtained from primary care data with
and, consequently, we cannot draw unambiguous conclusions regarding the quality
of our patient selection and the developed phenotyping algorithm.

This study shows the possibilities of using EHR data for studying complex med-
ical conditions. It is clear that population-based health records provide a lot of
longitudinal medical information and insight in the use of care for a large range of
diseases. However, the study of patients with low prevalence, uncoded diseases
is more challenging, as those cannot be as easily identified from primary care data
as patients with more general diseases. The lack of a granular coding system for
symptoms and diseases also makes it difficult to apply diagnostic criteria used in
secondary care to data recorded in primary care. The possibility to link primary to
secondary care databases on patient level allows one to (iteratively) try different
patient selection algorithms and compare those to patients referred to specialized
care, and to study patient and care characteristics in primary care of patients thus
far only known in secondary care. As such, these combined medical data should be
considered a rich source of information for the epidemiological study of low preva-
lence, complex diseases, patients’ early symptoms, diagnosis paths, and overall
treatment trajectories in primary and eventually secondary care. However, without
the formal diagnostic information required to validate the developed phenotyping al-
gorithm and patient selection, we have insufficient information to affirm that routine
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EHR data are fit for the identification and study of patients with complex diseases
such as pSS.
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Appendix 2-A
Phenotyping algorithm and data set details

Phenotyping algorithm
Patients = all patients enlisted in any Nivel PCD practice at any moment during the
years 2006-2017

Resu l t = pos s i b l e pSS pa t i en t s based on the input data

Journa l_To_Inc lude = ( L99 or F99 or B72 .02)
Episode_To_Include = ( ‘ s jogren ’ or ‘ s jorgen ’ or ‘ s jogern ’ or

‘ s jögren ’ or ‘ s jorgren ’ or ‘ s joegren ’ or
‘ sogren ’ )

Journal_To_Exclude = (D72 or B90 or R83 or B99 or T99 or A87 or L88 )

f o r pa t i en t i n Pa t i en t s :
i f ( pa t i en t . Journa l i n Journa l_To_Inc lude and

pa t i en t . Episode conta ins Episode_To_Include
) and not ( pa t i en t . Journa l i n Journal_To_Exclude ) :
add to Resu l t

Data set description
The data set covers GP recorded medical information on patient level for 3,056,928
patients enlisted in any practice included in Nivel PCD at any moment during the
period 2006-2017.

The data set includes data on the topics: patient, practice, journals, prescrip-
tions, episodes, and test results. Data for each topic can be analyzed on patient
level using pseudonymized patient IDs. Practice information can be analyzed based
on the pseudonymized practice ID.



2

38 2. Fitness for purpose of routinely recorded health data

Table 2.A.1: Data set details

Topic Description Variables

Patient All patients enlisted in any
Nivel PCD practice at any
moment in defined period.

• Patient ID
• Patient ID
• Practice ID
• Year of birth
•Gender
•Date in practice from
•Date in practice until

Practice All practices included in
Nivel PCD at any moment in
defined period.

• Practice ID
• Practice type: unknown, solo, duo, health center
• Practice size

Journals All ICPC coded GP contacts
per patient.

• Patient ID
• Practice ID
• ICPC: disease diagnosis code related to contact
• ICPCepi: disease diagnosis code for episode under
which contact was recorded
•Date: recording date journal entry

Prescriptions All ATC coded prescriptions
of enlisted patients.

• Patient ID
• Practice ID
• ATC: prescription code
• Prescriber: employee type
• First prescriber: care provider that made the first
prescription
• Frequency of use
• Amount prescribed
•Repeat prescription: indicator for repeat prescrip-
tion
•Date: prescription date
• End date: final date of the prescription

Episodes All ICPC coded disease
episodes of enlisted pa-
tients.

• Patient ID
• Practice ID
• Title: disease episode title
• ICPC: diagnosis code related to episode
• Epistart: start date of episode
• Epistop: stop date of episode

Results All NHG coded diagnostic
test results conducted at the
GP’s office.

• Patient ID
• Practice ID
•NHG code: diagnostic test result code
•Result value: outcome of diagnostic test
• Result unit: measurement unit of diagnostic test
• Date: testing date

Note. pSS = primary Sjögren syndrome, Nivel PCD = Nivel Primary Care Database, DIS = Dutch
National Insurance Claims Database, 𝑇𝑝 = True positives, 𝐹𝑛 = False negatives, 𝐹𝑝 = False positives,
𝑇𝑛 = True negatives
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classification tool (ASTeCT):
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Abstract
Whereas in the previous chapter we made use of a simple keyword search,
supervised text classification may result in a more accurate identification of
cases from text. Supervised text classification is a popular text mining appli-
cation in which textual objects are assigned to a set of predefined class labels
using a classification model. Supervised text classification is increasingly
used by researchers to process, organize, or analyze unstructured text data
more efficiently, while also improving research consistency and reproducibil-
ity. To make this method available for researchers with little to no experience
in computer science, statistical modeling, or programming, this study pro-
vides a step-by-step instruction to develop new binary and multiclass classi-
fication models. The study addresses the complete text classification pipeline
including model selection and evaluation using nested 𝐾-fold cross-validated
parameter grid search. The elements of the pipeline (preprocessing, feature
extraction, feature selection, and machine learning using support vector ma-
chines) are described and the main parameters are reviewed. In addition, an
Automated Supervised Text Classification Tool (ASTeCT) is provided, which
enables researchers to apply the complete procedure directly to their own text
data set to generate their own classification models. The study ends with an
example in which the tool was applied to a Dutch data set from psychological
research practice. ASTeCT was also tested on a public English test data set
for classification research, which showed that the procedure and tool can be
applied to text data from different contexts and in different languages.
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3.1. Introduction

T he growing amount of digital psychological text data currently collected online
through for example e-mental health applications and online self-help forums,

makes it more and more interesting for psychological researchers to use text mining
(TM) methods. By using TM methods, information can automatically be extracted
from unstructured text documents (Feldman & Sanger, 2007), which may lead to
new insights or help answering research questions. TM is a relatively young and
interdisciplinary research area in which techniques from fields such as machine
learning, information retrieval, natural language processing, and statistics are com-
bined (Berry & Kogan, 2010; Gupta & Lehal, 2009). TM has been successfully used
in a broad range of studies in the field of psychology, for example to screen for
mental disorders (He et al., 2017; He et al., 2012), to study clinical dialogue con-
tents (Angus et al., 2012), to analyze patient-caretaker communication (Cretchley
et al., 2010; Wallace et al., 2013), and to predict treatment adherence (Howes et
al., 2012). TM could also be used for treatment evaluation by for example analyz-
ing patient opinions or patient records, or even in other research phases like the
literature study (Abbe et al., 2016).

TM could be seen simply as an aid in processing text data (Krippendorff, 2004),
enabling researchers to scale up their studies by including more cases, variables,
or repeated measurements, but it has more advantages. For example, coding texts
using automated algorithms keeps researchers from making premature decisions
or assumptions, which could influence the research process and introduce bias (Yu
et al., 2011). Moreover, since in TM information is retrieved and coded according
to a previously defined set of methods and rules, the text analysis process and its
outcomes are more consistent and reproducible. This can greatly improve inter-
rater as well as test-retest reliability, two aspects of (qualitative) research that have
led to some concern in the past (Armstrong et al., 1997; Carey et al., 1996).

Text mining adopts various methodologies to process text data and identify or
explore patterns across large document collections. In general, natural language
processing (NLP) is used to transform the unstructured text documents into normal-
ized, structured input for machine learning (ML) algorithms. In NLP, computers are
used to learn, “understand”, or produce natural language; any spoken or written
language used by humans in everyday life (Bird et al., 2009; Hirschberg & Man-
ning, 2015). NLP techniques can be used for example to find differences in writing
and speaking styles, detect emotion and sentiments, or give automated responses
to human utterances by counting word frequencies and exploring patterns in texts
(Bird et al., 2009). The potential benefit of NLP for the fields of psychology and
psychiatry was already described in the early nineties by Garfield et al. (1992).
From their review they concluded that NLP could be seen as a broad and useful
research tool that enabled both clinicians and researchers to model and test new
language comprehension or psychopathological theories. They found that differ-
ences between patient populations or shifts in communication over time could be
easily studied on both patient and population level by coding for example syntactic,
semantic, and pragmatic language characteristics.

In ML, computers are programmed to learn to optimize the parameters of a
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mathematical model based on training data or previous experience. The resulting
model and its learned parameters can be aimed at making predictions on future data
(predictive models) or gaining knowledge from data (descriptive models) (Alpaydin,
2004). ML methods are frequently used in data-intensive sciences to learn models,
make new discoveries, or characterize complex or unusual patterns from large data
sets (Mitchell, 2006). The main advantages of ML are that it is highly effective,
requires far less expert labor power than manual coding, and is easily applicable in
different domains (Sebastiani, 2002).

Machine learning is generally divided into three categories: supervised learning,
unsupervised learning, and semi-supervised learning (see James et al., 2013, for
more on the different learning tasks). In supervised learning, for each input obser-
vation (input document 𝑥) the associated output variable (class label 𝑦) is known,
and an algorithm is used to learn the mapping function from each input to output.
This mapping function can then be applied to new input documents (𝑥) to predict
the corresponding class labels (𝑦). Classification and regression are examples of
supervised learning tasks. In unsupervised learning, the input data (𝑥) is known
whilst the output variables (𝑦) are not. As there are no prespecified class labels to
predict, unsupervised learning aims to discover and present the underlying struc-
ture of the data, for example by clustering or association rules. For semi-supervised
tasks, class labels (𝑦) are known only for a part of the input documents (𝑥). For
these data, a combination of supervised (for the labeled input) and unsupervised
(for the unlabeled input) learning can be used.

When working with text data, supervised text classification is a popular approach
as this can be used to simply organize documents (Sebastiani, 2002) or extract
valuable knowledge (Gupta & Lehal, 2009). Supervised text classification involves
assigning textual objects to a set of predefined class labels using a text classification
model (Bird et al., 2009). However, developing and evaluating a new classification
model is quite challenging, especially for researchers with little to no background
in computer science, statistical modeling, or programming. The large amount of
documentation, publications, and example scripts available can be overwhelming
and often focus on specific elements, like feature extraction (Guyon & Elisseeff,
2006; Shen et al., 2006), feature selection (Forman, 2003; Yang & Pedersen, 1997),
or model evaluation (Eichelberger & Sheng, 2013; Sokolova & Lapalme, 2009).

Although basic, ready to use text classification tools are available online, many
of those are web-based, requiring users to send their text data over the internet,
and in some cases logging the input text which may be problematic when working
with privacy sensitive data. Moreover, it is not always possible to specify parameter
settings and preferences, or to download the trained text classification algorithm
for later use. This study therefore provides a freely available, local Automated
Supervised Text Classification Tool (ASTeCT) for researchers to develop their own
text classification model. This tool enables users to classify and analyze privacy
sensitive data and apply the resulting model to new, future text documents. We
first describe the text classification and model development process, after which
the tool will be applied to existing Dutch and English data sets to demonstrate its
use.
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Africa, December 2013

Dear me,

I have just arrived at the office of a company in Africa and look out of 

the window while the sun shines at my desk. I am surrounded by 

books. It is calm and peaceful. I finished my study and now have this 

lovely job and plenty of time to enjoy the people in Africa. I became 

aware of how important making decisions is for living a good life. Try 

to suck the marrow out of life.

Myself

Figure 3.1: Example of a present-oriented imaginative letter from the “Letters from the Future” data
set. From “Mapping letters from the future: Exploring narrative processes of imagining the future,” by
A.M. Sools, T. Tromp, and J.H. Mooren, 2015, Journal of Health Psychology, 20, p.360. Copyright [2015]
by Sage Publishing. Reprinted with permission.

3.2. Methods
3.2.1. Corpus: Letters from the Future

A STeCT was applied to an existing data set from psychological research practice,
to illustrate the development and interpretation of binary and multiclass models

for psychological assessments. The data set was previously collected online using
a narrative based mental health promotion instrument called “Letters from the Fu-
ture”, in which participants are asked to write a letter from a particular moment and
situation in the future to someone in the present. Informed consent to reuse these
letters for ongoing research was obtained. Because the purpose of this example
was to show how to develop and evaluate a new text classifier, only Dutch letters
that were clearly assigned to one of the classes were used, resulting in a data set
of 351 letters. More information on the data collection process, the composition of
the participant group, and the types of letters can be found in Sools and Mooren
(2012) and Sools et al. (2015). An example letter, reprinted from Sools et al. (2015)
is shown in the boxed text in Figure 3.1.

As shown in Table 3.1, the data set can be split into either two (imaginative
and generic), three (retrospective, prospective, and present-oriented), or six (letter
types one to six) classes. For the binary classifier the imaginative versus generic
classes were used; imaginative letters contain a more exhaustive imaginative ac-
count of a future situation, which is lacking or limited in the generic letters. For
the multiclass classifier the retrospective, prospective, and present-oriented classes
were used, because not all six letter types contained enough data to properly train
and test a letter-specific multiclass classifier. Retrospective letters contain more
retrospective evaluation, prospective letters contain more prospective orientation,
and present-oriented letters contain neither evaluative nor orientative components.
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Table 3.1: Characteristics of the example data set “Letters from the Future” used to test the described
model development procedure

Characteristic Imaginative Generic Total

Retrospective evaluation
Letter type 1 4
N(letters) 137 19 156
Mean N(words) 324 292 320

Prospective evaluation
Letter type 2 5
N(letters) 47 9 56
Mean N(words) 303 196 286

Present-oriented
Letter type 3 6
N(letters) 94 45 139
Mean N(words) 289 270 283

Total
N(letters) 278 73 351
Mean N(words) 309 267 300
Note. The data set is split into two classes (imaginative - generic) to develop a binary
classification model and into three classes (retrospective evaluation - prospective evalu-
ation - present-oriented) to develop a multiclass classification model.
Mean N(words) = the mean number of words per text document.

3.2.2. ASTeCT

A STeCT is a freely available supervised text classification tool that was developed
as part of this dissertation. ASTeCT does not require any programming skills or

prior experience with supervised text mining. The graphical user interface enables
the user to specify several analytic preferences and parameter settings, for which
background information is provided in this chapter. The only thing needed is a
labeled data set, organized in one input folder that contains a separate subfolder
with plain text files (.txt) for each class. The tool returns log files of the complete
development process and a .pkl file containing the developed model, which can
later be applied to new input data using the same tool (see Figure 3.2). ASTeCT is
saved locally and runs from the user’s hard drive, allowing researchers to securely
process sensitive text data.

ASTeCT was written in Python 3.5.2 using Scikit-learn; a Python module har-
nessing a wide range of machine learning algorithms for (un)supervised problems
(Pedregosa et al., 2011), the Natural Language Toolkit (NLTK; Loper & Bird, 2002);
a Python library for natural language processing and text analysis, and NumPy;
a package for scientific computing (Oliphant, 2006). ASTeCT was tested on Dutch
and English data sets, but can be easily applied to data sets in any of the languages
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Figure 3.2: Screenshot of ASTeCT homepage: develop a new model or apply a previously trained model.

supported by the Snowball stemmer (see Normalization). This is because almost
all the text processing steps from the pipeline are generic elements, not influenced
by the language of the data. Only the stemming algorithm and the stop word list
are language-specific, and can be defined by setting the “language” variable in the
tool.

3.2.3. Model development

F igure 3.3 gives an overview of the overall procedure for developing a supervised
text classification model. The two main stages in model development are model

selection and model evaluation. A central element in both stages is model validation.
In the model selection stage, validation is applied to compare different models and
select the best combination of parameter settings as the final model. In the model
evaluation stage, validation is used to assess the performance of the final model on
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a new, previously unseen data set (Stone, 1974). To avoid generalization problems
like overfitting and overly optimistic performance estimations, separate data sets
must be used in both stages (Bird et al., 2009; Hastie et al., 2009; Rao et al., 2008).

Validation strategy
Ideally, holdout validation (Kurtz, 1948) is used, in which the data set is split into
three independent samples: a training set to train the classifier, a validation set
to select the best classifier, and a test set used only to evaluate the prediction
capability and generalization performance of the final classifier. However, for small
data sets (in this context meaning human-annotated data sets of a few hundred
documents in total, with about 50-100 training documents per class (Raudys & Jain,
1991)), holdout validation has some drawbacks. First, when two parts of the data
set are kept apart for model selection and evaluation, less data remain to train the
model. Second, when the performance estimates are based on only one single set,
the performance metrics can be misleading and biased by the way the data set was
split.

A resampling method like 𝐾-fold cross-validation (𝐾-fold CV; Breiman et al.,
1984) is a suitable alternative for small data sets. In 𝐾-fold CV, the data set is
split into 𝐾 different, complementary training and validation sets (called folds).
The model is trained 𝐾 times on the altering training sets and tested on the 𝐾
corresponding validation sets. Model performance is then assessed by averaging
the performance scores over the 𝐾 iterations, resulting in a mean CV performance
score. By averaging the performance estimates, the variance problem that may
occur in holdout validation is reduced, since all input documents are used for both
training and validation (Gutierrez-Osuna, 2002). The main drawback of 𝐾-fold CV
is that it is quite computationally expensive, as the statistical learning method is
fitted 𝐾 times.

ASTeCT applies a nested 𝐾-fold cross-validation strategy consisting of an inner
loop for model selection and an outer loop for model evaluation. In the model se-
lection stage, an exhaustive 𝐾-fold cross-validated grid search is conducted over a
parameter grid to find the best performing model (for more on Scikit-learn’s “Grid-
SearchCV”, see Buitinck et al., 2013). The parameter grid is a predefined subset
of parameter values, which is specified manually based on existing literature or
experience. Since the runtime of the pipeline increases exponentially with each
additional parameter that is included in the grid search, it is advised to base param-
eter settings on existing literature as much as possible. However, when there is no
clear consensus on which parameter value performs best, the parameter should be
included in the grid search. During the grid search, all possible parameter combina-
tions are fitted on the data set. The combination of parameter values that results in
the highest mean cross-validated performance score is selected as the final model.
In the outer loop, the selected model was trained on the complete development set
and applied to the held-out test set to evaluate model generalizability.

To deal with class imbalance, stratified sampling is used in both validation stages.
In stratified samples the proportions of the different classes are equal in each train-
ing, validation, and test sample, as such representing the distribution of the classes
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Figure 3.3: Model development procedure. In the first run the model is trained on the training set and
tested on the validation set. An exhaustive 𝐾-fold cross-validated grid search is conducted to select
the best model. In the second run 𝐾-fold cross-validation is used to evaluate the generalizability of the
selected model.
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in the complete data set. Kohavi (1995) showed that stratified cross-validation
works well for selecting and evaluating supervised classification models, although
stratification should be used cautiously, as it influences the cross-validation heuris-
tics (Arlot & Celisse, 2010; Krstajic et al., 2014).

3.2.4. Text classification pipeline

T he different samples are used as input for the text classification pipeline; a
sequence of text processing elements in which the output of each element is

the input of its succeeding element (for more on Scikit-learn’s Pipeline module,
see Buitinck et al., 2013). The two main steps in the classification pipeline are
training and prediction (Bird et al., 2009). To train the model, preprocessing, feature
extraction, and feature selection are used to transform each labeled input document
to a labeled feature set. These labeled feature sets are used as input for the machine
learning algorithm to train the model (also called classifier).

Preprocessing
Preprocessing is a standard and straight-forward step that is the same for all docu-
ments, regardless of which sample (training, validation, or test set) the document
belongs to. The preprocessing element consists of tokenization and normalization,
and results in a vocabulary.

Tokenization To be able to process and analyze the texts on word level, each
input text is split into smaller parts, which is called tokenization. Texts can be
split into paragraphs, which can be split further into sentences, which on their turn
can be split into tokens like words, numerical expressions, punctuation marks or
symbols. The splits are based for example on the use of punctuation and capital
letters at the end and the beginning of sentences, or the occurrence of white spaces
marking the beginning and end of each word (Perkins, 2014).

Normalization All words are then normalized by removing punctuation (like the
dots in “U.S.A.”, or the hyphen in “well-known”), converting all capital letters to
lower case letters (called case folding), and stripping off accents. This way “U.S.A.”
and “USA” are converted to “usa” and the word “Dear” at the beginning of a sen-
tence is converted to “dear”. Next, a language-specific stemming algorithm is used
to remove the affixes from the remaining words (Perkins, 2014). By stemming, all
morphological variants of a word are brought back to one core, meaning bearing
stem (Jurafsky & Martin, 2009). For example, the words “translation”, “translat-
ing”, “translated”, and “translator” all result in the stem “translat”. Normalization,
and stemming in specific, is done so that all variants of an extracted word are
of the same form, which makes it easier to match and compare words extracted
from different documents or samples (Jurafsky & Martin, 2009). For stemming,
the Snowball stemmer (Porter, 2001) is used because this stemmer provides stem-
ming algorithms for many different languages. This enables ASTeCT to process
texts in different languages. At the time of writing 14 languages were supported:
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Danish, Dutch, English, Finnish, French, German, Hungarian, Italian, Norwegian,
Portuguese, Romanian, Russian, Spanish, and Swedish.

Vocabulary The resulting set of normalized words is called the vocabulary (Bird
et al., 2009). The vocabulary consists of word tokens and word types, where the
set of word tokens refers to the total number of words that are used in a document,
and the set of word types refers to the total number of different words used in a
document. So, the phrase “to be or not to be” consists of four word types (“to”,
“be”, “or”, “not”) and six word tokens. The number of word types in the vocabulary
equals the dimensionality of the feature (or vector) space. In text classification,
dimensionality can be excessively high due to the many possible unique words
or word combinations (phrases) that can occur in text documents. Only a few
machine learning algorithms can deal with high-dimensional feature spaces (Yang
& Pedersen, 1997). In addition, using less features improves computation efficiency
and leads to simpler, more robust and accurate models (Alpaydin, 2004; Forman,
2003; Guyon & Elisseeff, 2006). Therefore dimensionality is generally reduced using
feature extraction, feature selection, or both.

Feature extraction
In feature extraction, the data are transformed from a high-dimensional to a lower
dimensional vector space. The normalized words extracted from the text documents
are converted to a structured set of features that can be used as input for the
classifier. Feature extraction consists of the steps document representation and
vectorization.

Document representation Documents are represented using certain document
representation schemes. Well-known schemes are the bag-of-words model for un-
igrams (single words), and language model based representations like 𝑁-grams or
𝑁-multigrams (phrases). In the bag-of-words model, the simplest and most ef-
ficient representation, every word is treated as an independent, separate feature
(Manning & Schütze, 1999; Perkins, 2014), not taking into account word ordering or
constituency (Jurafsky & Martin, 2009). One of the drawbacks of the bag-of-words
model is that it does not take into account the relationship between consecutive
words (e.g., in the case of denial) or the context in which words that can have mul-
tiple meanings occur (Shen et al., 2006). 𝑁-gram models (sequences of 𝑁 words,
like bigrams (sequences of two words), trigrams (sequences of three words), and
so on), or 𝑁-multigram models (variable-length sequences with a maximum of 𝑁
words (see more in Shen et al., 2006) could be used to deal with this (Bekkerman
& Allan, 2003; Tan et al., 2002). In addition to 𝑁-(multi)grams, text documents
can also be represented by basic linguistic variables like the total number of words
(tokens and types) and sentences, word and sentence length, word diversity, or
word repetition (e.g., see Paap et al., 2015). However, that is beyond the scope of
this chapter.
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Vectorization The unigrams or 𝑁-grams that occur in the data set are called
terms. Using the algebraic Vector Space Model (or Term Vector Model) of Salton
(1971), a vector of features representing the terms that occur within the data set
is then used to represent each document. This process is called vectorization. A
text document (𝑗) for example is represented as the vector ⃗⃗ ⃗⃗𝑑𝑗 = (𝑤1,𝑗 , 𝑤2,𝑗 , … , 𝑤𝑚,𝑗),
where each element resembles the weight for the corresponding term (term weight).
The complete set of documents from the data set can be represented as a (sparse)
term-by-document matrix (𝐴𝑚,𝑛). In this matrix (shown in Equation 3.1), the
columns and rows represent the documents and terms respectively, and 𝑤𝑖,𝑗 is the
term weight; the weight of term 𝑖 (of 𝑚 terms) in document 𝑗 (of 𝑛 documents):

𝐴𝑚,𝑛 = (
𝑤1,1 𝑤1,2 ⋯ 𝑤1,𝑛
𝑤2,1 𝑤2,2 ⋯ 𝑤2,𝑛
⋮ ⋮ ⋱ ⋮

𝑤𝑚,1 𝑤𝑚,2 ⋯ 𝑤𝑚,𝑛

) (3.1)

Selecting suitable terms and term weights to represent the documents has a
substantial influence on the effectiveness and performance of a classification model
(Jurafsky & Martin, 2009; Shen et al., 2006). Terms can be weighted by:

• Term frequency (𝑡𝑓𝑖,𝑗): the number of times a term occurs within a document
(Luhn, 1957). The underlying idea is that frequently occurring terms give a
better reflection of the content of a document, and thus get higher values
than less frequently occurring terms.

• Inverse document frequency (𝑖𝑑𝑓𝑖): the total number of documents in the
data set (𝑁) divided by the number of documents (𝑛) in which the term occurs
(𝑙𝑜𝑔(𝑁/𝑛𝑖); Spärck Jones, 1972). The underlying idea is that terms occurring
in a small number of documents are more discriminative, and thus get higher
values than terms occurring in a large number of documents.

• Term frequency-inverse document frequency (𝑡𝑓-𝑖𝑑𝑓𝑖,𝑗): a combination of the
term frequency and inverse document frequency (𝑡𝑓𝑖,𝑗 ×𝑖𝑑𝑓𝑖; Jurafsky & Mar-
tin, 2009). The underlying idea is that terms that frequently occur in a specific
document but not in the overall data set are more informative and thus get
higher values.

Of these, 𝑡𝑓𝑖,𝑗 and 𝑡𝑓-𝑖𝑑𝑓𝑖,𝑗 are the most commonly used weights. To prevent bias
towards longer documents the term frequency is usually normalized by document
length, as suggested by Forman (2003). From this point on, term frequency (or
𝑡𝑓𝑖,𝑗) denotes the normalized term frequency.

Feature selection
The process of selecting the most relevant and informative features and discarding
the remaining, noninformative features is called feature selection (or sometimes
subset selection). The objectives of feature selection can vary from finding the
minimal (Kira & Rendell, 1992) to the optimal (Narendra & Fukunaga, 1977) subset
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of features that maximally contribute to the performance of the model (Alpaydin,
2004). To find the most discriminative features, stop word removal, minimal docu-
ment frequency, and a Pearson’s 𝜒2 test are used.

Stop word removal In information retrieval and NLP contexts, commonly used
stop words like “I”, “the”, or “it” are often removed because these words do not
contribute specifically to the meaning of the texts (Perkins, 2014), and carry little
semantic weight (Jurafsky & Martin, 2009). However, Campbell and Pennebaker
(2003) show that particles (the most commonly used words in English) and espe-
cially pronouns like “I”, “you”, “it”, “who”, and “what” indicate (changes in) writing
styles and related health improvements. Moreover, when stop words are removed,
it is harder to select informative phrases, as these can be expected to include one
or more stop words (Jurafsky & Martin, 2009). This shows there is no clear consen-
sus on stop word removal. In addition to stop words, sometimes words that occur
less than a certain number of times or in less than a certain number of different
training documents are removed as well, to avoid needlessly large feature vectors
(Joachims, 1998).

Pearson’s chi-squared test An efficient and statistically robust method for fea-
ture selection is the filter method (Guyon & Elisseeff, 2006). In the filter method,
each feature is scored independently based on its occurrence in positive and neg-
ative training documents using a feature selection metric (Forman, 2003). Based
on this metric, the features are ranked and a subset of features is selected using
a certain cut-off point in the ranking (Suman & Thirumagal, 2013). A common
feature selection metric for text classification is Pearson’s chi-squared test (𝜒2), a
highly efficient univariate statistical hypothesis test that measures the independence
between corpora by comparing the observed and expected feature occurrences in
each class (Forman, 2003). It has been successfully used in models for example for
document classification (Oakes et al., 2001), identification of differences between
male and female vocabulary characteristics (Rayson et al., 1997), and assessment
of patients’ self-narratives (He et al., 2017). Following Oakes et al. (2001), 2 x 2
contingency tables (see Table 3.2) are compiled for each feature type, where 𝐶𝑝𝑜𝑠
= the positive class, 𝐶𝑛𝑒𝑔 = the negative class, and 𝐹 = a unique feature type in
the data set. The values in each cell (𝑎, 𝑏, 𝑐, 𝑑) are called the observed frequencies
(𝑂).

Next, the expected frequencies (𝐸) are calculated for each cell in the contin-
gency table based on the marginal probabilities, using the formula:

𝐸𝑖,𝑗 =
𝑐𝑜𝑙𝑢𝑚𝑛𝑖 𝑡𝑜𝑡𝑎𝑙 × 𝑟𝑜𝑤𝑗 𝑡𝑜𝑡𝑎𝑙

𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙 (3.2)

Finally, the 𝜒2 score is calculated separately for each feature by summing the dif-
ferences between the observed and expected frequencies for each cell in the table
using the formula:

𝜒2 =∑
𝑖,𝑗

(𝑂𝑖,𝑗 − 𝐸𝑖,𝑗)2
𝐸𝑖,𝑗

(3.3)



3

52 3. Automated supervised text cassification tool

Table 3.2: Contingency table with observed frequencies (𝑂) for feature 𝐹

Class

Feature Positive (𝐶𝑝𝑜𝑠) Negative (𝐶𝑛𝑒𝑔)

𝐹 𝑎 𝑏
¬ 𝐹 𝑐 𝑑

Note. Observed frequencies for feature type 𝐹 versus the other feature types in the
training set for the positive (𝐶𝑝𝑜𝑠) and negative (𝐶𝑛𝑒𝑔) class. 𝑎 = number of times
feature 𝐹 occurs in class 𝐶𝑝𝑜𝑠; 𝑏 = number of times feature 𝐹 occurs in class 𝐶𝑛𝑒𝑔; 𝑐
= total number of features (tokens) in class 𝐶𝑝𝑜𝑠 that are not 𝐹; 𝑑 = total number of
features (tokens) in class 𝐶𝑛𝑒𝑔 that are not 𝐹.

The features are then ranked in descending order based on their 𝜒2 scores, after
which the most informative (discriminative) features, with the highest scores, are
selected for the classification model.

Some studies, e.g., Manning and Schütze (1999), suggest removing features
that occur less than five times in the training set to ensure reliability of the 𝜒2
calculation. However, since this option is not offered by Scikit-learn’s standard
“GridSearchCV” implementation for nested 𝐾-fold cross-validation, scarcely used
features were not removed before calculating the 𝜒2 scores.

Supervised learning
In order to predict the class labels for new input documents, the classifier first needs
to learn the boundaries that separate the input documents of each class from those
of the other class(es). These boundaries are used to develop a classifier (ℎ) that
approximates the unknown target function that designates documents from the
training set to their corresponding classes as much as possible (Alpaydin, 2004;
Sebastiani, 2002). Using the vector representation described before, each input
document (𝑗) from the training set is represented as the vector ⃗⃗ ⃗⃗𝑑𝑗 with input features
(𝑤1,𝑗 , 𝑤2,𝑗 , … , 𝑤𝑚,𝑗) and document label (𝑟) denoting the class, as in Equation 3.4:

𝑟 = {1 if
⃗⃗ ⃗⃗𝑑𝑗 is a positive example

0 if ⃗⃗ ⃗⃗𝑑𝑗 is a negative example
(3.4)

Combining the input feature vector and document label, each of the 𝑛 documents
in the training set is converted to a labeled feature set represented by the ordered
pair (⃗⃗⃗⃗𝑑𝑗 , 𝑟). Equation 3.5 shows the training set (𝑆), with 𝑡 indexing the different
documents and 𝑛 the total number of documents in the training set

𝑆 = {⃗⃗⃗⃗𝑑𝑗
𝑡
, 𝑟𝑡}

𝑛

𝑡=1
(3.5)
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The classifier (ℎ) can make the following predictions for an input document (𝑗):

ℎ(⃗⃗⃗⃗𝑑𝑗) = {
1 if ℎ classifies ⃗⃗ ⃗⃗𝑑𝑗 as a positive example
0 if ℎ classifies ⃗⃗ ⃗⃗𝑑𝑗 as a negative example

(3.6)

For multiclass classification with 𝐾 classes (denoted 𝐶𝑖, where 𝑖 = 1,… , 𝐾), the
training set is denoted by

𝑆 = {⃗⃗⃗⃗𝑑𝑗
𝑡
, 𝑟𝑡}

𝑛

𝑡=1
(3.7)

where 𝑟 has 𝐾 classes and

𝑟𝑡𝑖 = {
1 if ⃗⃗ ⃗⃗𝑑𝑗

𝑡
∈ 𝐶𝑖

0 if ⃗⃗ ⃗⃗𝑑𝑗
𝑡
∈ 𝐶𝑗, 𝑗 ≠ 𝑖

(3.8)

The input documents from the training set that belong to class 𝐶𝑖 are positive exam-
ples, whereas the rest of the input documents from the other classes are negative
examples for the classifier ℎ𝑖 (Alpaydin, 2004; Sebastiani, 2002). As such, for a
𝐾-class classification task, 𝐾 classifiers need to be learned:

ℎ𝑖(⃗⃗⃗⃗𝑑𝑗
𝑡
) = {1 if

⃗⃗ ⃗⃗𝑑𝑗
𝑡
∈ 𝐶𝑖

0 if ⃗⃗ ⃗⃗𝑑𝑗
𝑡
∈ 𝐶𝑗, 𝑗 ≠ 𝑖

(3.9)

Algorithm There are many machine learning algorithms for text classification,
like naive bayes (NB), support vector machines (SVM), or decision trees (DT). For a
thorough description of these methods is referred to Hastie et al. (2009). The sup-
port vector machine (SVM; Vapnik, 1995) is used in the pipeline, as this is perceived
as one of the best performing and most robust classification algorithms (Joachims,
1998). Moreover, the SVM algorithm is found to deal well with high-dimensional
data (Joachims, 1998) and to have less problems handling imbalanced training data
than other learning algorithms such as the NB (Rennie, 2001).

The idea behind the SVM algorithm is to find a hyperplane that perfectly sepa-
rates the documents from the training sample according to their class labels; the
optimal separating hyperplane. Following Alpaydin (2004), using the labels -1 /

+1 and the training sample 𝑆 = {⃗⃗ ⃗⃗𝑑𝑗
𝑡
, 𝑟𝑡}, with 𝑟𝑡 = +1 if ⃗⃗ ⃗⃗𝑑𝑗

𝑡
∈ 𝐶1 and 𝑟𝑡 = −1 if

⃗⃗ ⃗⃗𝑑𝑗
𝑡
∈ 𝐶2, the aim is to find the weight factor (𝑤) and the threshold (𝑤0) for which

𝑤𝑇 ⃗⃗ ⃗⃗𝑑𝑗
𝑡
+𝑤0 ≥ +1 for 𝑟𝑡 = +1, and 𝑤𝑇 ⃗⃗ ⃗⃗𝑑𝑗

𝑡
+𝑤0 ≤ −1 for 𝑟𝑡 = −1. Or more compact:

𝑟𝑡(𝑤𝑇 ⃗⃗ ⃗⃗𝑑𝑗
𝑡
+ 𝑤0) ≥ +1. The optimal separating hyperplane is the hyperplane that

maximizes the margin; the distance between the hyperplane and the closest data
points on either side. As described by Alpaydin (2004), this margin is maximized
for best generalization by solving the quadratic optimization problem:

min
1
2||𝑤||

2 subject to 𝑟𝑡(𝑤𝑇 ⃗⃗ ⃗⃗𝑑𝑗
𝑡
+𝑤0) ≥ +1, ∀𝑡 (3.10)
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For the model to generalize well to new data, at least two SVM hyperparameters
(“higher level” model parameters) need to be set: a kernel parameter (𝛾) and
a regularization parameter (𝐶) (Duan et al., 2003). The kernel parameter (the
degree of the polynomial kernel and the width for the Gaussian kernel) controls the
flexibility of the classifier (Ben-Hur & Weston, 2010). The linear kernel, which is the
lowest degree polynomial, is generally used in text classification, since most text
classification problems are linearly separable (Joachims, 1998) and the linear kernel
was found to perform better than (Yang & Liu, 1999) or equal to (Rennie, 2001)
nonlinear kernels. For the regularization parameter, which controls the trade-off
between a minimal training error and a minimal testing error (Duan et al., 2003), a
value equal or close to the number of classes to be predicted is found to perform
well (Mattera & Haykin, 1999).

Decomposition strategy SVMs were originally intended for binary classification
tasks. Multiclass (𝐾-class) classification tasks are therefore typically executed as
𝐾 binary classification tasks using a decomposition strategy (Lorena et al., 2008),
also known as binarization (Galar et al., 2011). Two widely applied decomposi-
tion strategies are the One-against-One (O-a-O, also called One-versus-One) and
the One-against-All (O-a-A, also called One-versus-Rest) strategy. O-a-O uses (𝐾2)
pairwise classifiers to distinguish between each pair of classes (Galar et al., 2011;
Hastie et al., 2009) whereas O-a-A uses 𝐾 classifiers to distinguish between each
single class and the remaining classes (Galar et al., 2011; Hastie et al., 2009).
ASTeCT applies the O-a-A approach, which is the most commonly used due to its
computational efficiency and interpretability, using the “Linear Support Vector Clas-
sifier” based on the LIBLINEAR library (Fan et al., 2008).

Prediction
During prediction, the same preprocessing, feature extraction, and feature selection
steps are used to transform each unlabeled input document to an unlabeled feature
set. The trained model is then used to predict class labels for each unlabeled input
document. The differences between the true and predicted class labels are used to
assess model performance (see Figure 3.3).

Following Alpaydin (2004), for binary classification problems the labels are pre-
dicted by calculating the function 𝑔(⃗⃗⃗⃗𝑑𝑗) = 𝑤𝑇 ⃗⃗⃗⃗⃗𝑑𝑡𝑗 + 𝑤0. Depending on the sign of
𝑔(⃗⃗⃗⃗𝑑𝑗), a document is assigned to 𝐶1 if 𝑔(⃗⃗⃗⃗𝑑𝑗) > 𝑐, where 𝑐 can be any constant
threshold value, and to label 𝐶2 otherwise. For multiclass (𝐾-class) classification
problems, 𝐾 binary SVMs (𝑔𝑖(⃗⃗⃗⃗𝑑𝑗), 𝑖 = 1,… , 𝐾) are learned. All 𝑔𝑖(⃗⃗⃗⃗𝑑𝑗) are calculated
and the maximum is selected as the predicted label. The predicted labels are then
compared to the true class labels to assess the model performance.

Performance metrics
To assess model performance, a confusion matrix (Table 3.3) is generated where
the columns represent the instances for the predicted classes and the rows repre-
sent the instances for the true classes. The cells on the diagonal show the number
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Table 3.3: Confusion matrix to assess model performance

Predicted class

True class Positive (𝐶𝑝𝑜𝑠) Negative (𝐶𝑛𝑒𝑔)

Positive (𝐶𝑝𝑜𝑠) True positive (𝑡𝑝) False negative (𝑓𝑛)
Negative (𝐶𝑛𝑒𝑔) False positive (𝑓𝑝) True negative (𝑡𝑛)
Note. Comparison of true (rows) and predicted (columns) class labels for the classes
𝐶𝑝𝑜𝑠 and 𝐶𝑛𝑒𝑔. The values on the diagonal (in boldface) show the correctly predicted
class labels.

of correctly predicted class labels, whereas the off-diagonal cells show the num-
ber of errors (Bird et al., 2009). The number of correctly predicted labels (true
positives and true negatives) and errors (false positives and false negatives) from
the confusion matrix are used to calculate the performance metrics accuracy, pre-
cision, recall, and 𝐹1-score (see Table 3.4 for a description). Of these, accuracy
and 𝐹1-score are the most commonly used metrics to evaluate the performance of
supervised text classification models, although 𝐹1-score (and weighted 𝐹1-score for
the multiclass classifier) is preferred when working with imbalanced data sets. The
metrics are calculated separately for each individual class 𝐶𝑖 based on that class’
counts (true positives (𝑡𝑝𝑖), true negatives (𝑡𝑛𝑖), false positives (𝑓𝑝𝑖), and false
negatives (𝑓𝑛𝑖). The output scores for all metrics are between 0 (worst) and 1
(best). For binary classification generally only the performance of the positive class
is reported.

As described under Decomposition strategy, 𝐾-class classification tasks are ex-
ecuted as 𝐾 binary classification tasks. The overall performance score for each
metric is then computed by averaging the performance scores of all 𝐾 binary clas-
sifiers. There are several different averaging methods, of which micro- and macro-
averaging are the most commonly used. In micro-averaging, the average of the 𝐾
binary performance scores is computed giving an equal weight to each document
(class instance). This way, micro-averaged scores are dominated by the frequently
occurring classes as these contain more instances than classes with lower occur-
rence frequencies (Yang, 1999). In macro-averaging, the average of the 𝐾 binary
performance scores is computed giving an equal weight to each class. As a result,
the (typically low) scores for infrequent classes count just as much as the scores for
the (typically higher scoring) frequent class(es) (Yang, 1999). The micro-averaged
scores for each performance metric (𝑀) are computed by:

𝑀𝑚𝑖𝑐𝑟𝑜 = 𝑀(
𝐾

∑
𝑖=1
𝑡𝑝𝑖 ,

𝐾

∑
𝑖=1
𝑓𝑝𝑖 ,

𝐾

∑
𝑖=1
𝑓𝑛𝑖 ,

𝐾

∑
𝑖=1
𝑡𝑛𝑖) (3.11)
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Table 3.4: Model performance metrics and functions

Metric (𝑀) Description Function

Accuracy Average per-class effectiveness of the classi-
fier

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖+𝑓𝑝𝑖+𝑡𝑛𝑖

Precision Average per-class agreement of the true and
predicted class labels

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑝𝑖

Recall Average per-class effectiveness of the classi-
fier to identify class labels

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖

𝐹1-score Harmonic mean of precision and recall 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

Note. The true positives (𝑡𝑝), false positives (𝑓𝑝), false negatives (𝑓𝑛), and true neg-
atives (𝑡𝑛) from the confusion matrix in Table 3.3 are used to calculate scores for the
model performance metrics (Accuracy, Precision, Recall, and 𝐹1-score) for each class 𝐶𝑖.

and the macro-averaged scores for each performance metric (𝑀) by:

𝑀𝑚𝑎𝑐𝑟𝑜 =
1
𝐾

𝐾

∑
𝑖=1
𝑀(𝑡𝑝𝑖 , 𝑓𝑝𝑖 , 𝑓𝑛𝑖 , 𝑡𝑛𝑖) (3.12)

where 𝑀 = the concerning performance metric, 𝐾 = the total number of classes,
and 𝑖 = 1,… , 𝐾. The macro-averaged scores can be altered to deal with class
imbalance by weighting the scores for each class by the occurrence frequency of
the concerning class in the data set, this is called the weighted average.

3.2.5. Model selection

A s stated before, the complete pipeline is run twice; once for model selection and
once for model evaluation. In the model selection stage (the inner loop) only

the development set is used, which is split into training and validation sets. Since
𝐾-fold cross-validation is used, this is an iterative process in which the model is
trained 𝐾 times on altering training sets, and class labels are predicted 𝐾 times for
the corresponding validation sets. The mean cross-validated performance is then
assessed by calculating the performance scores for all 𝐾 iterations and then taking
the mean. The value for 𝐾 can be specified in the tool, but is set to 5 by default in
both the inner and the outer loop (see Figure 4.2 for a schematic representation).

Parameter grid search
To select the best performing model, different models and model parameters are
compared. Section 3.2.4 described various text processing settings and parameters
that can strongly influence the performance of the classifier. Although some pa-
rameter settings could be based on existing literature, for most parameters there is
no clear consensus in the literature on which values generate the best performance.
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This could be because the effects of specific parameter settings can be data de-
pendent and can strongly interact with other parameter settings. Therefore, these
parameters are included in an exhaustive parameter grid search, in which all possi-
ble combinations of parameters are fitted on the data set. The grid search can be
guided by any of the four described performance metrics. The parameter combina-
tion that generates the highest mean cross-validated performance score is selected
as the final model.

Except for preprocessing, which is a standard step, for all elements of the
pipeline parameters are included in the grid search. For feature extraction these
are stop word removal, representation schemes and term weights. Stop words are
either retained or removed using a language-specific stop word list included in the
NLTK library (available in multiple languages, see Normalization). In addition, only
terms occurring in at least 𝑥 different training documents are selected, with the val-
ues for 𝑥 ranging from 1-3. To find which representation scheme generates the best
results, different 𝑁-gram ranges (unigrams, bigrams, trigrams and 3-multigrams)
are compared. Finally, the two most commonly used term weights (𝑡𝑓𝑖,𝑗 and 𝑡𝑓-
𝑖𝑑𝑓𝑖,𝑗) are compared. For feature selection, only the 𝑘 features with the highest
𝜒2 scores are selected. The best value for 𝑘 (the cut-off point) is determined by
comparing values ranging from 10-500, increasing with steps of 20 features, or ‘all’.
For machine learning, several 𝐶 values of around and further off the number of
classes (1, 2, 3, 100, and 1,000) are compared. In addition, a class weight pa-
rameter is included in the grid search to test whether adjusting class weights to be
inversely proportional to the class frequencies in the training data performs better
than using no class weights. All parameters settings can be configured in ASTeCT,
as displayed in Figure 3.4. Table 3.5 gives an overview of all the parameters and
the corresponding subset of parameter values that are included in the grid search.

3.2.6. Model evaluation

I n the model evaluation stage (the outer loop) the development set and the testset are used. As for model selection, this is an iterative process using 𝐾-fold
cross-validation, splitting the complete data set into 𝐾 (5 by default) folds and al-
ternately defining 𝐾-1 folds as the development set for model selection and setting
aside one fold as a test set for assessing the final model performance and gen-
eralization. The final model, with the best performing combination of parameter
settings, is fit one final time on the complete development set to take full advan-
tage of all the available training data and is then used to predict the class labels
for the test set to evaluate model generalizability. This shows how well a model
trained and validated on the labeled input data predicts the correct labels for new,
future data (Alpaydin, 2004).

3.2.7. Save and apply final model

T he output files and the final model are saved locally to the user’s hard drive. A
second feature of ASTeCT is that researchers can upload a previously developed

model together with a new, unlabeled data set in order to predict class labels for
each new input document.
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Figure 3.4: Screenshot of exhaustive parameter grid search settings to be configured in ASTeCT.

3.3. Results

T o test its performance, ASTeCT was first applied to the Letters from the Future
data set to develop a binary classifier (to distinguish between imaginative and

generic letters) and a multiclass classifier (to distinguish between retrospective,
prospective, and present-oriented letters). Second, the tool was applied to three
classes of a standard English test data set in order to test the tool’s performance
on a large, balanced data set in a different language.

3.3.1. Binary classifier

I n the exhaustive grid search in the inner 5-fold cross-validation loop, all possiblecombinations of parameter values listed in Parameter grid search were compared
to find the model with the highest performance score. The parameter combination
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Table 3.5: Parameters and parameter values used in the grid search

Parameter Description

Remove stop words Do/do not remove (Dutch) stop words
Minimal 𝑥 documents Minimal number of documents a term should occur

in, with 𝑥 ranging from 1-3
Representation schemes Test uni-, bi-, tri-, and 𝑁-multigrams ranging from

1-3
Term weights Use 𝑡𝑓𝑖,𝑗 or 𝑡𝑓-𝑖𝑑𝑓𝑖,𝑗 weights
Select 𝑘 best features Select 𝑘 features with highest 𝜒2 score, with 𝑘

ranging from 10-500 with steps of 20 features, or
all

Regularization parameter 𝐶 Compare values 1, 2, 3, 10, 100, 1000 for 𝐶
Class weights Weighted (’balanced’) versus non-weighted

classes to account for class imbalance
Note. Parameters and defined subset of parameter values that are included in the ex-
haustive cross-validated grid search for model selection.

that generated the highest cross-validated 𝐹1-score on the validation set is shown
in Table 3.6. The best results on the validation set were generated by the Linear
Support Vector Classifier with regularization parameter 𝐶 = 2 (𝐹1-score = 0.507).
Adjusting class weights to be inversely proportional to the class frequencies in the
training set was found to perform better than using no class weights. Moreover,
removing stop words did not result in a higher mean cross-validated 𝐹1-score. The
grid search further showed that documents could best be represented by unigrams,
using 𝑡𝑓 term weights.

Based on the outcomes of the grid search, 230 unigrams that occurred in at least
one document in the training set were included in the binary model. The ten most
informative features for each class are shown in Table 3.7. The table shows that the
𝜒2 values were low and close to each other. In fact, for none of the features the 𝜒2
value was high enough to indicate significant differences in occurrence between the
imaginative and generic letters (a 𝜒2 value > 3.84 is required to indicate significant
differences between two classes (p ≤ .05, df = 1)). However, as stated by Suman
and Thirumagal (2013) and He and Veldkamp (2012), the 𝜒2 values are used only
to rank the features from most to least informative to choose the best cut-off point.
As such, the significance of the 𝜒2 test is not taken into account.

The true and predicted class labels are shown in the confusion matrix in Ta-
ble 3.8. The cells on the diagonal show that the classifier predicted the correct
class label for 58 of the 70 test documents, leading to an accuracy score of 0.83.
The classifier did a good job on defining the imaginative letters, correctly labeling
49 of the 56 imaginative letters (87.5%) and mislabeling only seven as generic.
The classifier had a bit more difficulty identifying the generic letters, labeling nine
of the 14 generic letters correctly (64.3%), and mislabeling five generic letters as
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Table 3.6: Best parameter values for binary and multiclass classification models

Best parameter value

Parameter Binary model Multiclass model

Remove stop words no no
Minimal 𝑥 documents 1 2
Representation schemes unigrams (1, 1) unigrams (1, 1)
Term weights 𝑡𝑓𝑖,𝑗 𝑡𝑓𝑖,𝑗
Select 𝑘 best features 230 70
Regularization parameter 𝐶 2 1000
Class weights balanced balanced
Note. The combination of parameter values that generated the highest mean cross-
validated performance score during the grid search. These parameter values are selected
for the final binary and multiclass classification models.

imaginative.
Table 3.9 shows the performance scores of the final model. The performance

metrics show that, although the overall accuracy score of the binary classifier was
very high (accuracy = 0.83), there was a big difference in performance for both
separate classes (for the generic letters 𝐹1-score = 0.60, for the imaginative letters
𝐹1-score = 0.89). A reason for this could be that, with only 59 generic letters in the
development set and 14 in the test set, there was not enough information available
to sufficiently train the classifier on recognizing generic letters. The weighted 𝐹1-
score over the test set was 0.600. This is the estimated generalization performance,
the performance that can be expected when the final model would be applied to
new data sets in the future.

3.3.2. Multiclass classifier

A s for the binary classifier, the grid search for the multiclass classifier was guided
by the weighted 𝐹1-score. The parameter combination that generated the high-

est cross-validated weighted 𝐹1-score is shown in Table 3.6. For the multiclass
model this was the Linear Support Vector Classifier with regularization parameter
𝐶 = 1000 (weighted 𝐹1-score = 0.567). As for the binary model, adjusting class
weights to be inversely proportional to the class frequencies in the training data
was found to perform better than using no class weights, and removing stop words
did not result in a higher mean cross-validated weighted 𝐹1-score. The grid search
further showed that documents could best be represented by unigrams, using 𝑡𝑓
term weights.

Only the 70 best features that occurred in at least two different training docu-
ments were included in the model. The ten most informative features for each class
are shown in Table 3.10. As for the binary classifier, the 𝜒2 values were low (for
none of the features the 𝜒2 value indicateed significant differences in occurrence
between the retrospective, prospective, and present-oriented letters) and close to
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Table 3.7: Ten most informative features per class for the binary classification model

Feature
(Dutch)

Feature
(translation) 𝜒2 value Feature counts

Imaginative Generic

Je You 1.6928 2506 821
We We 1.0184 415 39
Verjaardag Birthday 0.9062 2 7
Rad To guess 0.8102 4 10
In In 0.7640 1144 190
Tentamenphas Exam phase 0.6804 0 6
Jezelf Yourself 0.6543 112 55
Zal Shall 0.6152 99 54
Persoonsnaama Person namea 0.5895 0 7
Trainer Trainer 0.5719 0 7
Hop To hope 0.5300 48 21
Benieuwd Curious 0.5044 7 6
Feestdag Holiday 0.4853 0 2
Hart Heart 0.4385 20 11
Accepter To accept 0.4356 5 8
Een A/an 0.4219 1491 297
Up Up 0.4089 0 3
Miss To miss 0.4083 5 4
Masterdiploma Master’s degree 0.4011 0 1
Persoonsnaama Person namea 0.3799 0 3
Note. The ten features with the highest 𝜒2 scores for the imaginative and generic letters.
The first column contains the stemmed features in Dutch, the second column contains
the corresponding translations (unstemmed) in English.

a Place and person names were anonymized.

Table 3.8: Confusion matrix final binary classification model

Predicted letter type

True letter type Imaginative Generic

Imaginative 49 7
Generic 5 9
Note. Comparison of true (rows) and predicted (columns) letter types for the binary
model. The values on the diagonal (in boldface) show the number of correctly predicted
letter types.
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Table 3.9: Performance scores final binary and multiclass models

Precision Recall 𝐹1-
score

Accuracya N(letters)
test set

Binary model

Imaginative 0.91 0.88 0.89 56
Generic 0.56 0.64 0.60 14
Weighted average, totalb 0.84 0.83 0.83 0.83 70

Multiclass model

Retrospective 0.65 0.71 0.68 31
Prospective 0.29 0.45 0.36 11
Present-oriented 0.68 0.46 0.55 28
Weighted average, totalb 0.61 0.57 0.58 0.57 70
Note. Per class and average performance scores of the final binary and multiclass models
on the test set.

a Accuracy is the overall accuracy of the classifier, and can therefore not be calculated for
each separate class.

b Total N(letters) for complete test set.

each other.

Table 3.11 shows the confusion matrix with the true and predicted class labels.
The cells on the diagonal show that the multiclass classifier predicted the correct
class label for 40 of the 70 test documents. This leads to an accuracy score of 0.57.
Overall, 22 of the 31 retrospective letters (71.0%), five of the 11 prospective letters
(45.5%), and 13 of the 28 present-oriented letters (46.4%) were assigned to the
correct class.

Table 3.9 shows the performance metrics of the final model. The table con-
tains the performance metrics for each individual class, as well as the weighted
average. The table shows that the multiclass model classified the retrospective
and present-oriented letters moderately well (with 𝐹1-score = 0.68 for the retro-
spective letters and 𝐹1-score = 0.55 for the present-oriented letters), but poorly
identified the prospective letters (with 𝐹1-score = 0.36). As for the binary classifier,
it seems that in order to develop a classifier that performs satisfactory for all classes,
a minimum amount of documents has to be present in each separate class. The
weighted 𝐹1-score over the test set was 0.577. This is the estimated generalization
performance, the performance that can be expected when the final model would
be applied to new data sets in the future.
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Table 3.10: Ten most informative features per class for the multiclass classification model

Feature
(Dutch)

Feature
(translation) 𝜒2 value Feature counts

Retro-
spective

Pro-
spective

Present-
oriented

Was Was 1.1848 283 59 121
Hop To hope 1.0438 30 32 23
Ik I 0.9558 1370 307 977
Will To want 0.9187 15 22 21
Persoonsnaama Person namea 0.8371 0 6 0
Altijd Always 0.8320 173 19 81
Wild Wild 0.8166 60 10 12
Is Is 0.7597 464 175 522
Jullie You 0.7582 97 67 116
Mijn Mine 0.7114 454 103 257
Trouw Marry 0.6784 5 7 2
Je Your 0.6211 1 6 2
Plaatsnaama Placenamea 0.6164 5 13 5
Verjaardag Birthday 0.6017 0 4 4
Kilometer Kilometer 0.5981 0 3 0
Wandel To walk 0.5512 0 7 4
Kon Could 0.5444 60 8 19
Generatie Generation 0.5380 4 10 1
Geregeld Regularly 0.5359 2 5 0
Uitgekom Came through 0.5343 10 8 3
We We 0.5215 182 103 188
Lijkt Seems 0.5071 8 1 21
Geen None 0.5035 62 13 81
Mezelf Myself 0.4938 31 3 6
Mens Human 0.4851 81 17 98
Gelop Walked 0.4772 6 6 0
Plaatsnaama Placenamea 0.4669 18 0 1
Water Water 0.4503 0 1 12
Auto Car 0.4192 4 3 23
Miss To miss 0.4078 2 3 4
Note. The ten features with the highest 𝜒2 scores for the retrospective, prospective and
present-oriented letters. The first column contains the stemmed features in Dutch, the
second column contains the corresponding translations (unstemmed) in English.

a Place and person names were anonymized.
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Table 3.11: Confusion matrix final multiclass classification model

Predicted letter type

True letter type Retrospective Prospective Present-oriented

Retrospective 22 5 4
Prospective 4 5 2
Present-oriented 8 7 13
Note. Comparison of true (rows) and predicted (columns) letter types for the multiclass
model. The values on the diagonal (in boldface) show the number of correctly predicted
letter types.

3.3.3. English classifier
To test whether ASTeCT functioned correctly using English input data, the tool was
applied to a standard test collection for text classification research during devel-
opment. This is a common way to test natural language processing algorithms,
scripts, or tools. A widely used public test collection is the English “20 Newsgroups”
data set originally collected by Lang (1995), which consists of in total approxi-
mately 20,000 Usenet posts on twenty different topics (classes), so around 1,000
documents per class. This data set was fetched directly by Scikit-learn using the
“sklearn.datasets.fetch_20newsgroups” function. A multiclass classifier was devel-
oped by applying the pipeline to three of the twenty classes (namely “Atheism”,
“Graphics”, and “Religion”). The selected classifier resulted in high performance
scores for each class (overall accuracy score = 0.83, per class 𝐹1-scores of 0.82,
0.92, and 0.71 respectively). This indicated that the described pipeline and corre-
sponding tool functioned appropriately.

3.4. Discussion

T his study provides a step-by-step description and tool for anyone who wants to
start using supervised text classification models. The concept of text classifica-

tion and the model development process (including model validation, selection, and
evaluation strategies) are addressed and the main model parameters are reviewed.
The provided tool, ASTeCT, is ready-to-use and enables researchers to develop their
own binary and multiclass text classification models without any technical program-
ming skills.

To illustrate how supervised text classification can contribute to psychological
research, ASTeCT was applied to the Dutch “Letters from the Future” data set from
psychological research practice. In previous studies by Sools and Mooren (2012)
and Sools et al. (2015), this data set was classified into different letter types by
manually coding each letter on sentence level, clustering narrative processes, and
comparing patterns in letter components. Sools et al. (2015) suggest that these
narrative processes and patterns could relate to the writer’s (mental) health and
well-being, although further analysis of the letters is required to investigate this.
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There are several ways in which supervised classification models can be used to ad-
vance the study of these letters. First of all, automatically classifying the letters into
letter types without manual intervention saves a lot of time and expert labor power,
which makes it possible to process a larger quantity of letters at once. Secondly,
the content of the different letter types can be studied more extensively and effi-
ciently by automatically recognizing the letter components or narrative processes
operating within the letters.

The example application showed the development of a binary and a multiclass
classifier to distinguish between two (imaginative - generic) and three (retrospective
- prospective - present-oriented) overarching letter types. The results showed that
although the binary classifier performed quite well, the multiclass classifier had
more difficulty assigning the letters to the correct classes. This was particularly
the case for the prospective letters. This could be because the prospective letters
were underrepresented in the data set or because the data set did not contain
sufficient information to properly train the classifier for all classes. For text mining
and machine learning applications a data set of 351 documents, or classes of only
45 training documents, are considered very small. The features in the used data
set were not discriminative enough to distinguish between the multiple classes. It
can be expected that adding more training data would improve the classification
performance of both models.

ASTeCT was also applied to the English “20 Newsgroups” data set, a standard
test set for text classification research. A multiclass classifier was developed to dis-
tinguish between three classes of Usenet messages (atheism - graphics - religion),
which resulted in high performance scores. These results not only indicate that
ASTeCT does work well on larger and more balanced data sets, it also shows that
the tool can be easily applied to data sets in other languages (in this case English).
Thanks to the way ASTeCT is organized, using a pipeline with an integrated cross-
validated grid search for model selection, it can be easily applied to data sets in
any of the supported languages (see Normalization). This is because almost all the
text processing steps from the pipeline are generic elements, not influenced by the
language of the data. The only language-specific elements are the stemming algo-
rithm and the stop word list, which can be set by defining the “language” variable
in the tool.

The two example applications showed that the described method and tool can be
easily applied to unstructured text data sets in various languages and from different
contexts. For psychological research, this could involve data regarding treatment
content (e.g., ego documents, therapy session transcripts, or patient diaries), treat-
ment administration (e.g., medical records, doctor notes, or patient feedback), or
literature (e.g., scientific papers or research reports). Supervised text classification
is not only a very efficient way to process such data, it can also improve research
consistency and reproducibility because information is retrieved or coded according
to a predefined, fixed set of rules (Yu et al., 2011). Using such a standardized in-
formation extraction process enables researchers to objectively assess differences
between patient groups or shifts over longer periods of time. This way, text clas-
sification models could be used for example to monitor progression or to provide
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information on treatment impact or adherence. As such, classification models could
supplement or potentially replace patient reported outcomes like questionnaires,
which are more indirect and are sometimes perceived as burdensome or interfering
(Valderas et al., 2008).

All in all, supervised text classification can be very beneficial for (psychological)
research and practice. However, getting a solid grasp of the complete text clas-
sification and model development process can be quite challenging, especially for
researchers with limited to no experience in computer programming. This study
provides researchers with the basic knowledge of supervised text classification and
model development that is required to develop their own binary and multiclass
classifiers. Using the provided tool ASTeCT, the described procedure can be easily
applied to any given data set, so that interested researchers can directly use this
method in their own (research) practice.
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Abstract
Text mining andmachine learning are increasingly used inmental health care
practice and research, potentially saving time and effort in the diagnosis and
monitoring of patients. Previous studies showed that mental disorders can
be detected based on text, but they focused on screening for a single prede-
fined disorder instead of multiple disorders simultaneously. The aim of this
study is to develop a Dutch multiclass text classification model to screen for
a range of mental disorders, in order to refer new patients to the most suit-
able treatment. Based on patients’ (N = 5,863) textual responses to a ques-
tionnaire currently used for intake and referral, a seven-class classifier was
developed to distinguish among anxiety, panic, posttraumatic stress, mood,
eating, substance use, and somatic symptom disorders. A linear support vec-
tor machine (SVM) was fitted using nested cross-validation grid search. The
highest classification rate was found for eating disorders (82%). The scores
for panic (55%), posttraumatic stress (52%), mood (50%), somatic symptom
(50%), anxiety (35%), and substance use disorders (33%) were lower, likely
because of overlapping symptoms. The overall classification accuracy (49%)
was reasonable for a seven-class classifier. In conclusion, the developed
classification model could screen text for multiple mental health disorders.
The screener resulted in an additional outcome score that may serve as in-
put for a formal diagnostic interview and referral. This may lead to a more
efficient and standardized intake process.
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4.1. Introduction

M ental and substance use disorders such as anxiety, mood, alcohol and drug use,
eating, and depressive disorders have been listed among the leading causes

of global disability over the past years (Vos et al., 2016). Annual studies show
that between 2010 and 2016, these disorders accounted for approximately 18%-
19% of the global burden of disease, measured in years lived with disability (Global
Burden of Disease Collaborative Network, 2017). The proportion of people living
with a mental disorder has remained practically unchanged in recent years (approxi-
mately 15.6%, 17.6%, and 19.0% for the global, European, and Dutch populations,
respectively). However, because of population growth, absolute numbers of people
diagnosed with a mental disorder have increased by 72 million globally and by 2
million in Europe between 2010 and 2016. For the Netherlands, despite an initial
decrease of 15,000 from 2010 to 2014, numbers increased by 4,000 between 2014
and 2016.

This growing number of people requiring mental health care each year makes
preventing and detecting mental disorders, implementing early interventions, and
improving treatments and mental health care access top public health and research
priorities (P. Y. Collins et al., 2011; World Health Organization, 2015). Mental health
disorders are usually treated through medication or psychotherapy such as cognitive
behaviour therapy (CBT), of which psychotherapy is generally seen as the first-line
treatment (Linden & Schermuly-Haupt, 2014). However, mental health treatments
are often underused (K. A. Collins et al., 2004) or delayed for many years (Kohn
et al., 2004). Especially in low- and middle-income countries, there is a huge treat-
ment gap in mental health care; 75% of the people experiencing anxiety, mood,
impulse control, or substance use disorders remain untreated (Magruder et al.,
2017). Reasons for this could be individual patient factors (e.g., embarrassment,
lack of time, and geographic influences); provider factors (e.g., underdetection and
lack of skill in treating mental health problems); or systemic factors such as limited
access to, or limited availability of, mental health providers, resulting in waiting lists
(K. A. Collins et al., 2004).

This calls for more efficient, accurate, and accessible screening and treatment
methods (Bourla et al., 2018; Olff, 2015). Modern technologies are increasingly
recognized as a means of improving the accessibility of care and advancing the as-
sessment, treatment, and prevention of mental health disorders. Creative, low-cost
approaches should be used to increase access to (trauma-focused) CBT and other
treatments (Frewen et al., 2017). An example of such an approach is web-based
self-help, which is an increasingly available alternative for a range of disorders.
Web-based self-help can be therapist-guided or not, and although some studies re-
ported equal effects for guided and unguided web-based treatment, e.g., for social
anxiety disorders (Berger, Caspar, et al., 2011) and depression (Berger, Hämmerli,
et al., 2011), most research endorses the importance of at least minimal, regular
therapist guidance in psychological interventions (Ruwaard et al., 2012; Spek et al.,
2007). Web-based therapist-guided treatment, such as computerized CBT (CCBT),
is found to be approximately as effective as face-to-face treatment for several men-
tal health disorders (e.g., depression, anxiety, and burn-out) (Cuijpers et al., 2010;
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Emmelkamp, 2005; Kaltenthaler et al., 2006).
One party offering web-based, therapist-assisted CBT in the Netherlands is In-

terapy, a web-based mental health clinic approved by the Dutch health regulatory
body. Interapy conducts screening, treatment, and outcome measurement online.
Patient intake and diagnosis is performed using validated self-report instruments,
followed by a diagnostic interview by telephone, after which patients are referred to
a protocolled disorder-specific treatment. The treatment consists of a fixed set of
evidence-based homework assignments provided through the Interapy application
and uses standardized instructions that are tailored to the patient by a therapist.
After submitting the homework assignments, the patient receives asynchronous
personal feedback and new instructions (Ruwaard et al., 2012).

This form of web-based therapy generates large quantities of digital text data
to be processed manually by the treating therapist. Textual data contains a lot
of information that could be used more efficiently in the screening and treatment
process through the application of text mining techniques. Text mining is generally
used to automatically explore patterns and extract information from unstructured
text data (Feldman & Sanger, 2007). There is a large body of literature on text min-
ing applications in the field of psychiatry and mental health. Two recent systematic
literature reviews provide a useful overview of the scope and limits, general ana-
lytic approaches, and performance of text mining in this context (Abbe et al., 2016;
Wongkoblap et al., 2017). Abbe et al. (2016) concluded that text mining should be
seen as a key methodological tool in psychiatric research and practice, because of its
ability to deal with the ever growing amount of (textual) mental health data derived
from, for example, medical files, online communities, and social media pages. How-
ever, despite the amount of data that is generated, assembling large, high-quality
mental health text data sets has been found to be difficult (Wongkoblap et al.,
2017). With regard to the analytic approach, in most studies predictive models are
developed using supervised learning algorithms such as support vector machines
(SVMs), and verified using 𝑘-fold cross-validation (Wongkoblap et al., 2017).

A way in which text mining can be put to use in mental health care practice
concerns the detection of mental disorders. Previous studies showed that text min-
ing can be used successfully in screening for posttraumatic stress disorder (PTSD)
and depression (He et al., 2017; Neuman et al., 2012). He et al. (2017) developed
an automatic screening model for PTSD using textual features from online self-
narratives posted on a forum for trauma survivors. On the basis of a set of highly
discriminative keywords and word combinations extracted from the narratives us-
ing text mining techniques, they developed a text classifier that could accurately
distinguish between trauma survivors with and without PTSD. They concluded that
automatic classification based on textual features is a promising addition to the
current screening and diagnostic process for PTSD that can be easily implemented
in web-based diagnosis and treatment platforms for PTSD and other psychiatric
disorders. Neuman et al. (2012) developed an automatic screening system for de-
pression using a “depression lexicon” based on metaphorical relations and relevant
conceptual domains related to depression harvested from the internet. This lexicon
was used to screen texts from open questions on a mental health website and a



4.1. Introduction

4

77

set of general blog texts for signs of depression and was found to classify texts that
included signs of depression very accurately.

Although both studies showed the technical potential of automatic text classi-
fication in screening for mental disorders, they applied a proxy or a self-reported
diagnosis instead of a direct, formal diagnosis by a psychiatrist as the classification
criterion. In addition, both studies developed a binary classifier that focused on
recognizing only a single specific disorder (PTSD or depression) at a time, which is
the case in most studies that apply text mining to detect mental disorders (Abbe
et al., 2016; Wongkoblap et al., 2017). However, in practice, for many patients
who register with mental health complaints or sign up for web-based treatment, it
is not clear beforehand which disorder they should be screened for. In this case,
a multiclass classifier, screening for multiple different mental disorders at once,
would be more useful than a binary classifier screening for only a single prespeci-
fied disorder. Finally, it is pointed out that most natural language processing tools
are currently designed for exploring English texts (Abbe et al., 2016). Although
indeed, text mining and language processing tools are mainly developed for the
English language, the methods and techniques underlying the text analysis process
are not necessarily language dependent. The development of models for different
languages depends mainly on the availability of training and testing corpora and
not so much on the methods and techniques used, as will be demonstrated in this
study.

This study investigates if and to what extent automatic text classification can
improve the current web-based intake procedure of a Dutch web-based mental
health clinic. The current intake questionnaire (see Online questionnaire) consists
of open and multiple-choice questions. The multiple-choice answers are converted
to scores on four scales (somatization, depression, distress, and anxiety) as well as
estimates of symptom severity, required level of care, suicide and psychosis risk,
and drug dependence. These scores lead to an automatically generated indicative
referral advice. This advice and the answers to the open questions are used by
the therapist as input for the subsequent diagnostic telephone interview to come
to a formal diagnosis and referral advice. However, the current questionnaire does
not cover all disorders for which treatment is offered by Interapy, and the tex-
tual answers to the open questions remain to be processed and interpreted by the
therapist. An automatic text screener may provide the therapist with more specific
additional information, making the intake process more efficient and standardized.

Therefore, a multiclass text classification model has been developed to screen
for a range of different mental disorders with the aim of referring newly registered
patients to the most fitting treatment. The focus is on a selection of treatments
currently offered by Interapy for anxiety and panic disorders, PTSD, mood disor-
der (including depressive disorders), eating disorder, substance use disorders, and
somatic symptom disorders. These will be referred to respectively as “Anxiety”,
“Panic”, “PTSD”, Mood”, “Eating”, “Addiction”, and “Somatic” throughout the rest
of this chapter. The choice for these treatments was made based on the amount
of text data that was readily available from the Interapy database at the time of
this research. This study adds to existing research in that 1) the patients in our
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sample have an official clinical diagnosis made by a therapist; 2) our data set con-
sists of patients with a variety of mental health disorders, enabling us to develop a
multiclass text classifier; and 3) the derived texts and the resulting classifier are in
Dutch and as such provide an example of non-English text mining efforts applied
in mental health care research and practice.

4.2. Methods

T he multi-disorder screening model was developed based on text and question-
naire data collected through the web-based intake environment of Interapy.

This section describes the methods and techniques used to develop the supervised
text classification model and evaluate its performance.

4.2.1. Data set

W e used pretreatment scores on a self-reported questionnaire and text data
derived from three open questions collected within the online intake environ-

ment. The patients are Dutch adults and adolescents who were referred to one
of Interapy’s web-based treatments by their general practitioner and diagnosed
by a therapist. All participants have given permission for their treatment data to
be used for anonymized research by Interapy to improve and evaluate their treat-
ments through informed consent. The electronic patient database was queried in
July 2017. For each treatment, all available data were retrieved, excluding incom-
plete or double entries. For treatments for which large quantities of data were
available, a random sample of 1,100 patients was drawn to distribute the available
data across the classes more evenly.

Online questionnaire
After signing up, new patients were asked to fill in the Digitale Indicatiehulp Psy-
chische Problemen (DIPP; Digital Indication Aid for Mental Health Problems) ques-
tionnaire, an approved and validated decision support tool developed by Interapy
and the HSK group, a national organization for psychological care in the Nether-
lands (Interapy, 2015; Van Bebber et al., 2017). The DIPP questionnaire consists
of the Dutch version (Terluin, 1996) of the Four-Dimensional Symptom Question-
naire (4DSQ) (Terluin et al., 2004; Terluin et al., 2006), complemented with sev-
eral multiple-choice and open questions. The 4DSQ contains 50 multiple-choice
questions measuring distress, depression, anxiety, and somatization, which are di-
mensions of common psychopathology (Terluin et al., 2004). The complementary
questions relate to current symptoms, treatment goals, anamnesis, psychosis risk,
substance use, and medication. The DIPP questionnaire was originally developed,
validated, and published in Dutch. A translated version of the questionnaire is pro-
vided in Appendix 4-A. The answers to the following three open questions were
used to develop the text classification model:

1. Can you briefly describe your main symptom(s)?

2. What would you like to achieve with a treatment?
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Figure 4.1: Supervised text classification model procedure. In the training phase the model is trained
on labeled feature sets extracted from the input texts. In the prediction phase the trained model is used
to predict labels for new, unlabeled feature sets extracted from the input texts.

3. Have there been any events (such as a divorce, loss of job, or accident) that,
in your opinion, affect your current symptoms, and if so, what are they?

The information collected through the DIPP questionnaire results in scores on
four scales: somatization, depression, distress, and anxiety. Each patient is then
assigned a weight to indicate symptom severity and level of care (no care, general
practice mental health care, basic mental health care - short, basic mental health
care - moderate, basic mental health care - intensive, and specialist mental health
care). The outcome is verified by a semi-structured diagnostic interview over the
telephone, which results in a formal referral advice and diagnosis. Intake, diagnosis,
referral, and treatment are all conducted by a CBT-certified health psychologist.

4.2.2. Automated text screening model

T o screen future textual answers on the three open questions of the DIPP ques-
tionnaire for the presence of anxiety and panic disorders, PTSD, mood disorders,

eating disorders, substance addiction, or somatic symptom disorders, a supervised
multiclass text classifier was developed. It is called a supervised classifier because it
was developed based on an existing set of text fragments provided with the correct
diagnostic labels. The answers to all three questions were combined into one text
document per patient. The formal referral advice based on the DIPP questionnaire
scores and the diagnostic interview was used as the diagnostic label to be predicted
by the model. The classifier is multiclass because the model refers each input text
to one of multiple classes; the seven disorders present in the input corpus. The
development of a supervised classification model follows a two-phase strategy: a
model training phase and a label prediction phase. This section explains the steps
taken in each phase. The complete classification procedure is shown graphically in
Figure 4.1.
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Training
During training, text features (words or word combinations) are extracted from each
input text, converting the texts to labeled feature sets. These labeled feature sets
are used as input for the machine learning algorithm, which generates a multiclass
model by selecting the most informative features for each class.

Preprocessing
Standard preprocessing steps such as tokenization (splitting texts into separate
tokens such as words, numerical expressions, and punctuation) and normalization
(removing punctuation, converting capital letters to lower case letters, and stripping
off accents) were applied to process all texts at the word level (Perkins, 2014). All
words were brought back to their core, meaning-baring stem using the Snowball
Stemmer, a standard stemming algorithm available for many languages including
Dutch (Porter, 2001). The resulting set of words for each input text is termed the
vocabulary and consists of tokens, all used words or word combinations, and types,
all unique words or word combinations used (Bird et al., 2009).

Feature extraction
To convert the resulting vocabularies to feature sets suitable as input for the ma-
chine learning algorithm, the dimensionality of the feature space was reduced by
feature extraction and feature selection techniques. For feature extraction, dif-
ferent document representation and vectorization schemes were compared. The
document representations considered were unigrams, 𝑁-grams, and 𝑁-multigrams,
which are single words, sequences of 𝑁 words, and variable-length sequences of
maximum 𝑁 words, respectively (Shen et al., 2006). The vectorization schemes re-
fer to the specified term weights, for which we used normalized term frequency (𝑡𝑓;
Forman, 2003) or term frequency-inverse document frequency (𝑡𝑓-𝑖𝑑𝑓; Jurafsky &
Martin, 2009).

Feature selection
Stop word removal, minimal document frequency, and the Pearson’s 𝜒2 test were
used to select the most informative features. Stop word removal was considered
because stop words are generally not expected to contribute to the meaning of the
text (Perkins, 2014), although other studies contradict this (Campbell & Pennebaker,
2003). In addition, words that only occur sparsely throughout the complete corpus
(document frequency) may also be removed (Joachims, 1998). The most informa-
tive features (features with the highest 𝜒2 values) are found by ranking features
based on their Pearson’s 𝜒2 value, a common and highly efficient method that mea-
sures the independence among corpora by comparing the observed and expected
feature occurrences in each class (Forman, 2003). The optimal number of features
to select is determined by an exhaustive parameter grid search, which will be further
explained in section 4.2.3.

Machine learning algorithm
The selected features and their corresponding labels from the training set form
the labeled feature sets that were used as input for the machine learning algo-
rithm. The SVM (Vapnik, 1995) was used because this is a high-performing and
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robust classification algorithm that deals well with high-dimensional data such as
text (Joachims, 1998). As SVMs were originally intended for binary classification
tasks, multiclass (𝐾-class) classification tasks were split into 𝐾 binary classification
tasks following the One-against-All (O-a-A, also known as One-versus-Rest) or the
One-against-One (O-a-O, also known as One-versus-One) decomposition strategy.

The O-a-O strategy, which compares each pair of classes separately (Galar et al.,
2011; Hastie et al., 2009), is generally considered a better approach when dealing
with class imbalance, as was present in our data set. However, this strategy requires
substantially more computational resources because many pairwise SVMs need to
be trained. We therefore applied the widely used O-a-A strategy, which compares
each single class with the remaining classes (Galar et al., 2011; Hastie et al., 2009).
This strategy is the most commonly used, thanks to its computational efficiency and
interpretability. To compensate for the class imbalance, a class-weighting scheme
was used where classes were weighted to be inversely proportional to the class
frequencies in the complete data set (as proposed by King & Zeng, 2001). This
puts more emphasis on the information extracted from the smaller classes and
prevents the highly present classes from overshadowing the classification model.

The SVM with O-a-A strategy was implemented in the linear support vector
classifier within the LIBLINEAR library developed by Fan et al. (2008). Finally, two
hyperparameters could be optimized for the SVM model: the kernel parameter 𝛾
(Duan et al., 2003), which controls model flexibility (Ben-Hur & Weston, 2010), and
the regularization parameter 𝐶, which controls training and testing error (Duan et
al., 2003). We used a linear kernel as is common in text classification (Joachims,
1998) and optimized the regularization parameter in the grid search (see section
4.2.3).

Prediction
During prediction, text features of new, unlabeled input texts were extracted and
converted to feature sets following the same strategy used during training. Follow-
ing the O-a-A approach, we fitted seven SVMs, one for each disorder, alternately
comparing one of the seven classes (the positive class) to the remaining six (to-
gether forming the negative class). As described by James et al. James et al.
(2013), this results in seven separate binary classification models, each with their
own parameters 𝛽0𝑘 , 𝛽1𝑘 , ..., 𝛽𝑝𝑘, with 𝑘 denoting the 𝑘𝑡ℎ class and 𝑝 the number of
learned parameters. Each new, unlabeled input text 𝑥 was provided with the class
label for which the confidence score 𝛽0𝑘 + 𝛽1𝑘𝑥1 + 𝛽2𝑘𝑥2 + · · · + 𝛽𝑝𝑘𝑥𝑝 was the
largest. This showed that there was a high level of confidence that the input text
belonged to this class and not to one of the other six classes.

Confusion matrix
The performance of the classifier was measured by comparing the predicted labels
with the known labels for each class using a confusion matrix. A confusion matrix
displays the instances in the predicted classes per column and the true classes per
row, directly visualizing the number of correctly labeled documents on the diagonal
and the errors (mislabeled documents) in the surrounding cells (Bird et al., 2009).
Table 4.1 shows the confusion matrix for a seven-class classifier with classes 𝐴-𝐺.
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Table 4.1: Confusion matrix for seven-class classifier

True
label

Predicted label

ClassA ClassB ClassC ClassD ClassE ClassF ClassG

ClassA TPA 𝐸𝐴,𝐵 𝐸𝐴,𝐶 𝐸𝐴,𝐷 𝐸𝐴,𝐸 𝐸𝐴,𝐹 𝐸𝐴,𝐺
ClassB 𝐸𝐵,𝐴 TPB 𝐸𝐵,𝐶 𝐸𝐵,𝐷 𝐸𝐵,𝐸 𝐸𝐵,𝐹 𝐸𝐵,𝐺
ClassC 𝐸𝐶,𝐴 𝐸𝐶,𝐵 TPC 𝐸𝐶,𝐷 𝐸𝐶,𝐸 𝐸𝐶,𝐹 𝐸𝐶,𝐺
ClassD 𝐸𝐷,𝐴 𝐸𝐷,𝐵 𝐸𝐷,𝐶 TPD 𝐸𝐷,𝐸 𝐸𝐷,𝐹 𝐸𝐷,𝐺
ClassE 𝐸𝐸,𝐴 𝐸𝐸,𝐵 𝐸𝐸,𝐶 𝐸𝐸,𝐷 TPE 𝐸𝐸,𝐹 𝐸𝐸,𝐺
ClassF 𝐸𝐹,𝐴 𝐸𝐹,𝐵 𝐸𝐹,𝐶 𝐸𝐹,𝐷 𝐸𝐹,𝐸 TPF 𝐸𝐹,𝐺
ClassG 𝐸𝐺,𝐴 𝐸𝐺,𝐵 𝐸𝐺,𝐶 𝐸𝐺,𝐷 𝐸𝐺,𝐸 𝐸𝐺,𝐹 TPG
Note. Comparison of true (rows) and predicted (columns) class labels for classesA-G.
The values on the diagonal (in boldface) show the correctly predicted class labels. The
off-diagonal values show the prediction errors.

The number of true positives for class 𝐴 (𝑇𝑃𝐴) were the number of times a
document was labeled with 𝐴 and the true label was indeed 𝐴. The false positives for
class 𝐴 (𝐹𝑃𝐴) were the instances that were incorrectly labeled by the classifier as 𝐴,
whereas the true label was not 𝐴. This was calculated for class 𝐴 using the formula:
𝐸𝐵,𝐴+𝐸𝐶,𝐴+𝐸𝐷,𝐴+𝐸𝐸,𝐴+𝐸𝐹,𝐴+𝐸𝐺,𝐴. The false negatives for class 𝐴 (𝐹𝑁𝐴) were the
instances with true label 𝐴 for which the classifier predicted a different label. This
was calculated for class 𝐴 using the formula: 𝐸𝐴,𝐵+𝐸𝐴,𝐶+𝐸𝐴,𝐷+𝐸𝐴,𝐸+𝐸𝐴,𝐹+𝐸𝐴,𝐺. The
number of true negatives for class 𝐴 (𝑇𝑁𝐴) was the number of times a document
for which the true label was not 𝐴 was indeed not labeled as 𝐴 by the classifier.
This was calculated for class 𝐴 by summing all counts within the confusion matrix
(both errors and 𝑇𝑃s) except for the counts in the column and row for class 𝐴.
The confusion matrix was normalized by the number of documents in each class
to get a more honest view of the proportions (%) of correctly predicted labels per
class instead of looking at the absolute number. This is especially useful when
working with an unbalanced data set where there are differences in the number of
documents in each class, as was the case with our data set.

Performance metrics
The correct predictions (𝑇𝑃s and 𝑇𝑁s) and errors (𝐹𝑃s and 𝐹𝑁s) were then used
to calculate performance metrics for each class. Bird et al. (2009) define several
metrics, the simplest of which is accuracy, a measure for the proportion of correctly
labeled input texts in the test set. The recall, also called sensitivity or true positive
rate, indicates how many of the text documents with a true (known) positive label
were identified as such by the classifier and is calculated for each class using the
formula: 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). The precision (also known as positive predictive value)
is calculated for each class by using the formula 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and concerns the
proportion of positively predicted text documents where the true (known) label was
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indeed positive. The harmonic mean of the precision and recall, 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×
𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙), is the 𝐹1-score. The overall performance scores for
the classifier were calculated by averaging the performance scores of all classes
(i.e., all seven binary SVMs that were fitted following the O-a-A approach). We
used weighted macro-averaged scores because this accounts for class imbalance;
as this method gives equal weight to each class, it prevents the most occurring
classes from dominating the model (Yang, 1999).

4.2.3. Analytical strategy

T o prevent model evaluation bias, different subsets of the data were used to
train, validate, and test the model. A nested 𝑘-fold cross-validation strategy

was adopted, using a 5-fold cross-validated grid search in the inner loop for model
selection and 5-fold cross-validation in the outer loop for model evaluation (see Fig-
ure 4.2 for a schematic representation). To make sure all classes were represented
in each fold in approximately the same proportions as in the complete data set,
stratified sampling (Kohavi, 1995) was used in both cross-validation loops.

For the outer loop, the data set was first split into five folds, alternately defining
four folds as the development set for model selection and setting aside one fold as
a test set for assessing final model performance and generalization. To optimize the
different model parameters, an exhaustive parameter grid search was conducted
in the inner loop. In this grid search all possible combinations of parameter values
were fitted on the data set in search of the combination resulting in the highest
performance score. The following model parameters and parameter values were
compared:

• Choice of representation scheme: unigrams, bigrams, trigrams, or 3-multi-
grams

• Term weights: 𝑡𝑓 or 𝑡𝑓-𝑖𝑑𝑓
• Stop words: included or excluded

• Minimal document frequency: 1, 2, 3

• Optimal number of features: ranging from 1 to 500, increasing with steps of
20

• Regularization parameter 𝐶: 1, 2, 3, 10, 100, 1,000
The search can be guided by any performance metric. We used the 𝐹1-score be-
cause this is the preferred metric when working with imbalanced data sets. The
grid search also uses a 5-fold cross-validation approach, splitting the development
set into five folds, alternately using four folds for training and the remaining fold
for validation. This is repeated until every fold has been used as the validation
set once. The parameter combination that resulted in the highest mean weighted
𝐹1-score over all validation sets was selected as the final model. The generalization
performance of the selected model was estimated by again calculating the mean
weighted 𝐹1-score, but this time over all test sets from the outer cross-validation
loop.
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Figure 4.2: Nested 5-fold cross-validation scheme. The validation strategy consists of an inner and an
outer 5-fold cross-validation loop. In the inner loop an exhaustive parameter grid search is conducted
using data from the development set to select the best combination of parameter settings. The selected
model is then tested on the held out test set from the outer loop to evaluate final model performance.
Both loops are being iterated 5 times, alternately using each fold as test set (outer loop) or validation
set (inner loop) once.

4.2.4. Text classification tool

T he process of model development by means of nested stratified 𝑘-fold cross-
validated grid search is fully automated in a blind text classification tool devel-

oped by the authors. This tool can be used to develop and test a text classification
model on any available text data set without human insight into the data set (hence
“blind”). It can be installed and used locally. After installation, no external pack-
ages are required; therefore, there is no need to send sensitive information over
the internet for external text processing or analysis. An extensive description of the
tool, the model development process, and the results on different test data sets can
be found in Chapter 3. The tool was applied and described previously in a master’s
thesis (Smalbergher, 2017).

4.3. Results
4.3.1. Data set

T able 4.2 shows the demographic characteristics and DIPP questionnaire results
of the patients and the lexical characteristics of their documents for each class.

The class labels are “Addiction” (substance use disorders), “Panic” (anxiety disor-
ders with panic attacks), “Anxiety” (anxiety disorders without panic attacks), “PTSD”
(posttraumatic stress disorder), “Mood” (mood disorders including depressive dis-
orders), “Eating” (eating disorders), and “Somatic” (undifferentiated somatoform
and other somatic symptom disorders).
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Table 4.3: Best parameters selected by exhaustive grid search

Parameter Best value

Remove stop words Yes
Minimal 𝑥 documents 1
Representation scheme Unigrams
Term weight Term frequency (𝑡𝑓)
Select 𝑘 best features 470
Regularization parameter 𝐶 1
Note. 𝑥 = number of documents a feature should be present in; 𝑘 = number of most
informative features to select.

The demographic information (Table 4.2) shows that for those patients whose
gender is known, more women than men had registered for all treatments except
for Addiction. The mean age of the sample was 37.7 (SD 13.6) years, where pa-
tients treated for eating disorders were considerably younger (mean 30.8, SD 10.0)
and patients treated for somatic disorders slightly older (mean 41.2, SD 11.7). The
DIPP questionnaire results show that patients in treatment for panic attacks had the
highest anxiety and somatization scores compared with those in other treatments.
Patients treated for mood disorders scored higher on the depression and distress
scale than those treated for other disorders. From the lexical characteristics, it can
be concluded that the texts written by patients treated for addiction were consid-
erably shorter: the mean number of words was 55.1 (SD 55.0), compared with an
overall mean number of words of 69.9 (SD 98.2) for the complete sample. Patients
with PTSD and eating disorders wrote relatively longer answers (mean 75.1, SD
157.0, and mean 76.4, SD 72.4, respectively).

4.3.2. Screening model

I n the exhaustive grid search in the inner 5-fold cross-validation loop, all possiblecombinations of parameter values listed in section 4.2.3 were compared to find
the model with the highest performance score. This resulted in a linear support
vector classifier with a weighted 𝐹1-score of 0.471. The selected model consisted
of 470 unigrams (single words) weighted by term frequency. For this model, stop
words were excluded and the selected keywords had to occur in at least one of
the documents in the training set. The optimal value found for the regularization
parameter 𝐶 was 1. An overview of the selected model parameters is presented in
Table 4.3.

Most informative features
The 50 most informative unigrams (from hereon referred to as keywords) are listed
in Table 4.4. The keywords are in Dutch, followed by their English translation. The
large 𝜒2 values and highly significant 𝑃 values (when applying the O-a-A strategy,
a 𝜒2 value > 3.84 is required to indicate significant differences (𝑃 ≤ 0.05, df =
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1)) show that there are significant differences between the observed and expected
frequencies with which the keywords occur in texts written by patients with dif-
ferent disorders. These keywords are considered informative and were therefore
included in the model. The remaining columns show the frequency with which each
keyword occurs in each class (classes being the disorders for which the patients are
being treated). For each keyword, the class in which it occurs most is presented in
boldface. This shows that especially for the eating disorder, many highly distinctive
keywords are found: 22 of the 50 keywords have the highest frequency of occur-
rence in Eating. Some keywords have a high occurrence in several of the classes;
for example, the word “fear” occurs often in the classes Panic (N = 574), Anxiety
(N = 411), and PTSD (N = 205). Of the top 50, none of the keywords occurs the
most in Anxiety and only a few have the highest occurrence in Mood and Addiction.

Table 4.4: The 50 most informative features (keywords) of the multiclass classifier

Stemmed keyword 𝜒2 𝑃 Addiction Anxiety Eating Mood PTSD Panic Somatic(English)

eten 436.99 0.000 1 18 218 19 20 32 22
(food)
eetbui 407.32 0.000 0 3 121 3 3 0 2
(binge)
angst 126.63 0.000 17 411 25 98 205 574 82
(fear)
eetstoornis 100.93 0.000 0 1 33 1 3 1 1
(eating disorder)
paniekaanvall 96.55 0.000 0 13 2 12 21 196 11
(panic attacks)
brak 93.12 0.000 0 6 28 0 2 0 4
(to vomit)
boulimia 78.43 0.000 0 1 26 0 0 0 0
(bulimia)
eetpatron 75.75 0.000 0 0 24 2 1 0 1
(eating pattern)
gewicht 69.88 0.000 0 0 26 4 1 0 3
(weight)
overgev 62.16 0.000 2 16 39 0 1 19 4
(to throw up)
paniek 57.66 0.000 8 42 4 22 49 185 23
(panic)
eet 53.40 0.000 2 6 33 2 4 7 2
(eat)
drink 47.97 0.000 20 5 2 8 2 9 1
(drink)
eetgedrag 44.44 0.000 0 0 14 0 0 0 0
(eating behavior)
nachtmerries 42.26 0.000 0 7 0 6 78 8 1
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Table 4.4: The 50 most informative features (keywords) of the multiclass classifier (Continued)

Stemmed keyword 𝜒2 𝑃 Addiction Anxiety Eating Mood PTSD Panic Somatic(English)

(nightmares)
vreetbui 40.91 0.000 0 0 12 0 0 0 0
(binge)
werk 39.49 0.000 30 214 26 238 172 232 531
(work)
verled 37.39 0.000 5 74 11 65 188 73 47
(past)
gezond 36.77 0.000 4 21 50 30 17 37 20
(healthy)
overet 35.59 0.000 0 0 9 0 0 0 0
(overeating)
zin 34.45 0.000 20 41 17 198 78 56 103
(sense)
afvall 30.60 0.000 2 1 21 6 3 3 3
(to lose weight)
eetproblem 30.25 0.000 0 0 11 0 2 1 2
(eating problems)
bang 30.14 0.000 13 205 22 65 131 206 54
(scared)
aanvall 29.52 0.000 2 6 1 8 22 74 7
(to attack)
compenser 28.26 0.000 0 3 11 0 0 0 0
(to compensate)
dik 28.18 0.000 0 3 12 2 3 3 1
(fat)
angstig 27.60 0.000 6 152 8 62 102 168 43
(anxious)
moe 27.23 0.000 12 66 10 145 88 66 214
(tired)
paniekaanval 27.05 0.000 1 2 0 1 3 55 3
(panic attack)
drug 26.27 0.000 14 5 3 5 4 6 3
(drug)
verkracht 23.60 0.001 1 2 3 0 44 6 4
(raped)
ongeluk 23.02 0.001 7 26 1 20 87 30 24
(accident)
overgewicht 22.93 0.001 0 1 8 2 1 1 1
(overweight)
blow 22.55 0.001 10 1 1 0 6 0 0
(to blow)
hyperventilatie 22.52 0.001 2 3 0 2 4 51 7
(hyperventilation)
vermoeid 22.50 0.001 7 33 4 60 35 38 134
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Table 4.4: The 50 most informative features (keywords) of the multiclass classifier (Continued)

Stemmed keyword 𝜒2 𝑃 Addiction Anxiety Eating Mood PTSD Panic Somatic(English)

(tired)
alcohol 22.47 0.001 15 9 5 6 4 6 5
(alcohol)
misbruik 21.14 0.002 5 9 0 6 53 6 4
(abuse)
obsessive 21.05 0.002 0 2 6 0 0 0 0
(obsession)
flashback 20.74 0.002 2 1 0 4 27 1 0
(flashback)
eating 20.18 0.003 0 0 5 0 0 0 0
(eating)
lustelos 19.98 0.003 9 40 6 105 27 23 74
(heavy-headed)
control 19.62 0.003 9 53 49 45 36 102 38
(control)
geget 19.33 0.004 0 0 7 1 0 0 0
(ate)
ondergewicht 18.94 0.004 0 0 6 1 0 0 0
(underweight)
voeding 18.91 0.004 0 2 9 1 1 0 0
(nutrition)
somber 18.58 0.005 3 32 6 112 32 40 38
(gloomy)
normal 18.43 0.005 8 58 55 44 83 105 63
(normal)
verslav 17.87 0.007 10 4 4 3 2 1 4
(addictive)
Note. The 50 most informative features with the highest 𝜒2 values and significant (𝑃 ≤ 0.05) 𝑃
values. The keyword column contains the stemmed keyword in Dutch, followed by the English
translation in parentheses. The remaining columns show occurrence frequencies for each feature
in each class (disorder). For each feature, the frequency for the class in which it occurs the most is
printed in boldface.

Performance metrics
Table 4.5 reports the performance scores of the final model for each class. The
model performs especially well in screening for eating disorders. The high precision
(0.75) for this class means that 75% of the patients whom the model classified as
having an eating disorder, were indeed referred to a treatment for eating disorders
by the therapist. The high recall (0.82) shows that 82% of the patients who were
referred to a treatment for eating disorders by the therapist were also identified as
such by the model. The model screens the least effective for addiction and anxiety.
Only 25% of the patients who were classified by the model as having an addiction
and 44% of the patients with anxiety were also identified as such by the therapist.
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Table 4.5: Performance metrics final model

Disorder Precision Recall 𝐹1-score
Overall N(patients)
accuracya in test set

Addiction 0.25 0.33 0.28 40
Anxiety 0.44 0.35 0.39 220
Eating 0.75 0.82 0.78 50
Mood 0.44 0.50 0.47 220
PTSD 0.57 0.52 0.54 203
Panic 0.57 0.55 0.56 220
Somatic 0.46 0.50 0.48 220

Weighted 0.50 0.49 0.49 0.49 1173average/Total(N)
Note. Per class and average performance scores for the final model.

a Accuracy is the overall accuracy of the classifier averaged over all classes.

Of the patients referred to treatments for addiction and anxiety by the therapist,
respectively, only 33% and 35%were also found by the model. The overall accuracy
of the classifier is 0.49, meaning that 49% of the predictions made by the model
were correct. For a 7-class classifier this exceeds random guessing, which would
be 1/7 = 0.14 (14%).

Confusion matrix
The confusion matrix in Table 4.6 contains the absolute counts and normalized
values (counts corrected by the number of documents present in each class, in
%) for the true and predicted labels. The normalized values are the most useful
because these indicate the proportion of correctly predicted labels for each class,
independent of the class sizes. The normalized values on the diagonal show that
the classifier screens the best for Eating (82% correct), followed by Panic (55%),
PTSD (52%), Somatic (50%), Mood (50%), Anxiety (35%), and Addiction (33%).
In total, this screener referred 578 of the 1,173 patients (49%) from the test set to
the correct treatment.

The normalized confusion matrix is plotted in Figure 4.3 to give a more direct
visual presentation of which classes are being misclassified. The darker the blue
tones, the higher the proportions in that cell. The perfect classifier would have a
dark blue diagonal line, surrounded by white cells. The plot confirms that Eating is
rarely misclassified. Most confusion occurs for Addiction, which is often mislabeled
as a mood or somatic disorder. In addition, mood and somatic disorders are often
confused with each other, as are panic and anxiety disorders.
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Table 4.6: Confusion matrix for seven-class classifier

True
disorder

Predicted disorder

Addiction Anxiety Eating Mood PTSD Panic Somatic

Addiction 13 3 1 8 3 3 9
(33%) (7%) (3%) (20%) (7%) (7%) (23%)

Anxiety 11 77 6 33 27 41 25
(5%) (35%) (3%) (15%) (12%) (19%) (11%)

Eating 1 1 41 4 1 0 2
(2%) (2%) (82%) (8%) (2%) (0%) (4%)

Mood 11 26 0 110 14 10 49
(5%) (12%) (0%) (50%) (6%) (5%) (22%)

PTSD 2 18 0 36 105 19 23
(1%) (9%) (0%) (18%) (52%) (9%) (11%)

Panic 4 27 3 24 18 121 23
(2%) (12%) (1%) (11%) (8%) (55%) (10%)

Somatic 10 23 4 37 16 19 111
(5%) (10%) (2%) (17%) (7%) (9%) (50%)

Note. Absolute and normalized values (%) for the true versus predicted class labels. The diagonal
cells show the correctly predicted labels (in boldface). The off diagonal cells show the prediction
errors for each class.

Figure 4.3: Normalized confusion plot. Visual presentation of the true versus predicted class labels. The
darker the tone, the higher the proportion in the corresponding cell.
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Final model evaluation
The 5-fold cross-validation grid search was conducted five times in the inner loop,
iteratively using four of the five folds from the outer loop as the development set
once. This resulted in five weighted 𝐹1-scores: one for each final model selected
in the inner cross-validation loop that was tested on the test set in the outer cross-
validation loop. The weighted 𝐹1-scores for the five outer test folds were 0.49, 0.49,
0.47, 0.46, and 0.47. The scores are relatively close to each other, meaning that
the classifier generates stable results. The mean weighted 𝐹1-score over the five
iterations was 0.48 (SD 0.01). This is the estimated generalization performance,
the performance that can be expected when the final model is applied to new data
sets in the future.

4.4. Discussion
4.4.1. Principal results

T his study aims to improve the intake procedure of a web-based mental health
therapy provider by using multiclass text classification to automatically screen

textual answers on open questions from an intake questionnaire for a range of
different mental health disorders. The resulting classification model turned out
to be especially effective in screening for Eating, correctly identifying 82% of the
patients with an eating disorder. This is comparable to binary classifiers in previous
studies; for example, for PTSD (80% correct, performance score for the SVM model
based on unigrams; He et al., 2017) or depression (84% correct; Neuman et al.,
2012). The correct classification rates for the other disorders were substantially
lower; Panic (55%), PTSD (52%), Mood (50%), Somatic (50%), Anxiety (35%),
and Addiction (33%), resulting in an overall accuracy of 49%. This is a reasonable
score for a 7-class classification model, although not high enough to make strong
and accurate referrals for all treatments.

The difference in performance is also reflected in the selected keywords, of
which many are highly discriminative for Eating. For example, simple words such
as “food”, “binge”, “weight”, or “bulimia” are clearly related to eating disorders
while sparsely being used in texts written by patients with other disorders. For the
remaining disorders, the keywords found are more generally related to fears and
feelings and occur more in all classes except for Eating and thus are less discrimina-
tive. For example “fear” and “scared” are selected as keywords for Panic, but they
also have high occurrences in Anxiety and PTSD. “Sense” is a keyword for Mood,
but it is also highly used in texts written by patients with somatic disorders, whereas
the somatic keyword “tired” is also used often in texts written by patients with a
mood disorder. As a result, the model could not accurately differentiate between
mood and somatic disorders as well as between panic and anxiety disorders. None
of the 50 most informative keywords was related mostly to Anxiety, for which one
of the lowest classification performances was reported.

Reasons for the overlap in keywords for different disorders may be symptom
overlap (in case symptoms are part of the defining symptom set of multiple dis-
orders) and nonspecificity of defining symptoms (in case symptoms also occur
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regularly in persons without the disorder), both issues resulting from definitional
choices made in the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5; Van Loo & Romeijn, 2015). For example, PTSD has overlapping
symptom criteria with depression, generalized anxiety disorder, and panic disorder
(Kessler et al., 1995). When (future) patients are asked to describe their most im-
portant symptoms (one of the three open intake questions, the answers to which
were used to develop our model, see section Online questionnaire), because symp-
toms for several disorders overlap, it is not surprising that descriptions and thus
keywords for these disorders will also overlap.

The low screening performance for Addiction could be because only a very small
number of patients with addiction were present in the data set (N = 197), and as
such the machine learning algorithm was provided with inadequate training data for
this class. However, for Eating, few more patients were included (N = 250), and for
this class the classifier performed very well. Another reason could be that patients
in Addiction were found to write shorter texts; on average, the mean number of
words used by patients in the Addiction class is 55.1 (SD 55.0), versus an average of
69.9 (SD 98.2) over all classes and even 76.4 (SD 72.4) for the Eating class (Table
4.2). This shows that patients with an eating disorder provide a more extensive
description of their symptoms, treatment goals, and anamnesis than patients with
addiction. Because of this, less information is available for Addiction than for Eating,
which makes it hard for the machine learning algorithm to learn key features for
this class.

The results further show that the classifier has difficulty differentiating mood
from somatic disorders and panic from anxiety disorders. For mood and somatic
disorders this can be explained by the fact that most patients with somatic disorders
are commonly found to have an underlying mood disorder (Smith, 2006). The diffi-
culty in distinguishing between panic and anxiety disorders could be because panic
disorder is actually classified as a type of anxiety disorder in the DSM-5 (Ameri-
can Psychiatric Association, 2013). Despite the underlying similarity, we expected
that panic disorders could be easily distinguished from anxiety disorders because
of their distinctive characteristics. Although the classifier found quite a few signif-
icant keywords for Panic (e.g., “fear”, “panic attack(s)”, “panic”), these words also
occurred often in texts written by patients with Anxiety and PTSD and thus were
not discriminative enough. In contrast, none of the top 50 keywords had the high-
est frequency of occurrence in the Anxiety class, meaning no highly discriminative
keywords were found for Anxiety. As Panic and Anxiety are closely related, merging
the two classes into one would probably improve the performance of the screener.
However, this would reduce the practical applicability of the screener because the
goal is to refer patients to the most suitable treatment offered by the health care
provider, which offers separate treatments for Panic and Anxiety.

4.4.2. Theoretical and practical contributions

F irst, this study extends the findings of previous research on text classification
applications in mental health care in that it investigates the use of a multiclass

classifier instead of a binary classifier, which is predominantly used (Abbe et al.,
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2016; Wongkoblap et al., 2017). This way it is possible to screen for multiple
disorders at once, without the need to make prior assumptions regarding the type
of disorder a new patient signs up with. Second, this study shows an application
of text mining and natural language processing applications originally developed
for English text to non-English, in this case Dutch, mental health data. Although
most of the scientific publications in this area focus on English data and tools (Abbe
et al., 2016; Wongkoblap et al., 2017), most underlying processes and techniques
are not language dependent and as such can be easily applied to non-English texts.
Finally, our data set contained high-quality class labels, consisting of official clinical
diagnoses made by a therapist, enabling us to compare the labels predicted by
the classifier to an official “gold standard” instead of a proxy. The quality of the
labels is highly important for the performance, validity, and clinical applicability of
the developed model, and acquiring large, high-quality mental health text data sets
is found to be challenging (Wongkoblap et al., 2017).

For the web-based mental health provider, the developed text screener provides
an additional outcome score that can be used as input for the automatically gener-
ated indicative diagnosis and for the formal diagnostic interview by the therapist.
Although the overall performance of the classifier still needs to be improved, the
classifier was able to distinguish eating disorders very well. As an eating disorder
is currently not reported as a separate scale in the DIPP questionnaire (which re-
ports on anxiety, depression, distress, and somatization), the text screener provides
additional information that was not available from the multiple-choice questions.

This study further shows how text mining, specifically text classification, can
add value to current (web-based) mental health care practice because it can be
used for more efficient screening, intake, or treatment referral. As described pre-
viously, mental health problems often remain undiagnosed and untreated. This
can partly be attributed to the fact that most people are only seen by primary
care providers, who do not always recognize mental health conditions because of
comorbidity between physical and psychological diseases. Magruder et al. (2017)
therefore propose that primary care clinicians should receive more training on the
recognition of these conditions. However, even after being diagnosed, patients of-
ten remain untreated because of the scarcity of health care resources. To scale up
the mental health workforce, the World Health Organization World Health Organi-
zation (2008) has proposed to shift care giving to mental health workers with lower
qualifications or even lay helpers under the supervision of highly qualified health
workers (Magruder et al., 2017). An alternative way of reducing the workload for
mental health workers is to increase the use of modern technologies in screening,
providing treatment, and monitoring treatment outcomes. Instead of (or in addi-
tion to) extra training for primary care providers, an automatic screening tool could
also aid in the recognition of mental health problems, and instead of shifting care
to lower-qualified or lay helpers, mental health providers could be supported by
modern technology. The automatic screener described in this study should be seen
as an example of this.
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4.4.3. Limitations

A n important limitation of our classifier is that it is not capable of dealing with
comorbidity. Comorbidity is an important issue; 45% of the patients with psy-

chiatric disorders are reported to meet the criteria for two or more disorders within
the same year (Van Loo & Romeijn, 2015). As stated earlier, it is not unusual for pa-
tients with somatic disorders to have an underlying mood disorder (Smith, 2006),
whereas mood disorders are commonly found to co-occur with anxiety disorders
(Van Loo & Romeijn, 2015). Substance use disorders are also often found to co-
occur with other mental health disorders; for drug use disorders in particular, high
associations with anxiety (especially panic disorder) and affective (mood) disorders
have been reported (Conway et al., 2006; Regier et al., 1990; Torrens et al., 2011).
The main limitation of this study is that although the multiclass classifier can screen
for multiple disorders at once, it does not take into account the possibility that a
patient can have a combination of multiple disorders simultaneously (comorbidity).
This may explain why the screener did not prove to be very capable when it came
to distinguishing between some disorders, which indicates the need for a multi-
label classifier that can screen for combinations of disorders instead of only a single
disorder.

Another limitation may be the fact that we used a blind tool to develop the
automatic screening model. Some might state that to develop a model, at least
some insight into the input data is required to actively monitor the development
process. However, the tool was tested and applied in a previous study by the
authors and in a master’s thesis (Smalbergher, 2017) in which the process and
outcomes were confirmed. This tool enabled us to work on sensitive information
without any insight into the textual content, on a local computer, and without the
need to send the information over the internet for processing and analysis, thereby
reducing not only the risk of privacy issues, but also the risk of possible confirmation
bias because of prior knowledge. However, by using a tool, one is limited by the
choice of models and parameters made beforehand, during the development of
the tool. Adding to, or changing, the tool’s settings based on new insights is quite
laborious, because this requires developing, updating, and installing a new version.
Therefore, we chose to use a common and proven classifier and analytic approach
(Wongkoblap et al., 2017).

Yet another limitation could be the definition of the classes and class imbalance.
The classes used in this study are defined by the specific diagnoses for which treat-
ment is offered by the mental health clinic Interapy, instead of symptomatology.
The performance of the classifier might be improved by grouping together comorbid
disorders or disorders with overlapping symptoms (e.g., combine somatic and mood
disorders or panic and anxiety disorders). However, because this would decrease
the practical usability of the screener, we chose to keep these classes separate.
Model performance may also be influenced by class (im)balance, that is, the extent
to which the texts are evenly distributed across the classes. The classes Addiction
and Eating were strongly underrepresented in our data set, and despite the use
of class weights and stratified samples, performance for the Addiction class was
especially poor. In contrast, the highest performance was reported for the Eating
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class; therefore, it seems that as long as the text content is discriminative enough,
even small samples may provide enough information to make strong predictions.

4.4.4. Future research

F uture research should focus first of all on improving the overall performance of
the classifier. The current screener does not show a high enough performance

for all classes, which might be solved by trying alternative classification algorithms
or machine learning strategies, such as a multilabel strategy to deal with comorbid-
ity. In addition to adopting a multilabel approach, exploring a multistage learning
system also seems a useful next step. Multistage models (e.g., cascade classifiers)
use a staged decision process in which the output of a model (the first stage) is
used as the input for a successive model (the second stage), and so on. Multistage
models are widely used in medical practice, and physicians use this approach for
the stepwise exclusion of possible diagnoses (Bennasar et al., 2014). Several stud-
ies show that multistage classifiers outperform the single-stage classifiers generally
used in supervised multiclass classification tasks; for example, in the prediction
of liver fibrosis degree (Hashem et al., 2012) and in distinguishing among levels
of dementia (Bennasar et al., 2014). For our screener it could be useful to first
classify the disorders into more general groups of (possibly) overlapping disorders,
grouping Anxiety, Panic, and PTSD in one class and Mood and Somatic symptom
disorders in another while keeping Eating and Substance abuse disorders separate,
followed by a more specialized classification model to distinguish among the spe-
cific disorders within the groups. This prevents the best predictable class (in our
case, Eating) from dominating the machine learning process. In addition, because
one of the problems was finding (enough) discriminative keywords for some of the
disorders, adding additional open questions to the web-based intake procedure to
collect more text data may be helpful. Adjusting the questions by focusing less on
symptoms (which are found to overlap for some disorders) and focusing instead on
aspects possibly more defining for each disorder may also lead to more discrimina-
tive keywords and consequently better models.

Second, further uses of text mining and machine learning in mental health care
practice should be explored. Text mining can be (and is) used for many more ac-
tivities during and after treatment; for example, in analyzing patient-physician or
patient-carer communication (Wallace et al., 2013) or in evaluating treatments by
capturing patients’ opinions from online comments (Greaves et al., 2013). In ad-
dition, text mining can also be used to assess factors and processes underlying
recovery of, for example, patients with an eating disorder (Keski-Rahkonen & Tozzi,
2005). A new application for text mining in e-mental health practice could be to
use it as a tool to support therapists by offering suggestions for patient-specific
feedback. The current CCBT process as used in this study consists of sequential
homework assignments covering common CBT interventions. On the basis of the
content of these assignments, therapists offer standardized feedback and instruc-
tions, including motivational techniques, adapted to the needs and situation of the
patient (Ruwaard et al., 2012). It would be interesting to examine whether we
could use text mining to automatically highlight sections in the assignments that
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require attention or that may indicate a positive or negative change in behavior.

4.4.5. Conclusions

T his study showed that automatic text classification can improve the current web-
based intake and referral procedure of a Dutch mental health clinic, by providing

an additional outcome score to be used as input for the indicative referral advice and
the formal diagnostic interview. Automatically generating an additional indicator
based on the textual input may lead to a more efficient and standardized intake pro-
cess, saving time and resources because the text no longer needs to be processed
and interpreted by the therapist. As such, automatic text screening could be a step
in the right direction for solving patient, systemic, and provider factors underlying
the underdetection of mental health disorders and underuse of available mental
health treatments (K. A. Collins et al., 2004). The overall complaint-discriminating
quality of the screener still has to be improved, but the good detection performance
with regard to eating disorders in this study (and with regard to PTSD and depres-
sion in other studies) shows that text-based screening is a promising technique for
psychiatry. This paper contains multiple recommendations for research paths that
could improve this complaint-discriminating quality of text screeners (e.g., using
stratified analysis techniques when symptoms overlap complaints). Altogether, the
technique is getting closer to implementation in general practice, where it definitely
could be of great value. Especially in areas around the world with a limited number
of mental health care workers, automatic text classification could be helpful. It
could save time that is now spent on screening and assessment of patients, time
that could be used for counseling and treatment.
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Appendix 4-A
Translated DIPP questions

This appendix provides the translated Digitale Indicatiehulp Psychische Problemen
(DIPP; Digital Indication Aid for Mental Health Problems) questionnaire used for
the web-based intake of new patients. The DIPP questionnaire was originally de-
veloped and validated in Dutch (Interapy, 2015). The DIPP questionnaire starts with
the Dutch version of the Four-Dimensional Symptom Questionnaire (4DSQ; Terluin,
1996; Terluin et al., 2004; Terluin et al., 2006), followed by additional questions re-
garding current symptoms, treatment goals, anamnesis, psychosis risk, substance
use, and medication.

4DSQ questions
First the 50 questions of the 4DSQ are completed. The specific questions can be
found in previous publications (Terluin, 1996; Terluin et al., 2004; Terluin et al.,
2006).

Additional DIPP questions
Open questions used for text screening
Can you briefly describe your main symptom(s)?

What would you like to achieve with a treatment?

Have there been any events (such as a divorce, loss of job, or accident) that, in
your opinion, affect your current symptoms, and if so, what are they?

Multiple-choice questions
Have there been any previous times in your life when you had similar symptoms?
• Yes
•No

Have you recovered from these complaints in the meantime?
• Yes
•No
•Does not apply

How long have you been on sick leave because of your current symptoms?
• I am not on sick leave; I do not have a paid job
• 1 week
• 2 weeks
• 3 weeks
• 4 weeks
•More than 4 weeks
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How many hours are you actually working per week now?
I am currently working ... hours a week

How many hours of work per week are laid down in your employment contract?
... hours a week

Do you avoid daily, necessary activities or situations because of your symptoms
(e.g., shopping, travelling by public transport, visiting friends)?
• Yes
•No

For how long have you been suffering from your current symptoms?
•One month or less
• 2 months
• 3 months
• 4 months
• 5 months
• 6 months
•More than 6 months

Have you previously had treatment for the same symptoms (e.g., by a psychiatrist,
psychologist, general practice based mental health nurse specialist (POH-GGZ), or
general practitioner)?
• Yes
•No

Was there a period after the treatment in which you were free of symptoms?
• Yes
•No

Psychosis risk
Have you experienced any of the following in the past five years?

I sometimes get messages from voices in or near my head.
•Not at all
• A little
•Quite
• Certainly
• Very much

I sometimes hear voices that other people cannot hear.
•Not at all
• A little
•Quite
• Certainly
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• Very much

Substance use
Do you use alcohol?
•No
•Not any more, quit
• Yes

If you quit, since when? …

Do you use soft drugs?
•No
•Not any more, quit
• Yes

If you quit, since when? …

Do you use hard drugs?
•No
•Not any more, quit
• Yes

If you quit, since when? …

Medication
Participants are asked about medication use;
•Drug name
•Dose
• First use

Date of birth
What is your date of birth? (dd-mm-yyyy)

Sex
What is your gender?
• Female
•Male

Telephone number
Required to make a callback appointment.

Schedule an appointment
When all questions have been answered, there are two options to schedule an ap-
pointment for the indication interview; this depends on the practice/organization
that applies the DIPP:



4

106 4. Improving web-based treatment intake for mental health disorders

A. the patient can choose from a number of day times offered in the application;
B. the patient provides his telephone number and is called by the assistant or sec-
retary for an appointment.
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Abstract
Identifying and addressing hotspots is a key element of imaginal exposure in
Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows that treatment
effectiveness is associated with focusing on these hotspots and that hotspot
frequency and characteristics may serve as indicators for treatment success.
This study aims to develop amodel to automatically recognize hotspots based
on text and speech features, which might be an efficient way to track patient
progress and predict treatment efficacy. A multimodal supervised classifica-
tion model was developed based on analog tape recordings and transcripts
of imaginal exposure sessions of ten successful and ten non-successful treat-
ment completers. Data mining and machine learning techniques were used
to extract and select text (e.g., words and word combinations) and speech
(e.g., speech rate, pauses between words) features that distinguish between
“hotspot” (N = 37) and “non-hotspot” (N = 45) phases during exposure ses-
sions. The developed model resulted in a high training performance (mean
𝐹1-score = 0.76) but a low testing performance (mean 𝐹1-score = 0.52). This
shows that the selected text and speech features could clearly distinguish
between hotspots and non-hotspots in the current data set, but will probably
not recognize hotspots from new input data very well. In order to improve the
recognition of new hotspots, the described methodology should be applied
to a larger, higher quality (digitally recorded) data set. As such this study
should be seen mainly as a proof of concept, demonstrating the possible ap-
plication and contribution of automatic text and audio analysis to therapy
process research in posttraumatic stress disorder (PTSD) and mental health
research in general.
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5.1. Introduction

P osttraumatic stress disorder (PTSD) is a mental health disorder that can develop
after experiencing or witnessing a traumatic event (American Psychiatric Asso-

ciation, 2013). The lifetime prevalence rate of PTSD in the general population is
7.4% (De Vries & Olff, 2009; Kessler et al., 2017). Several effective treatments for
PTSD exist (Bisson et al., 2019), examples of which are trauma-focused cognitive
behavioral therapy (CBT; Ehlers & Clark, 2000) and eye movement desensitization
and reprocessing (EMDR; Shapiro, 2001). Of all effective psychotherapies, one of
the ingredients they have in common is exposure to trauma (Olff et al., in press;
Schnyder et al., 2015). Despite its efficacy, there is still a considerable propor-
tion of patients that does not (sufficiently) respond to this form of trauma-focused
therapy. For example, in their meta-analysis of psychotherapy for PTSD, Bradley
et al. (2005) report mean improvement rates of 37.6% and 47.4%, among CBT
intent-to-treat patients and treatment completers respectively.

Grey et al. (2002) argue that the effectiveness of PTSD treatment can signifi-
cantly improve by focusing on hotspots. This is in line with the results of Nijdam
et al. (2013), who showed that hotspots were more frequently addressed in suc-
cessful than in non-successful treatments. Hotspots, the moments of traumatic
experiences with the highest emotional impact, have been an important topic of
research in the past decades. For example, Ehlers et al. (2004) and Ehlers et al.
(2005) found that imaginal exposure during trauma-focused CBT should focus on
addressing and changing the meaning of hotspots as this could lead to greater
PTSD symptom reduction. The importance of hotspots in psychotherapy was also
highlighted in earlier studies that argued that hotspots need to be addressed to en-
sure habituation (Richards & Lovell, 1999) or to identify deeper meanings (Ehlers
& Clark, 2000).

A form of trauma-focused CBT that focuses on the identification and addressing
of hotspots is Brief Eclectic Psychotherapy for PTSD (BEPP; Gersons et al., 2000).
Through imaginal exposure, the patient is led slowly through the traumatic situation
until the worst moment (the hotspot) is reached (Grey & Holmes, 2008). Hotspots
are addressed by encouraging the patient to describe and remember the exact
details of the most frightening or emotional moment, for example by asking about
sounds, smells, weather, or surroundings. By helping the patient to remember the
details, cues to new aspects and details of the event can come to mind, enabling the
patient to relive the situation as vividly as possible (Gersons et al., 2011). When the
hotspot is sufficiently covered, the trauma narrative can be continued until (over the
course of several exposure sessions) all the hotspots have been addressed. The
imaginal exposure phase is completed when all hotspots are addressed and the
emotions associated with the traumatic event are leveled down sufficiently (Nijdam
et al., 2013).

With regard to the content of hotspots, previous studies focused on the pres-
ence of emotions (Grey et al., 2001; Grey et al., 2002) and cognitions (Grey &
Holmes, 2008; Holmes et al., 2005), which showed that especially anxiety, help-
lessness, horror, anger, sadness, shame, and guilt frequently occurred in hotspots.
In addition, Grey et al. (2002) found that hotspots are characterized by subtle
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textual changes, which may guide the therapist in the identification of emotional
hotspots. An example of a study assessing textual differences within trauma nar-
ratives is that of Jelinek et al. (2010), who studied the organization and content of
the “worst moments” of traumatic memories by analyzing the degree of disorga-
nization, emotions, and speaking style. They found that these moments showed
different characteristics with regard to organization than the rest of the narrative.

To obtain a deeper knowledge and understanding of trauma treatment and
specifically hotspots, more in-depth, large scale analysis of treatment and hotspot
content is required. Until now, treatment content has mainly been studied by man-
ually coding the occurrence of a predefined set of characteristics within therapy
session recordings or transcripts retrospectively. Due to the time-consuming na-
ture of such analyses, most of these studies focus on one specific construct, such
as text cohesion (Foa et al., 1995), complexity (Amir et al., 1998), or dissociation
(Zoellner et al., 2002). It is suggested that future studies should focus on assess-
ing the relationship between multiple constructs underlying traumatic narratives
instead of studying every construct separately (Amir et al., 1998).

An effective way to study multiple constructs and variables at once is to ana-
lyze treatment sessions using automatic text and audio analyses. Text analysis is
frequently used in PTSD research, as word use and linguistic features proved to be
indicative of people’s mental, social, and sometimes physical state, and their defen-
sive operations (Nelson & Horowitz, 2010; Pennebaker et al., 2003). Word counts
have been used to study trauma narrative content in relation to PTSD symptom
severity (e.g., Jelinek et al., 2010; Pennebaker, 1993) and insight in the linguistic
elements present within trauma narratives could lead to improved PTSD treatment
(Alvarez-Conrad et al., 2001). For example, specific linguistic features such as cog-
nitive processing words (Alvarez-Conrad et al., 2001; D’Andrea et al., 2012; Pen-
nebaker et al., 2001), emotion words (Alvarez-Conrad et al., 2001; Pennebaker et
al., 2001), words related to insight (Pennebaker et al., 2001), reflection (D’Andrea
et al., 2012), causation (Boals & Klein, 2005), and affection and death (Alvarez-
Conrad et al., 2001) have been used to predict improvements in post-treatment
PTSD symptoms, perceived physical health, and personal functioning. Because
mood and emotions are found to influence speaking behavior and speech sound
characteristics, audio signal analysis is regularly applied in psychiatric studies as
well, for example to predict recovery time in depression (Kuny & Stassen, 1993) or
to recognize psychosis development in high-risk youths (Bedi et al., 2015).

Text and speech features can be used to identify and study specific concepts
on a large scale, in a transparent and uniform fashion, over a long period of time.
For the automatic recognition or prediction of pre-defined concepts, supervised
classification is generally used. Supervised classification is a data mining application
in which objects (e.g., texts or audio signals) are assigned to a set of predefined
class labels using a classification model based on labeled training samples (Bird
et al., 2009). Supervised classification based on text features has been used for
example to screen forum posts for PTSD (He et al., 2012) or to predict treatment
adherence for schizophrenia patients (Howes et al., 2012), whereas speech features
have been used to classify distress in PTSD patients (Van Den Broek et al., 2009).
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Though most studies use either text or audio analysis, Schuller et al. (2005) and
Forbes-Riley and Litman (2004) found that models based on multimodal feature sets
outperformed models based on either acoustic or linguistic features alone (e.g., in
emotion classification), as multimodal sets provide a broader and more complete
picture of one’s (emotional) state (Bhaskar et al., 2015).

This study aims to develop a multimodal supervised classification model to au-
tomatically recognize hotspots based on text and speech features extracted from
tape recordings and transcripts of imaginal exposure sessions of successful and
non-successful treatment completers. Automatic hotspot recognition can provide
clinicians with insight in the occurrence and characteristics of hotspots during their
treatments, which may assist them in offering a more effective intervention. We
hypothesized that a combination of text and speech features extracted from pa-
tient speech could be used to develop a supervised classification model to au-
tomatically distinguish between hotspot and non-hotspot phases during imaginal
exposure sessions. Based on the formal hotspot characteristics and previous re-
search on hotspots and CBT sessions, we identified nine constructs (affect, emo-
tions, cognitions, dissociation, avoidance, cohesion, organization, fragmentation,
and complexity, further described in section 5.2) that we expected to differ be-
tween hotspots and non-hotspots. Each construct was operationalized through a
number of text and speech characteristics that were captured using a large range
of features extracted from CBT session transcripts and recordings.

5.2. Methods
5.2.1. Sample and data set

W e used data of patients undergoing Brief Eclectic Psychotherapy for PTSD
(BEPP; Gersons et al., 2000). To develop the hotspot classification model, an

existing expert-annotated data set consisting of imaginal exposure session record-
ings was used in which hotspots and their characteristics were coded. This data
set consisted of analog cassette tape recordings of 45 PTSD patients and was col-
lected for a previous study by Nijdam et al. (2013), who investigated differences
in hotspots between successful and unsucessful BEPP trauma-focused psychother-
apies. They analyzed session recordings in which imaginal exposure was present
for 20 of the 45 patients (the ten most and the ten least successful treatment com-
pleters). The sample consisted of twelve female and eight male adults with a mean
age of 39.60 (SD 10.98) and different ethnic backgrounds (mainly Dutch, N = 15,
but also Indonesian, Surinamese, Aruban, and Bosnian). The types of trauma the
patients experienced included assault (N = 13), disaster (N = 2), sexual assault (N
= 1), accident (N = 1), war-related (N = 1), and other (N = 2).

Nijdam et al. (2013) coded the frequency of hotspots, their characteristics (inter-
rater reliability K = 0.86), emotions (interrater reliability K = 0.81), and cognitions
(interrater reliability K = 0.85) for 102 recordings based on the Hotspot Identifi-
cation Manual, an adaptation of the Hotspots Manual of Holmes and Grey (2002),
developed by Nijdam and colleagues to enable retrospective coding based on audio
recordings. Of the 102 coded sessions, recordings of insufficient quality for tran-
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Figure 5.1: Data selection chart for available session recordings

scription (mainly due to heavy background noise, N = 29) or that did not contain
any hotspots (N = 29) were excluded in the present study. From the remaining
44 recordings one session was selected per patient. This was the session in which
the most hotspots occurred. In case there were multiple sessions with the same
number of hotspots, the session occurring earliest in treatment was used. In total
the twenty selected sessions contained 37 hotspots; seven recordings with three
hotspots, three recordings with two hotspots, and ten recordings with one hotspot
(see Figure 5.1).

Data preparation
The data consisted of tape recordings (mono channel) of complete imaginal expo-
sure sessions, which were converted to WAV format (16-bit, 16 kHz, mono) using
the digital audio editor Audacity® version 2.0.5 (Audacity Team, 2013). The record-
ings were over ten years old at the time of digitization, which negatively influenced
the sound quality. Each recording contained a complete imaginal exposure session
consisting of four elements (Gersons et al., 2011):

• Discussion: discussion of the previous session, the course of the PTSD symp-
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toms, and the structure and content of the current session.

• Relaxation exercises: repeatedly tensing and relaxing muscle groups to enable
the patient to focus on the traumatic event and go back to the situation.

• Exposure: for the first exposure session, the patient is brought back to the day
of the traumatic event and is asked to give a detailed account of the situation
prior to the event and the event itself. In subsequent sessions, exposure
starts where it left off in the previous session.

• Discussion: discussion of the exposure experienced so far and explanation of
the content and structure of the following session.

Since we were only interested in the imaginal exposure phase, the initial discus-
sion of the previous session, relaxation, and concluding discussion were removed,
leaving only the exposure phase, usually about 15-20 minutes per recording, for
analysis.

Because the audio was of poor quality and transcriptions needed to be as de-
tailed as possible, automatic speech recognition (ASR) was not applicable. The
recordings were therefore transcribed and annotated by the first author, who was
blind to therapeutic outcome. The transcriptions are verbatim, meaning that every
recorded word, including unfinished words (stammering), non-fluencies (e.g., uh,
hmm), and forms of backchanneling (e.g., uhhu, ok), was transcribed. Background
noise was removed only if necessary for transcription, using the noise reduction
function implemented in Audacity® version 2.0.5. However, for some sessions small
parts of the speech could still not be transcribed due to the amount of noise, heavy
emotions, or weakness of the speech signal. These parts are coded as “inaudible”,
including start and end time. The exact start and end time of each hotspot were
coded by the first two authors.

The transcriptions were then converted to the (C)XML file format for annotating
transcriptions to enable parsing (easily separating patient from therapist speech
and hotspot from non-hotspot phases for the text analysis) and to link the tran-
scribed text to the digital audio recordings. Linking of text and audio data was
done using forced alignment within the WebMaus Pipeline version 2.25 (Kisler et
al., 2017), including the Chunker function by Poerner and Schiel (2016). The re-
sulting TextGrid files were then complemented with interval tiers; connected se-
quences of labeled intervals annotating hotspots, speaker turns, and silences, using
Praat version 6.0.4.3 (Boersma & Weenink, 2019). This way the transcriptions and
recordings were converted to input formats suitable for the multimodal classification
pipeline.

Identifying hotspots
The Hotspots Manual of Holmes and Grey (2002), and succeeding research on
hotspots by Holmes et al. (2005) and Grey and Holmes (2008), was used to identify
hotspots: 1) the moment is defined by the patient as the “worst moment”; 2) the
moment was identified as a hotspot in a previous session; 3) an audible change in
affect; 4) the patient changes from present to past tense; 5) the patient changes
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from first to third person; 6) the patient is “whizzing through”; 7) the patient cannot
remember details of the moment; 8) the patient is dissociating; or 9) the moment
is mentioned by the patient to correspond to an intrusion.

5.2.2. Operational constructs for automatic recognition

W e distinguished nine constructs underlying hotspots that could be used in their
automatic recognition. Five of these are based on the formal hotspot charac-

teristics; affect, emotions, cognitions, dissociation, and avoidance. The remaining
four (cohesion, organization, fragmentation, and complexity) were selected based
on previous research on CBT sessions. Although until now, except for organization,
these additional constructs were mainly studied with regard to complete trauma
narratives and not to specific parts such as hotspots, we expected them to be
useful for automatic hotspot recognition as they do play a part in the emotional
processing of traumatic events (Amir et al., 1998).

Each construct is operationalized through variables that can be measured based
on combinations of either text, speech, or text and speech features. Since the
aim is to recognize hotspots automatically, we only used those variables that could
be measured based on automatically extracted (i.e., without the need for manual
coding) text and speech features. The features used to capture each construct are
described in sections Text feature extraction and Speech feature extraction. More
feature details, including examples and equations, can be found in Appendix 5-A
and Appendix 5-B. The operationalization of each construct and the related features
are shown schematically in Figure 5.2 and elaborated upon in Appendix 5-C.

Affect According to Grey et al. (2002) a visible change in affect (e.g., bursting
into tears, turning red, shaking, or sweating) is the most obvious way to identify a
hotspot. When working with audio files, audible cues can be used instead of visible
cues, as in Nijdam et al. (2013), who showed that change in affect remains a strong
identifier even without the visible aspect. Juslin and Scherer (2005) define affect as
“a general, umbrella term that subsumes a variety of phenomena such as emotion,
stress, mood, interpersonal stance, and affective personality traits” [p. 69].

Emotions Emotion is one of the affective phenomena listed by Juslin and Scherer
(2005), and as such the constructs affect and emotions are closely related. Holmes
et al. (2005) distinguished 11 emotion categories based on emotion words that
occurred during hotspots: fear, helplessness, anger, sadness, surprise, disgust,
dissociation, happiness, shame, guilt, and horror. Of these, especially anxiety,
helplessness, and horror are deemed important, as these were specified explic-
itly under PTSD criterion A2 of the DSM-4-TR (American Psychiatric Association,
2013), although this criterion was removed from the most recent version, the DSM-
5 (American Psychiatric Association, 2000). We also expected higher occurrences
of the emotions anger, sadness, shame, disgust, and guilt, as these were found to
be often related to hotspots (Grey et al., 2001; Grey et al., 2002; Holmes et al.,
2005).
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Figure 5.2: Operationalization scheme for constructs underlying hotspots (red), related variables (blue),
and extracted features (green). For each node is indicated whether it is expected to increase(+),
decrease(-), change in both directions(∼), or either direction(?).
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Cognitions In addition to emotion categories, Holmes et al. (2005) distinguished
seven cognitive themes that can characterize hotspots: uncertain threat, general
threat of injury and death, control and reasoning, consequences, abandonment, es-
teem, and cognitive avoidance. Cognitive themes of psychological threat (sense of
self) were found to appear more in hotspots than those of physical threat (physical
integrity) (Grey & Holmes, 2008; Holmes et al., 2005).

Dissociation Hotspots are also identified by changes in speaking style. Dur-
ing imaginal exposure, patients are asked to describe the past event as if it were
happening now, in the first person present tense. Patients may dissociate during
hotspots by changing from present to past tense or from first to third person (Grey
et al., 2002). This altered or unreal perception of the traumatic event may indi-
cate that peritraumatic dissociation occurred during or directly after the traumatic
experience.

Avoidance Other hotspot characteristics related to speaking style described by
Grey et al. (2002) are “whizzing through” (rushing through the main event giving
minimal details, while extensively describing the buildup and aftermath) and the
patient declaring he or she is unable to remember details of the moment. These
characteristics reflect (non-conscious) avoidance.

Cohesion Narrative cohesion focuses on the occurrence of explicit cues within
the text that enable the reader (or listener) to make connections within or between
sentences or clauses (Crossley et al., 2016). Previous studies found cohesion to
be related to the level of intrusive symptoms in children (O’Kearny et al., 2007)
and trauma-related avoidance (O’Kearney et al., 2011), which both are hotspot
characteristics.

Organization Trauma survivors with PTSD are found to produce more disorga-
nized trauma narratives than trauma survivors without PTSD (Halligan et al., 2003;
Jones et al., 2007). The (dis)organization of the “worst moments” (hotspots) in
traumatic memories was previously studied based on text features by Jelinek et al.
(2010).

Fragmentation Foa et al. (1995) suggest that trauma memories are more frag-
mented (i.e., lacking flow) for trauma survivors with PTSD, because information
could not be adequately processed and encoded under stressful conditions. They
found a significant correlation between fragmentation and PTSD symptoms over
treatment.

Complexity Amir et al. (1998) found that narrative complexity correlated nega-
tively with PTSD severity three months after the trauma. They found that patients
who wrote more simplistic narratives showed more severe PTSD than patients who
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Figure 5.3: Multimodal supervised classification pipeline

wrote more complex narratives. However, later studies concluded that found ef-
fects could also be due to differences in writing skill and cognitive ability (see Gray
& Lombardo, 2001). Complexity may relate to the hotspot characteristic “whizzing
through”, due to which hotspot moments are described in a more simplistic fashion
and in less detail. Also, hotspot moments may be narrated in a more fragmented
way due to changes in affect.

5.2.3. Classification pipeline

T he development of a new classification model involves two phases; a training
phase and a prediction phase. In the training phase, information is extracted

from each object following a range of preprocessing and feature extraction steps,
resulting in labeled feature sets. A machine learning algorithm uses those labeled
feature sets to learn and select the most discriminative text and speech features for
the “hotspot” versus the “non-hotspot” phases. In the prediction phase, the clas-
sifier uses those features to identify hotspots from new imaginal exposure session
recordings and transcripts (for more on the development of classification models,
see Chapter 3). This sequence of steps, in which the output of each step is the
input for the next, is called a pipeline (see Figure 5.3).

The preparation, preprocessing and feature extraction steps were done sepa-
rately for text and speech features because they require different techniques. Fea-
ture selection and machine learning were applied to the combined, multimodal
feature sets. Text preprocessing and feature extraction was done in Python 3.7.2
(Python Software Foundation, 2019) using the Natural Language Toolkit (NLTK 3.4;
NLTK Project, 2019) and Python’s Textstat package (version 0.5.4; Bansal & Ag-
garwal, 2018), and in LIWC using the Dutch LIWC dictionary and the NRC emotion
lexicon. Audio preprocessing and feature extraction was done using Audacity® ver-
sion 2.0.5, WebMaus version 2.25, and Praat version 6.0.4.3. Conversion of the
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text transcripts from plain text files to parsable and linkable file formats was done
using custom XML and CXML converters developed by one of the authors (available
upon request). For feature selection and machine learning, the Scikit-learn library
(Pedregosa et al., 2011) version 0.20.2 was used.

Preprocessing
The text and audio analysis focused on patient speech only. The textual input for
the classification pipeline consisted of plain text files containing the transcribed,
anonymized patient speech cut into “hotspot” and “non-hotspot” segments (parts
in the exposure phase preceding or following a hotspot). In total the transcripts
were split into 37 hotspot segments and 45 non-hotspot segments. To analyze
the text on word level, separate words were extracted from the transcripts using
the word tokenizer for Dutch implemented in NLTK (see Perkins, 2014, for more
on tokenization). All words were normalized by removing punctuation, accents,
and capital letters. For the 𝑁-gram extraction, each word except for stop words
was stemmed (reduced to its base form, see Jurafsky & Martin, 2009, for more
on stemming) using a standard Dutch Snowball stemmer included in NLTK (Porter,
2001). For the tagger-based feature extraction and the overall text characteristics
the unstemmed input text was used.

For the audio analysis, the prepared TextGrid files (see Data preparation) were
directly processed in Praat, selecting the audio signals for patient-speech only and
distinguishing between hotspot and non-hotspot phases within the annotated in-
terval tiers. In line with Jurafsky and Martin (2009), we used utterances instead
of sentences because we work with a corpus of transcribed speech that does not
contain punctuation such as original text corpora. Utterances, which can be words,
phrases or clauses, were identified based on Tanaka et al. (2014), in which utter-
ances are separated based on a pause in speech longer than one second.

Text feature extraction
Text features capture what is being said, focusing on the textual content. Text
content can be examined on word or phrase level by extracting unigrams, 𝑁-grams,
or 𝑁-multigrams (single words, phrases, or variable-length word combinations).
With small samples, frequencies of individual words or phrases may be too low to
recognize specific patterns. In that case it is useful to analyze words belonging to
particular grammatical or lexical categories by assigning labels (tags) to each word
using parts-of-speech (POS), lexicon-based, or custom taggers.

In general, grammatical POS tags such as personal pronouns and verb tense
are thought to give information about one’s (temporal) focus and psychological dis-
tance towards a situation or event, which may provide cues on thought processes,
priorities, and intentions (Tausczik & Pennebaker, 2010). Tags regarding verb tense
are also considered useful in assessing memory (dis)organization and time perspec-
tive (Jelinek et al., 2010). Previous studies in which POS tags were used showed
that tags such as first-person singular pronouns correlated positively with psycho-
logical distress (Rude et al., 2004; Wolf et al., 2007). In addition, trauma survivors
that were sensitive to developing posttraumatic stress symptoms were found to use
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more first-person plural than first-person singular pronouns (Chung & Pennebaker,
2007; Stone & Pennebaker, 2002).

A widely used lexicon-based tagger is LIWC, which assigns words to categories
related to linguistic elements, emotions, and cognitive processes, and counts their
relative frequencies. Since hotspots are the most emotionally distressing moments
of trauma (Nijdam et al., 2013), special attention was paid to the emotions present
in the transcripts. Although LIWC extracts several emotion categories (anxiety,
anger, and sadness), more extensive insight in the emotions was gained using a
General Purpose Emotion Lexicon (GPEL), which is considered to significantly im-
prove emotion classification (Aman & Szpakowicz, 2007).

Finally, text characteristics and statistics were extracted to analyze textual differ-
ences on the general level. Previous studies showed that these characteristics can
be used to detect emotions (Lee & Narayanan, 2005) or as indicators for physical
symptoms and discomfort (Alvarez-Conrad et al., 2001).

The text features were extracted over the complete hotspot or non-hotspot
phase, extracting all text features for each separate hotspot and non-hotspot seg-
ment. To prevent bias towards longer text documents, the extracted 𝑁-grams were
weighted by normalized term frequency (𝑡𝑓; occurrence counts normalized by doc-
ument length, see more in Forman, 2003) or term frequency-inverse document
frequency (𝑡𝑓-𝑖𝑑𝑓; see more in Jurafsky & Martin, 2009), which are the most com-
monly used feature weights. The occurrence frequencies returned by the taggers
were normalized by document length. A detailed description of all used text fea-
tures, their relation to the operational constructs, and the extraction process can
be found in Appendix 5-A.

Speech feature extraction
In addition to what is being said, which is captured by the text features, it is of
interest how things are said, since one’s manner of speaking can convey signs
of emotions or stress (Lefter et al., 2011; K. R. Scherer, 2003). Some emotions,
especially emotions that are high in arousal, such as anger and fear, can be better
identified from spoken than from written data (e.g., Truong & Raaijmakers, 2008).

The study of speech sounds is called phonetics. Phonetic studies can focus
on how sounds are produced (articulatory phonetics), how sounds are perceived
(auditory phonetics), or how sounds are transmitted (acoustic phonetics) (Ashby,
2013). The latter concentrates specifically on the acoustic characteristics (or phys-
ical properties) of speech, such as frequency, amplitude, and duration, which can
be objectively measured by analyzing acoustic waveforms. A waveform is a graph-
ical representation of a sound wave, in which the variation in air pressure (y-axis)
involved with the production of sound is plotted over time (x-axis) (Jurafsky & Mar-
tin, 2009). It is generally assumed that one’s affective state is reflected by objec-
tively measurable voice cues. As such, acoustic phonetics are considered the most
promising phonetic features in examining affect and emotion (Juslin & Scherer,
2005).

Lefter et al. (2011) divide acoustic features into prosodic, spectral, and voice
quality features. Studies in which the identification of emotions or affective state
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Table 5.1: Feature overview

Feature Description

𝑁-grams Text representation schemes such as the bag-of-words
model for unigrams (single words) or language-model based
schemes like 𝑁-grams or 𝑁-multigrams.

POS tags Grammatical tags that classify words in their “parts-of-speech”
and assign a label (tag) from a collection of tags (the tagset)a.

LIWC categories Lexicon-based tags captured by LIWCb, which categorizes
words as linguistic elements, emotions, and cognitive pro-
cesses.

NRC emotion categories Eight emotions and two sentiment categories captured using
the general purpose NRC emotion lexiconc.

Custom tags Custom tags are used to tag words or word patterns (e.g.,
specific expressions) in the transcripts that met a specified set
of words or phrases.

Text characteristics General descriptive features that capture information on the
overall text structure and general characteristics.

Pitch Perceived pitch is objectively measured by its acoustic corre-
late, fundamental frequency (F0)d.

Loudness Perceived loudness is gauged by speech intensity, which ob-
jectively measures the energy in the acoustic signal.

Duration Duration covers the temporal aspects of speech, which are
tempo (speaking rate) and pause.

Spectral features Frequency based features that represent the different frequen-
cies (called “spectrum”) that together make up the acoustic
waveforme.

Voice quality features Perceived voice quality is measured by high-frequency en-
ergy (HF); the relative proportion of energy in an acoustic
signal above versus below a specific frequency, and formant
frequenciesd.

Turn statistics General overall speech features that gauge language strength
(poverty of speech) and structural organizationf.

Note. More details are provided in Appendix 5-A and Appendix 5-B.
a Bird et al. (2009)
b Linguistic Inquiry and Word Count program, Pennebaker et al. (2001)
c NRC emotion lexicon Mohammad and Turney (2010, 2013)
d Juslin and Scherer (2005)
e Jurafsky and Martin (2009)
f Orimaye et al. (2014)
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plays a role mostly depend on prosodic features. Prosody refers to a collection of
acoustic features that concern intonation-related (pitch), loudness-related (inten-
sity), and tempo-related (e.g., durational aspects, speaking rate) features (Jurafsky
& Martin, 2009). This can closely contribute to meaning and may reveal informa-
tion normally not captured by textual features, such as emotional state or attitude
(Wilson & Wharton, 2006).

Prosodic features generally cover speech units larger than one segment, such as
syllables, words, or speaker turns, and are therefore also termed suprasegmentals
(Jurafsky & Martin, 2009). The suprasegmentals pitch, loudness, and duration
(tempo and pause) are among the most used features in the phonetic study of
prosody (see e.g., the prosodic frameworks of Ladd & Cutler, 1983; Roach, 2000;
Schoentgen, 2006). Several recent clinical studies used suprasegmental features
for the diagnosis of a range of psychological disorders (S. Scherer et al., 2013), or
specific disorders such as PTSD (Vergyri et al., 2015) and dementia (Fraser et al.,
2014; Jarrold et al., 2014). Other purposes for which suprasegmentals have been
used include identifying indicators for PTSD therapy progress (Van Den Broek et al.,
2009) and assessing depression severity during therapeutic intervention (Lamers
et al., 2014).

In addition to prosodic features, spectral features such as Mel-frequency cepstral
coefficients (MFCCs) are commonly used in emotion detection as these are affected
by emotional arousal (Lefter et al., 2011). Voice quality features such as high-
frequency energy (HF) are found to be strongly related to emotions as well. Apart
from neutral, voice qualities can be for example breathy, creaky, harsh, tense, or
whispery. Finally, overall speaker turn statistics (e.g., turn length, the number of
utterances per turn) were extracted as these can gauge language strength (poverty
of speech) and structural organization (Orimaye et al., 2014).

The audio data was analyzed based on the prosodic features pitch, loudness, and
duration, which are the most commonly used voice cues (Juslin & Scherer, 2005),
acoustic parameters related to spectral and voice quality features, and turn statis-
tics. The prosodic, voice quality, and general features were extracted at speaker
turn and utterance level, the spectral features at frame level. In three segments
not all speech features could be extracted at patient level because these segments
contained no or only one voiced segment, due to which no SDs could be calculated
for the concerning speech features. For these missing values, overall averages for
the concerning classes (hotspot or non-hotspot) were imputed. More information
on the used speech features, their relation to the operational constructs, and the
extraction process is given in Appendix 5-B.

Feature union
Table 5.1 shows all extracted text and speech features. These features consist of a
mixture of scales and quantities (e.g., normalized term and category frequencies,
overall text statistics, mean amplitude values, and duration measures). Feature
rescaling was done to make sure all input features have the same scale. This is
preferred for many machine learning applications, to prevent features measured in
greater numeric ranges from dominating features measured in smaller ranges. As
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Figure 5.4: Rescaling process applied to extracted text and speech features before feature selection.

such, each text and speech feature was rescaled to the [-1, +1] range, as proposed
by Hsu et al. (2003), so that each feature’s maximal absolute value is equal to one
(see Figure 5.4). This same scaling method is later applied to rescale the features
in the test set.

Feature selection
The most informative features are selected using Pearson’s chi-squared (𝜒2) test, an
effective feature selection metric (Yang & Pedersen, 1997) often used in text classi-
fication tasks. A more thorough explanation of 𝜒2 feature selection can be found in
Oakes et al. (2001) or Manning et al. (2008). The 𝜒2-test compares the observed
and expected feature occurrences in the hotspot versus non-hotspot phases. All
features are then ranked based on their 𝜒2-scores and the 𝑘 features with the
highest 𝜒2-scores are selected for the final classification model (see Chapter 3 for
a complete description of the process).

Excluded features Some state that stop words should not be included in the
classification model, because these words do not add to the meaning of text (Ju-
rafsky & Martin, 2009; Perkins, 2014). Other studies found that stop words such
as particles and pronouns may indicate health improvements (Campbell & Pen-
nebaker, 2003). Since we expected particles and pronouns to be related to the
construct fragmentation, we think stop words should not simply be excluded with-
out further investigation, even if some (such as particles and pronouns) are also
captured by the POS tagger.



5.2. Methods

5

123

Table 5.2: Confusion matrix to assess model performance

Predicted class

True class Positive (𝐶𝐻𝑆) Negative (𝐶𝑛𝐻𝑆)

Positive (𝐶𝐻𝑆) True positive (𝑡𝑝) False negative (𝑓𝑛)
Negative (𝐶𝑛𝐻𝑆) False positive (𝑓𝑝) True negative (𝑡𝑛)

Note. Comparison of true (rows) and predicted (columns) class labels for the positive
(hotspot) class 𝐶𝐻𝑆 and the negative (non-hotspot) class 𝐶𝑛−𝐻𝑆. The values on the diag-
onal (in boldface) show the correctly predicted class labels.

To avoid needlessly large feature sets, other words that were considered for
exclusion were words that only occur in very few documents (Joachims, 1998).
This was assessed through minimal document frequency; the minimal number of
different training documents a word occurs in.

Machine learning algorithm
The extracted text and speech feature sets were used to train a support vector
machine (SVM; Vapnik, 1995). SVMs are found to be among the best performing,
most robust classification algorithms that can deal well with high-dimensional or
imbalanced data sets (Joachims, 1998). We used the “C-Support Vector Classifier”
(SVC) with a linear kernel, implemented in Scikit-learn’s LIBSVM library (Chang &
Lin, 2011). Two hyperparameters needed to be set; the kernel parameter 𝛾, which
we set to linear as is commonly done in text classification tasks, and the regular-
ization parameter 𝐶, for which we compared different values in the parameter grid
search.

Our classification task was a two-class problem; we wanted to distinguish hotspot
phases from non-hotspot phases based on patient speech, defining hotspot phases
as the positive class. To compensate for possible class imbalance we balanced class
weights to be inversely proportional to the class sizes within the total data set, as
in King and Zeng (2001).

Classification performance In the training phase the most informative features
were extracted and selected for the final classification model. In the prediction
phase, the occurrences of those selected features were used to predict a class label
for each new input file. The model’s classification performance was measured by
comparing the true (known) labels of each input feature set with the predicted
label for that feature set. Labels were predicted by applying the decision function
resulting from the training phase to the segments present in the test set. The
segments were given a positive label (“hotspot”) if the decision function resulted in
a value > 0, and a negative label (“non-hotspot”) otherwise (see Alpaydin, 2004, for
an extensive description of the decision function and optimization problems involved
when using SVMs).

The instances in the true and predicted classes can be included respectively in
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Table 5.3: Performance metrics and functions

Metric (𝑀) Description Function

Accuracy Proportion of correctly classified segments 𝑡𝑝 + 𝑡𝑛
𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝 + 𝑡𝑛

Precision Proportion of correctly identified positive
segments

𝑡𝑝
𝑡𝑝 + 𝑓𝑝

Recall Proportion of positive segments identified 𝑡𝑝
𝑡𝑝 + 𝑓𝑛

𝐹1-score Harmonic mean of precision and recall 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Note. 𝑡𝑝 = true positives for each class, where true and predicted label are both positive.
𝑡𝑛 = true negatives for each class, where true and predicted label are both negative. 𝑓𝑝 =
false positives for each class, where true label is negative but predicted label is positive.
𝑓𝑛 = false negatives for each class, where true label is positive but predicted label is
negative.

the rows and columns of a confusion matrix, as displayed in Table 5.2. The cells on
the diagonal contain the number of correctly predicted labels (true positives and true
negatives), the errors (false positives and false negatives) are in the off-diagonal
cells (Bird et al., 2009). We used the correct and false predictions to calculate
the classification performance metrics accuracy, precision, recall, and 𝐹1-score (see
Table 5.3 for definitions) for the positive class. Of these, accuracy and 𝐹1-score
are the most commonly used in the evaluation of supervised classification models,
although the 𝐹1-score is the most suitable to deal with possible class imbalance.
We will report all performance scores for each class and the weighted average over
both classes, in which the performance scores of both classes are macro-averaged
(Yang, 1997) and weighted by class size.

Analytical strategy
We adopted a nested 𝑘-fold cross-validation (CV) strategy, iterating over alternating
subsets of data (folds) to train, validate, and test the model in order to prevent
model evaluation bias. In the inner loop, a 10-fold CV grid search was conducted
on the training set, calculating training performance on the validation set to find the
optimal combination of (hyper) parameter settings. In the outer loop, the selected
model was trained on the complete development set (consisting of the training plus
the validation set), calculating the testing performance on the held-out test set
to evaluate model generalizability. We will report on the selected parameters and
features for the model with the highest testing performance, which was selected as
the final hotspot classification model.

Because each session was split in several hotspot and non-hotspot segments,
the data set contained multiple labeled segments per patient. To prevent the ma-
chine learning algorithm from learning patient specific features instead of class spe-
cific features, we used Scikit-learn’s group-𝐾-fold sampling strategy in both cross-
validation loops. This strategy splits the folds in such a way that data of the same



5.3. Results

5

125

patient will not simultaneously occur in the training as well as the test set.

Parameter grid search To find the best performing combination of parameter
settings and features, an exhaustive grid search guided by the 𝐹1-score was con-
ducted in which all possible parameter combinations (within the set ranges) were
fitted on the data set. The following parameters and parameter values were com-
pared:

• Stop word removal: because there is no clear consensus on stop word re-
moval, we included this as a parameter in the grid search. Stop words are
either included or excluded using the Dutch stop word list from the NLTK li-
brary. This list includes 101 words, an overview can be found in Appendix
5-A.

• Minimal document frequency: we compared the effect of only including 𝑁-
grams that occurred in at least one, two, or three separate training segments.

• Representation schemes: we compared four 𝑁-gram representation schemes:
unigrams (1,1), bigrams (2,2), trigrams (3,3), and 3-multigrams (1,3).

• Term weights: we compared weighting textual content features by 𝑡𝑓 versus
𝑡𝑓-𝑖𝑑𝑓.

• Select 𝑘 best features: we compared different cut-off points (𝑘) for the num-
ber of features to be included in the model based on the 𝜒2 feature selection
metric. We compared values in the range 10-500 (increasing with 20 features
each time) and all available features.

• Regularization parameter 𝐶: the values 1, 2, 3, 100, and 1,000 were com-
pared.

To compare the performance of text features with that of speech features and
text and speech features combined, the complete model development pipeline,
including nested 𝑘-fold cross-validation and exhaustive grid search, was run three
times. This resulted in three trained and tested models; one text only model, one
speech only model, and one multimodal model. The model with the highest training
performance was selected as the final model.

5.3. Results
5.3.1. Sample characteristics

I n total, the selected recordings contained around 6.5 hours of imaginal exposurespeech, of which over 2 hours of “hotspot” speech (mean hotspot length ≈ 3.5
minutes) and over 4 hours of “non-hotspot” speech (mean non-hotspot length ≈
5.5 minutes). Of the hotspot speech 70% is uttered by the patient, for the non-
hotspot speech this is 78%. On average, the non-hotspot segments contain almost
twice as many speaker turns and utterances as the hotspot segments, although
the high SDs show there are large differences between segments. The number of
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word types and tokens show that patients use more unique words in non-hotspots
than in hotspots, and that patient speech has a higher pitch in hotspots than in
non-hotspots. A summary of the main hotspot and non-hotspot characteristics is
given in Table 5.4.

Table 5.4: Summary of characteristics hotspots, non-hotspots, and total sample

Characteristics Hotspots Non-hotspots Total
(N = 37) (N = 45) (N = 82)

Record lengtha 02:14:03 04:18:06 06:32:09
Mean durationa 00:03:37 00:05:44 00:04:46

Speaker turns, M(SD) 24.43(21.52) 40.13(45.38) 33.05(37.23)
Utterances, M(SD) 27.22(16.71) 47.22(34.43) 38.20(29.47)

Word tokens, M(SD) 259.62(187.90) 546.69(478.98) 417.16(401.21)
Word types, M(SD) 104.11(44.79) 170.47(95.47) 140.52(83.35)
Type:Token Ratio, M(SD) 0.47(0.12) 0.42(0.16) 0.44(0.14)
Words per turn, M(SD) 16.49(13.99) 20.27(17.14) 18.57(15.82)
Word length, M(SD) 3.91(0.21) 3.95(0.17) 3.93(0.19)
Honoré’s 𝑅, M(SD) 606.31(105.95) 636.88(142.64) 623.09(127.58)
Flesch-Douma 𝐺, M(SD) 110.44(6.36) 107.46(7.73) 108.80(7.26)
Brunét’s index, M(SD) 12.40(1.73) 13.14(2.59) 12.80(2.26)

Patient speech lengtha 1:33:52 03:21:05 04:54:58
Soundinga 00:44:17 01:58:21 02:42:39
Mean durationa 00:01:11 00:02:37 00:01:59

Silenta 00:49:35 01:22:43 02:12:18
Mean durationa 00:01:20 00:01:50 00:01:36

Pitch, M(SD) 253.24(67.86) 231.00(61.61) 241.03(65.06)
Intensity, M(SD) 60.06(5.06) 59.20(6.12) 59.58(5.65)
Speech rate, M(SD) 1.35(0.68) 1.57(0.71) 1.47(0.70)
Articulation rate, M(SD) 3.65(0.74) 3.56(0.60) 3.60(0.66)
Phonation rate, M(SD) 0.37(0.18) 0.44(0.19) 0.41(0.18)
Speech productivity, M(SD) 1.41(1.65) 1.03(0.92) 1.20(1.30)
Note. Except for the number of speaker turns and record length, all characteristics take
into account patient speech only.

a hr:min:sec

Validation splits
The total data set consisted of data of 20 patients. In the outer loop of the nested 𝑘-
fold cross-validation process, the data set was iteratively split into ten development
and test sets. The development sets consisted of the hotspot and non-hotspot seg-
ments of 18 patients (90% of the total sample), and the test sets of the remaining
10% (two patients). An exhaustive grid search was conducted on the development
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set in the inner loop, during which the development set again was iteratively split
into ten training and test sets, respectively consisting of 90% (16 or 17 patients)
against 10% (two or one patients) of the development data.

5.3.2. Model comparison

W e developed three different models; the first model was based only on text
features, the second model used only speech features, and the third (multi-

modal) model consisted of text and speech features combined. This section reports
the mean training performance of each model. The mean testing performance for
all three models is discussed under Generalizability.

Text features only
The model based exclusively on text features was trained using 𝑁-grams, 𝑁-multi-
grams, the 96 lexicon-based, POS, or custom tags, and the general text charac-
teristics included in Appendix 5-A. The exhaustive grid search resulted in a mean
training 𝐹1-score of 0.75 (SD 0.03) for the hotspot class. This is a good classifica-
tion performance, and the low SD shows that the grid search results are stable with
little variation over the different folds. The model with the highest testing perfor-
mance resulted in a reasonable precision (0.60), perfect recall (1.00), high 𝐹1-score
(0.75), and a high classification accuracy (0.75). This model consisted of 𝑁-multi-
grams ranging from one to three words weighted by the 𝑡𝑓-𝑖𝑑𝑓 scheme. Among
the most informative features for the hotspot class are words and word combina-
tions such as “neck”, “terrible”, and “no no no”. The best text model was based on
only 10 𝑁-multigrams; general text features, lexicon-based features and POS tags
were not among the most informative features selected by the grid search.

Speech features only
For the speech feature only model, 111 extracted speech features (see Appendix
5-B for an overview) were compared in the exhaustive CV grid search. The mean
training 𝐹1-score resulting from the exhaustive grid search was 0.62 (SD 0.03) for
the hotspot class. This is a reasonable performance score, although lower than that
of the text only model. Like the text only model, the low SD points to stable grid
search results over the folds in the inner loop. The model with the highest testing
results was based on ten speech features selected by the grid search and had a
good precision (0.75), recall (0.75), and 𝐹1-score (0.75), and an overall classification
accuracy of 0.75. The five most informative hotspot (marked by *) and non-hotspot
features for this model are displayed in the index graph in Figure 5.5. This graph
shows the change in each feature for the consecutive hotspot and non-hotspot
segments compared to the base value of that feature at the start of the exposure
session.

Text and speech features combined
When using both text and speech features, the mean training 𝐹1-score was 0.76
(SD 0.04) for the hotspot class. As for the speech only model, the combined model
with the highest testing performance had a good precision (0.75), recall (0.75), and
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Figure 5.5: Five most informative speech features for hotspots (*) and non-hotspots

𝐹1-score of 0.75. The overall training accuracy of the multimodal model was slightly
better than for the best text only and speech only models, namely 0.78.

5.3.3. Final model

T he multimodal model was selected as the final model because this resulted in
the highest training 𝐹1-score for the hotspot class and overall accuracy. This

model consisted of 310 text and speech features, where the text features were
𝑡𝑓-𝑖𝑑𝑓 weighted trigrams that occurred in at least two different segments in the
training set.

Most informative features
Of the fifty most informative features, three are speech features, seven are LIWC
features, two are features extracted through the NRC emotion lexicon, one is a
POS tag, one is a custom tag, one is a text statistic, and the remaining 35 are
trigrams. To illustrate the occurrences of different feature types in both classes,
Table 5.5 shows a selection of 25 highly informative features that were included in
the model.

Confusion matrix
The confusion matrix in Table 5.6 shows the number of correctly versus erroneously
predicted labels for the hotspots and non-hotspots present in the test set. This
shows that on average the model labeled three of the four hotspots correctly, and
four of the five non-hotspots. It incorrectly labeled one hotspot as a non-hotspot
and vice versa.

Generalizability
The model generalization is the average testing performance over all test sets in
the outer loop of the nested 𝑘-fold CV. This shows how well a model trained and
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Table 5.5: Selection of most informative features of the multimodal classifier

Feature 𝜒2 P Hotspots Non-
hotspots

Nee nee nee (no no no)a 23.347 0.127 4 1
Angst euh euh (fear uh uh)a 23.060 0.129 2 0
War euh war (were uh were)a 22.071 0.137 0 5
Category “Disgust”b 21.840 0.139 0.97 0.44
Category “Death”c 21.099 0.146 0.23 0.04
Pijn helemal nik (pain absolutely nothing)a 20.692 0.150 2 0
Weg vlucht euh (away flight uh)a 20.692 0.150 2 0
Zeg euh euh (say uh uh)a 20.408 0.153 0 11
Emotional expressionsd 18.663 0.172 8.02 1.71
Category “Negative emotions”c 17.905 0.181 2.30 1.22
Category “Interrogative pronoun”e 17.879 0.181 0.00 0.04
Category “Anger”c 17.803 0.182 0.46 0.19
Absolute word count (word tokens)e 17.498 0.186 245.85 521.12
Bang dod gan (afraid to die)a 17.443 0.187 3 0
Category “Sadness”c,* 17.192 0.190 0.69 0.23
Euh soort euh (uh sort uh)a 17.138 0.190 0 4
Zeg euh kom (say uh come)a 17.003 0.192 2 0
Ging ging wer (went went again)a 16.500 0.199 0 2
Category “Anxiety”c 16.249 0.202 0.77 0.37
Category “Sadness”b,* 15.045 0.220 1.80 1.05
Number of voiced unitsf 15.043 0.220 7.58 72.05
Category “Eating”c 15.038 0.220 0.05 0.17
Number of silent unitsf 14.569 0.227 5.79 66.95
Total duration of speechf 14.543 0.228 8.68 47.72
Category “Swear words”c 14.388 0.230 0.12 0.02
Note. 25 of the 50 most informative features, based on 𝜒2 ranking. The first column shows a
selection of high ranked features. 𝑁-grams are Dutch and stemmed (hence might seem misspelled;
e.g.,“dood” is stemmed to “dod”, and “gaan” to “gan”), with unstemmed English translations in
parentheses. The remaining columns show occurrence counts and means for both classes. Values
for the class with the highest occurrence are in boldface.

* Sadness is listed twice: the first is the LIWC category and the second is the NRC emotion.
a 𝑁-gram of 3 consecutive words.
b Emotion feature extracted using the NRC emotion lexicon.
c LIWC feature extracted using the LIWC dictionary.
d Emotional expressions extracted using custom tagger.
e Text statistic extracted using Python’s TextStat package.
f Speech feature extracted using Praat.
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Table 5.6: Confusion matrix to assess model performance

Predicted class

True class Hotspot Non-hotspot

Hotspot 3 1
Non-hotspot 1 4
Note. Comparison of true (rows) and predicted (columns) class labels for the hotspot
and the non-hotspot class. The values on the diagonal (in boldface) show the correctly
predicted class labels.

validated on the labeled input data predicts the correct output for new, future data
(Alpaydin, 2004). The testing performance for the final (multimodal) model was
lower than the training performance (see Table 5.7), which means the developed
model will not generalize well to new data. This was also the case for the best
performing text only and speech only models. However, the models in which is made
use of speech features (the speech only and text and speech features combined)
seem to be slightly more robust than the model based only on text features. Since
the text only model was based on only ten 𝑁-multigrams, it could be that the
selected features for the text model were too specific.

5.4. Discussion

T he aim of this study was to examine if it was possible to automatically recognize
hotspots in patients undergoing a trauma-focused treatment for PTSD. We hy-

pothesized that a combination of text and speech features extracted from recorded
and transcribed patient speech could be used to develop a supervised classification
model to automatically distinguish between hotspot and non-hotspot phases during
imaginal exposure sessions. Based on the formal hotspot characteristics and previ-
ous research on hotspots and CBT sessions, we identified nine constructs that we
expected to differ between hotspots and non-hotspots. We expected that hotspots
would contain more affect, avoidance, dissociation, fragmentation, emotions, and
cognitions, and less organization, cohesion, and complexity. These nine constructs
were operationalized through a number of text and speech characteristics that were
captured using a large range of features extracted from CBT session transcripts and
recordings, as shown in Figure 5.2.

The results showed that text and speech features related to these constructs
could indeed be used to train a stable model to distinguish between hotspots and
non-hotspots within the current data set. The models consisting of text features
alone or text and speech features combined resulted in the highest training perfor-
mance. The training performance of models based on speech features alone was
lower. However, clear fluctuations in speech features over the hotspot and non-
hotspot segments were found. The high training performance shows that we were
able to develop a model based on text and speech features that could classify the
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Table 5.7: Mean testing performance

Class Precision Recall 𝐹1-score Accuracy N(segments)
in test set

Text features only

Hotspots 0.443 0.675 0.530 4
Non-hotspots 0.652 0.435 0.469 5
Weighted 0.568 0.546 0.501 0.545 9average/Total(N)

Speech features only

Hotspots 0.543 0.592 0.534 4
Non-hotspots 0.603 0.560 0.553 5
Weighted 0.586 0.565 0.543 0.566 9average/Total(N)

Multimodal (text and speech features)

Hotspots 0.464 0.617 0.525 4
Non-hotspots 0.594 0.495 0.512 5
Weighted 0.543 0.556 0.522 0.555 9average/Total(N)
Note. Per class and average performance scores for the final models.

hotspot and non-hotspot segments included in the current data set very well.
The feature overview in Table 5.5 shows that many of the selected features are

related to the construct Emotions (e.g., emotion categories disgust, anger, sadness,
and anxiety, as well as audible emotional expressions such as sniffing and sighing).
This was in line with our expectations, as hotspots are considered the most emo-
tional moments in trauma (Nijdam et al., 2013) and emotions are found to occur
more frequently in hotspot than in non-hotspot phases (Holmes et al., 2005). More-
over, the strong, clearly distinguishable dictionary-based features and audible cues
that were used to capture emotions may have benefited their recognition.

Table 5.5 further shows that the LIWC category Sadness was slightly more dis-
criminative than Sadness captured using the NRC lexicon. This could be because
the Dutch LIWC dictionary is validated (Zijlstra et al., 2004), whereas the NRC cat-
egories were simply converted to Dutch using Google Translate. However, both
Sadness categories were discriminative enough for inclusion in the final model.
The added value of the NRC dictionary is mainly in the fact that it distinguishes
more emotional categories than LIWC, such as the category Disgust, which is also
included in the model. Despite this extended range of emotions, two emotions
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defined by Holmes and colleagues as characterizing for hotspots, namely guilt and
horror (the latter of which was also an explicit PTSD criterion of the DSM-4-TR;
American Psychiatric Association, 2013), were not covered by the lexicons used.
Expanding the emotion lexicon with dictionaries for guilt and horror might improve
classification performance.

Psychological theories explaining the working mechanisms underlying PTSD treat-
ments (see Nijdam &Wittmann, 2015), state that trauma memories are represented
differently than ordinary memories (e.g., lacking spatial or temporal context, or in-
adequately integrated with broader memories). As exposure aims to re-encode and
restructure the trauma memory in such a way that it no longer evokes the feeling of
current threat, successful treatment should result in more integrated, cohesive, and
less fragmented trauma narratives, indicating adequate processing of the trauma
(Brewin et al., 1996; Ehlers & Clark, 2000; Foa & Rothbaum, 1998). However, only
a few features related to organization, cohesion, or fragmentation were included in
the model, for example the use of interrogative pronouns (related to Cohesion), the
absolute word count and the frequent presence of the speech filler ’uh’ in the se-
lected𝑁-grams (indicators of Fragmentation), the number of voiced and silent units,
and the total duration of speech (to capture Avoidance). This could be because for
some features, changes in opposite directions may be indicative of different hotspot
related constructs (e.g., an increased speech rate is related to Avoidance, whereas
a decreased speech rate may indicate Emotions). This may reduce these features’
discriminative power. Another reason could be that some hotspot characteristics
based on which we defined the set of constructs and features to be extracted, did
not occur (frequently) in our data set. For example the change from first to third
person, which is a clear identifyer for hotspots, did not take place in any of the
sessions.

The low testing performance shows that the selected model does not generalize
well to new data sets. Since we tried to fit a complex model with a large number of
parameters to a small data set, the low testing performance most likely indicates
overfitting (also called overtraining). This means that the selected model has not
only learned the underlying structure but also the noise present in the training data
(Alpaydin, 2004). Another reason for overfitting could be that the noisy audio data
impeded accurate extraction of speech features.

Several studies have shown that emotions and mood influence speaking behav-
ior and speech sound characteristics (Kuny & Stassen, 1993; K. R. Scherer et al.,
2003). As acoustic features can be used in detecting conditions in which changes
in speech are common (Fraser et al., 2014), one could also expect these features
to detect moments in which changes in speech occur, such as hotspots. Therapy
session recordings and transcripts hold a lot of information. Text and audio analysis
can help to extract and process this information in a structured, efficient, and re-
producible way. Moreover, the collection and analysis of text and audio data can be
considered to be non-, or at least less, obtrusive than for example questionnaire-
based research or biosignal analysis (which requires sensors to be attached to a
patient; Van Den Broek et al., 2009). Given that lots of therapy data may already
be recorded and processed as part of the standard treatment procedure, for thera-
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pist training and ongoing research, or as part of e-health interventions (e.g., Bourla
et al., 2018; Olff, 2015; Rizzo & Shilling, 2017; Wild et al., 2016), it is worth explor-
ing how these available data can be made of further value.

It should be noted that most studies on emotion classification and vocal affect
expression are based on clean, artificial data in which emotions are portrayed by
actors (Juslin & Scherer, 2005) in simple and short utterances (Cowie et al., 2001).
The data used in the current study contains raw, authentic emotions embedded in a
broader context, from people with different backgrounds who experienced different
types of trauma, which is more in line with the real world. As such, our data set
can be considered highly ecologically valid and valuable not only for psychiatric re-
search and practice but also for studies on speech sounds and emotion recognition
(Van Den Broek et al., 2009). However, this strong point is also a huge limitation.
Although reusing existing data sets seems efficient and durable, it also introduces
challenges. The biggest challenge is the background noise due to simple record-
ing equipment and the transitory nature of analog recordings, which reduced the
recording quality over the years. Due to this it was not possible to use automatic
speech recognition and session content needed to be transcribed manually, which
remained impossible for small parts of the recordings even after noise reduction.

Another limitation is a methodological one. Because we had such a small data
set, we chose not to waste any information by holding out a part of the data for
model testing and validation. Instead we used nested cross-validated grid search,
a standard tool included in Scikit-learn. This tool does not provide the option to
remove keywords with an occurrence frequency of lower than five in the training
set (which is suggested in some studies, e.g., Manning & Schütze, 1999, to ensure
reliability of the 𝜒2 calculation).

Despite these limitations we developed a hotspot classification model with high
training performance, meaning that the model could clearly distinguish between
the hotspots and non-hotspots present in our data set. However, the low testing
performance indicates that the model will have difficulty recognizing hotspots from
new input data. This is probably due to the application of a complex training strat-
egy using many different features on a relatively small, low quality, but ecologically
valid data set. Another resaon could be that the patient characteristics and trauma
types present in our data set may have influenced speech characteristics and word
use, and as such the features included in the model. This should be studied in more
detail on a larger data set. The techniques used lend themselves well to applica-
tion on larger data sets, and current audio recording equipment makes it easier to
collect and process high-quality audio data which can be transcribed automatically
using automatic speech recognition. This way, much larger sets of therapy session
transcripts and recordings can be generated. Because this study only used text
and speech features that could be automatically extracted it is very easy to train
and test a new hotspot recognition model on new data using the same constructs,
which we expect to improve model generalizability.

Although model performance needs to be improved, this type of research has the
potential to advance theories about effective treatment elements in the context of
trauma treatment. The automatic recognition of hotspots may aid in the comparison
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of hotspot characteristics for different patient groups, trauma types, or dropouts
to investigate potential mediators of treatment success as suggested by Nijdam
et al. (2013). In addition, clinicians can gain more insight in the occurrence and
characteristics of hotspots and the way hotspots are addressed, which might assist
them in offering a more effective intervention to patients that otherwise would not
respond sufficiently to treatment (Nijdam & Wittmann, 2015).

Because of the low generalizability, the current study should merely be seen as
a proof of concept, showing the technical and practical feasibility and possibilities
of text and audio mining for research on trauma treatment processes and mental
health research in general. Future research should focus on applying this method
to larger, higher quality data sets before more general conclusions can be drawn.
Still we want to emphasize the added value and potential of the used methods and
data for future research. For clinical practice, in the future this work may benefit
the patient because these types of models can provide the therapist with (direct)
automated feedback, which allows for more precise and unobtrusive monitoring of
treatment progress.
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Appendix 5-A
Extracted text features

𝑁-grams
𝑁-grams were extracted to analyze differences in content of hotspots versus non-
hotspots. 𝑁-grams are for example bigrams (sequences of two words) or trigrams
(sequences of three words), whereas 𝑁-multigrams consist of variable-length se-
quences of maximum 𝑁 words (D. Shen et al., 2006). Contrary to unigrams, 𝑁-
grams and 𝑁-multigrams can take into account the relationship between consec-
utive words and word context, which can be valuable when analyzing words with
multiple meanings or when the relationship between consecutive words changes
the meaning of a phrase, for example in case of negation (Bekkerman & Allan,
2003; D. Shen et al., 2006; Tan et al., 2002). Unigrams, bigrams, trigrams, and
𝑁-multigrams of maximum three words were extracted and weighted using the
CountVectorizer implemented in Scikit-learn.

Table 5.A.1: 𝑁-grams

Feature Description Construct

Unigrams Single words Content
𝑁-grams Short phrases of 𝑁 consecutive words (max 𝑁 was set to 3) Content
𝑁-multigrams Variable-length sequences of max 𝑁 words (max 𝑁 was set to 3) Content

Parts-of-speech (POS) tags
Many different POS tagsets exist, but almost every tagset contains the 12 universal
grammatical tags, which are verbs, common and proper nouns, pronouns, adjec-
tives, adverbs, pre- and postpositions, conjunctions, determiners, cardinal num-
bers, participles, “other”, and punctuation (Perkins, 2014). A POS tagger is gen-
erally trained on a training corpus that consists of POS tagged words; tokens of
the format (word, tag). We used a pre-trained Perceptron tagger for Dutch by Van
Miltenburg (2015) based on the NLCOW14 corpus, which was tagged using the
stochastic TreeTagger by Schmid (1999), available in Python 3. We extracted 24
POS tags that were expected to relate to the prespecified operational constructs.

LIWC categories
Of the 66 categories included in LIWC, 23 were expected to relate to the prespeci-
fied operational constructs. Another 11 were included as features because of their
expected relation to hotspot content (e.g., categories related to perceptual pro-
cesses, assent, and negation). The occurrence frequencies for these categories
were determined using the validated Dutch dictionary developed by Zijlstra et al.
(2004).
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Table 5.A.2: Parts-of-speech (POS) tags

Tag Example (Dutch) Construct

Conjcoord (coordinate conjunction) and (en) Complexity, Emotions, Cognitions
Conjsubo (subordinate conjunction) as (als) Complexity, Emotions, Cognitions
Det_art (determiner article) the (de, het) Emotions, Cognitions
Det_demo (demonstrative determiner) those (die) Cohesion
Nounpl (common noun plural) humans (mensen) Cohesion
Nounprop (proper noun) Sudan (Soedan) Cohesion
Nounsg (common noun singular) human (mens) Cohesion
Partte (particle) to (te) Emotions, Cognitions
Prep (preposition) at (aan) Emotions, Cognitions
Pronadv (adverbial pronoun) with that (er, daarmee) Cohesion, Emotions, Cognitions
Prondemo (demonstrative pronoun) self (zelf) Cohesion, Emotions, Cognitions
Pronindef (indefinite pronoun) some (sommigen) Cohesion, Emotions, Cognitions
Pronpers (personal pronoun) he (hij) Cohesion, Emotions, Cognitions
Pronposs (possessive pronoun) his, mine (zijn, mijn) Cohesion, Emotions, Cognitions
Pronquest (interrogative pronoun) who, what (wie, wat) Cohesion, Emotions, Cognitions
Pronrefl (reflexive pronoun) “X”-self, each other (zich, elkaar) Cohesion, Emotions, Cognitions
Pronrel (relative pronoun) what (wat) Cohesion, Emotions, Cognitions
Verbinf (verb infinitive) to do (doen) Emotions, Dissociation, Organization
Verbpapa (verb past participle) painted (geschilderd) Dissociation
Verbpastpl (verb past tense plural) could (konden) Dissociation
Verbpastsg (verb past singular) dived (dook) Dissociation
Verbpresp (verb present participle) laughing (lachend) Emotions, Dissociation, Organization
Verbprespl (verb present tense plural) sit (zitten) Emotions, Dissociation, Organization
Verbpressg (verb present tense singular) sit (zit) Emotions, Dissociation, Organization
Note. POS tag overview as published in the Dutch tagset documentation for the TreeTagger Tool developed by
Helmut Schmid, Institute for Computational Linguistics, University of Stuttgart. Retrieved from http://www.cis.
uni-muenchen.de/~schmid/tools/TreeTagger/. Examples adopted from Sketch Engine; https://www.sketchengine.
eu/dutch-treetagger/.

NRC emotion lexicon
To captue emotions we used the open source NRC word-emotion association lexicon
(also known as EmoLex) developed by Mohammad and Turney (2010, 2013). This
is a hand-coded lexicon originally annotated for English and translated for over
twenty languages using Google Translate (July, 2015) based on the assumption that
affective norms are stable across languages despite possible cultural differences.
The Dutch NRC emotion lexicon contains associations for 7,850 words. Despite
possible errors the lexicon may contain due to incorrect or transliteral translations,
we expected features extracted using the NRC emotion lexicon to complement the
LIWC emotion features, because it covers emotion categories not included in LIWC
(e.g., disgust, trust, anticipation, and surprise).

Custom tags
We specified several (parts of) words and word patterns that we expected to relate
to the prespecified constructs. Counts for all words or phrases that matched these
specific patterns were returned by the custom tagger.

Text characteristics and statistics
General text characteristics are for example the total number of words used (text
length), the number of unique unigrams or 𝑁-grams (lexical diversity), number of
complex words (words of six or more characters; Tausczik & Pennebaker, 2010),

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://www.sketchengine.eu/dutch-treetagger/
https://www.sketchengine.eu/dutch-treetagger/
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Table 5.A.3: LIWC categories

Category Example (Dutch) Construct

Total 1st person I, we (ik, wij) Dissociation
Total 2nd person you, your (jij, jouw) Dissociation
Total 3rd person their, she (hun, zij) Dissociation
Negations no, never (nee, nooit) Content
Assent agree, yes (eens, ja) Content
Affect words (emotional processes) happy, sad (blij, verdrietig) Affect, Organization
Positive emotions thankful, brave (dankbaar, dapper) Emotions
Positive feelings fun, love (plezier, liefde) Emotions
Optimism proud, willpower (trots, wilskracht) Emotions
Negative emotions hurt, hostile (gekwetst, vijandig) Emotions
Anxiety nervous, worried (nerveus, bezorgd) Emotions, Organization
Anger hate, threat (haat, dreiging) Emotions
Sadness crying, grief (huilen, rouw) Emotions
Cognitive processes cause, know (oorzaak, weten) Cognitions, Organization
Causation because, effect (omdat, effect) Cognitions
Insight think, consider (denk, overwegen) Cognitions
Discrepancy should, could (zouden, kunnen) Cognitions
Inhibition constrain, stop (beperken, stoppen) Cognitions
Tentative maybe, perhaps (misschien, wellicht) Cognitions
Certainty always, never (altijd, nooit) Cognitions
Perceptual processes observing, feel (observeren, voelen) Dissociation
Time end, until (eind, totdat) Dissociation
Verbs in past tense went, ran (ging, rende) Dissociation
Verbs in present tense is, does (is, doet) Emotions, Dissociation, Organization
Verbs in future tense will, going to (zal, gaan) Dissociation
Religion pray, honour (bidden, eren) Content
Death bury, kill (begraven, doden) Content
Physical ill, faint (ziek, flauwvallen) Content
Body vital, cramp (vitaal, kramp) Content
Sexual flirt, kiss (flirten, kussen) Content
Ingestion drink, hungry (drinken, honger) Content
Sleep nightmare, awake (nachtmerrie, wakker) Content
Groom shower, wash (douchen, wassen) Content
Swear words Content
Note. LIWC categories and examples translated from Zijlstra et al. (2004).

Table 5.A.4: NRC emotion lexicon

Category Example (Dutch) Construct

Anger Crunch, harassing (knarsen, storend) Emotions
Disgust Dank, decompose (vochtig, ontleden) Emotions
Fear Crouch, hesitation (hurken, aarzeling) Emotions, Organization
Happiness/Joy Pleased, praise (tevreden, lof) Emotions
Sadness Homesick, pity (heimwee, jammer) Emotions
Surprise Incident, pop (incident, knal) Emotions
Anticipation Hurry, importance (haasten, belang) Emotions
Trust Personal, stable (persoonlijk, stabile) Emotions
Positive sentiments Amiable, learn (beminnelijk, leren) Emotions
Negative sentiments Chilly, suffer (kil, lijden) Emotions
Note. Emotion categories and examples derived from Dutch NRC emotion lexicon file.

number of repeated words and bigrams, revisions, speaker turns and utterances,
and statistical measures such as reading ease and grade level indices to examine
language strength.

Except for the number of complex words, which was extracted using the LIWC
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Table 5.A.5: Custom tags

Tag Example (Dutch) Construct

Emotional expressions sniff, sob, cry, sigh, cough (snif, snik, huil, zucht, kuch) Affect, Emotions

Additive connectives/
Conjunctions

and, also, in addition, besides, not only…but also, moreover, fur-
ther (en, ook, daarbij, daarnaast, niet alleen…maar ook, verder,
voorts)

Cohesion

Comparative connectives/
conjunctions

Comparison: like, as if, except (zoals, alsof, behalve)
Contradiction: (even) though, although, despite, in spite of,
without ((al)hoewel, ofschoon, ondanks dat, zonder dat)
Condition: if, in case, provided, unless (als, indien, mits, tenzij)
Between sentences: and, or, but, neither, however, nor (en,
of, maar, doch, edoch, noch)

Cohesion

Temporal connectives/
conjunctions

Time: when, if, while, once, before, for, now, then, after, af-
terwards, before (wanneer, als, terwijl, zodra, voordat, voor, nu,
toen, nadat, nadien, vooraleer)
Duration: as long as, until, since, as, according as (zolang als,
totdat, sinds, sedert, naarmate, naargelang)

Cohesion

Causal connectives/
conjunctions

Cause/effect/reason/purpose words: because, so, so...that,
whereby, for, for that, therefore, that, since, if...then, by, in case
(doordat, zodat, zo…dat, waardoor, omdat, opdat, daarom, dat,
aangezien, als…dan, door, in geval)

Cohesion

Adverbial adverbs Connecting: moreover, likewise, nor, also, besides, even,
therewith (bovendien, eveneens, evenmin, ook, tevens, zelfs,
daarbij)
Contradicting: on the other hand, nevertheless, nonetheless,
however, though, on the contrary, meanwhile, yet, now (daar-
entegen, des(al)niettemin, desondanks, echter, evenwel, inte-
gendeel, intussen, nochtans, niettemin, nu, toch)
Consequential: consequently, therefore, thus, hence, because
of (bijgevolg, derhalve, deswege, dus, dientengevolge)
Other: at least, after all, by the way, besides, yet (althans, im-
mers, overigens, trouwens, toch)

Cohesion

Temporal juncture “then” (dan) Cohesion

Definite articles “the” (de, het) Cohesion

Confusion don’t know, don’t get it, don’t understand, don’t remember (weet
(het) niet, snap(te) (het) niet, begrij(ee)p (het) niet, herinner
(me) niet, niet herinneren)

Avoidance,
Organization

Speech fillers uh, hmm, hmm-m, so, like, but, anyway, well (dus, ofzo, enzo,
zeg maar, soort van, oke, he, weet je, toch, nou ja)

Fragmentation

Revisions Fragments: -word, word- Fragmentation

Function words Function word list for Dutch (Van Wijk & Kempen, 1980) Fragmentation
Note. Connectives and conjunctions derived from grammar overviews by Dutch language course providers (Open
Leercentrum, n.d.).

tool, and Honoré’s 𝑅 and Brunét’s index, which were calculated separately as in
Fraser et al. (2014), all general and statistical text features were extracted using
Python’s Textstat package. As readability index we only used the Dutch Flesch-
Douma measure 𝐺 (Douma, 1960), an adaptation of the English Flesch reading
ease index (FRE; Flesch, 1948), because the Bormuth Grade Level (Zoellner et al.,
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2002) uses a standard list of familiar words in English for which no Dutch translation
is available.

Table 5.A.6: Text characteristics and statistics

Characteristic/Statistic Definition/Function Construct

N(words) Total number of words used (word tokens) Fragmentation
N(unique words) Number of unique words used (word types) Avoidance
Type:Token Ratio (TTR) 𝑁(𝑤𝑜𝑟𝑑 𝑡𝑦𝑝𝑒𝑠)/𝑁(𝑤𝑜𝑟𝑑 𝑡𝑜𝑘𝑒𝑛𝑠) Avoidance, Cohesion
Words used once Words that occur only once in the text Avoidance, Complexity
N(characters) Total per phase
Mean N(characters) per word Mean word length in characters Dissociation, Complexity
N(complex words) Words of > 6 characters Complexity
N(syllables) Total syllables per phase Complexity
Mean N(syllables per word) Mean word length in syllables Complexity
Repetition Number of immediate word repetitions Organization, Fragmentation
N(unique bigrams) Number of unique bigrams used Organization, Fragmentation
Pronoun:Noun ratio (PNR) 𝑁(𝑝𝑟𝑜𝑛𝑜𝑢𝑛𝑠)/𝑁(𝑛𝑜𝑢𝑛𝑠) Cohesion
Subordinate:coordinate ratio 𝑁(𝑐𝑜𝑛𝑗𝑠𝑢𝑏𝑜)/𝑁(𝑐𝑜𝑛𝑗𝑐𝑜𝑜𝑟𝑑) Complexity
Dutch Flesch-Douma 𝐺 207 − 0.93×𝑁(𝑤𝑜𝑟𝑑 𝑡𝑜𝑘𝑒𝑛𝑠)/𝑁(𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠)

77×𝑁(𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠)/𝑁(𝑤𝑜𝑟𝑑 𝑡𝑜𝑘𝑒𝑛𝑠) Dissociation, Complexity

Honoré’s 𝑅 100 log(𝑁(𝑤𝑜𝑟𝑑 𝑡𝑜𝑘𝑒𝑛𝑠))
1−(𝑁(𝑤𝑜𝑟𝑑𝑠 𝑢𝑠𝑒𝑑 𝑜𝑛𝑐𝑒)/𝑁(𝑤𝑜𝑟𝑑 𝑡𝑦𝑝𝑒𝑠)) Avoidance, Complexity

Brunét’s index 𝑁(𝑤𝑜𝑟𝑑 𝑡𝑜𝑘𝑒𝑛𝑠)𝑁(𝑤𝑜𝑟𝑑 𝑡𝑦𝑝𝑒𝑠)−0.165 Avoidance, Complexity
Note. Extracted using Python’s TextStat package and LIWC.

Stop words

Table 5.A.7: Stop word list

Dutch stop words English translation

’de’, ’en’, ’van’, ’ik’, ’te’, ’dat’, ’die’, ’in’, ’een’, ’hij’,
’het’, ’niet’, ’zijn’, ’is’, ’was’, ’op’, ’aan’, ’met’, ’als’,
’voor’, ’had’, ’er’, ’maar’, ’om’, ’hem’, ’dan’, ’zou’,
’of’, ’wat’, ’mijn’, ’men’, ’dit’, ’zo’, ’door’, ’over’, ’ze’,
’zich’, ’bij’, ’ook’, ’tot’, ’je’, ’mij’, ’uit’, ’der’, ’daar’,
’haar’, ’naar’, ’heb’, ’hoe’, ’heeft’, ’hebben’, ’deze’,
’u’, ’want’, ’nog’, ’zal’, ’me’, ’zij’, ’nu’, ’ge’, ’geen’,
’omdat’, ’iets’, ’worden’, ’toch’, ’al’, ’waren’, ’veel’,
’meer’, ’doen’, ’toen’, ’moet’, ’ben’, ’zonder’, ’kan’,
’hun’, ’dus’, ’alles’, ’onder’, ’ja’, ’eens’, ’hier’, ’wie’,
’werd’, ’altijd’, ’doch’, ’wordt’, ’wezen’, ’kunnen’,
’ons’, ’zelf’, ’tegen’, ’na’, ’reeds’, ’wil’, ’kon’, ’niets’,
’uw’, ’iemand’, ’geweest’, ’andere’

’the’, ’and’, ’of’, ’I’, ’too’, ’that’, ’this’, ’in’, ’a’/’an’,
’he’, ’it’, ’not’, ’to be’, ’is’, ’was’, ’on’, ’at’, ’with’, ’if’,
’for’, ’had’, ’there’, ’but’, ’to’, ’hem’, ’then’, ’would’,
’or’, ’what’, ’mine’, ’one’, ’this’, ’so’, ’through’,
’over’, ’they’, ’them’, ’with’, ’too’, ’until’, ’you’, ’me’,
’from’, ’there’, ’her’, ’to’, ’have’, ’how’, ’has’, ’to
have’, ’these’, ’you’, ’because’, ’still’, ’will’, ’me’,
’they’, ’now’, ’no’, ’because’, ’something’, ’to be-
come’, ’still’, ’already’, ’were’, ’many’, ’more’, ’to
do’, ’then’, ’have to’, ’am’, ’without’, ’can’, ’their’,
’so’, ’all’, ’under’, ’yes’, ’once’, ’here’, ’who’, ’was’,
’always’, ’but’, ’will be’, ’went’, ’could’, ’us’, ’self’,
’against’, ’after’, ’already’, ’want to’, ’could’, ’noth-
ing’, ’your’, ’someone’, ’has been’, ’other’

Note. Adapted from NLTK.



5

150 5. Recognizing hotspots in Brief Eclectic Psychotherapy for PTSD

Appendix 5-B
Extracted speech features

Pitch
The pitch is measured by the fundamental frequency (F0). The fundamental fre-
quency is the lowest frequency of the waveform. Sounds with higher frequency
are generally perceived as having a higher pitch (Jurafsky & Martin, 2009). For
each patient utterance we extracted statistics related to the mean pitch (𝑚_𝑝𝑖𝑡𝑐ℎ)
and the standard deviation of pitch (𝑠_𝑝𝑖𝑡𝑐ℎ). 𝑀_𝑝𝑖𝑡𝑐ℎ is the mean pitch mea-
sured when the patient is speaking. For each patient utterance in a hotspot or
non-hotspot segment, the mean pitch is measured and averaged over all patient
utterances in that hotspot or non-hotspot. 𝑆_𝑝𝑖𝑡𝑐ℎ is the standard deviation of pitch
measured when the patient is speaking. For each patient utterance in a hotspot or
non-hotspot segment, the standard deviation of pitch is measured and averaged
over all patient utterances in that hotspot or non-hotspot. For both 𝑚_𝑝𝑖𝑡𝑐ℎ and
𝑠_𝑝𝑖𝑡𝑐ℎ, the mean, variance, min, max, and range are calculated over all patient
utterances in the segment (hotspot or non-hotspot phase in the session) in order
to obtain one value per related statistic per segment.

Table 5.B.1: Pitch

Feature Parameters Construct

m_pitch Mean, SD, min, max, range Affect, Emotions
s_pitch Mean, SD, min, max, range Affect, Emotions
Note. Extracted using Praat version 6.0.4.3.

Loudness
The intensity is correlated with a sound wave’s amplitude; the maximum vertical
displacement from rest (silence) to the top (crest) or bottom (trough) of the wave,
which is expressed in decibels (dB) (Lapp, 2006). In general, sounds with higher
amplitudes are perceived as being louder (Jurafsky & Martin, 2009). Equal to the
extraction of the pitch features, we extracted 𝑚_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 and
calculated their mean, variance, min, max, and range over all patient utterances
in the hotspot and non-hotspot segments, resulting in one value per statistic per
segment.

Duration
Duration covers tempo and pause. Tempo refers to the speaking rate, which is
measured as overall duration (e.g., sound length in (mili)seconds or total duration
of speaking time (as in Fraser et al., 2014; Lamers et al., 2014), or as units per
duration (e.g., words or syllables per second or minute) (Juslin & Scherer, 2005).

We measured speech tempo for the entire audio fragment including pauses
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Table 5.B.2: Loudness

Feature Parameters Construct

m_intensity Mean, SD, min, max, range Affect, Emotions
s_intensity Mean, SD, min, max, range Affect, Emotions
Note. Extracted using Praat version 6.0.4.3.

(speech rate) and for the spoken parts only, excluding pauses and hesitations (ar-
ticulation rate) (Jacewicz et al., 2009). Similarly, pauses can be silent or voiced
(Roach, 2000). Voiced pauses were covered by the lexical feature “speech-fillers”,
silent pauses were captured automatically using Praat’s silence detection function,
with the minimal silence duration set at 500 ms, as in Lamers et al. (2014). We
extracted mean, SD, min, max, and rate for the duration of silences (pauses) and
speaking time in Praat. Based on these values, we calculated phonation rate, speech
productivity, and variables related to speech tempo.

Table 5.B.3: Duration

Feature Parameters/Function Construct

Speech rate (incl pauses) •Words per minute
• Syllables per minute
• Praat: mean, SD, min, max, range

Affect, Emotions, Fragmentation,
Avoidance

Articulation rate (excl pauses) •Words per voiced minute
• Syllables per voiced minute

Affect, Emotions, Avoidance

Phonation rate 𝑁(𝑣𝑜𝑖𝑐𝑒𝑑 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
𝑁(𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑛𝑢𝑡𝑒𝑠) Affect, Emotions, Avoidance

Speech productivity (pause:speech ratio)a 𝑁(𝑠𝑖𝑙𝑒𝑛𝑡 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
𝑁(𝑣𝑜𝑖𝑐𝑒𝑑 𝑚𝑖𝑛𝑢𝑡𝑒𝑠) Fragmentation

MLU (mean length utterance) •MLU_words
•MLU_mins

Dissociation, Organization, Frag-
mentation, Complexity, Avoidance

Silent (pause duration) Mean, SD, max, n, rate, sum Avoidance

Sounding (speech duration) Mean, SD, max, n, rate, sum Avoidance
Note. Extracted using Praat version 6.0.4.3.

a Lamers et al. (2014).

Spectral features
Spectral features are frequency based features that represent the different frequen-
cies (called “spectrum”) that together make up the acoustic waveform (Jurafsky &
Martin, 2009). These features were extracted at frame level, over frames with a
window length of 0.015 s and time steps of 0.005 s. We extracted 12 Mel-frequency
cepstral coefficients (MFCCs) and calculated mean and variance over all frames. The
MFCCs jointly form a mel-frequency cepstrum, which represents a sound’s short-
term power spectrum (Iliou & Anagnostopoulos, 2010), see Logan (2000) for more
on MFCC features.
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Table 5.B.4: Spectral features

Feature Parameters Construct

m_MFCC1−12 Mean, SD Emotions
s_MFCC1−12 Mean, SD Emotions
Note. Extracted using Praat version 6.0.4.3.

Voice quality features
Perceived voice quality is measured by high-frequency energy (HF), which is the
relative proportion of energy in an acoustic signal above versus below a specific
frequency, and formant frequencies (Juslin & Scherer, 2005). We used a common
cut-off frequency of 500 Hz for the high-frequency energy, extracting mean and
variance for HF 500. For the formant frequencies, we extracted the mean and
precision of the first formant (F1), as commonly used.

Table 5.B.5: Voice quality features

Feature Parameters Construct

HF 500 Mean, SD, min, max Affect, Emotions
HF 1000 Mean, SD, min, max Affect, Emotions
Slope 500 Mean, SD, min, max Affect, Emotions
Note. Extracted using Praat version 6.0.4.3.

Turn statistics
Turn statistics are general, overall speech features for each hotspot and non-hotspot
phase, such as the number of speaker turns, turn length, and the number of utter-
ances.

Table 5.B.6: Turn statistics

Feature Parameters Construct

N(speaker turns) Total number of speaker turns General
Turn length Mean length of speaker turn (in words and minutes) Complexity
N(utterances) Total number of patient utterances, split by silences > 1 sec Dissociation
Note. Extracted using Praat version 6.0.4.3.
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Appendix 5-C
Operationalization of hotspot constructs

Affect
To capture the construct affect, we adopted voice cues commonly used in studies
of vocal affect, which are pitch, loudness, voice quality, and duration (Juslin &
Scherer, 2005). In addition, we used lexicon-based features (LIWC) to assess the
occurrence of affect words and custom tags for the occurrence of audible emotional
expressions (e.g., sniffing, sighing).

Emotions
We assessed emotions through the use of emotion words, captured through lexicon-
based features related to emotion (LIWC and NRC emotion lexicon), and audible
emotional expressions. Although the LIWC and NRC categories do not completely
cover the emotions found to relate most to hotspots (e.g., guilt and horror are not
included in either of the lexicons, see Appendix 5-A, we still expect the available
emotion categories to provide additional information on the emotions present in
hotspot moments. Emotions can additionally be represented by other textual fea-
tures, such as an increased use of the present tense (Hellawell & Brewin, 2004;
Pillemer et al., 1998) and particles (Pennebaker et al., 2003), which we respectively
measured through lexicon-based features and POS tags related to verb tense and
particles (e.g., pronouns, articles, prepositions, conjunctives).

Apart from text features, speech features can also be expected to differ among
emotions. For example, fundamental frequency and voice intensity (related to pitch
and loudness, respectively) are found to be higher for the emotions anger, fear,
and stress, and lower for sadness (Juslin & Scherer, 2005). We adopted prosodic
features related to pitch, loudness, and duration, and spectral and voice quality fea-
tures, as these are used in several studies related to emotion, such as the phonetic
description of emotional speech (Roach, 2000), emotion detection (Cowie et al.,
2001; P. Shen et al., 2011; Ververidis & Kotropoulos, 2006), and the measurement
of emotional distress (Van Den Broek et al., 2009).

Cognitions
We operationalized cognitive themes through lexicon-based features (LIWC) related
to cognitive processes. As for emotions, not all cognitive themes as defined by
Holmes et al. (2005) are covered by the cognitive categories included in LIWC.
Still we expect to gain extra information from the lexicon-based features that are
available. For example, the categories “causation” and “insight” might relate to the
cognitive theme consequences, and the categories “tentative” and “inhibition” to
the theme uncertain threat (see overview of extracted cognitions in Appendix 5-A).
Moreover, as for emotional state, the POS tag “particle” can be indicative of one’s
cognitive style (Pennebaker et al., 2003).
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Dissociation
We adopted lexicon-based features (LIWC) and POS tags to capture the change in
personal pronouns and verb tense associated with dissociation. Following Zoellner
et al. (2002), who studied indications for peritraumatic dissociation in trauma nar-
ratives, general text characteristics related to narrative structure (characters per
word, words per sentence, total number of sentences, and several reading indices)
were also used.

Avoidance
We operationalized avoidance through audio statistics related to duration (tempo
and pauses), text statistics related to the extensity of descriptions (verbosity) and
lexical diversity (also termed vocabulary richness) such as Type:Token Ratio (TTR),
Honoré’s 𝑅, Brunét’s index, as in Fraser et al. (2014), and custom tags that indicate
confusion.

Cohesion
We operationalized cohesion through custom tags concerning the use of connec-
tives and conjunctions (as in O’Kearny et al., 2007; O’Kearney et al., 2011), and
the temporal juncture “then” to measure the temporal sequence of spoken clauses
(based on Shaw et al., 2001). According to Shaw and colleagues, use of this tempo-
ral juncture by PTSD patients indicates that the patient is closer to re-experiencing a
narrated memory with high emotional involvement. Following Crossley et al. (2016),
we also used the pronoun:noun ratio (PNR, calculated based on POS tags for nouns
and pronouns), the occurrence of demonstratives (captured using POS tags), and
definite articles (captured using a customized tag set) to gauge the amount of in-
formation given in the text (referred to as “givenness”). Finally, the general text
statistic Type:Token Ratio (TTR), an indicator of word repetition across a text, was
adopted to assess overall text cohesion.

Organization
Jelinek et al. (2010) studied (dis)organization by counting the number of words in-
dicative of cognitive processes, words related to affection and anxiety, and words in
present tense (captured through lexicon-based text features and POS tags). They
also used unfinished thoughts (based on Foa et al., 1995) and the “total disorgani-
zation score” introduced by Halligan et al. (2003), which is calculated based on the
occurrence of repetitions, disorganized thoughts and organized thoughts.

Repetitions are captured by counting the number of direct word repetitions
(Croisile et al., 1996; De Lira et al., 2011) and the number of unique bigrams,
which is indicative of repeated bigram patterns (Orimaye et al., 2014). Disorga-
nized thoughts, which consist of utterances implying confusion such as “I don’t
remember” or “I don’t know” (Foa et al., 1995) are captured through custom tags,
and structural organization of sentences is measured by the Mean Length of Utter-
ance (MLU, as in Orimaye et al., 2014).
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Fragmentation
Previous studies assessed fragmentation by coding repetitions, unfinished thoughts,
and speech fillers (Foa et al., 1995; Römisch et al., 2014). Of these, we included
repetitions (captured as for the construct Organization) and speech fillers (or filled
pauses, Fraser et al., 2014, captured using custom tags for e.g., “uh” or “hmm”),
since these could be automatically extracted from the data.

Another commonly used indicator for fragmentation is (dis)fluency, because this
is a direct and homogeneous measure (Römisch et al., 2014). Speech fluency was
found to be inversely related to PTSD symptoms (e.g., Gil et al., 1990; Uddo et
al., 1993). Examples of speech disfluencies are repetitions, repairs, filled pauses,
and false starts (Shriberg, 2001). To measure speech fluency we used the speech
features speech rate and speech productivity and the text feature audible struggle,
which were found by Park et al. (2011) to be the most discriminative features for
fluency. To capture audible struggle we used custom tags for revisions (based on
Croisile et al., 1996; De Lira et al., 2011; Orimaye et al., 2014). Revisions are
moments in which the patient retraces and corrects a preceding error, which is
extracted from speech transcripts by counting transcribed fragments. Fragments
in this context are words that are broken off in the middle. In speech transcripts,
fragments are generally represented using ‘-‘, e.g., word- or -word (Jurafsky &
Martin, 2009).

Finally we used the total number of words produced (as in Fraser et al., 2014),
because fragmented speech may be characterized by the use of short, less mean-
ingful, or fragmented phrases and single words, and the total number of function
words. Function words are the words that give meaning to a text (Orimaye et al.,
2014). Their occurrence was counted using a standard Dutch function words list
(first published by Van Wijk & Kempen, 1980).

Complexity
We operationalized complexity through text characteristics related to reading in-
dices, narrative structure, and syntactic processing complexity. Although the use
of readability indices to capture text comprehensibility is not undisputed, many dif-
ferent reading indices exist and are used in scientific studies. Amir et al. (1998) for
example used the Flesch Reading Ease Index (FRE; Flesch, 1948) and the Flesch-
Kincaid Grade Level (FKGL; Kincaid et al., 1975) to capture narrative articulation
(i.e., comprehensibility, complexity), whereas Zoellner et al. (2002) used the Bor-
muth Readability Index (Bormuth, 1969). To gauge narrative structure and syntactic
processing complexity, we used general text characteristics such as mean word and
sentence length, number of syllables and complex words, and the number and ratio
of coordinated and subordinated conjunctions (captured through POS tags, see De
Lira et al., 2011; Fraser et al., 2014). Finally, the total number of utterances and the
mean number of words per utterance were also adopted as measures for language
strength and verbosity (as in Orimaye et al., 2014).
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Abstract
Whereas natural language processing is used to automatically extract textual
and structural features from narratives, visualizing these features can help
to explore patterns and shifts in text content and structure. This study shows
how data visualization can be used to explore differences in narrative styles.
Streamgraphs were developed for different types of “Letters from the Future”,
an online mental health promotion instrument. The visualizations showed
differences between as well as within the different letter types, providing
directions for future research in both the visualization of narrative structure
and in the field of narrative psychology. The method presented here is not
limited to “Letters from the Future”, the current object of study, but can in
fact be used to explore any digital or digitalized textual source, like books,
speech transcripts, or email conversations.
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6.1. Introduction

I n this study “Letters from the Future”, a narrative-based instrument used by Soolsand Mooren (2012) to investigate the human capacity to imagine the future, is
studied using a combination of quantitative analysis, natural language processing
and text visualization methods. Traditionally, in narrative psychology, qualitative
methods for analysing narrative content and structure are predominantly based on
hand-coded data. The underlying structure of a narrative is represented for exam-
ple by defining clusters or counting word frequencies. A widely used approach in
narrative studies is componential analysis, which focusses on identifying and exam-
ining the structural elements that narratives consist of. The narrative framework
of Labov and Waletzky (1967), who originally divided narratives into five structural
units (orientation, complication, resolution, evaluation, and coda), is a prime ex-
ample of the componential approach.

The many features and feature combinations that can potentially be extracted
from narratives can quickly result in an overwhelming quantity of data to be pro-
cessed and interpreted. In addition, as a consequence of the growing popularity of
e-mental health interventions, more and more digital narrative data become avail-
able for analysis. Processing and interpreting all these data by hand is a tremen-
dous, if not impossible, task. However, the growing availability of digital narrative
data also generates new opportunities. There now are sufficient narrative data
available to scale up the study of narratives by applying natural language process-
ing (NLP) methods. In NLP, computers are used to process and manipulate natural
language (Chowdhury, 2005; Liddy, 2001), “natural language” being any spoken
or written language used by humans in everyday life (Bird et al., 2009). The main
benefits of NLP over the manual processing of narratives is that it is far less time
consuming and less error prone than human coders. Moreover, NLP enables re-
searchers to process and compare large data sets or very detailed textual data.

A recent systematic literature review on text mining applications in psychiatry
(Abbe et al., 2015) showed that the use of NLP and text mining methods is still in its
infancy in the fields of psychology and psychiatry. NLP applications have also only
recently found their ways in the field of humanities. From the humanities perspec-
tive, computational narratology (Mani, 2014) can be described as a methodological
instrument to develop narratological theories, enabling researchers to extend and
test their models on larger text corpora and to specify and apply concepts and
models automatically and thus more consistently (Meister & Matthews, 2003). As
described by Mani (2014), in computational narratology narratives and narrative
structures are explored using computation and information processing methods.

Bradley and Rockwell (1994) state that an efficient approach to explore the un-
derlying mathematical structure of narratives is text visualization. The mathemati-
cal structure is generally captured using first-, second- and third-order statistics like
word frequencies, clustering, and natural language algorithms (Wise et al., 1995).
Visually representing this structure enables researchers to reveal and interpret dif-
ferences and relationships within and between text documents that would have
been difficult, or even impossible, to identify solely from the texts or from tables of
numerical data extracted from these texts (Bradley & Rockwell, 1994; Valéry et al.,
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Figure 6.1: Schematic overview of procedure

1999; Wise et al., 1995). Contrary to graphs, visualizations are generally used as
an exploratory tool to explore and analyze the data and not to present study results
to the public (Valéry et al., 1999).

6.1.1. Letters from the Future

T his study uses computational narratology to explore “Letters from the Future”,
an online narrative-based mental health promotion instrument developed by

Sools and Mooren (2012). The instrument is adapted from an earlier exercise by
Bohlmeijer (2007), in which storytelling groups are used to enhance mental health.
Using a web-based tool, participants are asked to write a letter from a particular
situation and moment in the future to someone in the present. Sools et al. (2015)
studied the human capacity to imagine the future by hand-coding narrative pro-
cesses within each individual letter on sentence-level (see procedure in Figure 6.1).
They clustered these narrative processes into five overarching components which
were then used to identify six different letter types; 1) Imagining and evaluating the
futured past; 2) Imagining and orienting to the futured present and futured past;
3) Expressive imagining of the futured present; 4) Reminiscing and evaluating the
past without imagination of the future; 5) Intentional orientation with expression
of emotions; and 6) Advisory letters about current practical and moral concerns.

The letter types were defined based on a comparative analysis of the follow-
ing elements: 1) the dominant narrative process (imagining, evaluating, orienting,
expressing emotions or engaging in dialogue); 2) the use of certain grammatical ele-
ments like past, past imperfect, present and future tense, modals (“would”, “could”,
“should”), intentional time (“hope”, “wish”, “want”), or the imperative (“go!”, “re-
member!”); 3) the presence and clearness of a path between present and future;
and 4) the level of detail of the imagination. Table 6.1 gives an overview of the six
letter types and the corresponding structures found by Sools et al. (2015).

As shown in Table 6.1, Sools et al. (2015) found a clear distribution and sequence
of narrative processes and grammatical elements for half of the letters (letter types
one, two, and four). However, these structures are not always uniformly applicable
to all letters of the corresponding type. For example, type one letters generally
consist of five elements, but the order of these elements can differ; letters can start
either with narrative imagination of the desired future, anticipated reminiscence of
the future past or an evaluative part preceding narrative imagination. The same
goes for letters of type two, about which Sools et al. (2015) write: “The orienting
function could be prominent from the first sentence, in letters starting with goal-
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setting or value orienting phrases rather than with a situation (but the order could
be reversed as well).” [p.19]. Another remark on type two letters was the finding
that hope, a prominent feature in those letters, could occur either at the beginning
or end of a letter.

The current study is a response to the suggestion of Sools and Mooren (2012)
that more in-depth insight into how and why narrative futuring works can be gained
by combining traditional qualitative with quantitative methods. The principal aim is
to gain a more detailed understanding of the differences in letter content, specifi-
cally the distribution (sequential order) and proportion of narrative processes and
grammatical elements, both within and between the letter types. This study first
addresses the two esential topics in the development of text visualizations: cap-
turing the mathematical structure of the narratives using an existing NLP package,
and visualizing these structures in such a way they can be used to study differ-
ences both within and between the different types of letters. The developed text
visualizations are then compared to previous findings based on qualitative methods
by Sools et al. (2015) and linked to the existing narrative framework of Labov and
Waletzky (1967). The new insights from this study can be used not only to confirm
the previous findings of Sools et al. (2015) but also to develop new theories and
hypotheses regarding the human capacity to imagine the future.

6.2. Methods
6.2.1. Data set

A n existing data set of 492 “Letters from the future” collected for a previous study
by the Storylab, the Dutch expert centre for narrative psychology and mental

health promotion at the University of Twente, was used (see Sools & Mooren, 2012;
Sools et al., 2015, for more information on the data collection process). Informed
consent to reuse these letters for on-going research by the Storylab was obtained.
The letters were written by a relatively diverse, mainly Dutch (70%) and German
(27%) participants. The letters were manually categorized into six categories by
three independent raters (interrater reliability score = 0.672). Table 6.2 shows an
overview of the number of letters and mean text length per category. In the current
study only Dutch letters that were clearly categorized in one of the six letter types
are used, resulting in a data set of 351 letters.

6.2.2. Preprocessing

S alutations, recipient and sender names, location and dates at the beginning and
end of the letters are removed. This is done because these elements are consid-

ered non-informative and may cause difficulties when splitting and concatenating
the letters into segments, distorting the results of subsequent analyses and visual-
izations. After that the narratives are split into equally sized segments, for which
word frequencies can be plotted along the horizontal axis. In a previous study by
Clark (2008), document streamgraphs were created for the book “Tom Sawyer” by
splitting the text into ten segments. Although using ten segments is suitable for
long text documents like books, the narratives used in the current study are much
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Table 6.1: Letter structure and characteristics

Imagining/experiencing
a future situationa

Generic letterb

Retrospective
evaluationc

Type 1, structure:
• Narrative imagination of desired
future situation (present tense)
• Anticipated reminiscence of the
future past (past tense)
• Conclusion/insight from evalu-
ated experiences and/or
•Worldly wisdom (self-praising re-
marks)
• Comments on implications for
the future (moral advice/future
promises)

Type 4, structure:
Equal to structure of type 1.
Recounted/evaluated period in
past instead of futured past,
presented as current concern
taking place before moment of
writing.

Prospective
orientationd

Type 2, structure:
• Statement about present posi-
tion in life (present/past perfect
tense)
• Imaginary goals/purposes
•Description of how to realize
these objectives

Type 5, no clear structure:
No clear action orientation or path
from present to future. Some-
times written from future instead
of present. Much use of in-
tentional time (hope/wish), future
tense (shall/will) and hesitation.

Present-
orientede

Type 3, no clear structure:
No orientation/evaluation or
path from present to future.
Sometimes conclusions are
drawn. Contains sensory details
(hopes, wishes, gratitude and
self-appraising). Imagined future
described mainly in present-tense.

Type 6, no clear structure:
Consists mainly of general insight-
s/conclusions, generic (existen-
tial/moral) advices or worldly wis-
doms. No path to origination of
conclusions or insights.

Note.
a Extended core with imaginative component, information on events, places, persons, experience
b No/limited imaginative components. Possibly global descriptions of future situations at end of letter
c Look back from future or present to past
d Look forward from present to future/from future even further ahead
e Focus on moment in time (present/future present) instead of period
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Table 6.2: Data set characteristics

Imagination letter Generic letter

Retrospective
evaluation

Type 1: Type 4:
N(letters) = 137 N(letters) = 19

Mean N(words/text) = 324 Mean N(words) = 292

Prospective
orientation

Type 2: Type 5:
N(letters) = 47 N(letters) = 9

Mean N(words) = 303 Mean N(words) = 196

Present-oriented
Type 3: Type 6:

N(letters) = 94 N(letters) = 45
Mean N(words) = 289 Mean N(words) = 270

shorter (see Table 6.2 for mean number of words per letter type). Therefore a
smaller number of segments may be more appropriate. To decide on the number
of segments to use, three different splits were made and the resulting visualizations
were compared.

First, following Clark (2008), the narratives were split into ten segments, which
resulted in very dynamic and detailed visualizations. However, these results were
too fine-grained, making it difficult to use the visualizations for their initial purpose;
to confirm previous findings and develop new hypotheses. Second, the narratives
were split into three segments (representing the beginning, middle and end of the
story, a structure often used in the formation and analysis of narratives (Hogan,
2006)). It was expected that the three segments would result in more interpretable
visualizations revealing major trends. The resulting visualizations were however
very global and flat, making it difficult to draw conclusions or gain new insights.
Therefore third, based on the framework of Labov and Waletzky (1967), widely used
to represent narrative information and analyze personal narratives, the narratives
were split into five segments: orientation, complication, resolution, evaluation, and
coda.

Although five segments may still seem too fine-grained for short narratives like
the letters used in the current study, the ‘narrative clause’ used by Labov and
Waletzky (1967) as the basic unit of narrative can be as short as one sentence.
This framework therefore is very suitable (and widely used) for analysing short nar-
ratives like daily life stories or therapeutic interviews (Labov, 1997). In addition,
splitting the narratives into five segments is in line with the five narrative processes
used by Sools et al. (2015) to identify the different letter types and letter structures.
The five segments resulted into well-interpretable visualizations, showing the same
trends as the visualizations for ten segments but then for larger-grained sections
more inherent in personal letters.

Since the aim is to develop visualizations per letter type, for each type the
letters are split into five equal segments and concatenated in one new text file per
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Figure 6.2: Splitting text documents into segments for each letter type

segment. This results in five new text files for each letter type, as shown in Figure
6.2. The five segments are analyzed and visualized for each letter type separately.

6.2.3. Mathematical structure

T o explore the differences in letter content and structure, plotting word-frequencies
within each text segment for each letter type seems appropriate. However,

since plotting frequencies for all used words will probably not lead to legible and
interpretable visualizations, generally a sub selection of the occurring words is in-
cluded in the visualizations. Clark (2008) for example only used words starting with
capital letters or only the most prominent words as series in his graph. Another
way to reduce the number of series is by categorizing them into word classes, as
Weber (2007) did. In the current study words are categorized hierarchically using
the text analysis program Linguistic Inquiry and Word Count (LIWC; Pennebaker
et al., 2001). LIWC is a structured, knowledge-rich method, relying on tight struc-
tures from existing software and dictionaries. LIWC processes texts on word level,
comparing each word to a dictionary files for each category. It is a validated, ready-
to use efficient and effective method to study a range of cognitive, emotional and
structural components in spoken and written narratives (Pennebaker et al., 2007).

In order to process Dutch texts, the Dutch LIWC dictionary developed by Zijlstra
et al. (2004) was used. Contrary to the more complete English dictionary, the Dutch
dictionary contains variables for the grammatical tenses past, present and future,
but not for modals, intentional time or the imperative. The Dutch dictionary is
based on the English LIWC dictionary (2001 version) and, as shown in Table 6.3,
consists of 66 word categories divided over five dimensions. The words can be
assigned to one or more categories, scoring the occurrences as percentages. The
66 LIWC categories are organized into a hierarchy of eleven main categories and
55 subcategories, which, when applied to the range of letter segments, results in
a set of hierarchical additive time series.
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Table 6.3: Categories Dutch LIWC dictionary (translated from Zijlstra et al., 2004)

I. Linguistic processes 35. Family (daughter, husband)
1. Pronouns (I, them, our) 36. Humans (adult, baby, boy)
2. 1st person singular (I, me, mine) III. Relativity
3. 1st person plural (we, our, us) 37. Time (end, until, season)
4. Total 1st person (I, we, me) 38. Verbs in past tense (went, ran)
5. Total 2nd person (you, your, thou) 39. Verbs in present tense (is, does)
6. Total 3rd person (they, their, she) 40. Verbs in future tense (will, going)
7. Negations (no, not, never) 41. Space (nearby, place, North)
8. Assent (agree, ok, yes) 42. Up (above, higher, top)
9. Articles (a, an, the) 43. Down (deeper, lower, bottom)
10. Prepositions (to, with, above) 44. Including (and, inclusive, too)
11. Numbers (second, thousand) 45. Excluding (unless, except, out)
II. Psychological processes 46. Motion (approach, walk, climb)
12. Emotional (happy, sad, down) IV. Personal concerns
13. Positive emotions (happy, pleased) 47. Occupation (achieve, promote)
14. Positive feelings (fun, love, smile) 48. School (student, exam)
15. Optimism (proud, passionate) 49. Work (job, career, colleague)
16. Negative emotions (hurt, hostile) 50. Achievement (earn, hero, win)
17. Anxiety (nervous, fearful, worried) 51. Leisure (cook, bike, movie)
18. Anger (hate, annoyed, threat) 52. Home (kitchen, home, garden)
19. Sadness (grief, disappointment) 53. Sports (game, fitness, work-out)
20. Cognitive (cause, know, ought) 54. Television (film, video, tv)
21. Causation (because, effect, hence) 55. Music (sing, song, guitar)
22. Insight (think, know, consider) 56. Money (profit, cash, owe)
23. Discrepancy (should, would, could) 57. Metaphysical (altar, church)
24. Inhibition (block, constrain, stop) 58. Religion (pray, honour, bless)
25. Tentative (maybe, perhaps, guess) 59. Death (bury, mourn, kill)
26. Certainty (always, never) 60. Physical (ill, faint, appetite)
27. Perceptual (observe, heard, feeling) 61. Body (vital, thirsty, cramp)
28. See (view, saw, seen) 62. Sexual (flirt, love, kiss)
29. Hear (listen, hearing) 63. Ingestion (drink, hungry, dish)
30. Feel (feel, touch) 64. Sleep (dream, wake, sleepy)
31. Social (share, talk, help) 65. Groom (shower, make-up)
32. Communication (interview, rumour) V. Experimental dimensions
33. Other references (we, them, they) 66. Swear words
34. Friends (buddy, friend, neighbour)
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6.2.4. Analytical procedure

A s stated earlier, in this study visualizations are used to explore differences in
letter content both within the letters of the same type as between different

types of letters. Two separate analyses were used to find the most informative
categories. First, to find which categories best visualize the differences in category
occurrence between the letter types a one-way analysis of variance (ANOVA) is
used. The ANOVA is used to determine if there are significant differences between
the means of multiple groups (Maxwell et al., 2003). The mean category occurrence
is calculated for each letter type by summing up the category scores for all segments
and then dividing the sum by five (the total number of segments). The mean
occurrences were compared using Welch’s statistic (Tomarken & Serlin, 1986).

Second, to find which LIWC categories fluctuate the most within each letter
type, the spread in category occurrence values for the segments was evaluated.
The most commonly used measure of spread in a set of values is the standard de-
viation (SD). As low SD values indicate that all data points are close to the mean,
LIWC categories with low SD values can be presumed to show little to no fluctu-
ation in occurrence within the letter. LIWC categories with high SD values can be
presumed to be highly fluctuating and thus showing more differences in occurrence
within the concerning letter type. Since there are big differences in the means of
the occurrence categories, to be able to compare the variation each SD is normal-
ized with respect to its mean by: SD/mean. The resulting value is known as the
coefficient of variation (CV, also known as relative standard deviation), which shows
the amount of variability in relation to the mean (Lovie, 2005). A major limitation
of the CV is that when the mean is very small, a small variation in the data set will
already result in a large CV value (Brown, 2012). Therefore the LIWC categories
with mean < 1 were excluded. Then for each letter type the ten most fluctuating
LIWC categories (thus the ten categories with the highest CV scores) were selected
and included in the letter type specific visualizations.

6.2.5. Text visualization design

T ime series analysis, the study of changes in variables over time, can focus on
one given variable, or the change of a specific variable compared to others over

a certain time period. The time series consists of a sequence of measurements over
a continuous, equal distanced time interval (Shumway & Stoffer, 2006). Time series
are often visualized using simple line graphs, which works well when comparing a
small number of series since the line graph shows direct values for each series at
each time point. Another way to visualize time series are stacked graphs, where the
series, represented by coloured layers, are stacked on top of each other, showing
not only the individual values for each layer but also the total value at certain time
points on the horizontal axis (Byron & Wattenberg, 2008). Stacked graphs are very
useful to visualize hierarchical time series. However, both line and stacked graphs
become illegible when using a large number of series (Byron & Wattenberg, 2008;
Clark, 2008). To overcome this problem, Havre et al. (2002) created ThemeRiver,
a smooth, continuous graph stacked symmetrically around the x-axis, which is situ-
ated at the centre of the graph instead of at the bottom. ThemeRivers later became
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known as Streamgraphs, thanks to a popular visualization in the New York Times by
Cox and Byron (2008). Streamgraphs differ mainly from ThemeRivers in the design
and layout decisions (like colour, interaction or geometry) made to make the graph
visually attractive and more organic. Although originally applied to music, movies
(Bloch et al., 2008), and (baby) names (Wattenberg, 2005), streamgraphs have
also been applied to text documents and seem very suitable for the visualization of
narratives.

The smooth, continuous lines that distinguish between the layers are the main
advantage of a streamgraph, since this visualizes the data in an intuitive and easily
interpretable way (Byron & Wattenberg, 2008; Havre et al., 2002). Continuous data
are required to generate such smooth, curving lines. However, splitting the texts
into five separate segments results in a discrete data set with different values for y
at the data points x1, x2, …, x5. This problem is solved by interpolating between the
discrete data points as suggested by Havre et al. (2002). By using interpolation,
intermediate values between data points are estimated from the neighbouring data
points (de Carvalho et al., 2007). This results in smooth, continuous lines connect-
ing the discrete data points (McGreggor, 2015). There are different interpolation
methods, of which the Cubic Splines model based on third degree polynomials re-
sults in the smoothest curve fits (de Carvalho et al., 2007) and is therefore used in
the current study.

There are two final notes with regard to the graph design. First, for all visual-
izations counts that since the layers are stacked symmetrically at the centre of the
graph, the values on the y-axis are of no added value and are therefore not included
in the plots, as in Havre et al. (2002) and Byron and Wattenberg (2008). Second,
sequential colour palettes were used to visualize the hierarchical structure of the
time series, as was done by Wattenberg and Kriss (2006). Each main category is
assigned its own colour with a range colours with slightly different shades to reflect
the corresponding subcategories.

6.3. Results

I n this section first the results of the quantitative analysis are described, followedby the resulting visualizations.

6.3.1. Selected LIWC categories

T o determine for which LIWC categories there are significant differences in mean
occurrence between the different letter types, a one-way ANOVA was used. For

31 of the 66 LIWC categories (indicated by an asterisk (*) in Table 6.4) significant
differences between the means (p≤ 0.05) were found. The CV was used to measure
the amount of variability in category occurrences throughout the letters. Table
6.4 contains the mean proportion (in %) and standard deviation of each LIWC
category over all segments. For each letter type, the values for the most fluctuating
categories are printed in bold. These categories are selected for the visualizations
in Figures 6.4, 6.5 and 6.6.
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Table 6.4: Means and standard deviations for each letter type

LIWC Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
category Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
1. Pronoun* 12.75 (0.66) 11.63 (1.14) 10.56 (0.47) 13.41 (1.11) 13.67 (2.44) 13.19 (0.82)
2. I* 5.07 (0.80) 3.42 (1.14) 4.84 (0.62) 6.60 (0.36) 6.95 (1.93) 3.55 (0.69)
3. We* 0.46 (0.07) 0.56 (0.15) 0.66 (0.18) 0.43 (0.29) 0.45 (0.73) 0.12 (0.11)
4. Self* 5.54 (0.81) 3.99 (1.00) 5.50 (0.71) 7.04 (0.58) 7.40 (1.32) 3.67 (0.74)
5. You* 5.50 (0.75) 5.93 (0.76) 3.11 (0.84) 4.69 (0.84) 4.01 (1.16) 8.05 (0.30)
6. Other 0.67 (0.19) 0.78 (0.26) 1.02 (0.29) 0.65 (0.32) 0.96 (0.51) 0.46 (0.15)
7. Negation 1.42 (0.41) 1.27 (0.35) 1.52 (0.38) 1.51 (0.28) 1.42 (0.53) 2.09 (0.31)
8. Assent 0.17 (0.05) 0.14 (0.09) 0.15 (0.06) 0.13 (0.10) 0.00 (0.00) 0.26 (0.20)
9. Article 7.37 (0.76) 7.68 (0.74) 8.21 (0.91) 7.27 (0.94) 7.18 (0.92) 7.16 (0.51)
10. Prepos.* 11.03 (0.72) 11.40 (0.76) 11.13 (0.08) 10.54 (0.95) 10.96 (2.10) 10.24 (0.44)
11. Number 1.24 (0.60) 1.15 (0.63) 1.21 (0.58) 1.26 (0.64) 1.25 (0.82) 0.83 (0.51)
12. Affect 4.20 (0.66) 3.72 (0.34) 3.90 (0.63) 4.02 (0.94) 4.64 (1.43) 4.18 (0.76)
13. Pos. emo. 2.94 (0.62) 2.62 (0.49) 2.89 (0.50) 2.54 (0.64) 3.84 (1.18) 2.67 (0.81)
14. Pos. feel. 0.77 (0.27) 0.55 (0.17) 0.83 (0.23) 0.52 (0.21) 0.73 (0.47) 0.56 (0.14)
15. Optimism* 0.55 (0.17) 0.56 (0.17) 0.48 (0.17) 0.50 (0.21) 1.64 (0.54) 0.51 (0.23)
16. Neg. emo.* 1.15 (0.09) 0.98 (0.16) 0.92 (0.19) 1.44 (0.34) 0.73 (0.33) 1.45 (0.14)
17. Anxiety 0.21 (0.07) 0.22 (0.11) 0.11 (0.06) 0.25 (0.12) 0.00 (0.00) 0.27 (0.10)
18. Anger 0.11 (0.03) 0.13 (0.07) 0.10 (0.04) 0.05 (0.08) 0.06 (0.13) 0.21 (0.12)
19. Sadness* 0.28 (0.07) 0.15 (0.04) 0.34 (0.11) 0.45 (0.16) 0.28 (0.20) 0.33 (0.09)
20. Cognitive* 5.72 (0.86) 5.53 (0.28) 5.11 (0.71) 5.99 (1.25) 8.14 (1.39) 7.60 (0.34)
21. Causation 0.57 (0.13) 0.63 (0.07) 0.56 (0.14) 0.52 (0.21) 0.56 (0.34) 0.72 (0.10)
22. Insight 2.10 (0.29) 1.83 (0.18) 1.71 (0.28) 2.35 (0.41) 2.04 (0.99) 2.90 (0.24)
23. Discrep.* 2.33 (0.47) 2.46 (0.24) 2.19 (0.37) 2.35 (0.65) 5.26 (0.75) 2.99 (0.24)
24. Inhibition 0.06 (0.03) 0.03 (0.04) 0.06 (0.03) 0.07 (0.10) 0.00 (0.00) 0.08 (0.04)
25. Tentative 1.50 (0.28) 1.57 (0.15) 1.49 (0.17) 1.71 (0.65) 2.65 (1.14) 1.72 (0.18)
26. Certainty 1.58 (0.23) 1.20 (0.14) 1.32 (0.23) 1.62 (0.37) 1.53 (0.62) 1.60 (0.46)
27. Senses 1.27 (0.13) 1.23 (0.16) 1.27 (0.14) 1.55 (0.39) 0.68 (0.51) 1.46 (0.35)
28. See 0.48 (0.05) 0.39 (0.11) 0.52 (0.17) 0.41 (0.15) 0.28 (0.28) 0.53 (0.12)
29. Hear* 0.44 (0.06) 0.51 (0.15) 0.46 (0.09) 0.76 (0.15) 0.23 (0.37) 0.57 (0.25)
30. Feel 0.34 (0.07) 0.34 (0.09) 0.26 (0.10) 0.38 (0.20) 0.17 (0.25) 0.35 (0.08)
31. Social* 9.61 (1.12) 10.24 (0.65) 8.04 (0.57) 8.99 (0.95) 8.47 (1.52) 11.29 (0.12)
32. Comm.* 0.81 (0.13) 0.80 (0.11) 0.77 (0.12) 1.03 (0.21) 0.23 (0.24) 1.00 (0.11)
33. Others* 6.71 (0.88) 7.33 (0.61) 4.94 (0.42) 5.97 (0.88) 5.48 (1.50) 8.74 (0.19)
34. Friends* 0.24 (0.05) 0.24 (0.05) 0.20 (0.10) 0.14 (0.10) 0.39 (0.16) 0.24 (0.10)
35. Family* 0.89 (0.05) 0.80 (0.19) 0.80 (0.09) 0.88 (0.24) 1.02 (0.33) 0.46 (0.09)
36. Humans* 0.65 (0.16) 0.56 (0.18) 0.86 (0.10) 0.54 (0.25) 0.96 (0.43) 0.69 (0.17)
37. Time 7.10 (1.23) 6.61 (1.97) 6.82 (0.81) 7.13 (1.16) 6.04 (2.25) 6.73 (1.30)
38. Past* 4.46 (0.83) 3.87 (0.97) 2.91 (0.52) 5.83 (1.26) 0.96 (0.42) 2.61 (0.93)
39. Present* 12.61 (1.23) 12.57 (0.85) 13.44 (0.92) 12.18 (1.35) 14.12 (1.11) 15.05 (0.83)
40. Future* 0.93 (0.19) 1.21 (0.20) 0.83 (0.17) 0.90 (0.49) 2.71 (0.82) 1.42 (0.13)
41. Space 1.91 (0.28) 1.95 (0.44) 1.93 (0.28) 1.62 (0.45) 2.03 (0.94) 1.40 (0.20)
42. Up 1.11 (0.16) 0.96 (0.22) 1.21 (0.17) 1.06 (0.35) 0.73 (0.51) 0.97 (0.19)
43. Down 0.04 (0.03) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05) 0.06 (0.13) 0.02 (0.02)
44. Incl.* 8.66 (0.21) 9.13 (0.84) 8.52 (0.19) 8.12 (0.54) 10.00 (0.63) 7.71 (0.77)
45. Excl.* 3.92 (0.54) 3.16 (0.24) 3.64 (0.66) 4.15 (1.00) 4.01 (1.54) 4.71 (0.51)
46. Motion 1.87 (0.33) 2.15 (0.39) 1.91 (0.19) 2.04 (0.53) 1.75 (0.83) 1.98 (0.40)
47. Occup.* 2.04 (0.38) 1.84 (0.27) 1.33 (0.39) 0.90 (0.22) 0.96 (0.71) 1.60 (0.28)
48. School* 0.76 (0.23) 0.72 (0.23) 0.38 (0.10) 0.40 (0.08) 0.40 (0.47) 0.72 (0.11)
49. Job* 1.01 (0.26) 0.91 (0.25) 0.75 (0.30) 0.45 (0.17) 0.51 (0.36) 0.49 (0.14)
50. Achieve* 0.32 (0.09) 0.25 (0.13) 0.22 (0.11) 0.11 (0.08) 0.11 (0.15) 0.41 (0.14)
51. Leisure* 0.59 (0.15) 0.91 (0.37) 0.87 (0.21) 0.95 (0.38) 0.73 (0.74) 0.29 (0.12)
52. Home* 0.49 (0.18) 0.73 (0.30) 0.68 (0.20) 0.45 (0.25) 0.45 (0.37) 0.22 (0.13)
53. Sports* 0.05 (0.02) 0.17 (0.07) 0.14 (0.07) 0.27 (0.14) 0.23 (0.37) 0.05 (0.04)
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Table 6.4: Means and standard deviations for each letter type (Continued)

LIWC Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
category Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
54. TV 0.03 (0.03) 0.01 (0.02) 0.01 (0.01) 0.07 (0.08) 0.06 (0.13) 0.00 (0.00)
55. Music 0.02 (0.02) 0.01 (0.03) 0.04 (0.03) 0.22 (0.14) 0.06 (0.13) 0.02 (0.02)
56. Money* 0.25 (0.12) 0.32 (0.12) 0.39 (0.12) 0.07 (0.08) 0.34 (0.12) 0.27 (0.05)
57. Metaphys. 0.07 (0.01) 0.06 (0.06) 0.08 (0.03) 0.13 (0.12) 0.00 (0.00) 0.04 (0.04)
58. Religion 0.04 (0.02) 0.04 (0.04) 0.07 (0.03) 0.07 (0.08) 0.00 (0.00) 0.04 (0.04)
59. Death 0.03 (0.02) 0.03 (0.03) 0.02 (0.01) 0.05 (0.08) 0.00 (0.00) 0.00 (0.00)
60. Physical 0.66 (0.10) 0.54 (0.14) 0.83 (0.09) 0.74 (0.56) 0.73 (0.32) 0.66 (0.14)
61. Body 0.30 (0.03) 0.24 (0.06) 0.33 (0.05) 0.34 (0.39) 0.34 (0.12) 0.40 (0.09)
62. Sexual 0.06 (0.03) 0.06 (0.03) 0.07 (0.03) 0.02 (0.04) 0.06 (0.13) 0.10 (0.08)
63. Eating 0.07 (0.02) 0.07 (0.02) 0.20 (0.11) 0.11 (0.12) 0.17 (0.16) 0.05 (0.03)
64. Sleep 0.24 (0.08) 0.19 (0.12) 0.23 (0.07) 0.32 (0.19) 0.23 (0.13) 0.14 (0.07)
65. Groom 0.00 (0.00) 0.00 (0.00) 0.03 (0.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
66. Swear** 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02)
Note. Bold values: ten most fluctuating LIWC categories for each letter type.

* Significant differences (p ≤ 0.05) between means of different letter types
** Only occurred in one letter type so means could not be compared

6.3.2. Visualizations

T he figures below contain the streamgraphs for each letter type. The mean pro-
portion of each LIWC category (over all the letters of the concerning letter types)

is plotted per segment (s1, s2, …, s5) on the x-axis. The panel in Figure 6.3 contains
six streamgraphs, one for each letter type. These visualizations show differences in
occurrence proportions of LIWC categories throughout each letter type. All 66 LIWC
categories are included in these graphs. The darkest shades of every colour show
the main (overarching) categories, followed by the corresponding sub categories.
The categories are plotted in the same order for each graph. These graphs can
be used to find central themes within the letters and overall differences between
the letters. In the legend, the asterisk (*) behind LIWC categories indicates that
there are significant differences between the mean occurrences of the letter types
for these categories. The visualizations in Figures 6.4, 6.5 and 6.6 show the ten
most fluctuating LIWC categories for each letter type. These graphs can be used to
find specific patterns and shifts in the occurrence proportions of LIWC categories
within the letters.

The streamgraphs in Figure 6.3 show some clear similarities and differences
between the six letter types. An interesting finding is that the visualizations for types
1-3 do not seem to differ as much as was expected based on the previous findings
of Sools et al. (2015). Overall, the imagination letters (type 1-3) seem to have a
calmer flow than the general letters (type 4-6), which show bigger differences in
the proportions of the LIWC categories over the five segments. The differences
between and within the streamgraphs will now be described in more detail and
compared pairwise for the retrospective letters (types 1 and 4), prospective letters
(types 2 and 5) and present-oriented letters (types 3 and 6).

Retrospective letters
Sools et al. (2015) found that imagination and general retrospective letters gener-
ally have the same structure. This is also reflected by the streamgraphs in Figure
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Figure 6.3: Overview LIWC categories per letter type



6.3. Results

6

171

1 2 3 4 5
Segment

Type 1: Retrospective evaluation

Negation
Number
Positive emotions
Discrepancy

Tentative
Time
Past tense

Motion
Occupation
Job

1 2 3 4 5
Segment

Type 4: Imagination and evaluation of futured past

Number
Positive emotions
Negative emotions
Discrepancy

Tentative
Senses
Space

Up
Excluding
Motion

Figure 6.4: Ten most fluctuating categories retrospective letters

6.3, which show that for the majority of the LIWC categories the distribution of
the category proportions over the segments is quite similar for both retrospective
letters.

According to Sools et al. (2015), the main difference between both retrospective
letters would be the verb tenses and the sequence in which these are used. The
type 1 letters start with an imaginative future situation in the present tense followed
by reminiscence of the future past in the past tense, whereas in the type 4 letters
the recounted period actually lies in the past instead of the futured past and is
described as a present concern. Based on these findings, one would expect to
observe differences in the proportions of used verb tenses both between (Figure
6.3) and within (Figure 6.4) the letters. However, Figure 6.3 shows no observable
differences in the proportions of the LIWC categories that regard verb tenses (past,
present and future) between letters 1 and 4. Figure 6.4 does show “past tense” as
one of the ten most fluctuating categories for letter type 1: the use of past tense
slightly increases towards the middle of the letter and then decreases towards the
end. The use of present tense does not seem to differ much throughout the type 1
letter as it is not amongst the ten most fluctuating categories included in the graph.
None of the used tenses fluctuates much throughout the type 4 letters, as they are
not amongst the ten categories included in the graph in Figure 6.4.

Overall it can be observed from both Figure 6.3 and Figure 6.4 that the imagi-
nation letters (type 1) contain more words regarding occupation and job, combined
with motion words and positive emotions. The words related to occupation and job
could be linked to the narrative element “orientation”, the first narrative element
distinguished by Labov and Waletzky (1967). The motion and positive emotion
words could be used to describe the (path towards) the desired future situation
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or a period of personal growth (“complicated action”; Labov & Waletzky, 1967).
The graphs further show an increasing use of discrepancy words (e.g., should,
could, would) from the middle to the end. This supports the findings of Sools et
al. (2015), who state that towards the end of the letters conclusions or insights
are drawn (pointing towards the narrative elements “evaluation” and “resolution”;
Labov & Waletzky, 1967), followed by statements of worldly wisdom self-praising
remarks (which could be defined as the “coda”; Labov & Waletzky, 1967).

For type 4 letters, Figure 6.3 and Figure 6.4 show an increase in the use of
words from the categories “physical” and “body” combined with both positive and
negative emotion words at the beginning and end of the letter. This could indicate
that the element “orientation” from the framework of Labov and Waletzky (1967),
contains mainly physical characteristics in letter type 4, as opposed to the profes-
sional characteristics used in letter type 1. Cognitive mechanisms are used more
from the middle (insight and discrepancy) to the end (tentative) of the letters. This
could be because these writers are still in the process of reminiscing and evalu-
ating past events (pointing towards the elements “evaluation” and “resolution” of
Labov and Waletzky (1967)). It could be that these letters start with a description
of physical or emotional complaints or by a recollection of a happier past, which
is then processed and evaluated, followed by moral advice or a tentative promise
for a better future (distinguished by Sools et al. (2015) as the “coda”). Finally the
type 4 letters also contain more words related to senses and leisure. Overall, the
general letters seem to be more sensitive, expressive and detailed than the type 1
letters.

Prospective letters
Sools et al. (2015) found a clear structure for the imaginative letters (type 2), but not
for the general letters (type 5). The imaginative letters were expected to start with
a statement about one’s present position in life (in present or past tense). This is
reflected in the high occurrence of words in the categories “I” and “Self” and words
related to “Time” (e.g., end, until) and numbers at the beginning of the letters (see
Figure 6.5), which could be used to describe one’s present position in life (narrative
element “orientation”; Labov & Waletzky, 1967). The increase in the use of words
regarding space (e.g., nearby, places, directions), in the middle can reflect concrete
imaginary goals and purposes. The path towards the futured situation (possibly the
“complicated action”; Labov & Waletzky, 1967) could be indicated by the increasing
use of motion words and positive emotions.

With regard to the used tense, Figure 6.3 further shows that, in addition to the
present tense, more past tense is used in the type 2 letters, whereas more future
tense is used in the type 5 letters. This is in line with the findings of Sools et al.
(2015). Overall the general letters contain more affect and emotions, and more
cognitive mechanisms towards the end, which could point towards encouraging
oneself to realize their goals, as described by Sools et al. (2015).

The intentional element, the major characteristic of the type 5 letters, is clearly
reflected in Figure 6.3 by the use of future tense and the high occurrence of tenta-
tive words (like “hope”, “believe”, “try”, “possible”) and discrepancy words (“must”,
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Figure 6.5: Ten most fluctuating categories prospective letters

“wish”, “want”). Figure 6.5 further shows that the type 5 letters start and end more
tentative, alternated with insight in the middle and end (pointing towards “evalu-
ation”; Labov & Waletzky, 1967). This letter is increasingly optimistic and certain,
combined with an increasing use of excluding words. This might point towards an
increasing insight in desired versus non-desired situations or future aspects, which
may lead to more a more positive and concrete vision for the future in the “coda”
(Labov & Waletzky, 1967). However, the increasing use of excluding words com-
bined with the high use of tentative and hesitative words could also reflect the doubt
and uncertainty regarding the future related to prospective intentional orientation.

Present-oriented letters
Sools et al. (2015) found no specific sequential order in narrative processes for the
present-oriented letters. Figure 6.3 shows that the present-oriented letters are quite
similar for both categories. However, the imagination letters (type 3) do contain
more words regarding family, leisure, more superlatives (category “up”) and slightly
more positive emotions and feelings. This is in line with the findings of Sools et al.
(2015), who found that type 3 letters are positive, content, and joyful letters.

The letters generally end with hopes and wishes (shown by the increase in
discrepancy words) and contain a lot of self-praising remarks (shown by the high
increase in the use of “you” in the middle and end). This could point to the nar-
rative elements “resolution” and “coda” (Labov & Waletzky, 1967). The low use of
cognitive mechanism and insight words supports the findings of Sools et al. (2015)
that the letter contains almost no orientation or evaluation, two of the five narrative
elements distinguished by Labov and Waletzky (1967). The high use of excluding
words could point towards a breach with the past, without describing the current
situation or the path from past to future (no “complicated action”; Labov & Walet-
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Figure 6.6: Ten most fluctuating categories present-oriented letters

zky, 1967). The additional increase in the use of certainty towards the end indicates
that the letters become more stimulating and convincing at the end (indicating “re-
sult/resolution” or “coda”; Labov & Waletzky, 1967). It seems that the confidence
of the writer increases by imagining the future situation. Finally, regarding the used
tense, the type 3 letters are written mainly in the present tense, although Figure
6.6 shows that in both letters the past tense is used more in the beginning than in
the middle and end of the letters.

In the general letters (type 6), more insight and discrepancy words are used.
These letters also contain more negative emotions and feelings and slightly more
sensory words. This supports the findings of Sools et al. (2015), who state that
the function of these letters is mainly to provide insight in and guidance for current
problems or concerns, followed by statements of worldly wisdom. The finding of
Sools et al. (2015) that these letters do not contain a clear path or clarification of
how and where certain knowledge or insights have been gained is supported by the
fact that these letters contain almost no causation words. The high use of certainty
words in the middle of the letter may be explained by the statements of wisdom and
moral advice, combined with the fact that these letters do not contain evaluative
aspects, which introduce more uncertainty. Apart from the elements “resolution”
and “coda” it is difficult to link the letter characteristics from the visualizations to
the narrative elements of Labov and Waletzky (1967).

6.4. Discussion

I n this chapter, a combination of natural language processing, quantitative analy-sis and visualization techniques was used to explore differences in letter content,
specifically the distribution (sequential order) and proportion of narrative processes
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and grammatical elements, both within and between the different types of “Letters
from the Future”. The visualizations could be used for two purposes; to confirm
findings of previous studies on the content of the letters and to explore the letters
in a broader sense to come to new insights or theories. Two essential topics in the
development of text visualizations – capturing the underlying mathematical narra-
tive structure and choosing a suitable format to visualize changes in letter content
throughout the letter – were addressed. In general, the use of text visualizations
proved to be a good method to globally explore and compare the underlying struc-
tures and differences in contents within and between the letter types. Thanks to
the shape of the streamgraphs and the use of sequential colour palettes, the hier-
archical time series plots of the letters were easily interpretable and comparable.
By combining the visualizations with quantitative analysis of variance and the co-
efficient of variation, more specific insights in the distribution and proportion of
narrative processes and grammatical elements throughout the letters was gained.

All in all, the visualizations were found to be very usable to at least partially
confirm the previous findings of Sools et al. (2015). Finding strong additional char-
acteristics or differences between and within the letters turned out to be more
challenging. An interesting finding is that the proportional distributions of the LIWC
categories, especially those of letter types one, two and three do not differ as much
as expected based on the previous findings of Sools et al. (2015). The visualizations
for those types look very similar, as opposed to the visualizations for letter types
four, five and six. An explanation for this may be that the LIWC categories used as
underlying structure are too global or do not directly apply to the current data set.
A more specific categorization system developed especially for the “Letters from
the Future” data set might perform better. A possibility is to develop a new LIWC
dictionary based on the previous findings of Sools et al. (2015) and the visualiza-
tions generated in this study, and apply this to a new data set. Potential features to
include in this dictionary could be the most informative features that discriminate
between the six letter types. These most informative features have been extracted
from the current data set for a different study by the authors in which supervised
text classification algorithms are used to automatically categorize the letters to their
corresponding classes. It would be interesting to visualize the occurrence of these
features within the letters.

It could also be that the way the letters are split into five segments influences
the proportional distributions. For example, when a certain narrative process starts
at the end of the first segment and finishes at the beginning of the second segment,
the characteristics for this process are evened out between the first to segments.
This may cause a blur in the resulting visualization. It would be interesting to see
if splitting the letters manually into five segments, based either on the narrative
elements of Labov and Waletzky (1967) or the five narrative processes distinguished
by Sools et al. (2015) would lead to more distinctive variations both between the
letter segments and the letters as a whole.

Splitting the narratives into the structural elements distinguished by Labov and
Waletzky (1967) also opens up to a new avenue for future research, namely to
investigate variations in the narratives that depend on the characteristics of the
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writer. The framework of Labov and Waletzky (1967) has already been used to in-
vestigate differences in narrative content between classes (Horvath, 1987; Labov,
1997), gender (Cheshire, 2000; Johnstone, 1990), age (Peterson & McCabe, 1983),
(Toolan, 1988), and geography (Johnstone, 1990). Visualizing the narrative struc-
tures for groups with different characteristics may lead to new insights or hypothe-
ses for further research on these topics.

As a final note, although the current focus is on visualizing the content of “Letters
from the Future”, the resulting method can in fact be used to explore any available
digital text document or corpus. The methods and results described in this study
can be seen as a first step in an ongoing study by the authors and the Storylab
to study therapy-related textual features in e-mental health interventions. By us-
ing methods like NLP and text visualization to analyze patterns in therapy-related
textual features, extracted for example from written narratives or the linguistic in-
teraction between counsellor and client, more insight can be gained in what hap-
pens within therapy, when progress is made, or for which persons a certain type of
therapy is more effective. This could greatly improve e-mental health interventions
and advance therapy change process research. Future research will therefore in-
clude expanding the time series to include more letters written by the same person,
studying changes between subsequent narratives and analysing counsellor-client
interaction.
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D ue to the enormous amount of routine and research data collected in (men-
tal) health care, data reuse is a rapidly growing area with high potential for

clinical practice and research. Data reuse is further encouraged by the increasing
availability and usability of new technologies such as artificial intelligence (AI) and
machine learning (ML) for researchers and care professionals without a technical
background. These technologies can help structure and process the large amount
of data becoming available in an efficient and reproducible manner. Especially in
mental health care, where a large part of the collected data consists of text or au-
dio recordings, AI applications such as text mining (TM) or audio signal processing
(ASR) can have a huge advantage over manual annotation and processing. De-
spite the benefits, data reuse comes with its challenges, as data are being used
for purposes other than originally intended. For structured data challenges can be
the data formats and classification systems used to store information, while for un-
structured text and audio data problems can arise with the quality of the recordings
and patient privacy.

The overall aim of this PhD thesis was to investigate how new technologies
such as AI can contribute to the successful reuse of clinical data towards improving
(mental) health care practice and research. To this end we performed five studies,
demonstrating the practice of clinical data reuse based on a range of different avail-
able routinely collected or research data sets from (mental) health care, illustrating
the challenges met and solutions used to overcome them. This general discussion
summarizes the main findings and ends with a discussion of the limitations and
perspectives for the future.

7.1. Main findings
7.1.1. Fitness for purpose of routinely recorded health data

T he first study presented in this dissertation (Chapter 2) examined the usabil-
ity of routinely recorded primary and secondary care data for the identifica-

tion and validation of patients with complex diseases such as primary Sjögren’s
syndrome (pSS). pSS is an underdiagnosed, long-term autoimmune disease that
affects particularly salivary and lachrymal glands. pSS patients were identified
in primary care by translating the formal inclusion and exclusion criteria for pSS
that are used in secondary care into a patient selection algorithm using data from
Nivel Primary Care Database (PCD), covering 10% of the Dutch population between
2006-2017. The pSS patients found by the algorithm were compared to Diagnosis
Related Groups (DRG) recorded in the national hospital insurance claims database
(DIS). International Classification of Primary Care (ICPC) coded general practitioner
contacts and disease episodes, combined with the mention of “Sjögren” in the dis-
ease episode titles, were found to best convert the formal classification criteria to
a selection algorithm for pSS. 1,462 possible pSS patients were identified in pri-
mary care (mean prevalence 0.7‰, against 0.61‰ reported globally). The DIS
contained 208,545 patients with a Sjögren related DRG or ICD-10 (International
Classification of Diseases-10) code (prevalence 2017: 2.73‰). 2,577,577 patients
from Nivel PCD were linked to the DIS database, among which 1,296 of the 1,462
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pSS patients. 716 of the linked pSS patients (55.3%) were confirmed based on
the DIS. We found that identifying complex disease patients in primary care largely
depends on the availability of structural and granular information. Although preva-
lence rates in primary care were in line with those reported in literature, rates in
secondary care seemed highly inflated. Formal diagnostic information remains re-
quired to determine whether routine electronic health record (EHR) data are fit for
the identification and study of pSS patients. This study mainly reused structured
data that were encoded using several general classification systems for diseases, di-
agnoses, prescriptions, and diagnostic tests. In addition, a simple keyword search
was used to identify pSS cases from the disease episode titles. Although simple
text searches are easy to implement, the use of supervised text classification may
lead to a more accurate identification of cases from text. The development and
use of text classification models to automatically process large volumes of text was
described in Chapter 3.

7.1.2. Automated supervised text cassification tool

T he second study in this dissertation (Chapter 3) provided a thorough descrip-
tion of supervised text classification, a popular TM application in which textual

objects are assigned to a set of predefined class labels using a classification model.
Supervised text classification is increasingly used in (psychological) research, as it
enables researchers to process, organize, or analyze unstructured text data more
efficiently and it improves research consistency and reproducibility. To make this
method available for researchers with little to no experience in computer science,
statistical modeling, or programming, this chapter provided step-by-step instruc-
tions on the development of new binary and multiclass classification models. The
study addressed the complete text classification pipeline, including model selection
and evaluation using nested cross-validated parameter grid search. The elements
of the pipeline (preprocessing, feature extraction, feature selection, and machine
learning using support vector machines) were described and the main parameters
were reviewed. In addition, an Automated Supervised Text Classification Tool (AS-
TeCT) was provided, which enables researchers to apply the complete procedure
directly to their own text data set to generate their own classification models. The
chapter ends with an example in which the tool was applied to a Dutch data set
from psychological research practice. ASTeCT was also tested on a public English
test data set for classification research, which showed that the procedure and tool
can be applied to text data from different (psychological) contexts and in different
languages.

7.1.3. Improving treatment intake for mental health disorders

I n the third study presented in this dissertation (Chapter 4), the developed toolwas applied to textual responses on a patient intake questionnaire to automati-
cally screen for multiple mental health (including substance use) disorders. TM and
ML can potentially save a lot of time and effort in the diagnosis and monitoring of
patients. Previous studies showed that mental disorders can be detected based on
text, but those focused on screening for one predefined disorder instead of multiple
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disorders simultaneously. This study developed a Dutch multiclass text classifica-
tion model to screen for a range of mental disorders, in order to refer new patients
to the most suitable treatment. Based on patients’ (N = 5,863) textual responses
to a questionnaire currently used for intake and referral, a seven-class classifier
was developed to distinguish between anxiety, panic, posttraumatic stress, mood,
eating, substance use, and somatic symptom disorders. A linear support vector
machine (SVM) was fitted using nested cross-validation grid search. The highest
classification rate was found for eating disorders (82%). Scores for panic (55%),
posttraumatic stress (52%), mood (50%), somatic symptom (50%), anxiety (35%),
and substance use disorders (33%) were lower, likely due to overlapping symptoms.
The overall classification accuracy (49%) was reasonable for a seven-class classi-
fier. Though this study enabled simultaneous screening for multiple disorders, the
performance for disorders other than eating disorders needs to be improved before
implementation in mental health practice.

7.1.4. Recognizing hotspots in Brief Eclectic Psychotherapy

I n addition to text data, audio data also contain a lot of information that can beextracted automatically using new technologies. The fourth study in this dis-
sertation (Chapter 5) illustrated the development of a multimodal (text and audio)
supervised classification model to automatically recognize hotspots from recorded
therapy sessions. Identifying and addressing hotspots is a key element of imag-
inal exposure in Brief Eclectic Psychotherapy for PTSD (BEPP). Research shows
that treatment effectiveness is associated with focusing on these hotspots and that
hotspot frequency and characteristics may serve as indicators for treatment success.
This study aimed to develop a model to automatically recognize hotspots based on
text and speech features, which might be an efficient way to track patient progress
and predict treatment efficacy. A multimodal supervised classification model was
developed based on analog tape recordings and transcripts of imaginal exposure
sessions of ten successful and ten non-successful treatment completers. Data min-
ing and machine learning techniques were used to extract and select text (e.g.,
words and word combinations) and speech (e.g., speech rate, pauses between
words) features that distinguished between “hotspot” (N = 37) and “non-hotspot”
(N = 45) phases during exposure sessions. The developed model resulted in a high
training performance (mean 𝐹1-score of 0.76) but a low testing performance (mean
𝐹1-score = 0.52). This shows that the selected text and speech features could
clearly distinguish between hotspots and non-hotspots in the current data set, but
would probably not recognize hotspots from new input data very well. In order
to improve the recognition of new hotspots, the described methodology should be
applied to a larger, higher quality (digitally recorded) data set. As such this study
should be seen mainly as a proof of concept, demonstrating the possible application
and contribution of automatic text and audio analysis to therapy process research
in posttraumatic stress disorder (PTSD) and mental health research in general.
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7.1.5. Exploring “Letters from the Future” by visualization

T he last study in this dissertation (Chapter 6) showed the use of data visualization
to explore differences in narrative styles. As stated before, the growing supply

of online mental health tools, platforms, and treatments results in an enormous
quantity of digital narrative data to be structured, analyzed and interpreted. Natu-
ral language processing (NLP) is very suitable to automatically extract textual and
structural features from narratives. Visualizing these features can help to explore
patterns and shifts in text content and structure. In this study, streamgraphs were
developed for different types of “Letters from the Future”, an online mental health
promotion instrument. The visualizations showed differences between as well as
within the different letter types, providing directions for future research in both the
visualization of narrative structure and in the field of narrative psychology. The
method presented here was not limited to “Letters from the Future”, the object of
study, but can in fact be used to explore any digital or digitalized textual source,
like books, speech transcripts, or email conversations.

7.2. Interpretation of findings

A s stated in the Introduction (Chapter 1), data quality, completeness, and privacy
are known critical elements for succesful data reuse. This dissertation illustrates

what issues can arise with regard to these elements, how these issues influence the
research process and outcomes, and to what extent AI applications can be used to
deal with these issues.

Data quality was found to be a major challenge in reusing audio recordings of
real-life therapy sessions (Chapter 5). As session recordings contain real, authentic
emotions embedded in a broader context, such data are highly valuable for the
study of speech sounds and emotion recognition, which are often based on emo-
tions portrayed by actors. To analyze speech content, automatic speech recognition
was expected to be a valuable and efficient alternative to manual transcription of
each recording, enabling the processing and analysis of large numbers of record-
ings. However, due to the use of basic recording equipment and the transitory
nature of analog recordings, recording quality drastically reduced over the years.
Moreover, the heavy emotional outbreaks and the different cultural backgrounds of
the patients made any automated processing impossible and as such manual tran-
scription was required. Consequently, our data set was a lot smaller than intended
and our results were not generalizable to future data. Luckily, thanks to today’s
digital recording equipment, audio data quality currently is much higher and data
no longer needs to be digitized for further analysis. This eliminates a part of the
data quality challenges encountered in our study, making it easier to process and
analyze larger amounts of audio data.

The main challenge in reusing text data is patient privacy, especially when deal-
ing with narrative data on mental health problems, which may contain sensitive and
personal information (Chapter 4). Our solution for this was to “blindly” process the
text and develop a text screening model using the text classification tool developed
in Chapter 3. This tool enabled us to work on the sensitive information locally and
without any insight in the textual content, which reduced the risk of privacy issues
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but also of possible confirmation bias due to prior knowledge. However, by using
a tool we were limited by the choice of models and parameters made beforehand,
during the development of the tool. Adding or changing the tool’s settings based
on new insights is quite laborious, as this requires developing, validating, updat-
ing, and installing a new version. Therefore, we adopted a common and proven
classifier, pipeline, and text features, which may have led to a less successful clas-
sification model, at least for disorders other than the eating disorder which was
identified very well.

Finally, when reusing routinely collected EHR data for the identification of pa-
tient groups (Chapter 2), the lack of sufficiently complete, detailed information or
outcome scores made it difficult to apply formal patient inclusion and exclusion cri-
teria and to validate possible patient selection algorithms, as well as the resulting
patient set. Even when data was enriched on the patient level with information
from a second source, the available EHR data still lacked reliable diagnostic infor-
mation required to draw formal conclusions. In order to successfully reuse routine
EHR data for patient selection, it is important to check beforehand what formal di-
agnostic information is available, what classification and coding systems are used,
and what linkable external data sources exist.

Our findings show that, even when rich or large amounts of data and data pro-
cessing techniques are available, data reuse does not automatically lead to faster,
more generalizable, or better results. In some cases data reuse can become a
long journey leading to unsatisfactory results. To prevent or at least be aware of
this, a set of guidelines or minimal requirements for successful data reuse might be
valuable. The FAIR data principles (Findability, Accessibility, Interoperability, and
Reuse of digital objects; European Commission Expert Group on FAIR Data, 2018)
offer many useful pointers, especially regarding interoperability (e.g., data should
be encoded using community agreed schemas and vocabularies, be processed us-
ing open data formats and software, and be easily linkable to other data sets).
However, it is difficult to foresee what the effect will be if a data set does not meet
all conditions. As this is generally learned during the process, we hope the studies
presented in this dissertation have provided more insight in the practice of data
reuse.

7.3. Limitations

A first limitation is that this thesis shows how clinical data reuse for scientific pur-
poses works out in practice based on only four data sets. We are aware that no

hard conclusions can be drawn from such a limited number of examples. Moreover,
all data sets originate from Dutch (mental) health care practice and research, which
means our findings may mainly apply to the practice of secondary data use in the
Netherlands. Data quality, completeness, and privacy are internationally reported
issues when it comes to data reuse (Sherman et al., 2016). However, the solu-
tions described, such as linking data from different sources to validate a developed
patient selection algorithm (Chapter 2) may not be possible in every country, as
data sources may not be available or may not cover the same populations as in the
Netherlands.
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A second limitation is that the solutions used in this thesis specifically apply to
the data quality, completeness, or privacy related issues present in our cases. Each
secondary data set comes with its own challenges, and although AI applications
such as NLP, TM, and ASR can be very useful in processing large quantities of data,
this dissertation also shows that such techniques may not be applicable to all data
sets. For example, when working with low quality audio recordings (Chapter 5),
ASR leads to poor results and manual data processing is still required. Similarly,
in our studies we limited the use of AI to supervised machine learning. To make
described solutions available for other researchers or care professionals, this dis-
sertation comes with an easy, readily available tool for people to develop their own
supervised text classification models that can be directly applied in their own re-
search and care setting. However, not all data sets allow for supervised learning,
as this requires annotated labels of sufficient quality.

Finally, when working with unstructured patient data, most information is in the
details. For a TM algorithm to reach a sensitivity comparable to a trained expert
such as a therapist, large training data sets are needed. In practice, when col-
lecting or reusing patient data in the Netherlands, most data sets are too small
to develop strong classification models. This limitation was seen not only in the
cases presented in this dissertation; also other studies set in the Netherlands (e.g.,
Smink, 2021) showed that even after years of data collection, the resulting Dutch
mental health intervention data set was still too small for successful supervised
learning. This underlines a recurring theme throughout the chapters of this disser-
tation, namely that the available data sets were too small for the complex models
that were fitted, and that text preprocessing tools and dictionaries were primarily
developed (and sometimes only available) for the English language. Although this
may have affected our results, we still think it is important to show what is possible
when larger, or higher quality, data sets would be available in the future.

7.4. Future perspectives

D ata reuse is a highly relevant topic, which is shown by the emergence of the
FAIR data principles and data requirements of scientific journals and funders.

However, not all data sets are suitable for sharing and secondary use. This is
especially the case for (mental) health data, which are often rich in content but
therefore also highly sensitive and possibly personally identifiable. At the moment,
most mental health studies, such as those aimed at traumatic stress, have not fo-
cused on data preservation, sharing, or reuse (Kassam-Adams & Olff, 2020). How-
ever, active efforts are currently made to collect data sets that other researchers
may reuse (e.g., Global Collaboration on Traumatic Stress (GC-TS), https://www.
global-psychotrauma.net/data-sets). Moreover, initiatives making traumatic stress
data more FAIR (e.g., GC-TS, https://www.global-psychotrauma.net/fair-data) and
enabling the analysis of highly privacy sensitive research data on location (e.g., Per-
sonal Health Trains; Deist et al., 2020) have been launched. Future studies should
focus on the practical application and integration of such initiatives in health care
research and practice.

In addition, more effort should be put in promoting the benefits and possibili-

https://www.global-psychotrauma.net/data-sets
https://www.global-psychotrauma.net/data-sets
https://www.global-psychotrauma.net/fair-data
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ties of data sharing. If more researchers would share their recently or previously
collected data, this could speed up research, facilitate efficient collaborations, and
ultimately benefit patients (Olff, 2020). Moreover, data sharing can also benefit
the researchers who originally collected the data set by drawing more attention
and increasing the visibility of their research. However, researchers often see bar-
riers when it comes to sharing their data, e.g., regarding privacy and ownership, or
just do not know how to share their data (Kassam-Adams & Olff, 2020). Attention
thus should also be paid to educating researchers on different data sharing possi-
bilities, emphasizing the difference between FAIR and open data. FAIR data does
not necessarily mean open data for instance; data can also be only available upon
reasonable request (Kassam-Adams & Olff, 2020). The GC-TS currently examines
traumatic stress researchers’ views and experiences regarding data sharing and
reuse. All these efforts should help to increase and possibly improve the secondary
use of data.

7.5. Conclusion

T he central question in this dissertation was how new technologies such as AI can
contribute to the successful reuse of clinical data towards improving (mental)

health care practice and research. Data reuse is widely encouraged and has the
potential to improve health care quality, reduce costs, and lead to more effective
clinical research. AI certainly makes it more interesting and worthwhile to reuse
existing data sets, as it enables a renewed, more profound analysis of rich and
ecologically valid material that may be scarce, difficult to collect, or too extensive
for manual processing. However, researchers and health care professionals may
encounter several difficulties when reusing existing data sets for purposes other
than originally intended.

This thesis demonstrates the practice of clinical data reuse based on four dif-
ferent available data sets, collected during different phases in the care process and
from different care settings in the Netherlands. Each study provided insight in pos-
sible challenges one can meet when reusing routine and research data, and how
AI and other techniques can help deal with these challenges. Despite the grow-
ing availability of data, the possibility to link and enrich these data, and the use
of AI techniques such as supervised text classification, automated speech process-
ing, and data visualization, reusing data was found to be quite a complicated and
lengthy process.

Although AI was regarded a useful tool in (secondary) data processing, for ex-
ample when analyzing large amounts of text data, extracting speech characteristics
from therapy session recordings, and dealing with privacy sensitive data by execut-
ing a blind analysis, AI is not the solution to any given problem. Successful data
reuse depends more on the data quality (e.g., the quality of an audio recording),
label quality (in terms of annotation and classification systems), the size and distri-
bution of the data over different classes (class balance), and the scope of the data
set. If those elements are insufficient or do not fit the research question, applying
AI cannot be expected to lead to more efficient research or more successful data
reuse. It is therefore of great importance to take these elements into consideration
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before reusing data.
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Summary

Given the enormous amount of routine and research data collected in (mental)
health care, data reuse is a rapidly growing area with high potential for clinical
practice and research. Data reuse is further encouraged by the increasing availabil-
ity and usability of new technologies such as artificial intelligence (AI) and machine
learning (ML) and the implementation of the FAIR data principles. AI and ML tech-
nologies can help structure and process the large amount of available data in an
efficient and reproducible manner. Especially in mental health care, where a large
part of the collected data consists of unstructured text or audio recordings, applica-
tions such as text mining or audio signal processing can have a huge advantage over
manual annotation and processing. The implementation of the FAIR data principles
encourages researchers to make their primary data available for reuse, or to look
for reusable existing data sets before collecting new. Despite these developments,
data reuse can be challenging, as data sets are being used for purposes other than
originally intended. For structured data, the data formats and classification systems
used for encoding information can be incompatible, whereas for unstructured text
and audio data problems can arise with data quality and patient privacy. The aim of
this PhD thesis was to investigate how new technologies such as AI can contribute
to the successful reuse of clinical data towards improving (mental) health care prac-
tice and research. The five studies presented in the previous chapters contributed
to this overarching aim.

The first study examined the usability of routinely recorded primary and sec-
ondary care data for the identification of patients with complex diseases. Taking
primary Sjögren’s syndrome (pSS), an underdiagnosed, long-term autoimmune dis-
ease, as an example, a patient selection algorithm was developed and applied to
Nivel Primary Care Database (PCD). This study mainly reused structured data that
were encoded using several general classification systems for diseases, diagnoses,
prescriptions, and diagnostic tests. In addition, a simple keyword search was used
to identify pSS cases from recorded disease episode titles. International Classifica-
tion of Primary Care (ICPC) coded general practitioner (GP) contacts and disease
episodes, combined with the mention of “Sjögren” in the disease episode titles, were
found to best translate the formal classification criteria to a selection algorithm for
pSS. The pSS patients found by the algorithm were compared to Diagnosis Related
Groups (DRG) recorded in the national hospital insurance claims database (DIS),
by linking routine care data from both sources. Just over half (55.3%) of the pSS
patients identified in primary care were confirmed based on data from secondary
care. Although prevalence rates in primary care were in line with those reported
in literature, rates in secondary care seemed highly inflated. In summary, identify-
ing complex disease patients in primary care was found to largely depend on the
availability of structural and granular information. Additional formal diagnostic in-
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formation was required to determine whether routine electronic health record data
is fit for the identification and study of pSS patients.

Although a keyword search as used in the first study is easy to execute and im-
plement, a more accurate identification of cases from text may be achieved by using
supervised text classification. Supervised text classification is a popular text mining
application in which textual objects are assigned to a set of predefined class labels
using a classification model. This enables one to efficiently process, organize, or
analyze large volumes of unstructured text data and improves research consistency
and reproducibility. The second study described the development of new binary
and multiclass text classification models, addressing the complete text classifica-
tion pipeline including model selection and evaluation using nested cross-validated
parameter grid search. The elements of the pipeline (preprocessing, feature extrac-
tion, feature selection, and machine learning using support vector machines) were
described and the main parameters were reviewed. In addition, an Automated Su-
pervised Text Classification Tool (ASTeCT) was provided, which enables researchers
to apply the complete procedure directly to their own text data set to generate their
own classification models. The tool was applied to a Dutch data set originating from
an online mental health promotion instrument and tested on a public English test
data set for classification research. This showed that the procedure and tool can
be applied to text data from different contexts and in different languages.

In the third study, the developed tool (ASTeCT) was applied to textual responses
on a patient intake questionnaire to automatically screen for multiple mental health
(including substance use) disorders. Previous studies showed that mental disorders
can be detected based on text, but those focused on screening for one predefined
disorder instead of multiple disorders simultaneously. This study developed a Dutch
multiclass text classification model to screen for a range of mental disorders, in
order to refer new patients to the most suitable treatment. Based on patients’
textual responses to a questionnaire currently used for intake and referral, a seven-
class classifier was developed to distinguish between anxiety, panic, posttraumatic
stress, mood, eating, substance use, and somatic symptom disorders. A linear
support vector machine was fitted using nested cross-validation grid search. The
developed model was found to perform particularly well in identify eating disorders.
Although this study enabled simultaneous screening for multiple disorders at once,
the performance for disorders other than eating disorders needs to be improved
before implementation in mental health practice.

In addition to text data, audio data also contain a lot of information that can
be extracted automatically using new technologies. The fourth study illustrates the
development of a multimodal (text and audio) supervised classification model for
the automatic recognition of hotspots (key elements of imaginal exposure during
Brief Eclectic Psychotherapy for posttraumatic stress disorder) from recorded ther-
apy sessions. A supervised classification model was developed based on analog
tape recordings and transcripts of imaginal exposure sessions of ten successful and
ten non-successful treatment completers. Data mining and machine learning tech-
niques were used to extract and select text (e.g., words and word combinations)
and speech (e.g., speech rate, pauses between words) features that distinguish
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between “hotspot” and “non-hotspot” phases during exposure sessions. The devel-
oped model resulted in a high training performance but a low testing performance.
This showed that the selected text and speech features could clearly distinguish be-
tween hotspots and non-hotspots in the used data set but will probably not recog-
nize hotspots from new input data very well. To improve the automatic recognition
of new hotspots, the described methodology should be applied to a larger, higher
quality (digitally recorded) data set.

The fifth study showed the use of data visualization to explore differences in
narrative styles. Whereas natural language processing (NLP) is suitable to auto-
matically extract textual and structural features from narratives, visualizing these
features can help to explore patterns and shifts in text content and structure. In
this study, streamgraphs were developed for different types of “Letters from the
Future”, which were written in the context of an online mental health promotion
instrument. The visualizations showed differences between as well as within the
different letter types, providing directions for future research in both the visualiza-
tion of narrative structure and in the field of narrative psychology.

The five studies presented here all made use of secondary data, demonstrating
the practice of data reuse based on a range of available routinely collected or re-
search data sets from different health care settings in the Netherlands. It was found
that, although data reuse is widely encouraged and has the potential to improve
health care quality, reduce costs, and enable more effective clinical research, it can
be challenging in practice. Despite the growing availability of data, the possibility
to link and enrich these data, and the emergence of new (AI) techniques such as
supervised text classification, automated speech processing, and data visualization,
reusing data was found to be quite a complicated and lengthy process. AI can cer-
tainly further successful data reuse, for example by reproducibly processing large
amounts of unstructured data or by “blindly” analyzing privacy sensitive data using
a text classification tool such as ASTeCT. However, critical elements such as data
quality (e.g., quality of an audio recording), label quality (in terms of annotation and
encoding), the sample size and distribution of the data over different classes (class
balance), and the scope and granularity of the data set also play an important role.
It is of great importance to judge these elements beforehand, because if they are
insufficient or do not match with the secondary research purpose, applying AI will
most likely not lead to more efficient or successful research.





Samenvatting

De enorme hoeveelheid routine- en onderzoeksdata die in de (geestelijke) ge-
zondheidszorg worden verzameld, maakt data hergebruik een snelgroeiend do-
mein met veel potentie voor zowel de klinische praktijk als het onderzoeksveld.
Data hergebruik wordt verder gestimuleerd door de toenemende beschikbaarheid
en bruikbaarheid van nieuwe technologieën zoals kunstmatige intelligentie (artifi-
cial intelligence; AI) en machine learning (ML) en de implementatie van de FAIR-
dataprincipes. Met behulp van AI en ML kunnen grote hoeveelheden data efficiënt
en reproduceerbaar worden verwerkt en gestructureerd. Vooral in de geestelijke
gezondheidszorg, waar een groot deel van de verzamelde data bestaat uit onge-
structureerde tekst- of audio-opnames, kunnen toepassingen als tekstmining of
audiosignaalverwerking een enorm voordeel bieden ten opzichte van handmatige
annotatie en transcriptie. De implementatie van de FAIR-dataprincipes stimuleert
onderzoekers om hun primaire data beschikbaar te stellen voor hergebruik, of om
op zoek te gaan naar bestaande, herbruikbare datasets voordat zij zelf nieuwe data
verzamelen. Ondanks deze ontwikkelingen kan data hergebruik een uitdaging vor-
men, omdat datasets worden gebruikt voor andere doeleinden dan oorspronkelijk
bedoeld. In het geval van gestructureerde data kunnen bijvoorbeeld de gewenste
en de gebruikte gegevensformaten of classificatiesystemen waarmee informatie is
vastgelegd onverenigbaar zijn, terwijl voor ongestructureerde tekst- en audiodata
de gegevenskwaliteit en de privacy van de patiënt een probleem kunnen vormen.
Het doel van dit proefschrift was om te onderzoeken hoe nieuwe technologieën
zoals AI kunnen bijdragen aan het succesvol hergebruik van data ter verbetering
van zowel de klinische als de onderzoekspraktijk. De vijf onderzoeken die in de
voorgaande hoofdstukken zijn gepresenteerd, hebben bijgedragen aan dit over-
koepelende doel.

De eerste studie onderzocht de bruikbaarheid van routinematig vastgelegde
eerste- en tweedelijnszorg gegevens voor de identificatie van patiënten met com-
plexe aandoeningen. Met als voorbeeld het primaire syndroom van Sjögren (pSS),
een ondergediagnosticeerde, langdurige auto-immuunziekte, werd een patiënten-
selectie algoritme ontwikkeld en toegepast op de Nivel Zorgregistraties Eerste Lijn
(NZR). In dit onderzoek werden voornamelijk gestructureerde gegevens hergebruikt
die waren gecodeerd met behulp van verschillende algemene classificatiesystemen
voor ziekten, diagnoses, medicatievoorschriften en diagnostische tests. Daarnaast
werd een eenvoudige zoekopdracht op trefwoord gebruikt om pSS-gevallen te iden-
tificeren op basis van geregistreerde ziekte-episode titels. Internationale Classifi-
catie van Eerstelijnszorg (ICPC) gecodeerde huisartscontacten en ziekte-episodes,
gecombineerd met de vermelding van “Sjögren” in de ziekte-episode titels, bleken
de formele classificatiecriteria het beste te vertalen naar een selectie-algoritme voor
pSS. De pSS-patiënten die door het algoritme werden gevonden, werden vervolgens
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vergeleken met Diagnose Behandelcombinaties (DBC) codes die zijn geregistreerd
in het DBC-Informatiesysteem (DIS) van de Nederlandse Zorgautoriteit, door rou-
tinematige zorggegevens uit beide bronnen te koppelen. Iets meer dan de helft
(55,3%) van de pSS-patiënten die in de eerste lijn werden geïdentificeerd, werd
bevestigd op basis van gegevens uit de tweede lijn. Hoewel de prevalentiecijfers
in de eerste lijn overeenkwamen met de prevalentie gerapporteerd in de litera-
tuur, leek de prevalentie in de tweede lijn sterk verhoogd. Samenvattend bleek het
identificeren van patiënten met een complexe ziekte in de eerste lijn grotendeels
af te hangen van de beschikbaarheid van structurele en gedetailleerde informatie.
Aanvullende formele diagnostische informatie bleek nodig om te bepalen of routi-
nematig vastgelegde gegevens uit het elektronisch patiëntendossier geschikt zijn
voor de identificatie en studie van pSS-patiënten.

Hoewel het zoeken op trefwoorden zoals in de eerste studie eenvoudig is uit te
voeren en te implementeren, kan de identificatie van patiënten op basis van tekst
nauwkeuriger, bijvoorbeeld door middel van gesuperviseerde tekstclassificatie. Dit
is een populaire tekstmining toepassing, waarbij tekstuele objecten worden toe-
gewezen aan een set vooraf gedefinieerde categorieën (klasselabels) met behulp
van een classificatiemodel. Dit maakt het mogelijk om grote hoeveelheden onge-
structureerde tekstgegevens efficiënt te verwerken, organiseren, of analyseren, en
verbetert bovendien de consistentie en reproduceerbaarheid van het onderzoek. De
tweede studie beschreef de ontwikkeling van nieuwe binaire en multiklasse tekst-
classificatiemodellen en ging in op de volledige tekstclassificatie pijplijn, inclusief
veelgebruikte strategieën voor modelvalidatie, -selectie, en -evaluatie. De elemen-
ten van de pijplijn (voorbewerking, feature extractie, feature selectie, en machine
learning met behulp van support vector machines) werden beschreven en de be-
langrijkste parameters werden uitgelegd. Daarnaast is een Automated Supervised
Text Classification Tool (ASTeCT) geleverd, waarmee onderzoekers de volledige pro-
cedure rechtstreeks op hun eigen tekst dataset kunnen toepassen om hun eigen
classificatiemodellen te genereren. De tool werd toegepast op een Nederlandse da-
taset afkomstig van een online instrument voor geestelijke gezondheidsbevordering
en werd getest op een openbare Engelse test dataset voor classificatieonderzoek.
Hieruit bleek dat de procedure en de tool toepasbaar zijn op tekstgegevens uit
verschillende contexten en in verschillende talen.

In de derde studie werd de ontwikkelde tool (ASTeCT) toegepast op een vra-
genlijst voor de intake van patiënten, met als doel automatisch te screenen op
meerdere psychische stoornissen. Eerdere studies hebben aangetoond dat psychi-
sche stoornissen kunnen worden opgespoord op basis van tekst, maar die waren
gericht op het screenen op één vooraf gedefinieerde stoornis in plaats van meerdere
stoornissen tegelijk. Onze studie ontwikkelde een Nederlands multiklasse tekstclas-
sificatiemodel om te screenen op een reeks psychische stoornissen, om nieuwe pa-
tiënten door te verwijzen naar de voor hen meest geschikte behandeling. Op basis
van de tekstuele antwoorden van patiënten op een vragenlijst die momenteel wordt
gebruikt voor intake en doorverwijzing, werd een classificatiemodel met zeven klas-
sen ontwikkeld om onderscheid te maken tussen angst-, paniek-, posttraumatische
stress-, stemmings-, eet-, middelengebruik- en somatische symptoom-stoornissen.
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Het ontwikkelde model bleek bijzonder goed te presteren bij het identificeren van
eetstoornissen. Hoewel deze studie gelijktijdige screening op meerdere stoornissen
mogelijk maakte, dient de identificatie van andere stoornissen dan eetstoornissen
te worden verbeterd voordat een dergelijk model in de geestelijke gezondheidszorg
kan worden geïmplementeerd.

Naast tekstgegevens bevatten ook audiogegevens veel informatie die met nieuwe
technologieën automatisch kan worden geëxtraheerd. De vierde studie illustreerde
de ontwikkeling van een multimodaal (tekst en audio) gesuperviseerd classifica-
tiemodel voor het automatisch herkennen van hotspots (hoofdelementen in ima-
ginaire exposure tijdens Beknopte Eclectische Psychotherapie voor Posttraumati-
sche stressstoornis; BEPP) uit opnames van therapiesessies. Een gesuperviseerd
classificatiemodel werd ontwikkeld op basis van analoge bandopnames en trans-
cripties van imaginaire exposure-sessies van tien succesvol en tien niet-succesvol
voltooide behandelingen. Data mining en machine learning technieken werden ge-
bruikt om tekst features (zoals woorden en woordcombinaties) en spraak features
(zoals spraaksnelheid en pauzes tussen woorden) te extraheren en te selecteren
die onderscheid maken tussen “hotspot” en “niet-hotspot” fases in exposure ses-
sies. Het ontwikkelde model resulteerde in een hoge training score maar een lage
test score. Dit betekent dat de geselecteerde tekst en spraak features duidelijk on-
derscheid konden maken tussen hotspots en niet-hotspots in de gebruikte dataset,
maar dat hotspots waarschijnlijk niet goed zullen worden herkend in nieuwe data-
sets. Om de automatische identificatie van nieuwe hotspots te verbeteren, moet de
beschreven methode worden toegepast op een grotere dataset van hogere kwaliteit
(digitaal opgenomen).

De vijfde studie toonde het gebruik van datavisualisatie om verschillen in nar-
ratieve stijl te onderzoeken. Waar natural language processing (NLP) zeer geschikt
is om automatisch tekstuele en structurele kenmerken uit teksten te halen, kan het
visualiseren van deze kenmerken helpen om patronen en verschuivingen in tekstin-
houd en structuur te ontdekken. In dit onderzoek werden stroomdiagrammen ont-
wikkeld voor verschillende typen “Brieven vanuit de Toekomst”, die zijn geschreven
in de context van een online instrument voor geestelijke gezondheidsbevordering.
De visualisaties lieten zowel tussen als binnen de verschillende typen brieven vari-
atie zien. Dit kan richting geven aan toekomstig onderzoek in zowel de visualisatie
van narratieve structuur als op het gebied van narratieve psychologie.

De vijf onderzoeken in dit proefschrift toonden verschillende kanten van dataher-
gebruik in de praktijk op basis van beschikbare routinematig verzamelde gegevens
en onderzoeksdatasets uit verschillende zorgcontexten in Nederland. Er werd be-
vonden dat, hoewel hergebruik van data op grote schaal wordt aangemoedigd en
het in potentie kan bijdragen aan effectiever klinisch onderzoek en het verbeteren
van de kwaliteit van de gezondheidszorg, er zich in de praktijk ook vele uitdagingen
voordoen. Ondanks de groeiende beschikbaarheid van data, de mogelijkheid om
deze data te koppelen en te verrijken, en de opkomst van nieuwe (AI) technie-
ken zoals gesuperviseerde tekstclassificatie, geautomatiseerde spraakverwerking
en datavisualisatie, bleek het hergebruik van data een behoorlijk gecompliceerd
en langdurig proces. AI-toepassingen kunnen het succesvol hergebruik van gege-
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vens zeker bevorderen, bijvoorbeeld bij het reproduceerbaar verwerken van grote
hoeveelheden ongestructureerde gegevens of door het ’blind’ analyseren van pri-
vacygevoelige gegevens met behulp van een tekstclassificatie tool zoals ASTeCT.
Kritische elementen zoals datakwaliteit (bijvoorbeeld de kwaliteit van een audio-
opname), labelkwaliteit (in termen van annotatie en codering), de steekproefom-
vang en verdeling van de gegevens over verschillende klassen (klassenbalans), en
de reikwijdte en fijnmazigheid van de dataset spelen echter ook een belangrijke
rol. Het is van groot belang deze elementen voorafgaand aan het hergebruik te be-
oordelen, want als deze onvoldoende zijn of niet passen bij het secundaire onder-
zoeksdoel, zal het toepassen van AI hoogstwaarschijnlijk niet leiden tot efficiënter
of succesvoller hergebruik van data voor onderzoek.



Dankwoord

Eindelijk is het zo ver en mag ik, als allerlaatste onderdeel van dit proefschrift,
mijn dankwoord schrijven. Over de jaren heen zijn er heel wat partijen en mensen
betrokken geweest bij dit proefschrift en het leven daarbuiten. Zonder deze mensen
had dit proefschrift er nu wellicht niet gelegen. Ik wil een aantal van hen hier graag
persoonlijk voor bedanken.

Allereerst mijn promotoren, Bernard Veldkamp en Miranda Olff. Bernard,
bedankt voor de mogelijkheid om te kunnen promoveren bij OMD. Toen ik terug-
kwam van mijn reis was het best lastig om weer aan het werk te gaan en ik ben
blij dat ik toen deze kans heb gekregen. Ik heb veel geleerd, ook over mezelf,
en wil je bedanken voor het vertrouwen en de vrijheid die ik heb gekregen om dit
proefschrift af te ronden op mijn eigen manier en tempo. Miranda, bedankt voor
alle positieve aanmoediging en je kritische blik, waardoor dit proefschrift naar een
hoger niveau is getild. Daarnaast wil ik je bedanken voor de manier waarop je mij
op het AMC hebt verwelkomd in je team van onderzoekers. Ik heb een hele fijne
tijd gehad bij jullie en vind het erg leuk dat ik een aantal jaar heb mogen deelnemen
aan alle team-uitjes en andere activiteiten.

Daarnaast gaat mijn dank uit naar Cees Glas en Sjoerd van Tongeren (�), die
samen mijn gecombineerde aanstelling als onderzoeker bij OMD en data manager
bij het IGS Datalab mogelijk hebben gemaakt.

Ook wil ik graag de voorzitter en leden van de promotiecommissie bedanken
voor hun kennis en tijd.

Dit proefschrift had als uitgangspunt het hergebruiken van bestaande data afkom-
stig uit eerder onderzoek of de zorgpraktijk. Ik wil dan ook verschillende partijen
bedanken die mij de mogelijkheid hebben gegeven hun data te gebruiken.

Allereerst Anneke Sools van het Storylab. Jouw “Brieven vanuit de toekomst”
dataset was de eerste set waarmee ik aan de slag ging en deze vormde een ware
inspiratiebron. Aan de hand van deze set heb ik mijn text mining skills ontwikkeld en
van jou heb ik geleerd hoeveel informatie je uit tekst kunt halen. Daarnaast bleken
de brieven een waardevolle test set bij het ontwikkelen van de ASTeCT tool. Tot
slot hebben de Text Analysis café’s die jij organiseerde mij verder wegwijs gemaakt
in de wereld van de tekst analyse. Hartelijk dank daarvoor!

Van Interapy wil ik graag Bart Schrieken en vooral ook Maurice Hidajat
bedanken. Bart, bedankt voor het beschikbaar stellen van de rijke Interapy data.
Deze dataset vormde niet alleen de basis voor een mooi paper, het heeft me ook
uitgedaagd om een tool te ontwikkelen waarmee deze dataset blind geanalyseerd
kon worden. Maurice, ontzettend bedankt voor al je tijd, geduld en enthousiasme.
Ik heb niet bijgehouden hoe vaak je wel niet een nieuwe versie, een nieuwe run, of
een nieuwe check voor mij hebt uitgevoerd. Hoewel ik mij soms bezwaard voelde
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dit van je te vragen was jij altijd enthousiast en geduldig. Ik heb ons contact hierin
erg gewaardeerd.

Wat betreft de hotspots data wil ik in het bijzonder Mirjam Mink-Nijdam en
Arjan van Hessen bedanken. Mirjam, wat vond ik het interessant om in jouw
hotspots data te duiken! Je hebt me wegwijs gemaakt in de dataset en in het
herkennen van hotspots. Daarnaast heb je veel met me meegekeken naar de
codering. Hiermee hebben we de hotspots data weer een stukje verrijkt en zijn
we tot een heel mooi paper gekomen. Dankzij jou rustige begeleiding vond ik dit
een fijn project om aan te werken. Arjan, wat een geluk dat ik op jouw kennis en
enthousiasme omtrent spraakanalyse heb mogen meeliften! Je hebt mij ontzettend
geholpen met de audio analyses en alle voorbereiding die daarbij kwam kijken, waar
ik als leek totaal geen weet van had. Zonder jou was het denk ik niet gelukt, en
daarnaast was je enthousiasme aanstekelijk. Ook wil ik hier Khiet Truong (HMI)
en Laurens Satink en Michel Boedeltje van Telecats bedanken, die mij hebben
geholpen met de audio analyses en het oplijnen van de tekst en spraak data.

Tot slot ben ik blij dat ik in mijn tijd bij het Nivel gebruik heb kunnen maken van
data uit de Nivel Zorgregistraties Eerste Lijn, die perfect binnen mijn proefschrift
pastte. Ik wil vooral Rodrigo Davids bedanken voor het meedenken over de data
specificaties en de aanlevering van de dataset.

Daarnaast heb ik al die jaren waarin ik aan mijn proefschrift heb gewerkt heel
wat werkomgevingen en collega’s mee mogen maken. Allereerst natuurlijk mijn
collega’s van OMD, waar het allemaal begon. Bedankt voor de gezellige teamuitjes,
de lunchwandelingen en de kennisuitwisseling tijdens de colloquia. Qiwei He, your
text mining research was an inspiration and a great starting point. In het bijzonder
wil ik mijn kamergenoteMaaike Heitink bedanken, met wie ik zoveel heb gedeeld,
gekletst en gelachen in mijn UT-tijd en daarna. Ik heb veel van jou geleerd en ik
ben blij dat jij na al die jaren mijn paranimf wilt zijn! Ik ben je ook super dankbaar
voor de mooie omslag voor mijn proefschrift, heel fijn dat je mij hiermee hebt willen
helpen.

Ik wil mijn AMC-collega’s bedanken dat jullie me zo fijn hebben opgenomen in
jullie team. De gezellige lunches, teamuitjes en het ESTSS congres in Denemarken
heb ik heel erg gewaardeerd en ik voelde me echt onderdeel van het team.

Mijn collega’s bij het Rijnstate, ook al was ik er maar kort, jullie zijn nog steeds
mijn favoriet! Mijn eerste ervaring in een gezamenlijke kantoortuin waarin zoveel
werd samengewerkt en gelachen. Ik kijk met ontzettend veel plezier op mijn tijd
bij jullie terug, en naast het werk had ik nog genoeg energie over om aan mijn
proefschrift te besteden. Ook in moeilijke tijden was het prettig om weer naar
kantoor te komen. Elise van Zandbrink, ik ben jou voor altijd dankbaar voor de
tijd en ruimte die je mij hebt gegund rondom het overlijden van mijn vader, en dat
je mij helemaal naar Friesland hebt gebracht zodat ik geen belangrijke momenten
heb hoeven missen.

Mijn Nivel collega’s Anouk, Lotte en Isabelle; bedankt voor de gezelligheid
en jullie interesse in mijn proefschrift. De laatste loodjes wogen toch erg zwaar!
Christine, bedankt voor de herkenning en wat ben ik blij dat ik via jou mijn nieuwe
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baan bij IKNL heb gevonden. Gezellig om je weer regelmatig tegen te komen op
de werkvloer. Daarnaast wil ik mijn FluCov collega’s bedanken, die mij het laatste
jaar bij Nivel hernieuwde energie hebben gegeven om door te pakken met mijn
proefschrift. En in het bijzonder John, thanks for all your funny anecdotes and
your support; I’ve finally let go of the boat!

Tot slot ben ik blij met mijn huidige IKNL collega’s en de organisatie skills die
ik daar nu opdoe. Ik vind het leuk dit laatste stukje van mijn promotietraject met
jullie te kunnen delen.

Naast het werk heb ik de afgelopen jaren veel energie kunnen opdoen bij vol-
leybalvereniging Boni. Bedankt aan al mijn teamgenootjes en aan de EBLC in het
bijzonder. Wat hebben we veel lol gehad in de voorbereiding van het lustrum!
Monica, Rianne en Marijke, ik vind het fijn dat we ook naast het volleyballen
contact houden en de grote life events met elkaar kunnen delen.

Marloes, wat hebben we een toptijd gehad op de beachvelden en daarnaast!
Ik koester veel mooie herinneringen aan onze sportieve activiteiten en uitgaans-
avonturen. Nu we braaf en burgerlijk zijn vind ik het heerlijk om (alleen of met
Joost en Eva) bij jou en Steven langs te gaan, waar het ons nooit aan iets ontbreekt.
Ik kijk ernaar uit om met jullie en de lieve Dorus samen nog vele mooie momenten
te mogen delen.

Mijn oudste vriendinnen uit de Enschede-tijd, Karin en Bregje; wat fijn dat we
nog steeds bij elkaar in de buurt wonen en elkaar nog regelmatig opzoeken. Ik ben
dankbaar dat we al die tijd al lief en leed delen en dat onze kindjes nu zo gezellig
samen kunnen spelen. Jullie blijvende interesse en vertrouwen in mijn proefschrift
heeft me erg geholpen al die tijd.

Natuurlijk wil ik hier ook mijn familie bedanken. Of ik nu een grote reis maak
of aan een nieuwe baan begin, jullie staan altijd voor me klaar en steunen me in
mijn keuzes. Heit, wat jammer dat je dit allemaal niet meer mee kunt maken. Ik
had nog zo graag meer bijzondere momenten met je gedeeld. Gelukkig heb jij al je
meiden goed achtergelaten. Mam, Marian enWillemien, ik ben trots dat we het
met zijn vieren zo goed doen. Marian, wat fijn dat je mijn paranimf wilt zijn! Mijn
schoonfamilie wil ik bedanken voor hun niet aflatende interesse in mijn proefschrift
en alle praktische steun in de afgelopen jaren.

En als allerlaatste maar ook allerbelangrijkste, mijn partner Joost. Ik waardeer
alle tijd en ruimte die ik van jou heb gekregen om aan mijn onderzoek te werken
en wil je bedanken voor je onuitputtelijke vertrouwen, steun en positiviteit. Zelfs
op momenten dat ik het zelf niet meer zag zitten hield jij vertrouwen en wist je me
te motiveren om door te zetten. Ik kan je niet genoeg bedanken voor al je hulp bij
zowel de totstandkoming als de afronding van dit proefschrift. Zonder jou was dit
proefschrift er niet geweest en had het er niet zo mooi uitgezien. Ik ben trots op
ons! En tot slot, onze dochter Eva. Wat hebben we het gezellig met jou erbij in ons
leven. Je bleek de beste stok achter de deur om een punt achter dit proefschrift te
zetten, zodat ik vanaf nu alle tijd en aandacht heb voor ons gezin.
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