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An Approach Based on Deep Learning for Tree
Species Classification in LiDAR Data

Acquired in Mixed Forest
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Abstract— This letter proposes a novel method based on Deep
Learning (DL) to forest species classification in airborne Light
Detection and Ranging (LiDAR) data. Differently from the state-
of-the-art approaches, the proposed method: 1) does not assume
any prior knowledge either on the forest to be classified or on the
sensor used to acquire the LiDAR data and 2) can be applied
to heterogeneous forest characterized by mixed species. First,
the 3-D point cloud of each individual tree is decomposed into
eight angular sectors to generate a multislice representation of
the vertical structure of the tree. This representation models the
foliage, the stem, and the branches of the tree crown as well as
depicts the internal and external crown properties. Then, a mul-
tiview convolutional neural network (MVCNN) DL automatically
extracts features used to discriminate the different tree species.
This network is pretrained on the massive ImageNet database,
thus guaranteeing fast convergence with a relatively small num-
ber of ground reference data. Experiments were carried out on
high-density airborne LiDAR data collected over a multilayer
multiage forest characterized by four conifers and three broadleaf
species. The proposed method outperformed the state-of-the-art
approaches increasing the Overall Accuracy (OA) up to 16% and
18.9% compared to a DL and a shallow tree species classification
methods, respectively. When applied to coniferous or broadlaef
forests, the proposed method showed an increase of OA 10.1%
and 15.9% (for conifers) and 9.5% and 21.6% (for broadleafs)
compared to the DL and shallow methods, respectively.

Index Terms— Deep learning (DL), light detection and ranging
(LiDAR), mixed forest, remote sensing (RS), tree species.

I. INTRODUCTION

REMOTE sensing data have been extensively employed to
support forest species classification due to the possibility

of objectively monitoring wide-area forests. In particular,
a large effort has been devoted to develop methods for the
classification of tree species on Light Detection and Ranging
(LiDAR) data [1]. By taking advantage from the capability
of the laser scanner to measure both the inner structure and
the 3-D shape of the tree crowns, it is possible to accurately
distinguish different forest species [2], [3]. Li et al. [2]
extracted several LiDAR features to describe the horizontal
and vertical structures of foliage and branch distribution (e.g.,
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tree envelop, foliage clustering scale, and gap distribution).
Their method has been defined to distinguish four tree species
characterized by similar crown structure, i.e., trembling aspen,
sugar maple, jack pine, and white pine, when high-density
LiDAR data having at least 50 pts/m2 are available. Simi-
larly, Harikumar et al. [3] modeled both internal and external
geometric properties of the tree to distinguish four conifer
species (i.e., Norway Spruce, European Larch, Swiss Pine,
and Silver Fir). By defining an algorithm tailored to the conifer
crown structure, their method is able to outperform other state-
of-the-art approaches. Indeed, accurate classification results
can be achieved with methods based on handcrafted feature
extraction by leveraging on prior knowledge of both the forest
properties (i.e., species and structure) and sensor characteris-
tics. However, when dealing with mixed heterogeneous forest
classification problems, there is the need to use approaches that
automatically derive optimal features to model the different
crown structures.

Recently, few Deep Learning (DL) approaches have been
applied to the tree species classification task considering
high-density mobile or terrestrial LiDAR data. Zou et al. [4]
applied a Deep Belief Network (DBN) to a LiDAR point
cloud acquired by terrestrial laser scanning systems for dis-
tinguishing four types of trees. First, the 3-D point cloud
of an individual tree is projected onto 2-D images using a
voxel-based rasterization step. Then, the images are classified
according to the DBN model trained from scratch. The authors
exploit a DBN model due to its capability of achieving better
convergence with small-scale training set compared to other
DL models, which typically require a huge number of training
samples. Similarly, Guan et al. [5] represented the different
profiles of the tree LiDAR point clouds as waveforms ingested
by deep Boltzmann machines. The method was successfully
tested on urban tree species acquired using mobile LiDAR
data. In [6], a deep Convolutional Neural Network (CNN) is
used to classify individual tree crowns into conifers and decid-
uous trees. Two discrete representations using leaf-off and leaf-
on LiDAR data are used to generate Digital Surface Model
(DSM) and 2-D side view profiles. Liu et al. [7] focused on
the classification of birch and larch by defining the LayerNet
deep model made up of a novel layered feature encoding
network and the standard PointNet decoding network [8]. The
point cloud used in the letter is acquired by an unmanned aerial
vehicle (UAV) scanner, which accurately represents the tree
stem and the branches needed by the approach to distinguish
the two forest species.
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Although DL models are promising for individual tree
species classification using LiDAR data, most of the methods
focus on mobile or terrestrial LiDAR point clouds, while
airborne LiDAR data are typically classified with shallow
models [1]. This is probably due to similarities of terrestrial
data to the ones used in computer vision that allows for
methods developed for such field to be applied on terrestrial
LiDAR point clouds, thus increasing the use of these data.
However, to perform large-scale forest mapping, experiments
should be carried out on airborne LiDAR data. The few
methods tested on airborne data mainly focus on simple clas-
sification task by discriminating broadleaf trees from conifers
or focusing on two species, i.e., on binary classification tasks.
From the operational viewpoint, it is not feasible to assume
the classification of few forest species when a large-scale
environmental analysis has to be carried out. To solve this
problem, this letter proposes a novel approach to tree species
classification based on DL and airborne LiDAR data defined
for heterogeneous forest areas characterized by mixed species.
In particular, the proposed approach takes advantage from the
Multiview CNN (MVCNN) DL model widely used in the
computer vision community for 3-D shape recognition [9]
to automatically extract semantic abstract features capable
of discriminating different tree species. This peculiar DL
architecture combines information provided by multiple views
of a 3-D shape into a single and compact shape descriptor,
thus working in the image domain. The main contribution of
this work is to propose a method that: 1) it automatically
detects the effective features to distinguished different tree
species; 2) it can take advantage, working in the image domain,
of a network pretrained on the massive ImageNet database to
rapidly boost the performance using a relatively small training
set; and 3) it can be applied to heterogeneous mixed forest
without the need of manually tuning any model parameter.

II. PROPOSED TREE SPECIES CLASSIFICATION APPROACH

The proposed tree species classification approach assumes
that: 1) the tree crowns are delineated in the 3-D point cloud
space; 2) each segmented tree point cloud has a central stem;
and 3) the 3-D structure of the trees (i.e., branch and foliage) is
sufficient to discriminate the different tree species. Regarding
the first assumption, a reliable segmentation step is necessary
for proper training and exploitation of the model. Indeed,
errors, such as undersegmentation (typical especially in dense
forests), may lead to an incorrect representation of the crown
structure and thus an ineffective training. Note that this is a
problem common to all single tree methods. The method is
based on two main steps: 1) the multislice decomposition of
the tree crowns and 2) the DL-based tree species classification.
In the following, details are given.

A. Multislice Decomposition of the Tree Crowns

Let Pk = {pi}N
i=1 be the set of LiDAR points associated

with the kth segmented tree and let tk be the corresponding
tree-top, where pi and tk are three-element row vectors defined
by the x , y, and z coordinates, i.e., pi = (xi , yi , zi ) and tk =
(x t

k, yt
k, zt

k). In order to fully take advantage from the capability

Fig. 1. Example of multislice generation applied to a conifer: (a) original
point cloud, (b) sector analysis with the points selected for one slice high-
lighted in orange, and (c) resulting slice.

of the LiDAR data to accurately represent the structure of
the trees, Pk is first decomposed into N angular sectors to
generate a multislice representation of the vertical structure
of the tree. Fig. 1 shows a qualitative example of multislice
representation of a conifer, where the sectors are defined by
the vertical panels. Such decomposition allows us to accurately
depict the internal and external crown properties, by properly
modeling the foliage, the stem, and the branches of the tree
crown.

Let � j be the angular sector defined between θ j = 2π j/N
and θ j+1 = 2π( j + 1)/N , where j ∈ [0, N − 1]. The set of
LiDAR points belonging to the angular sector P� j

k , which are
represented in orange in Fig. 1(b), can be defined as

P
� j

k =
{

pi ∈ Pk

∣∣∣∣ arctan

(
xi − x t

k

yi − yt
k

)
∈ [θ j , θ j+1)

}
. (1)

The 3-D vertical profile of the angular sector can be
represented by a 2-D view, by considering the coordinates
zi of the LiDAR points pi ∈ P

� j

k and their distances from
the stem. Let us assume that the tree-top correctly represents
the location of the tree stem. The absolute distance of LiDAR
points from the stem can be computed as follows:

ρi =
√(

xi − x t
k

)2 + (
yi − yt

k

)2
. (2)

To this end, we first apply a circular projection to the points
pi ∈ P

� j

k onto the ρz plane centered in the tree-top coordinates
(x t

k, yt
k) to map the points from the 3-D space R3 onto the

2-D space R2. Let S
� j

k (ρ) be the vertical profile of � j . After
the mapping, the LiDAR tree crown Pk is represented by
N 2-D views, i.e., [S�1

k (ρ), S�2
k (ρ), . . . , S�N

k (ρ)], each one
representing one slice. It is worth noting that the produc-
tion of the 2-D views of the images should: 1) avoid loss
of information in the description of the 3-D structure and
2) generate 2-D profiles consistent to each other. The latter
aspect is critical since the image properties (e.g., size) must not
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Fig. 2. Qualitative example of multislice decomposition of two tree crowns: (a)–(h) conifer (Silver Fir) and (i)–(p) broadleaf (Aspen). One can notice that
the profiles acquired over different angular sectors allow us to capture the irregular structure of the tree crowns.

have an impact on the classification. To this end, the LiDAR
points are all rendered as black dots with equal size to drive
the MVCNN to focus on the crown structure and enhance
the generalization capability of the model. Fig. 2 shows a
qualitative example of multislice decomposition of two tree
crowns by comparing conifer (silver fir) and broadleaf (aspen)
forest species. The figure clearly depicts how the proposed
representation effectively captures both the crown shape and
internal structure of the trees, by emphasizing the different
geometrical properties of the considered tree species.

B. DL-Based Tree Species Classification

DL models proved to be very effective for extracting
abstract semantic features to support complex classification
task. In particular, CNN models trained on large dataset of
natural images such as ImageNet or GoogLeNet are able to
accurately define in a fast and automatic way image descriptors
useful for several vision tasks (e.g., object detection, scene
recognition, and texture detection) [10]. In this context, the
possibility of taking advantage from a pretrained architecture is
extremely interesting to address forest species classification of
LiDAR data. Indeed, the small training sets typically available
for forestry applications are not sufficient to successfully train
a DL model from scratch. For this reason, the proposed
approach takes full advantage of the capability of the MVCNN
model pretrained on the large database of annotated images
ImageNet [9] to accurately address the considered classifica-
tion task with a relatively small set of ground reference data.

The MVCNN model is able to synthesize the informa-
tion from multiple views into a single compact 3-D shape

descriptor, which can be used to perform the classification

task. In greater detail, each slice S
� j

k (ρ) is passed through a
dedicated CNN�

j , which is able to automatically extract an
informative set of abstract semantic features. In particular,
the CNN model is a VGG-11 architecture composed by
eight convolutional layers followed by three fully connected
layers [11]. It is worth noting that no manual parameter
tuning is performed per slice since all the feature extractors
[CNN�

1 , CNN�
2 , . . . , CNN�

N ] share the same parameters. Let

us define as f
� j

k the set of features extracted for the j th view
S

� j

k (ρ) of the kth segmented tree. The set of N features

[f�1
k (ρ), f�2

k (ρ), . . . , f�N
k (ρ)] is aggregated into a unique 3-D

image descriptor Fk through a view-pooling layer considering
an element-wise maximum operation across the views. The
final descriptor Fk is then used for classification. Also, in this
case, the considered DL architecture takes advantage from the
capability of a CNN to properly handle this task. To carry out
this step, the network is fine-tuned on the considered training
set using stochastic gradient descent with backpropagation.
Note that the considered network does not require to have the
same number of points per segmented crown. This condition
allows us to: 1) fully take advantage from the capability of the
laser scanner to describe the inner structure of the trees and
2) not impose any constraint on the LiDAR data acquisition.
Another advantage of the proposed approach is that it does
not require to have a very large number of labeled samples to
train the DL model from scratch [4]. Indeed, at the operational
level, this may lead to overfitting and curse of dimensionality
problems due to the lack of reference data. In particular,
the use of a network pretrained on millions of annotated
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TABLE I

CLASS DISTRIBUTION AND DENDROMETRIC
MEASUREMENTS OF THE DATASET

images allows for a fast boost of the performance with a
small training set. Indeed, the size of annotated 3-D models
is rather limited compared to image datasets, e.g., ModelNet
contains about 150k shapes. Finally, the use of the proposed
MVCNN allows for accurate classification results with low
computational burden.

III. DATASET AND EXPERIMENT DESCRIPTION

The proposed method has been tested in a study area of
800 ha located in the southern Italian Alps in the Trento
province (central coordinates 46◦17’57”, 46◦17’57”). This area
is characterized by mixed tree species composition with both
conifers and deciduous trees. The most common conifers are
Silver Fir (AB), AR, LA, and PC, while the most common
broadleaf trees are BE, ON, and Aspen (PT). We manually
delineated the tree crowns by photointerpretation of the canopy
height model and the point cloud for those trees surveyed in
the field, i.e., associated with a tree species. This resulted
in a dataset composed of 1216 trees associated with seven
different forest types. Table I shows the class distribution of the
considered datasets and the main dendrometric measurements
statistics for each class. The statistics show that we selected
a significant diverse set of trees in order to test the proposed
approach on challenging multiage multilayer forest area.

The number of slices N (i.e., 2-D views) was set to eight
considering the pulse density and the desired result in terms of
representation of the crown structure in each slice. To identify
the best training parameters, we performed multiple run with
different combinations of weight decay (wd) and learning
rate (lr) testing the following ranges: wd ∈ [0.001, 0.1]
and lr ∈ [5e−5, 5e−3]. Finally, we set wd and lr equal to
0.01 and 5e−5, respectively. To this end, the training set
(see Table I) has been used with a cross-validation strategy,
while the independent test set has been used only to assess
the model performances. The proposed method has been
compared with both a Shallow Method (SM) [12] based
on the selection of handcrafted features and the 3-D DL
model PointNet++ [8], which is widely used for point cloud
classification. The considered SM is the one that provided
the best results in [12], which presents an extensive analysis
of tree species classification using different combinations of
handcrafted features. Since we considered a mixed forest, the
features related to the crown base height were neglected as
it showed noisy and unstable behavior across the different

species. Since no pretrained PointNet++ models are publicly
available, in order to have a fair comparison, we also report
the classification results obtained by the MVCNN when
it is trained from scratch. In greater detail, we tested four
different configurations: 1) classification of all the seven
tree species (i.e., mixed forest); 2) classification of only the
conifers classes (AB, AR, LA, and PC); 3) classification
of only broadleaf classes (BE, ON, and PT); and 4) binary
classification (broadleaf trees/conifers). The results have been
evaluated in terms of Producer Accuracy (PA), User Accuracy
(UA), F-score (F1), and overall accuracy (OA).

IV. EXPERIMENTAL RESULTS

Table II shows the quantitative results obtained by the
proposed and the baselines methods when applied to the mixed
forest. As expected, both the DL approaches outperformed the
baseline shallow method due to the possibility of extracting
more robust features. The proposed approach obtained the best
overall and single classes accuracy proving the effectiveness
of the multislice representation. Also, without pretraining,
it achieved higher OA and mean F1 with respect to Pointet++,
thus proving the effectiveness of the proposed approach. How-
ever, as expected, the pretrained MVCNN increases the OA
of 8.71% with respect to the non-pretrained model. From the
results obtained, it turned out that in the considered dataset, the
most challenging classes are the broadleaf trees (BE, ON, and
PT) due to the fact that: 1) they are the less represented classes
(i.e., few training samples) and 2) their crown structures have a
much higher variability with respect to conifers. However, the
proposed method (pretrained) achieved good results for all the
three classes with the lowest F1 score of 64.52% for the ON
class compared to 54.9% and 40.00% obtained with the SM
and Pointnet++, respectively. Similar results are also achieved
for the BE and PT classes, where the best F1 of 68.97%
and 72.22% is achieved by the proposed method, compared
to 50% and 51.61% obtained with the SM and 57.69% and
46.67% obtained with the Pointnet++. This is true also for
all the conifers classes (AB, AR, LA, and PC), where the
proposed method achieved the highest F1 scores compared to
the baselines. Focusing on the proposed method, the lowest F1
is related to the ON class, i.e., 64.52%. This is due to the fact
that this is the class having the highest variability in terms of
crown structure. Indeed, by visually analyzing the tree point
clouds associated with different trees, one can notice that they
present very different shapes. Moreover, this minor class is the
one having the smallest number of samples in the training set.

Table III shows the numerical results for the remaining three
configurations. The proposed method (both without pretraining
and pretrained) achieved the best result with respect to the
two reference methods. As expected, it achieves significantly
better results with respect to the mixed forest case (see
Table II), which represents the most challenging classification
task. Indeed, similar OA and F1 score are achieved when
considering homogeneous forest made up of only conifers (F1
of 82.02% and OA of 82.54%) or only broadleaf trees (F1 of
85.72% and OA of 86.64%). The binary classification achieved
high OA and F1, thus confirming that the proposed method
can distinguish the two macro forest classes.
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TABLE II

PA, UA, F1, AND OA OBTAINED ON THE CONSIDERED MIXED FOREST (i.e., FOUR CONIFERS AND THREE BROADLEAF TREE SPECIES) FOR:
1) BASELINE SM [12]; 2) BASELINE DEEP METHOD [8]; 3) PROPOSED METHOD WITH THE MVCNN TRAINED FROM SCRATCH;

AND 4) PROPOSED METHOD WITH THE PRETRAINED MVCNN

TABLE III

MEAN F1 AND OA OBTAINED BY THE FOUR METHODS WHEN APPLIED

TO A CONIFEROUS FOREST, A BROADLEAF FOREST, AND WHEN CON-
SIDERING THE BINARY CLASSIFICATION

V. CONCLUSION

This letter has presented a method based on DL to the clas-
sification of tree species in mixed forest with airborne LiDAR
data. The method captures the tree crown structure information
by slicing the tree point clouds into multiple angular sectors
and producing a 2-D view of the vertical profile of each sector.
The set of multislice images is given as input to an MVCNN
DL model, which extracts robust semantic features that result
in good accuracy in mixed forests. The experimental results
obtained confirm that the proposed method can effectively
model the crown information of different tree species due
to the multislice approach that captures the crown structure
in different portion of the trees. Moreover, the multiview
CNN can learn such representation for a set of diverse tree
species using a training set of relatively small dimension.
A consistent improvement with respect to both the shallow and
deep baseline methods is achieved by the proposed method,
both with and without pretraining the network. Indeed, the
approach obtained good results on both conifers and broadleaf
classes. In particular, the method is able to handle the latter,
which is a challenging test case due to the highly irregular
and varying structure of the tree crowns.

As future development, we plan to expand the dataset both
in terms of number of trees and species to improve the
training process. Indeed, since the results presented in this
work have been achieved with a relatively small training set
(less than 1000 samples), it is reasonable to expect room
for improvement, in terms of classification accuracy, with an
improved and larger training set. Moreover, we plan to evaluate
the proposed approach on other tree types and forests located

in different geographical areas. Finally, according to the results
of Table III, we aim to explore the possibility of defining a
hierarchical approach that first performs a binary classification
and then separately classify the tree species of the conifers and
broadleaf trees.
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