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Abstract. We investigate localization in granular material with the support of numerical simulations based
upon DEM (Distinct Element Method). Localization is associated with a discontinuity in a component of
the incremental strain over a plane surface through the condition of the determinant of the acoustic tensor to
be zero. DEM simulations are carried out on an aggregate of elastic frictional spheres, initially isotropically
compressed and then sheared at constant pressure p0. The components of the stiffness tensor are evaluated
numerically in stressed states along the triaxial test and employed to evaluate the acoustic tensor in order to
predict localization. This occurs in the pre-peak region, where the aggregate hardens under the circumstance
to be incrementally frictionless: it is a regime in which the tangential force does not change as the deformation
proceedes and, consequently, the deviatoric stress varies only with the normal component of the contact force.

1 Introduction

In a recent contribution, La Ragione et al. [1] analyze
and predict localization in an ideal granular material based
upon micro-mechanical considerations. They point out
that failure is associated with a regime of deformation in
which the incremental tangential forces become negligi-
ble. It is the possibility to describe the phenomena at par-
ticle level, including a more sophisticated kinematics be-
tween particles and their equilibrium [2, 3], that allows to
predict when localization occurs and under which condi-
tions. This is done in the context of the model proposed by
Rudnicki and Rice [4], Vardoulakis [5, 6], in which local-
ization is associated with the vanishing of the acoustic ten-
sor. A different approach is proposed by Nicot and coau-
thors [7, 8] as they focus on the vanishing of the second-
order work and the possibility to predict diffuse bifurca-
tion. This phenomena may precede localization [9] but
both second-order work and determinant of the acoustic
tensor are zero when localization occurs. Here we focus
on the acoustic tensor and evaluate the effective moduli via
numerical simulations, following Recchia et al. [10]. We
show that localization is plausible in a regime of deforma-
tion where the incremental material behavior is governed
by normal forces.

In the present contribution, we briefly review the the-
ory and the essential condition for localization. Next we
employ numerical simulations to mimic a triaxial com-
pression test for an ideal granular material and we evalu-
ate the components of the stiffness tensor in stressed states
along the main path. Finally, we use such components to
verify under which conditions localization may occur.
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2 Theory
We focus on an ideal elastic frictional aggregate of par-
ticles that has been isotropically compressed and next
sheared. We label with y1 the vertical axis of compres-
sion while in the orthogonal plane we consider the other
two directions y2 and y3 such that y1 , y2 and y3 is a proper
orthogonal, rectangular Cartesian coordinate system. The
loading is axially symmetric so we restrict our attention to
the y3 - y1 plane.

Following [4], localization occurs when the determi-
nant of the acoustic tensor vanishes:

det |liAi jpqlq| = 0, (1)

where lll = (0, -sin(Ψ), cos(Ψ)) is the unit vector normal to
the plane of discontinuity, see Fig. 1. The stiffness tensor,
Ai jqp, relates the increments in stress to the increments in
total average strain as

∆σi j = Ai jpq∆εpq, (2)

and assumes the form

Ai jqp = η1hih jhqhp + η2δi jδqp (3)
+η3(δiqδ jp + δipδ jq)

+η4δpqhih j + η5δi jhphq+

+η6(δiqh jhp + δiphihq + δiph jhq + δ jqhihp).

Because of the loading condition, the aggregate is trans-
versely isotropic and depends on the six coefficients ηi

[11]. Eq. (1) is equivalent to

(T1cos4Ψ + T2cos2Ψ + T3)(η6cos2Ψ + η3) = 0, (4)

which leads to the solutions [1]:

cos2Ψ1,2 =
−T2 ±

√
T 2

2 − 4T1T3

2T1
, (5)
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Figure 1. Schematic of a granular aggregate compressed in the
direction y1, with a shear band formed in the plane y1, y3.

with

T1 = (A1111 − A1212)(A1212 − A3333)+ (6)
+(A1212 + A1133)(A1212 + A3311),

T2 = (A1111 − A1212)A3333 + (A1212 − A3333)A1212+ (7)
−(A1212 + A1133)(A1212 + A3311)

and
T3 = A1212A3333. (8)

Localization occurs when the discriminant in Eq. (5) is
zero. Then, the angle of localization is

cosΨ =

√
−T2

2T1
. (9)

In the next section we carry out numerical simulations
to evaluate the components Ai jqp of the stiffness tensor of
the aggregate.

3 DEM simulation

DEM represents granular materials as packings of solid
particles (often spheres) that are allowed to overlap [12].
The particles in contact interact with their neighbors via
repulsive springs, resulting in momentum exchange be-
tween particles. If the contact forces, acting on a parti-
cle, are known the problem is reduced to the integration
of Newton’s equations of motion for the translational and
rotational degrees of freedom of that particle.

The system considered here is a random assembly of
identical, frictional, elastic spheres in which gravity is ne-
glected. Particles interact through a non-central force with
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Figure 2. Normalized deviatoric stress, q/p0 (black symbols),
versus normalized deviatoric strain, γ/p0, and its components
qN/p0 (magenta symbols) and qT /p0 (blue symbols).

a normal component that follows the non-linear Hertz law
and a tangential component that includes a bilinear rela-
tion characterized by an elastic resistance followed by a
Coulomb sliding. During the simulation, the average stress
is calculated following the Cauchy relation for molecular
systems (e.g. [10]).

Preparation protocol

We refer to material characteristics typical of glass
spheres, with shear modulus Gs = 29GPa, Poisson’s ratio,
ν = 0.2, and radius R = 0.1mm. At the beginning of the
simulation, particles are randomly generated in a periodic
cubic cell and then isotropically compressed to achieve a
consolidated state. Compression happens in two stages.
Initially the sample is compressed with friction coefficient
µ = 0, until a solid volume fraction φ . 0.64 is reached;
then, after relaxation, a second compression follows with
µ = 0.5, that brings the aggregate to the target isotropic
pressure p0 = 200kPa, with φ & 0.64 (see [13] for details).
In this reference isotropic configuration, the volumetric
strain associated with the pressure p0 is ∆0 = 1 × 10−3.

Axial-symmetric compression

After compression, the aggregate is sheared by apply-
ing strain along the axial direction y1, while the pres-
sure p0 = 200kPa is kept constant by means of a servo-
mechanism [13]. The test is carried out with µ = 0.5.
To ensure quasi-static conditions, the compression is per-
formed with a sequence of small strain steps of the order
of ∆ε11 = 4 × 10−6 followed by relaxation steps. In the
latter, particles are allowed to dissipate kinetic energy and
reach intermediate equilibrium states.

Along the compression path, we can extract the devi-
atoric strain as γ = (ε22 + ε33)/4 − ε11/2 and measure the
deviatoric stress q = (σ22 + σ33)/2 − σ11, as well as its
normal and tangential parts, qN and qT , associated, with
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the normal and tangential contact forces, respectively [14].
In Figure 2 we plot the normalized deviatoric stress q/p0
against the normalized deviatoric strain γ/∆0. In the same
figure, the partitions qN/p0 and qT /p0 are shown as well.
After an initial stage, it is clear that the deviatoric stress
is almost identifiable with its normal component qN , with
the increments in qT almost negligible. In particular, for
γ/∆0 & 0.3 the tangential part of the deviatoric stress re-
mains constant, i.e. q̇T = 0. This regime is characterized
by a constant tangential force so that the resulting incre-
mental force is only associated with its normal component.
La Ragione et al. [1] define this regime incrementally fric-
tionless. As well known in elasto-plasticity theory mate-
rial yields both before and after the peak stress. We are in
the pre-peak region in which plasticity is associated with
qT constant while qN still increases indicating an harden-
ing behavior of the aggregate until q̇N = 0 [14], [15].

Stiffness tensor

Along the compression path, we consider different stress
states and evaluate the non zero components of the stiff-
ness tensor. As shown in Recchia et al. [10], for each
point, we apply strain perturbations ∆εpq in the forward
direction, i.e. consistent with loading along the triaxial
stress path, so that if particles were sliding or rolling dur-
ing the axial loading, they continue to do so during the
probe. Then we measure the change in stress ∆σi j between
the final state (after sufficient relaxation) and the stress be-
fore the perturbation. Finally, the stiffness components are
given as

Ai jpq = ∆σi j/∆εpq. (10)

For example, the moduli A1111 and A3311 are obtained by
applying an infinitesimal perturbation along y1, ∆ε11 , 0,
with ∆ε22 = ∆ε33 = 0, that leads to stress change along y1
and y3, thus

A1111 = ∆σ11/∆ε11 and A3311 = ∆σ33/∆ε11. (11)

Similarly, the moduli A1133 and A3333 are calculated with
a perturbation along y3, with ∆ε11 = ∆ε22 = 0, as

A1133 = ∆σ11/∆ε33 and A3333 = ∆σ33/∆ε33. (12)

Finally, we verify that

A1122 = A1133, A2222 = A3333, A2211 = A3311, (13)

due to axial-symmetry.
As an example, in Figure 3 we show the evolution of

the stiffness component A1111 with the strain amplitude.
As reported in [10, 16, 17], the first plateau refers to the
elastic response in which the perturbation is so small to
prevent sliding and rolling among particles. The second
plateau is associated with an inelastic, yet linear, incre-
mental response, that preserves the micro- and macro-
mechanisms happening during axial loading. We choose
the latter as reference to build the acoustic tensor ( i.e., we
employ values of Ai jkh obtained with strain perturbations
∆εi j ' 5 × 10−5) because we refer to probes that are sim-
ilar to those considered during the unixial loading, when
localiaztion may occur.
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Figure 3. Stiffness component A1111 versus applied perturbation
at stressed state corresponding with γ/∆0 = 0.4.
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Figure 4. Normalized discriminant in Eq. (5) versus normalized
deviatoric strain. The grey strip indicates the region where the
discriminant changed sign.

4 Results: acoustic tensor

With the knowledge of the Ai jkh components at several
stress states along the triaxial deformation, we can eval-
uate T1, T2 and T3 and calculate the discriminant of the
acoustic tensor in Eq. (5), T 2

2 − 4T1T3, and its evolution
with the strain.

In Figure 4 we plot the discriminant normalized by
the particle shear modulus Gs versus the normalized shear
strain γ/∆0, evaluated in five stresses states, as indicated
also in Figure 2. The discriminant grows monotonically
and changes sign for γ/∆0 > 0.35 suggesting that localiza-
tion may occur. It is interesting to note that the possibility
of localization, thus failure, is here predicted in a region
of deformation that precedes the stress peak. This is the
regime in which qT is constant while qN keeps growing.
Here, Recchia et al. [10] find, at contact level, that parti-
cles slide and roll confirming no increment in the tangen-
tial forces and supporting the idea that the increment in the
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contact forces occurs only along the normal component. It
is expected that in a later stage shear bands will occur with
major fabric changes and dilatancy, with particles failing
into (larger) gaps steadily. However such analysis is be-
yond the scope of the present study.

In the context of micro-mechanics, the recent contri-
bution by Karapiperis et al. [18] provides a useful tool
to have a detailed analysis at particle level and test theory
like this. It may be also relevant to test how the shape of
the particles in the aggregate, here idealized as identical
elastic spheres, influences the onset of localization [19].

5 Conclusion

Along a triaxial test on an aggregate of identical, elas-
tic, particles we have studied the evolution of the acoustic
tensor and the possibility that the condition for localiza-
tion is met. The analysis has been conducted by means
of DEM numerical simulations. The components of the
stiffness tensor have been evaluated by probing stressed,
anisotropic, states via strain increments. We show that the
determinant of the acoustic tensor vanishes before the peak
of deviatoric stress is reached [20], in a regime character-
ized by the incrementally frictionless behavior of the ag-
gregate. A sequel is in progress to visualize per-particle in-
cremental shear strain, that should indicate the presence of
a localization band in the same stress-strain region where
failure is predicted.
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