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A B S T R A C T

Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive
nature allows for more frequent testing compared to traditional imaging methods used for response evalua-
tions. Our study aims to compare nine prediction methods to accurately, and with a low false positive rate, predict
progressive disease despite treatment (i.e. non-response) using longitudinal tumor biomarker data. Bi-weekly
measurements of CYFRA, CA-125, CEA, NSE, and SCC were available from a cohort of 412 advanced stage
non-small cell lung cancer (NSCLC) patients treated up to two years with immune checkpoint inhibitors. Serum
tumor marker measurements from the first six weeks after treatment initiation were used to predict treatment
response at 6 months. Nine models with varying complexity were evaluated in this study, showing how longi-
tudinal biomarker data can be used to predict non-response to immunotherapy in NSCLC patients.
1. Introduction

The introduction of immunotherapy has led to prolonged survival of
patients with metastasized non-small cell lung cancer (NSCLC) (Reck
et al., 2016). Currently, PD-L1 expression is the best biomarker used to
predict immunotherapy response in advanced NSCLC. And at present
pembrolizumab is a standard first-line treatment for patients with
advanced NSCLC without actionable oncogenic drivers and a PD-L1
expression of >50% (Planchard et al., 2018).

In current practice, tumor dynamics are evaluated by radiological
assessment using the Response Evaluation Criteria in Solid Tumors
(RECIST) criteria (Eisenhauer et al., 2009). However, these criteria are
limited since functional and metabolic changes are not quantified,
therefore imaging results, especially early in treatment, may not corre-
spond with treatment effect. Due to uncertainty about tumor response,
immunotherapy is often prolonged without patient benefit and with
concomitant risk of side effects and unnecessary costs. As a consequence,
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there is a need for early and accurate assessment of treatment effect, to
enable an early decision about treatment continuation. Since the intro-
duction of immunotherapy, multiple other predictive biomarkers have
been studied for their ability to predict response, primarily aimed to-
wards patient selection. Biomarkers used in the prediction of immuno-
therapy response include tumor mutational burden (TMB), exhaled
breath condensate, radiomics, or profiling of serummicroRNAs (De Vries
et al., 2019; Fan et al., 2020; Wei et al., 2018). In the majority of studies,
these biomarkers are measured upfront, before treatment is started and
predictive validity so far has been limited. However, once treatment is
initiated, the tumor dynamically changes over time and therefore the
dynamic behavior of biomarkers may be more sensitive to determine
tumor response aptly. The longitudinal assessment of biomarkers during
the first treatment cycles may be used to predict the probability of pro-
gression or can be used for monitoring purposes. In monitoring, changes
in a biomarker value are used to determine if a certain event e.g., disease
progression occurs.
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In contrast to prediction models with a biomarker measured at a
single point in time, the interpretation of longitudinal biomarker data is
challenging as no criteria have been established towards using longitu-
dinal biomarker data in clinical decision making, and clinical use is
therefore mainly limited to experience of the individual clinician. A
clinical application of longitudinal biomarker measurements is the
monitoring for prostate cancer recurrence after prostatectomy or iden-
tification of patients at risk of developing castrate resistant prostate
cancer after initiation of androgen deprivation therapy. In both cases
longitudinal assessment of prostate-specific antigen measurements might
help the stratification of high-risk patients and can guide treatment or
follow-up (Kim et al., 2016; Tourinho-Barbosa et al., 2018). In advanced
NSCLC patients receiving immune checkpoint inhibitors serum tumor
marker measurements (Carcinoembryonic antigen (CEA), serum cyto-
keratin 19 fragment (CYFRA 21.1), cancer antigen 125 (CA-125) and
neuro specific enolase (NSE)) can be used to detect early disease pro-
gression in the first six months of therapy, since it was shown that these
biomarkers are a surrogate for total tumor mass, implying monitoring
potential (Molina et al., 2010; Lang et al., 2019; Moritz et al., 2018;
Muller et al., 2021).

While serum tumor marker measurements at one time point can be
informative, the dynamics of these tumor markers over time will likely
provide more information on treatment response. Several methods for
the analysis of longitudinal biomarker measurements have been pro-
posed in literature. To date there are no studies comparing models of
varying complexity in response prediction using multiple consecutive
serum protein measurements. Studies often focus on a single approach,
e.g., distinct biomarker patterns, including several consecutive in-
crements, cut-off values, relative changes in biomarker values, and
functional principal component analysis (Lund et al., 2014; Sj€ostr€om
et al., 2001; S€ol�etormos et al., 2000, Yan et al., 2017; Moritz et al., 2018).
Biomarker velocity or doubling time might also provide valuable infor-
mation (Loeb et al., 2008). Besides these approaches, more complex
statistical methods can be used to predict treatment outcomes using
longitudinal measurements, e.g., joint-modeling, neural-networks, or
landmark analysis (Bull et al., 2020). In joint-models and landmark
analysis dynamic changes of covariates over time are incorporated in a
survival model. Neural networks are commonly described as a network of
neurons in which weights are assigned to the connections between
neurons and the neurons contain their own weight, bias term, and acti-
vation function. While these methods may each be valuable, guidance on
which method to use or studies investigating comparative performance,
is lacking. Consequently, in many studies only a single method is applied
to predict the outcomes of interest, chosen based on convenience or
expertise of the researcher while this may impair best use of the
biomarker information and optimal predictive performance (Van Rossum
et al., 2021).

This study aims to compare nine analytical methods utilizing longi-
tudinal serum tumor marker measurements in the prediction of immu-
notherapy effect in advanced NSCLC patients.

2. Methods

This study was based on a previously described patient cohort
including patients treated with either nivolumab or pembrolizumab at
the Netherlands Cancer Institute (Muller et al., 2021; Schouten et al.,
2018). Patients who started treatment between March 2013 and
September 2018 were included in the cohort, and follow-up was con-
ducted until January 2019. All patients included in this study were
randomly selected for either a training (75%) or a validation (25%)
cohort. The training cohort was used to train the prediction models and
define prediction thresholds to achieve 95% specificity. Model training
focused on specificity since the intended purpose of the prediction
models is to inform treatment decisions in order to discontinue treatment
early in case of progressive disease (i.e. non-response). For clinical use, a
high specificity is required to ensure a low false positive rate and thereby
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minimizing the chance to falsely withhold treatment. The validation
cohort was then used to evaluate and compare the overall model per-
formance. The retrospective collection of data was approved by the local
institutional review board and medical ethics committee.

2.1. Tumor marker tests

Serum tumor markers were prospectively measured just prior to start
of therapy, at bi-weekly intervals, or at clinical follow-up, which was
either every other week for Nivolumab or every three weeks for Pem-
brolizumab. CA-125, CEA, Cyfra 21.1, and NSEwere analyzed on a Roche
Cobas 6000 analyzer system. Squamous cell carcinoma antigen (SCC)
was performed on a Thermofisher Kryptor immunoassay system.
Different prediction models were developed, all based on the same set of
biomarkers.

2.2. General model requirements and performance criteria

This study aims to predict response at 6 months after treatment
initiation using longitudinal biomarker data obtained in the first six
weeks of treatment (Rizvi et al., 2015; Muller et al., 2021). Therefore, the
main outcome assessed in this study was non-response at six months after
treatment initiation. Prediction and outcome time points were chosen
based on currently used RECIST evaluation time points. The first evalu-
ation is performed after six weeks, non-response at six months is chosen
to reflect durable clinical benefit. Non-response was defined as progres-
sive disease based on RECIST criteria, clinical progressive disease, or
death. Monitoring of response was done through a computed tomogra-
phy (CT) scan at six weeks, three months, and every three months
thereafter. RECIST 1.1 guidelines were used to classify partial response,
stable disease, and progressive disease (Eisenhauer et al., 2009).

The baseline biomarker value was determined between 7 days prior
to and 1 day after treatment initiation. In case multiple samples were
taken during this period, the measurement closest to treatment initiation
was selected as the baseline. The 6th week biomarker values were
determined between 35 days and 49 days after treatment initiation, with
the sample closest to day 42 after treatment initiation selected as the end
of the 6th week of therapy. Patients were excluded from the analysis in
case required measurements were missing or the number of measure-
ments within the six-week time period was insufficient. Further infor-
mation on inclusion criteria, handling of missing data, and data
transformations is included in Supplemental T 1.

Patients were classified according to the outcome of logical tests, or
the class probability derived from a prediction model. Thresholds for
both the logical tests and class probability derived form prediction
models were derived from a receiver operating characteristics (ROC)
curve generated in R statistical software using either the pROC package
or a custom function (R Core Team, 2019; Robin et al., 2011). In a pre-
vious study Muller et al. developed a prediction model based on the
patient cohort described in this study. This prediction model was based
on a 50% increase from baseline and a marker dependent minimum
value. In that study Muller et al. aimed for a 97.5% specificity and a 20%
sensitivity to consider the test as useful (Muller et al., 2021). Since our
study uses a more lenient 95% specificity during model training, models
are deemed useful when reaching a 20% sensitivity and 95% specificity
on the validation results. Furthermore, the diagnostic accuracy of the
applied methods was assessed through a bootstrap procedure. In the
bootstrap analysis, 1000 samples were randomly selected from the
dataset with replacement, the sample size was equal to 50% of the full
dataset. The constructed prediction models and prediction threshold
were applied to the bootstrap samples. Results obtained through the
bootstrap procedure were compared based on the average sensitivity and
specificity. The presentation of results was limited to sensitivity and
specificity since the logical tests are based on three decision thresholds,
resulting in incomplete ROC curves. Therefore it is not possible to
calculate the area under the ROC curve.
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2.3. Prediction models

Nine prediction models were tested in this study with the handling of
the longitudinal data defining the specific differences (Figure 1). Models
one to five aim to detect prespecified features in the data, also referred to
as logical tests. Models six to nine are based on statistics and machine
learning.

Additionally, an upper threshold of relevancy (UTR) and a lower
threshold of relevancy (LTR) were applied to methods 2, 3, 4, and 5. If
one of the logical tests returned a positive result for a biomarker
Figure 1. An overview of the methods used in this study. In all windows, the dots rep
The method based on the increment between baseline and week-six is depicted in 1A.
on the doubling time (method 4) and slope (method 5) are depicted in 1C. Regression
methods 8 and 9, are depicted in window 1E. In 1E, the line through the data points r
black squares represent the interpolated biomarker results.
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measurement below the LTR, the positive test result was ignored. A pa-
tient was classified as having progressive disease in case two consecutive
biomarker measurements exceeded the UTR. Also, the logical test
outcome was used in case a biomarker value exceeded the UTR, but the
preceding biomarker measurement was below the UTR. All prediction
thresholds and thresholds for the LTR and UTR ware chosen to maximize
sensitivity at a 95% specificity to ensure a low false positive rate.

Two types of survival models were included in the study. The first
model consisted of a Cox proportional hazards model. This model was
constructed using three covariates, i.e., the average biomarker value up
resent generated data points used to visualize an exemplary biomarker trajectory.
Two consecutive increments, methods 2 and 3 are depicted in 1B. Methods based
based models, methods 6 and 7, are depicted in 1D. Recurrent neural networks,
epresents a monotone Hermite spline used for interpolation. In this window, the



Table 1. Patient characteristics and description of the training and validation set.

Training-
set

Validation-
set

Full cohort

Patients (n (%)) 307
(74.5%)

105 (25.5%) 412
(100%)

Mean age (years (SD)) 63.7 (9.16) 62.7 (10.1) 63.5 (9.4)

Male sex (n (%)) 159
(51.8%)

65 (61.9%) 224
(54.3%)

Treatment

- Nivolumab (n (%)) 272
(88.6%)

100 (95.2%) 372
(90.3%)

- Pembrolizumab (n (%)) 35 (11.4%) 5 (4.8%) 40 (9.7%)

Lines of therapy prior to immunotherapy

- 0 (n (%)) 6 (2.0 %) 2 (1.9%) 8 (1.9%)

- 1 (n (%)) 237
(77.2%)

80 (76.2%) 317
(76.9%)

- 2 (n (%)) 45 (14.7%) 17 (16.2%) 62 (15.0%)

- >2 (n (%)) 19 (6.2%) 6 (5.7%) 25 (6.2%)

ECOG performance status at therapy start

- 0 (n (%)) 90 (29.3%) 32 (30.5%) 122
(29.6%)

- 1 (n (%)) 183
(59.6%)

56 (53.3%) 239
(580%)

- 2 (n (%)) 31 (10.1%) 14 (13.3%) 45 (10.9%)

- 3 (n (%)) 2 (0.7%) 2 (1.9%) 4 (1.0%)

- 4 (n (%)) 1 (0.3%) 1 (1.0%) 2 (0.5%)

Smoking status

- Never smoker (n (%)) 31 (10.1%) 17 (16.2%) 48 (11.7%)

- Smoker (n (%)) 67 (21.8%) 18 (17.1%) 85 (20.6%)

- Former smoker (n (%)) 209
(68.1%)

70 (66.7%) 279
(67.7%)

Pack years (years (SD)) 33.4 (17.7) 36.3 (20.7) 34.1 (18.5)

Brain metastasis (n (%)) 58 (18.9%) 29 (27.6%) 87 (21.1%)

Histology

- Adenocarcinoma (n (%)) 207
(67.4%)

74 (70.5%) 281
(68.2%)

- Squamous (n (%)) 68 (22.1%) 19 (18.1%) 87 (21.1%)

- Other 32 (10.4%) 12 (11.4%) 44 (10.7%)

Reason for treatment cessation

- Progression (n (%)) 213
(69.3%)

78 (74.3%) 291
(70.6%)

- irAE (n (%)) 26 (8.4%) 12 (11.4%) 38 (9.2%)

- Lost to follow up (n (%)) 45 (14.7%) 8 (7.6%) 53 (12.9%)

- Other* (n (%)) 23 (7.5%) 7 (6.7%) 30 (7.3%)

Number of patients with PD at 6 months
(n (%))

210
(68.4%)

71 (67.7%) 281
(68.2%)

Mean survival after treatment start (days
(SD))

232 (198) 255 (225) 238 (206)

Mean duration treatment received in
(days (SD))

136 (153) 143 (163) 138 (156)

Patients with biomarker measurements

- CYFRA (n (%)) 306
(99.7%)

103 (98.1%) 409
(99.3%)

- CEA (n (%)) 299
(97.4%)

101 (96.2%) 400
(97.1%)

- CA-125 (n (%)) 305
(99.3%)

102 (97.1%) 407
(98.8%)

- NSE (n (%)) 305
(99.3%)

102 (97.1%) 407
(98.8%)

- SCC (n (%)) 258
(84.4%)

80 (76.2%) 338
(82.0%)

*Study end, wish patient, patient's condition, complications.
Carcinoembryonic antigen: CEA, serum cytokeratin 19 fragment: CYFRA 21.1,
cancer antigen 125: CA-125, neuro specific enolase: NSE, standard deviation: SD,
progressive disease: PD, immune related Adverse Event: irAE.
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to day 49 after treatment initiation, the average change between
consecutive measurements, and the average positive change between
consecutive measurements. The second model consisted of a landmark
model. This model was constructed using the most recent biomarker
measurement up to the landmark timepoint, the average biomarker value
up to the landmark timepoint, and the average of all positive increments
up to the landmark timepoint as covariates. For both models a prediction
threshold resulting in a 95% specificity was derived from the ROC curve.

Additionally, two different types of recurrent neural networks (RNN)
architectures were included in this study. Multiple RNN architectures are
available, with long-short term memory (LSTM) and gated recurrent
units (GRU) being the most well known (DiPietro and Hager, 2020).
RNNs require time series as input. Since the number and spacing of
measurements over time differed per patient a monotone Hermite spline
was fit to log transformed data for interpolation. Interpolation results
were transformed back using the natural exponential function, thereby
removing any negative interpolation results. To aid model training, a
second log transformation was performed prior to model training. Both
the LSTM and GRU models consisted of 3 layers of 32, 16, and 1 units
respectively. The final layer consisted of a fully connected layer with
sigmoid activation to allow for binary classification. For both models a
dropout and recurrent dropout of 10% were specified for the first two
layers.

Supplemental T 1 provides an overview of all methods included in
this study and R packages used for model fitting.

3. Results

The patient cohort contained 412 patients of which 307 and 105 were
allocated to the training and validation cohort, respectively (Table 1)
(Schouten et al., 2020, Schouten et al., 2018).

An overview of the training and validation results is depicted in
Table 2. The highest sensitivity achieved on the training data was 32.5%
using CYFRA and the method evaluating the increment between baseline
and week six, resulting in a specificity of 94.7%. On the validation data
the sensitivity and specificity dropped to 24.1% and 93.3%, respectively.
On the validation data the highest sensitivity was 38.6% using CYFRA
and the RNN-GRU model, resulting in a specificity of 100%. While on the
training data this method achieved a sensitivity and specificity of 31.8%
and 95.2%, respectively.

The largest decrease in sensitivity between the training and validation
data was found for NSE using the Cox model. Showing a decrease of
15.3% between the training (sensitivity 32.0%) and validation (sensi-
tivity 16.7%) results. The largest increase in sensitivity between the
training and validation results was 20.1%, and was found for SCC and the
method based on the detection of two consecutive increments. However,
this increase in sensitivity resulted in a 10.1% decrease in specificity.

Results show that each method exceeded the 20% sensitivity refer-
ence value for at least one biomarker in the training set, validation set,
and bootstrap average. Validation results show that 17 biomarker and
method combinations resulted in a sensitivity>20%while maintaining a
95% specificity. Additionally, 7 biomarker and method combinations
resulted in a sensitivity >30%, while maintaining a 95% specificity;
CYFRA using two consecutive increments (baseline reference), doubling
time, slope, and both RNN models, and NSE using two consecutive in-
crements (both references). This indicated that several biomarker and
method combinations can be considered useful, and should be subjected
to external validation. Moreover, CYFRA provided the most consistent
high sensitivity across methods on the validation data of the included
biomarkers.

Results from the individual bootstrap samples and the average
sensitivity and specificity obtained by the bootstrap analysis are depicted
in Figure 2 and in Supplemental T 2. The results depicted in Figure 2 did
not show the correlation between the sensitivity and specificity found in
each bootstrap sample, therefore, the correlation and covariance
4



Table 2. An overview of the sensitivity and specificity calculated for each method and biomarker combination on the training and validation data. All models were
trained to achieve a 95% specificity on the training cohort. The highest sensitivity per biomarker is indicated by a black border, sensitivity results>20% and<30%were
marked in italics, sensitivity results >30% were marked in bold.

Method Training data

CYFRA CEA CA125 NSE SCC

SensitivityjSpecificity SensitivityjSpecificity SensitivityjSpecificity SensitivityjSpecificity SensitivityjSpecificity
1) Δ baseline-week 6 0.325 0.947 0.200 0.945 0.183 0.958 0.118 0.945 0.026 0.949

2) 2� increased BL 0.232 0.947 0.281 0.946 0.154 0.957 0.279 0.947 0.180 0.947

3) 2� increased PL 0.239 0.952 0.206 0.951 0.138 0.950 0.285 0.952 0.198 0.956

4) Doubling time 0.258 0.952 0.116 0.951 0.170 0.950 0.285 0.952 0.081 0.956

5) Slope 0.313 0.952 0.116 0.951 0.239 0.950 0.228 0.952 0.072 0.956

6) Cox model 0.109 0.952 0.313 0.951 0.272 0.952 0.320 0.952 0.143 0.955

7) Landmark model 0.313 0.953 0.313 0.953 0.213 0.953 0.244 0.951 0.089 0.962

8) RNN-LSTM 0.229 0.952 0.315 0.951 0.217 0.951 0.258 0.952 0.075 0.956

9) RNN-GRU 0.318 0.952 0.255 0.951 0.224 0.951 0.272 0.952 0.084 0.956

Method Validation data

CYFRA CEA CA125 NSE SCC

SensitivityjSpecificity SensitivityjSpecificity SensitivityjSpecificity SensitivityjSpecificity SensitivityjSpecificity
1) Δ baseline-week 6 0.241 0.933 0.107 0.964 0.103 0.933 0.069 1.000 0.067 1.000

2) 2� increased BL 0.341 1.000 0.175 0.926 0.154 1.000 0.341 0.963 0.381 0.846

3) 2� increased PL 0.286 1.000 0.188 0.964 0.174 1.000 0.347 0.964 0.308 0.875

4) Doubling time 0.327 1.000 0.188 1.000 0.196 1.000 0.286 1.000 0.115 1.000

5) Slope 0.347 1.000 0.167 1.000 0.283 0.967 0.163 1.000 0.154 1.000

6) Cox model 0.060 0.929 0.213 0.962 0.277 1.000 0.167 0.962 0.097 0.824

7) Landmark model 0.225 0.923 0.225 0.923 0.233 0.963 0.132 0.963 0.115 0.900

8) RNN-LSTM 0.318 1.000 0.372 0.862 0.262 0.968 0.227 0.966 0.087 1.000

9) RNN-GRU 0.386 1.000 0.256 0.931 0.262 0.968 0.273 0.966 0.130 1.000
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between the sensitivity and specificity are provided in Supplemental T 3
and 4, respectively. The highest average sensitivity over 1000 bootstrap
samples was found for CYFRA using the RNN-GRU, which was 33.6%.
While the sensitivity in the training and validation data was 31.8% and
38.6%, respectively. Moreover, the average specificity found for this
method and biomarker combination was 96.5%. The lowest average
sensitivity found was 3.3% for SCC using the increase in biomarker value
between baseline and week six, resulting in an average specificity of
96.2%.

4. Discussion

This is the first study comparing multiple methods using sequential
serum tumor markers to predict treatment response in advanced NSCLC
patients receiving immune checkpoint inhibitors. The results of the in-
ternal validation provided the best estimates for actual model perfor-
mance. Therefore, the best performing biomarker and method
combination was chosen based on the validation results, and was defined
as the combination providing the highest sensitivity while maintaining a
95% specificity. Consequently, the RNN-GRU based on CYFRA-data
provided the best performance with a sensitivity and specificity of
38.6% and 100%, respectively. The second-best performance was ach-
ieved by again CYFRA, now using the slope between consecutive mea-
surements, resulting in a sensitivity and specificity of 34.7% and 100%,
respectively. Based on the performance of the best performing model on
the validation data, approximately 38% of non-responders can be iden-
tified after 6 weeks of therapy. Meaning that other treatment or moni-
toring choices can be made up to 4.5 months prior to radiological disease
progression.

While this novel approach to predict treatment outcomes using
sequential serum tumor marker measurements shows promising results,
further optimization of models is required to maximize predictive per-
formance. Besides optimization of the prediction models, other clinical
endpoints and input sequence lengths should be considered in future
studies to optimize clinical benefit. This study is a first step in the
5

development of a clinical prediction model using a novel strategy,
therefore more efforts such as external validation of the proposed models
in prospective multicenter studies is required to enable adoption of a
prediction model in clinical practice. Moreover, results of this study
indicate that it might be worthwhile to further evaluate the applicability
of the describedmethods to other disease stages, anti-cancer therapies, or
malignancies, than presented in this study.

While combining multiple serum tumor markers in a prediction
model is expected to improve the predictive performance, this was not
deemed feasible for the logical tests included in this study. The logical
tests are based on three thresholds (i.e., a threshold for the test condition,
UTR, and LTR), and these thresholds need to be selected for each serum
tumor marker included in the model. Resulting in fifteen decision
thresholds when combining all five serum tumor markers included in this
study.

A broad selection of available methods was made to include models
with varying levels of flexibility and complexity. Still, more methods are
available (Bull et al., 2020). Overall, our results were indicative of a
strong variation in the ability of the chosen prediction methods to extract
information from the biomarkers. The RNNs were the most promising,
providing the most consistent high sensitivity across most biomarkers.
However, less complex methods, e.g., two consecutive increments could
outperform the more flexible RNN on some biomarkers, i.e., NSE and
SCC. Moreover, using CYFRA, the RNN slightly outperformed two
consecutive increments, 38.6% versus 34.1% sensitivity, respectively.
The possibly less complicated implementation of a logical test in clinical
care, e.g., two consecutive increments, compared to the implementation
of a RNN, could result in a greater clinical impact due to more wide-
spread adoption.

While blood samples were assumed to be taken on a bi-weekly basis,
some variance in the time interval between measurements was found. To
account for this variance in time intervals, measurements taken less than
5 days apart were excluded from the data, as well as measurements
performed more than 30 days apart. The constraint on the maximum
number of days between measurements did not affect the inclusion of



Figure 2. The results per method for CYFRA. CEA. CA-125. NSE. and SCC. The violin plots are used to depict the distribution of the bootstrap results. The "x" marker
depicts the bootstrap average. the results obtained on the training and validation set are depicted by the diamond and square marker respectively. The test specificity is
depicted on the right side of the multi-window figure (2B: CYFRA, 2D: CEA, 2F: CA-125, 2H: NSE, 2J: SCC). The test sensitivity is depicted on the left side of figure (2A:
CYFRA, 2C: CEA, 2E: CA-125, 2G: NSE, 2I: SCC).
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patients, since patients with less than three measurements between
baseline and day 49 of therapy were excluded from the analysis in a prior
step. Three thresholds for the minimum number of days between mea-
surements were assessed with regard to their effect on the sample size. A
minimum of five, seven, and ten days were compared. Increasing the
minimum from five to ten days excluded an additional 2 to 11 patients
depending on the biomarker (Supplemental T 5). This small variation in
sample size is unlikely to change the results of this study noticeably. Of
the methods included in this study only the RNN required regular time
intervals, therefore an interpolation step using Hermite splines was used
to transform the data. Except for the method comparing baseline to the
measurement at week six, all methods required at least 2 biomarker
values between 7 days prior to treatment initiation and 49 days
thereafter.

The Cox regression model and the landmark model are both based on
covariates which aim to capture the change in biomarker value over time.
Therefore, these methods are more dependent on the defined covariates
than other methods included in this study. This study did not extensively
compare the use of different covariates. However, during model con-
struction the covariates were discussed with a multidisciplinary team to
ensure the covariates were able to reflect potentially important data
features. A minimal of 10 events per variable (EPV) is generally advised
for hazards regression models to result in a statistically valid model
(Peduzzi et al., 1995). In this study, the size of the training set was limited
to 306 patients or less depending on the tumor marker evaluated. Given
that three covariates were used in the regression models, and in all an-
alyses the number of events was much larger than 30 (i.e. the number of
events required for 10 EPV in the models with three covariates) the risk
of developing statistically invalid models was deemed minimal.

The RNN models included in this study performed well across most
biomarkers, on both the training and validation data. Also, the RNN-GRU
outperformed all other methods on the validation data using CYFRA
measurements as input. Performance of the included RNN models might
be limited by the relatively small size of the dataset, especially for SCC
which was measured the least frequent. Despite limitations in sample
size, other studies in similar settings also report a good performance
based on the AUC or other metrics (Kaji et al., 2019, Choi et al., 2016;
Ceccarelli et al., 2017; Güler and Übeyli, 2006). While the RNN models
performed well, more work in the optimization of the network structure
and hyperparameter selection (e.g. number of layers, number of layers,
activation functions, and dropout) per biomarker are likely to increase
the model performance even further, at least in some biomarkers.
However, optimization of neural networks is an elaborate task and not
within the scope of this study.

In conclusion, this study showed how models with varying
complexity can be used to predict early non-response in immunotherapy
treated NSCLC patients based on sequential serum tumor marker mea-
surements. Results show that the performance of prediction methods
varies per biomarker, and that for any given biomarker it is worthwhile
to compare the performance of different prediction methods. The RNN
models presented in this study showed good performance across most
biomarkers and should therefore be externally validated. Moreover, most
models included in this study performed well using CYFRA measure-
ments as input, indicating that CYFRA provides the most predictive in-
formation. With more and more biomarker information routinely
collected in clinical practice, and the availability of many types of pre-
diction models, determining the best prediction model is becoming more
challenging but also more rewarding.
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