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Abstract
The use of the fractional Laplacian in image denoising and regularization of
inverse problems has enjoyed a recent surge in popularity, since for discon-
tinuous functions it can behave less aggressively than methods based on H1

norms, while being linear and computable with fast spectral numerical meth-
ods. In this work, we examine denoising and linear inverse problems regularized
with fractional Laplacian in the vanishing noise and regularization parameter
regime. The clean data is assumed piecewise constant in the first case, and
continuous and satisfying a source condition in the second. In these settings,
we prove results of convergence of level set boundaries with respect to Haus-
dorff distance, and additionally convergence rates in the case of denoising and
indicatrix clean data. The main technical tool for this purpose is a family of bar-
riers constructed by Savin and Valdinoci for studying the fractional Allen–Cahn
equation. To help put these fractional methods in context, comparisons with the
total variation and classical Laplacian are provided throughout.

Keywords: fractional Laplacian, regularization, image denoising, deconvolu-
tion, Hausdorff convergence, geometric properties

1. Introduction

In this work, and within the context of multidimensional data like natural images or recovered
material parameters, we are interested in variational regularization approaches of the form

min
u

‖Au − f ‖2
H + α|u|2Hs , (1)
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where |u|2Hs is a fractional order Sobolev seminorm (see (6) below), A is a linear operator andH
is a Hilbert space containing the measurements. Owing to the fractional Laplacian appearing in
its Euler–Lagrange equation, we refer to (1) as fractional Laplacian regularization. Although it
has a nonlocal character, the weights involved are singular and therefore are biased toward short
range interactions. This is in contrast to patch-based methods designed to exploit long-range
similarities across the image (see [8, 21] for some prototypical examples).

Our focus is instead on the use of fractional order seminorms for a moderate amount of
smoothing, and its compatibility with less regular inputs and solutions. Unlike other linear
regularization methods like basic Tikhonov or H1 seminorm regularization, one might claim
that fractional Laplacian regularization with low order could be well adapted to images with
distinct objects and discontinuities. This is the point of view adopted in works like [1, 2, 20],
mostly from a numerical perspective, in particular because using spectral methods could be
extremely fast for such a problem. For example, in [1] the inclusion

BV(Td) ∩ L∞(Td) ⊂ Hs(Td) (2)

for s < 1/2 (with T
d being the d-dimensional torus) is taken as a concrete argument in this

direction, since the space BV of functions of bounded variation is the most important frame-
work for problems with discontinuous solutions still allowing modelling using derivatives.

In this work we explore this claim from an analytical point of view and beyond the spaces
where the functionals may be defined, by considering geometric properties of the solutions
arising from this type of regularization. In particular, we seek to answer questions like ‘when
denoising a characteristic function corrupted by noise, how strong is the smearing of edges
caused by fractional Laplacian regularization?’. Figure 1 depicts an oversmoothed numerical
example where the effect on edges of fractional Laplacian regularization can be seen easily, and
also compared to total variation and H1 regularization corresponding to the usual Laplacian.

To be able to give precise analytical answers, we turn to the low noise regime with vanishing
regularization parameter, and formulate such results in terms of the Hausdorff distance between
level set boundaries, which may be seen as uniform convergence of the objects in the images.
This type of convergence is already known for TV regularization under various assumptions
[14, 22–24] and, somewhat surprisingly, it is not only also true for fractional Laplacian regu-
larization (see theorem 1 below), but holds as well for H1 regularization. Where we do find a
difference is in terms of convergence rates (theorem 2), since our proof depends on inclusions
of the type (2).

Beyond the case of piecewise constant ideal data and the recovery of jumps, we also consider
the roughly opposite case of continuous ideal data. This allows us to study not only denoising
but also regularization of linear inverse problems assuming the source condition and for a
type of strongly smoothing operators, which in addition to being compact have their adjoint
mapping continuously into L∞ (theorem 3).

A limitation of our results is that we are forced to use noise belonging to Lq with an exponent
q > 2 depending on the dimension and order of the regularization, or operators continuous on
the dual space Lp with p = q′ < 2. Roughly speaking, compared to a more standard L2 situa-
tion, these assumptions mean that we force a stronger matching of observation and solution.
Whether geometric results such as those proved here are possible without departing from a
fully Hilbert space framework could be an interesting question for future work.

1.1. Some notation

Within this article we work extensively with subsets of Rd . In this setting, given E, F ⊂ R
d we

use the notation Ec :=R
d\E for the complement, 𝟙E : Rd → R

+ ∪ {0} for the indicatrix taking
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Figure 1. Oversmoothed denoising of a characteristic function. (Upper row) Clean and
noisy images. (Bottom row) Result with fractional Laplacian and s = 0.49, with total
variation, and with classical Laplacian. The TV result has been computed with the PDHG
algorithm [15] and finite differences, the others in the spectral domain with periodic
boundary conditions by FFT. The large regularization parameters have been chosen
so that PSNR = 16 ± 0.01 dB in all cases. In this case the fractional method gives a
relatively sharp result, while being ≈103 times faster than TV.

the value 1 on E and 0 on Ec, |E| for the Lebesgue measure,

d(x, E) := inf
y∈E

|x − y|

for the distance from a point to a set, and

dH(E, F) := max

(
sup
x∈E

d(x, F), sup
y∈F

d(y, E)

)
(3)

for the Hausdorff distance between two subsets. Moreover, we say that E satisfies density
estimates if there are some CE ∈ (0, 1) and r0 ∈ (0, 1) such that

|E ∩ B(x, r)|
|B(x, r)| � CE and

|B(x, r)\E|
|B(x, r)| � CE for all r � r0 and all x ∈ ∂E. (4)

2. Fractional Laplacian regularization from a PDE perspective

Throughout, we assume Ω ⊂ R
d is a bounded Lipschitz domain satisfying the exterior ball

condition, that is, there is some radius such that every point of ∂Ω can be touched with a ball
of this radius contained in R

d\Ω. Moreover, let H be a Hilbert space, p � 2 and A : Lp(Ω) →H

3
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a bounded linear operator. We want to invert Au = f and minimize, for n a given noise instance
and α > 0 a regularization parameter, the functional

‖Au − f − n‖2
H + α|u|2Hs (5)

among

u ∈ Hs
0(Ω̄) := {u : Rd →R | u|

Rd \Ω = 0, |u|Hs < +∞},

where the Gagliardo–Slobodeckij seminorm of (fractional) order s ∈ (0, 1) in R
d is defined as

|u|2Hs := |u|2Hs(Rd ) :=
∫
Rd

∫
Rd

|u(x) − u(y)|2
|x − y|d+2s

dx dy,

where as noted we skip the domainRd in the notation | · |Hs , since in the sequel, every fractional
seminorm we use will be computed in the full space. Moreover, we also note that Hs

0(Ω) differs
from Hs

0(Ω) defined as the closure of C∞
c (Ω) in the Hs(Ω) topology, which we do not use in this

article.
Now, the space Hs

0(Ω) is a Hilbert space (see [37, lemma 7], for example) with the inner
product 〈u1, u2〉L2 + 〈u1, u2〉Hs defined by

〈u1, u2〉Hs :=
∫
Rd

∫
Rd

(u1(x) − u1(y))(u2(x) − u2(y))
|x − y|d+2s

dx dy.

Since u is constrained to vanish on the complement of Ω, we have

|u|2Hs =

∫∫
(Rd×Rd)\(Ωc×Ωc)

|u(x) − u(y)|2
|x − y|d+2s

dx dy

=

∫
Ω

∫
Ω

|u(x) − u(y)|2
|x − y|d+2s

dx dy + 2
∫
Ω

∫
Ωc

|u(x)|2
|x − y|d+2s

dx dy.

(6)

We also recall (see [9, theorem 2.2.1], for example) the Sobolev inequality applied to u ∈
Hs

0(Ω),

‖u‖L2d/(d−2s)(Rd ) � Θ|u|Hs . (7)

Let us remark that in the above definitions there is a peculiarity that is common when work-
ing with nonlocal equations: we are interested in functions supported in Ω, but the Hs norm we
consider involves integrals over the whole Rd, since the interaction kernel 1/|x − y|d+2s is not
compactly supported. For this reason, we make the convention that

Lp(Ω) = {u ∈ Lp(Rd) | u = 0 on R
d \Ω},

noting that the identification by extension and restriction is clearly well-defined.
Let us now derive the Euler–Lagrange equation for this functional. We want to compare the

energy of a minimizer uα,n of (5) with the energy of an admissible perturbation uα,n + th with
h ∈ Hs

0(Ω) and t ∈ R. This reads (we skip the indices for simplicity)

‖Au − f − n‖2
H + α‖u‖2

Hs � ‖A(u + th) − f − n‖2
H + α‖u + th‖2

Hs . (8)

4
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The right-hand side writes

‖Au − f − n‖2
H + t2‖Ah‖2

H + 2t〈Au − f − n, Ah〉H
+ α

(
‖u‖2

Hs + t2‖h‖2
Hs + 2t〈u, h〉Hs

)
which implies, since (8) needs to be true for all t,

〈Au − f − n, Ah〉H = −α〈u, h〉Hs

which means, writing explicitly the inner products and using the adjoint A∗ : H→ (Lp(Ω))′ =
Lq(Ω), that for any h ∈ Lp(Ω) (we can write the first integral on the whole R

d , since h = 0
outside of Ω) ∫

Rd
A∗( f + n − Au)h = α

∫∫
Rd×Rd

(u(x) − u(y))(h(x) − h(y))
|x − y|d+2s

dx dy. (9)

Now, we notice that H1
0(Ω) ⊂ L2(Ω) ⊂ Lp(Ω), and (9) holding for all h ∈ H1

0(Ω) is defined to
be (see [26, 30], for example) the weak formulation of{

α(−Δ)su = A∗( f + n − Au) on Ω

u = 0 on Ωc = R
d\Ω.

(10)

Here, (−Δ)s denotes the integral fractional Laplacian on R
d , defined for u regular enough

(say in the Schwartz space of rapidly decaying C∞ functions) as

(−Δ)su(x) = C(d, s) lim
δ→0

∫
Rd\B(x,δ)

u(x) − u(y)
|x − y|d+2s

dy, for

C(d, s) :=

(∫
Rd

1 − cos(y · e1)
|y|d+2s

dy

)−1

,

(11)

for e1 the first unit vector of the canonical basis of R
d , and where we use the notation

α := 2C(d, s)−1α. It might seem inconvenient that the factor C(d, s) appears between the reg-
ularization energy (5) and the fractional PDE (10), but this constant (for which we use the
conventions of [16]) is necessary for a few reasons. First, it is required to maintain the rela-
tion of the operator (−Δ)s with the classical Laplacian −Δ, see [16, proposition 4.4] for the
pointwise limit (−Δ)su → (−Δ)u when s → 1 and smooth u. Moreover, it is also required
to maintain consistency with the definition in terms of Fourier multipliers, in which we have
[16, proposition 3.3] the relation

(−Δ)su = F−1
(
|ξ|2sFu

)
,

which also tells us [16, proposition 3.6] that for any given u ∈ L2(Rd), (−Δ)su ∈ L2(Rd) if and
only if u ∈ H2s(Rd). Moreover, we also have the identity

〈u1, u2〉Hs = 2C(d, s)−1
〈

(−Δ)s/2u1, (−Δ)s/2u2

〉
L2(Rd )

, (12)

which allows us to interpret appearances of 〈·, ·〉Hs in convergence estimates in later sections.
In particular, the two formulas above and the Plancherel theorem yield for u1 ∈ Hs(Rd) and
u2 ∈ H2s(Rd) that

5
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〈u1, u2〉Hs = 2C(d, s)−1
〈

(−Δ)s/2u1, (−Δ)s/2u2

〉
L2(Rd)

= 2C(d, s)−1〈u1, (−Δ)su2〉L2(Rd), (13)

which further justifies speaking of (9) as a weak formulation.
In what follows, when speaking about solutions to (10), we will always mean functions

which satisfy the weak formulation (9). Moreover, given functions u, f defined on R
d , we

write for brevity

(−Δ)su + u = f inO for an open setO

whenever we have∫∫
Rd×Rd

(u(x) − u(y))(h(x) − h(y))
|x − y|d+2s

dx dy =

∫
Rd

( f − u)h for all h ∈ Hs
0(O).

Notice that if O ⊂ Ω, by definition we have Hs
0(O) ⊂ Hs

0(Ω). This means that when A = Id,
a weak solution of (10) satisfies in particular that (−Δ)su = ( f − u)/α inO for all O ⊂ Ω. We
write similarly that

(−Δ)su + u � f in O

whenever it holds that∫∫
Rd×Rd

(u(x) − u(y))(h(x) − h(y))
|x − y|d+2s

dx dy

�
∫
Rd

( f − u)h if h ∈ Hs
0(O) with h � 0. (14)

Notice that the expressions in both (11) and (6) contain contributions from outside the sup-
port of u. The combination of this unbounded domain of interaction and the singularity of the
kernel gives rise to numerical challenges, particularly in comparison with the periodic case in
which straightforward spectral methods are applicable. In any case, recent numerical works
tackle the efficient computation of problems with the integral fractional Laplacian we consider
here, see [3] where image denoising by a Dirichlet problem of the form (10) with A = Id and
its comparison to the periodic case are considered.

2.1. Comparison principle

Many of our results concern the particular case of denoising, in which the data and noise are
assumed to belong to L2(Ω) and H = L2(Ω) which allows for A to be simply the identity. In
this setting, let us now recall the following statement for the fractional Laplacian. Our proof
follows that of [30, proposition 4.1].

Proposition 1. (Weak maximum principle). Let O be an open subset and u ∈ Hs(Rd)
satisfy

(−Δ)su + u � 0 in O

as well as u � 0 on R
d\O. Then, we also have u � 0 (a.e.) on O.

6
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Proof. Because u ∈ Hs(Rd) and u � 0 on R
d\O, we have that u+ := max(u, 0) ∈ Hs

0(O), so
we may use it in (14) with f = 0 to find∫∫

Rd×Rd

(u(x) − u(y))(u+(x) − u+(y))
|x − y|d+2s

dx dy � −
∫
Rd

uu+.

Splitting u = u+ − u−, we obtain∫∫
Rd×Rd

(u+(x) − u+(y))2

|x − y|d+2s
− (u−(x) − u−(y))(u+(x) − u+(y))

|x − y|d+2s
dx dy

� −
∫
Rd

(u+)2.

Now, we can notice that (u−(x) − u−(y))(u+(x) − u+(y)) � 0 which implies that the left-hand
side of the last inequality is nonnegative. This forces u+ = 0 a.e., that is u � 0 in the whole
R

d. �
Corollary 1. (Comparison principle). Let f , g be two L2 functions with f � g a.e. on
an open subset O ⊂ R

d and u and v solutions of the respective equations

(−Δ)su + u = f and (−Δ)sv + v = g on O.

If u � v on R
d\O, then this inequality also holds a.e. on O.

2.2. Regularity for solutions of fractional Dirichlet problems

A particularity of our formulation (5) above, is that we have stepped out of a purely Hilbert
space formulation where A : L2(Ω) → L2(Ω), which is both natural and commonly used, in
particular in [2] for regularization with fractional Laplacian. From now on, whenever A appears
(that is, when the problem considered is not a simple denoising), we will assume that it is
defined instead on Lp(Ω) with

p <
d − 2s

d
< 2.

The reason for this are the following boundedness and regularity results, which hold only with
right-hand side with large enough integrability (in the dual space Lq(Ω)). Needing L∞ control
on the solutions is quite natural for the kind of results we want to prove, since we would like to
work with level sets of the minimizers, and for that one should know at which values these level
sets are to be examined. Let us remark that the situation in previous works proving convergence
results for level sets in TV regularization is similar: it is proved in [6] that the assumptions used
in [14, 23, 24] all lead to L∞ estimates independent of α.

We consider now the regularity of solutions of Dirichlet problems of the type{
(−Δ)su + u = g on Ω

u = 0 on R
d\Ω.

(15)

In what follows, we will repeatedly use the following boundedness result:

Proposition 2. Let g ∈ Lq with q > d/2s and u the weak solution to (15). There exists a
constant CS(Ω, q, d, s) so that

‖u‖L∞ � CS(Ω, q, d, s)‖g‖2d/(d−2s)
Lq(Ω) .

7
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Proof. It follows by the classical Stampacchia method. A fractional version without linear
term appears in [26, theorem 13]. However, their statement might make the reader think that
the constant depends on u, whereas in the proof one sees that this dependence is just in terms of
|supp u| � |Ω|. To show this dependence and that the estimate also holds with the linear term
in the equation, we briefly present the complete proof.

As in [26] and in the classical case (see [25, theorem B.2], for example) we introduce the
soft thresholding function

Gk(σ) = (σ − k)+ − (σ + k)−

and use, for a weak solution u of (15), the test function h = Gk(u) in the variational formulation,
which results in∫∫

Rd×Rd

(u(x) − u(y))(Gk(u(x)) − Gk(u(y)))
|x − y|d+2s

dx dy =

∫
Rd

(g − u)Gk(u). (16)

Now, let us notice that we always have

u(x)(u(x) − k)+ = (u(x) − k)(u(x) − k)+ + k(u(x) − k)+

= [(u(x) − k)+]2 + k(u(x) − k)+

as well as

u(x)(u(x) + k)− = (u(x) + k)(u(x) + k)− − k(u(x) + k)−

= −[(u(x) + k)−]2 − k(u(x) + k)−

which we can combine as

u(x)Gk(u(x)) = Gk(u(x))2 + k|Gk(u(x))|.

Finally, noticing that |u| � |Gk(u)| and that Gk preserves signs, we get that if u(x) and u(y) have
different signs, then

u(x)Gk(u(y)) + u(y)Gk(u(x)) � 2Gk(u(x))Gk(u(y)),

while if u(x) and u(y) are both positive

u(x)Gk(u(y)) + u(y)Gk(u(x))

� (Gk(u(x)) + k)Gk(u(y)) + (Gk(u(y)) + k)Gk(u(x))

� 2Gk(u(x))Gk(u(y)) + k(Gk(u(x)) + Gk(u(y))).

and if they are both negative (in which case u � Gk(u) − k) then

u(x)Gk(u(y)) + u(y)Gk(u(x))

� (Gk(u(x)) − k)Gk(u(y)) + (Gk(u(y)) − k)Gk(u(x))

� 2Gk(u(x))Gk(u(y)) + k
(
|Gk(u(x))|+ |Gk(u(y)|)

)
.

8
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These three cases, combined with the previous equality, imply that∫∫
Rd×Rd

(u(x) − u(y))(Gk(u(x)) − Gk(u(y)))
|x − y|d+2s

dx dy � |Gk(u)|2Hs .

Now, we can plug this estimate in (16) and note that −uGk(u) � 0 to conclude

|Gk(u)|2Hs �
∫
Rd

gGk(u) =
∫
{|u|�k}

gGk(u).

The Sobolev inequality (7) on the left-hand side and a Hölder inequality on the right implies,
since 1 − 1/q − (d − 2s)/2d = (qd − 2d + 2qs)/2qd,

‖Gk(u)‖2
L2d/(d−2s) � Θ2‖g‖Lq‖Gk(u)‖L2d/(d−2s)|{|u| � k}|

qd−2d+2qs
2qd .

Now if k′ > k, we have {|u| � k′} ⊂ {|u| � k} and Gk(u)𝟙{|u|�k′} � (k′ − k)𝟙{|u|�k′}, so

‖Gk(u)‖L2d/(d−2s) � (k′ − k)|{|u| � k′}|(d−2s)/(2d).

This leads to, as soon as k′ > k,

(k′ − k)|{|u| � k′}|(d−2s)/(2d) � Θ2‖g‖Lq|{|u| � k}|
qd−2d+2qs

2qd ,

which we can also write as

(k′ − k)2d/(d−2s)|{|u| � k′}| � Θ
4d

d−2s ‖g‖2d/(d−2s)
Lq |{|u| � k}|

qd−2d+2qs
2qd

2d
d−2s .

Now, in fact

δ :=
qd − 2d + 2qs

2qd
2d

d − 2s
> 1 if and only if q >

d
2s

,

which was the assumption on q. The previous inequality can then be written as

|{|u| � k′}| � Θ
4d

d−2s ‖g‖2d/(d−2s)
Lq

|{|u| � k}|δ
(k′ − k)2d/(d−2s)

,

and the standard extinction lemma [25, lemma B.1] implies that for

k0 := 2
δ

δ−1
2d

d−2s Θ
4d

d−2s ‖g‖2d/(d−2s)
Lq |{|u| � 0}|δ−1

we have |{|u| � k}| = 0 for k � k0, and k0 is the uniform bound on u we were after. Note that
since u is supported on Ω we have |{|u| � 0}| � |Ω|, so this bound depends on g, Ω, q, d and
s but not on the solution u itself. �

From proposition 2, if g ∈ Lq with q > d/2s we see in particular that u is a weak solution
to {

(−Δ)su = g − u ∈ Lq(Ω) on Ω

u = 0 on R
d \Ω

,

which (see [29, theorem 1.1] for a very general but directly applicable statement) implies
interior Hölder regularity for u, that is

u ∈ C0,γ(B(x, r)) for γ ∈ (0, 2s − d/q) (17)

9
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and all balls B(x, r) ⊂ Ω. With the additional assumption g ∈ L∞, regularity up to the boundary
also holds but with the Hölder exponent saturating at s due to boundary effects (see [30, 31]
for further discussion):

Proposition 3. ([31, proposition 1.1]). Let Ω be a bounded Lipschitz domain satisfying
the exterior ball condition, g ∈ L∞ and u the weak solution to (15). Then for some CG > 0 we
have the estimate

‖u‖C0,s(Rd) � CG‖g‖L∞(Ω).

Notice that in particular this result implies that u(x) = 0 for all x ∈ ∂Ω, a fact that we will
use in sections 4 and 5.2 below. For s small this is not a given, since functions in Hs

0(Ω) ⊂
Hs(Rd) may jump across ∂Ω, see section 3.2.

3. Relations to convex regularization theory

The regularization functional (5) that we consider is clearly quadratic, leading to linear opti-
mality conditions. However, in this article it is more convenient for us to think of it as a general
linear inverse problem with convex regularization, in the spirit of [10, 35, 36]. This point of
view and its explicit use of optimality conditions provides us with enough information on the
behaviour of minimizers of (5) with respect to n and α in order to prove our PDE/geometric
statements.

We now present the building blocks from regularization theory (specialized to the frac-
tional Laplacian context) that we will need for our main results about level sets in sections 4
and 5. Specifically, in section 3.1 we make precise the fractional PDE meaning of the optimal-
ity conditions while section 3.2 contains additional material on their relation with fractional
perimeters. Afterwards, in section 3.3 we treat convergence of subgradients and convergence
rates in Bregman distance. Finally, section 3.5 contains a basic result for convergence rates of
denoising which we later use in section 4.1.

Proposition 4. There is a unique minimizer uα,n of (5) in Lp(Ω) ∩ Hs
0(Ω), which is deter-

mined by the optimality condition (9).

Proof. We can just use the direct method: notice that

p <
d

d − 2s
< 2 <

2d
d − 2s

,

we have the Sobolev inequality (7), and the domain Ω is bounded. Since this functional is
strictly convex, there can only be one minimizer. �

3.1. Optimality and source conditions for fractional Laplacian regularization

Let us start with the optimality condition for the functional (5) at its unique minimizer uα,n,
which follows directly by the definition of the adjoint A∗ and subdifferential [17, defnition
I.5.1] and reads

− 1
α

A∗(Auα,n − f − n) ∈ 1
2
∂Lp(Ω)| · |2Hs (uα,n).

10
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In the above, and denoting u := uα,n for simplicity, the subgradient is understood as the subset
of (Lp(Ω))′ = Lq(Ω) defined as

v ∈ ∂Lp| · |2Hs (u) if and only if |u + h|2Hs � |u|2Hs +

∫
Ω

vh for all h ∈ Lp(Ω). (18)

We first remark that since p � 2 and the domain Ω is bounded, we have the embedding
L2 ⊂ Lp and therefore ∂Lp| · |2Hs ⊂ Lq ⊂ L2. Moreover, in the definition (18) all h ∈ L2 are
allowed as well, so ∂Lp| · |2Hs ⊂ ∂L2 | · |2Hs . Now, given u ∈ Lp(Ω) with |u|Hs < +∞ (which in
fact implies u ∈ L2) let us simply consider h ∈ L2(Ω). Then, either |h|Hs = +∞ and there is
nothing to check, or |h|Hs < +∞ and (18) implies

1
t

(
|u + th|2Hs − |u|2Hs

)
−
∫
Ω

vh

= 2
∫∫

(Rd×Rd )\(Ωc×Ωc)

(u(x) − u(y))(h(x) − h(y))
|x − y|d+2s

dx dy + t|h|2Hs

−
∫
Ω

vh � 0,

which by taking the limit as t → 0 and considering also −h, leads to

2
∫∫

(Rd×Rd)\(Ωc×Ωc)

(u(x) − u(y))(h(x)− h(y))
|x − y|d+2s

dx dy

=

∫
Ω

vh for all h ∈ Hs
0(Ω) (19)

which is defined to be the weak formulation of{
C(d, s)−1(−Δ)su = v/2 on Ω

u = 0 on R
d\Ω.

Therefore we can consider our regularization problem in the framework of the previous section,
that is as a standard weak formulation of a fractional PDE with right-hand side in different
Lebesgue spaces. Moreover, when making this connection we see that the subgradients of the
regularization term at the minimizers are the central quantities of interest, which motivates
investigating their convergence as α→ 0, which we do in the next subsection.

This type of formulation also applies directly to the standard source condition in the context
of the functional (5). Such a condition is satisfied at the point u† ∈ Lp(Ω) if there exists z ∈ H
with A∗z ∈ ∂Lp

[
1
2 | · |2Hs (u†)

]
, so it is satisfied precisely when the weak formulation of

{
C(d, s)−1(−Δ)su† = A∗z on Ω

u† = 0 on R
d\Ω.

holds. Now, in case we have such a source condition and p < d/(d − 2s) then we have that
A∗z ∈ Lq(Ω) with q = p′ > d/2s and the results of section 2.2 are applicable, so that u† is not
just bounded but also Hölder continuous.

11
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3.2. Relations with fractional perimeters

In previous works on geometric convergence for total variation regularization [14, 22–24] the
dual variables or subgradients also play a central role. In that case, using the coarea formula
the subgradients appear as perturbations in perimeter minimization problems for the level sets
of uα,n, and control their regularity.

On the other hand for the characteristic function 𝟙D of a set D and s < 1/2 we have the
relation (following the notation of [19, section 1], for example)

1
2
|𝟙D|2Hs =

1
2

∫
Rd

∫
Rd

|𝟙D(x) − 𝟙D(y)|
|x − y|d+2s

dx dy

=

∫
D

∫
Dc

1
|x − y|d+2s

dx dy=: Per2s(D),

and sets which are minimizers and almost-minimizers of the fractional perimeter Per2s also
satisfy regularity properties. Specifically, for minimizers it is known that ∂D ∈ C1,β for all
β < s outside a singular set of dimension at most d − 3, see [11, theorem 6.1], [33, corollary 2]
and the introduction to [4]. Moreover, in [19, corollary 3.5] Hölder regularity of the normal
vector is also proved for flat almost-minimizers (in the sense of perturbations with a mass term).
There is a limit to which kind of perturbations are allowed, though. Note that if we had

D ∈ arg minE Per2s(E) − C
∫

E
f

and f ∈ Lq(Ω) for some q > d/2s, then the fractional isoperimetric [19, (1.1)] and Hölder
inequalities make the first term dominate the second. However, if instead f /∈ Ld/2s

loc (Ω), the
functional could assign low energy values to sets of vanishing mass.

Now, we might ask if there is any relation between regularity of almost-minimizers of frac-
tional perimeter and the fractional Laplacian regularization we consider. Working in Hs(Rd)
the coarea formula is not available, but we can reinterpret the subgradient as

u† ∈ arg minu
1
2
|u|2Hs −

∫
Ω

(
A∗z

)
u,

which if u† = 𝟙D, trying the above minimality with functions of the form u = 𝟙E we end up
with

D ∈ arg minE Per2s(E) − C
∫

E
A∗z.

We note however that on the one hand that if A∗z ∈ L2(Ω), then we have [5, theorem 1.4] that
𝟙D ∈ H2s

loc(Ω), in the sense that ψ𝟙D ∈ H2s(Rd) for all ψ ∈ C∞
c (Ω). But on the other hand (see

[27, theorem 11.4] and [38, chapter 33]) functions in H2s cannot contain jump discontinuities
as soon as s � 1/4. We might ask ourselves if in the case s < 1/4 it would be possible to obtain
regularity of ∂D from such a source condition. The answer is no, because we would end up
with the requirement A∗z ∈ Lq for q > d/2s. This is exactly the exponent threshold for γ in
(17), which implies that u† is Hölder continuous, so u† = 𝟙D is again not possible.

Let us also mention that in the recent work [28], the authors study a denoising scheme
with the Ws,1 seminorm as regularizer, proving preservation of Hölder continuity and hence
recreating the well-known result of [13] for total variation denoising. In the fractional case,
this seminorm satisfies a coarea formula (first proved in [41], see also [9, theorem 2.2.2]) in

12
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terms of the fractional perimeter, which makes a purely geometric point of view applicable
and leads one to expect that results along the lines of those in [14, 23, 24] also hold. However,
from a numerical point of view the minimization of such a functional is very challenging, since
it combines the nonlocality of the fractional formulation and the nonsmoothness arising from
being based on L1-type norms.

3.3. Convergence of subgradients, as appearing in the Dirichlet problem

Proposition 5. Assume that A∗ is compact from H to Lq(Ω), that u† ∈ Lp(Ω) is such that
Au† = f and A∗z ∈ ∂Lp

[
1
2 | · |2Hs

]
(u†), and that ‖n‖H → 0 and α→ 0 with ‖n‖H/α � C. Then

the minimizers uα,n in (5) satisfy∥∥∥∥A∗(Auα,n − f
)

α
+ A∗z

∥∥∥∥
Lq(Ω)

→ 0 and DA∗z(uα,n, u†) = O(α),

where DA∗z(uα,n, u†) denotes the Bregman distance with respect to the subgradient A∗z ∈
∂
[

1
2 | · |2Hs

]
(u†), that is

DA∗z(uα,n, u†) :=
1
2
|uα,n|2Hs −

1
2
|u†|2Hs −

〈
A∗z, uα,n − u†〉

(Lq(Ω),Lp(Ω))
.

Proof. The proof is based on the one of [10, theorem 2] (see also [40] for more in-depth
results in the same fashion). To start, optimality in (5) leads to

‖Auα,n − f − n‖2
H + α|uα,n|2Hs � ‖n‖2

H + α|u†|2Hs ,

or

1
2
‖Auα,n − f ‖2

H +
α

2

(
|uα,n|2Hs − |u†|2Hs

)
� 1

2
‖n‖2

H.

which using the definitions of A∗ and of DA∗z, is equivalent to

1
2
‖Auα,n − f ‖2

H + 〈αz, Auα,n − f 〉+ αDA∗z(uα,n, u†) � 1
2
‖n‖2

H,

or equivalently

1
2
‖Auα,n − f + αz‖2

H + αDA∗z(uα,n, u†) � 1
2
‖n‖2

H +
α2

2
‖z‖2

H. (20)

Now, classically, dividing by α in (20) and using ‖n‖H/α � C gives us the convergence rate
DA∗z(uα,n, u†) = O(α). We can examine the first term further, obtaining

‖Auα,n − f ‖H �
(
‖n‖2

H + α2‖z‖2
H
)1/2

+ α‖z‖H,

which again using the assumption ‖n‖H/α � C tells us that the family of functions (Auα,n −
f )/α is bounded in H, so it can be assumed to (up to a subsequence) converge weakly to some
element of H. Since we have assumed A∗ to be compact, then the functions A∗(Auα,n − f )/α
converge strongly in Lq(Ω) to some element v0. Moreover, since

− 1
α

A∗(Auα,n − f ) ∈ ∂

[
1
2
| · |2Hs

]
(uα,n) and uα,n → u†,

13
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we can pass to the limit in the weak formulation (19) and use that it has a unique solution,
implying not only that we must have v0 ∈ ∂

[
1
2 | · |2Hs

]
(u†) = {A∗z}, but also that the whole

sequence converges to −A∗z. �

It is worthwhile to remark that also for TV regularization, convergence of subgradients is
an important ingredient in the results of geometric convergence of [14, 22–24], see in par-
ticular [24, proposition 3]. However, there is one crucial difference: in the total variation
case, one does not need to assume A∗ to be compact, and in fact as soon as the functions
Auα,n − f are bounded in H they must converge strongly. One can interpret this in light of the
Radon–Riesz property satisfied by Hilbert spaces and uniformly convex Banach spaces, mean-
ing that weak convergence combined with convergence of norms implies strong convergence.
For one-homogeneous functionals like TV the second part is automatically satisfied, since their
subgradients are zero-homogeneous (i.e. ∂TV(λu) = ∂TV(u)). For a quadratic functional like
| · |2Hs this is not the case, so we require compactness in addition.

Remark 1. When applying a denoising method and with n = 0, it is also possible to just
consider the properties of resolvents and Yosida regularization, which tell us [7, proposition 7.2
(a1) and (d)] that if f ∈ H2s(Rd) = dom((−Δ)s) then

(−Δ)suα → (−Δ)s f strongly in L2.

3.4. Bregman distance in the case of the fractional Laplacian

In the present case and assuming uα,n, u† ∈ H2s(Rd) ∩ Hs
0(Ω) additionally to the existence of a

source element z, the Bregman distance can be computed using (13) as

DA∗z(uα,n, u†)

= |uα,n|2Hs − |u†|2Hs −
〈
A∗z, uα,n − u†〉

(Lq(Ω),Lp(Ω))

= |uα,n|2Hs − |u†|2Hs −
4

C(d, s)

〈
(−Δ)su†, uα,n − u†〉

(Lq(Ω),Lp(Ω))

= |uα,n|2Hs − |u†|2Hs −
4

C(d, s)

〈
(−Δ)su†, uα,n − u†〉

(Lq(Rd),Lp(Rd ))

= |uα,n|2Hs − |u†|2Hs −
4

C(d, s)

〈
(−Δ)s/2u†, (−Δ)s/2uα,n − (−Δ)s/2u†

〉
L2(Rd )

=
2

C(d, s)

(∥∥∥(−Δ)s/2uα,n

∥∥∥2

L2
+
∥∥∥(−Δ)s/2u†

∥∥∥2

L2

− 2
〈

(−Δ)s/2u†, (−Δ)s/2uα,n

〉
L2(Rd )

)
=

2
C(d, s)

∥∥∥(−Δ)s/2uα,n − (−Δ)s/2u†
∥∥∥2

L2
= |uα,n − u†|2Hs ,

and as we saw in proposition 5 it satisfies

DA∗z(uα,n, u†) = O(α),

so that |uα,n − u†|Hs = O(α1/2) as well.

14
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Note that the sequence of equalities above would also hold with the only assumption that
u† is in Hs, without the need for additional regularity. Indeed, the product

〈A∗z, uα,n〉(Lq(Ω),Lp(Ω))

can be rewritten using the variational formulation of the equation A∗z = (−Δ)su†, which
combined with (12) would yield the fourth equality.

3.5. Convergence rates in L2 norm for denoising

Lemma 1. If f ∈ Hs
0(Ω), ‖n‖L2/α � C and uα,n is the unique minimizer of

u �→
∫
Ω

(u(x) − f (x) − n(x))2 dx + α|u|2Hs , (21)

then we have

‖uα,n − f ‖L2 � C( f )α1/2. (22)

Proof. Since f ∈ Hs(Rd) we can test minimality in (21) with f to get

(
‖uα,n − f ‖L2 − ‖n‖L2

)2 � ‖uα,n − f − n‖2
L2 + α|uα,n|2Hs � ‖n‖2

L2 + α| f |2Hs ,

(23)

and again testing minimality with zero we also get(
‖uα,n‖L2 − ‖ f + n‖L2

)2 � ‖uα,n − f − n‖2
L2 + α|uα,n|2Hs � ‖ f + n‖2

L2 ,

which implies

‖uα,n‖L2 � 2‖ f + n‖L2 .

Using this last inequality in (23) and the parameter choice, we end up with

‖uα,n − f ‖2
L2 � α| f |2Hs + 2‖uα,n − f ‖L2‖n‖L2 + ‖n‖2

L2

� α| f |2Hs +
(
2‖ f ‖L2 + 4‖ f + n‖L2

)
‖n‖L2 + ‖n‖2

L2

� α
(
| f |2Hs + 2C‖ f ‖L2 + 4C‖ f + n‖L2

)
+ C2α2,

which implies (22). �

Remark 2. The lemma above applies to f = 𝟙D when s < 1/2 and D of finite perimeter,
since then

|𝟙D|2Hs = Per2s(D) � Per(D) < +∞.

In contrast, as noted in section 3.2, when s � 1/2 functions in Hs contain no jump
discontinuities.
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4. Geometric convergence for denoising with piecewise constant ideal data

We want to use the barriers constructed in [32, 34] to obtain geometric convergence for the
minimizer of

arg minu∈Hs
0(Ω)

∫
Ω

(u(x) − f (x) − n(x))2 + α|u|2Hs , (24)

as α and n tend to zero simultaneously. In this section we restrict ourselves to f = 𝟙D, the
characteristic function of an open set D ⊂ Ω. This implies in particular that if the noise n
vanishes, minimizers will have values in between 0 and 1, by the following lemma:

Lemma 2. (Truncation). Assume that n = 0 and f ∈ L∞(Ω) is such that ess infΩ f � 0 �
ess supΩ f . Then the minimizer uα,0 of (24) satisfies

uα,0(x) ∈
[
ess infΩ f , ess supΩ f

]
for a.e. x ∈ Ω.

Proof. Let u be arbitrary and denote a truncation at level T := ess supΩ f of it by
uT :=min(u, ess supΩ f ). First, we have that∫

Ω

(
uT(x) − f (x)

)2
dx �

∫
Ω

(u(x) − f (x))2 dx.

Moreover, thanks to (6) the seminorm |u|Hs can be written as the sum of two interactions. For
the first term we have∫

Ω

∫
Ω

|uT(x) − uT(y)|2
|x − y|d+2s

dx dy

=

∫
{u�T}

∫
{u<T}

|T − u(y)|2
|x − y|d+2s

dx dy +
∫
{u<T}

∫
{u�T}

|u(x) − T|2
|x − y|d+2s

dx dy

+

∫
{u<T}

∫
{u<T}

|u(x) − u(y)|2
|x − y|d+2s

dx dy,

which leads to∫
Ω

∫
Ω

|uT(x) − uT(y)|2
|x − y|d+2s

dx dy

�
∫
{u�T}

∫
{u<T}

|u(x) − u(y)|2
|x − y|d+2s

dx dy +
∫
{u<T}

∫
{u�T}

|u(x) − u(y)|2
|x − y|d+2s

dx dy

+

∫
{u<T}

∫
{u<T}

|u(x) − u(y)|2
|x − y|d+2s

dx dy

�
∫
Ω

∫
Ω

|u(x) − u(y)|2
|x − y|d+2s

dx dy,

and for the second term, owing to the assumption T � 0, that
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∫
Ωc

∫
Ω

|uT(x)|2
|x − y|d+2s

dx dy

=

∫
Ωc

∫
{u>T}

T2

|x − y|d+2s
dx dy +

∫
Ωc

∫
{u�T}

|u(x)|2
|x − y|d+2s

dx dy

�
∫
Ωc

∫
Ω

|u(x)|2
|x − y|d+2s

dx dy.

Combined, these inequalities imply that |uT |Hs � |u|Hs . For max(u, ess infΩ f ) one proceeds
analogously. By uniqueness of the minimizer of (24) (with n = 0) this implies uT = u. �
Remark 3. The assumption ess infΩ f � 0 � ess supΩ f is not superfluous, since we have a
homogeneous Dirichlet boundary/outer condition. This implies that the denoising procedure
does not preserve constants and has a bias towards zero, since the second term of (6) imposes
a decay as d(x, ∂Ω) → 0.

Next we explore the behaviour of the energy with respect to rescaling in space, which results
in a scaling factor multiplying the right-hand side of the Euler–Lagrange equation. This fact
will be used to analyze the behaviour of solutions using a ‘fixed amount of diffusion’.

Lemma 3. (Scaling). If n = 0 and uα is the minimizer of (24), then the function

uρ
α(x) := uα(ρx)

minimizes ∫
ρ−1Ω

(u(x̂) − f (ρx̂))2 dx̂ + αρ−2s|u|2Hs

Proof. Just notice that∫
Ω

(uα − f )2 =

∫
Ω

(
uρ
α(x/ρ) − f (x)

)2
dx = ρd

∫
ρ−1Ω

(
uρ
α(x̂) − f (ρx̂)

)2
dx̂

and

|u|2Hs =

∫
Ω

∫
Ω

|uρ
α

(
x/ρ

)
− uρ

α

(
y/ρ

)
|2

|x − y|d+2s
dx dy + 2

∫
Ω

∫
Rd\Ω

|uρ
α

(
x/ρ

)
− uρ

α

(
y/ρ

)
|2

|x − y|d+2s
dx dy

= ρ2d

∫
ρ−1Ω

∫
ρ−1Ω

|uρ
α(x̂) − uρ

α(ŷ)|2
|ρx̂ − ρŷ|d+2s

dx̂ dŷ + 2ρ2d

∫
ρ−1Ω

∫
Rd\ρ−1Ω

|uρ
α(x̂) − uρ

α(ŷ)|2
|ρx̂ − ρŷ|d+2s

dx̂ dŷ

= ρd−2s|uρ
α|2Hs .

�
Remark 4. From lemma 3, we see that to have a fixed factor 1 on the | · |2Hs term we should
consider ρ = α1/2s, which when α→ 0 corresponds to denoising ‘zoomed in’ versions f ρ of f
defined on ρ−1Ω ↗ R

d. In that case for the transformation x̂ = x/ρ a ball of radius R in ρ−1Ω
corresponds to a ball of radius Rα1/2s in the original domain Ω.

To prove geometric properties a family of barriers is needed, which is introduced in
[32, lemma 2]:

Lemma 4. (Barrier). There exists a constant R0(d, s) > 0 such that for any

R � R0(d, s)
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and b > a there exists a constant CB :=CB(d, s, b − a), nondecreasing in b − a, and a rota-
tionally symmetric function w ∈ C(Rd, [a + CBR−2s, b]) which satisfies

w = b on R
d\B(0, R), (25)

−(−Δ)sw(x) =
∫
Rd

w(x) − w(y)
|x − y|n+2s

dy � w(x) − a (26)

and finally

1
CB

(
R + 1 − |x|

)−2s � w(x) − a � CB

(
R + 1 − |x|

)−2s
(27)

for every x ∈ B(0, R).

Proof. The barrier constructed in [32, lemma 2] corresponds to a = −1 and b = 1, and in
their case a parameter τ appears multiplying the right-hand side of (26), which in our case is
always τ = 1. Then, we just notice that multiplying w by a constant changes the offset a in
(26) but not the terms with w by homogeneity, while in (27) it just affects the constant CB. �

Our strategy is to rescale using lemma 3 as indicated in remark 4, to then consider compar-
ison with barriers only in situations with α = 1. In that case we have:

Lemma 5. (Avoidance). Let D̂ ⊂ Ω̂ ⊂ R
d with Ω̂ open and bounded, and ûn be the unique

minimizer of

u �→
∫
̂Ω

(
u(x) − 𝟙D̂(x) − n(x)

)2
dx + |u|2

Hs(̂Ω)
.

Then for every R > R0 :=R0(d, s) ( following the notation of lemma 4), radius r < R, level
θ > 0 and tolerance η < θ satisfying

CB(R + 1 − r)−2s � θ − η (28)

where CB :=CB(d, s, 1), we have that whenever

‖ûn − û0‖L∞ � η, (29)

also

ûn � θ on B(x, r) and ûn(x) < θ,

for all x ∈ Ω̂\D̂ with max
(

d(x, ∂D̂), d(x, ∂Ω̂)
)
> R.

Proof. Let x ∈ Ω̂\D̂ with max
(

d(x, ∂D̂), d(x, ∂Ω̂)
)
> R, andw be the translation to x of the

barrier of lemma 4 with a = 0 and b = 1. Moreover, assume that n = 0 for now. Then we have

−(−Δ)sw � w on B(x, R)

and since d(x, ∂Ω̂) > R and d(x, ∂D̂) > R also the Euler Lagrange equation

(−Δ)sû0 = 𝟙D̂ − û0 = −û0 on B(x, R).
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Summing up these two identities, we obtain

(−Δ)s(û0 − w) + û0 − w � 0 on B(x, R),

which allows (extending û0 by 0 outside Ω̂) to apply the maximum principle of proposition
1 to û0 − w on B(x, R), and taking into account that by lemma 2 we have û0 − w � 0 on
R

d\B(x, R), to finally obtain

û0(x) � w(x) for all x ∈ B(x, R),

where we could conclude for all x and not only a.e. because the regularity results of section 2.2
are applicable and û0 is in fact (locally) Hölder continuous. To conclude, notice that by (29)
we have, again pointwise since ûn is also continuous, that

ûn � w + η on B(x, R),

but then (28) and (27) imply

w � CB(R + 1 − r)−2s � θ − η on B(x, r) ⊂ B(x, R), (30)

so that we get

B(x, r) ∩ {ûn > θ} = ∅,

as desired. To see that ûn(x) < θ, just notice that the expression in (30) is strictly increasing in
r. �

Remark 5. Note that since there is a fixed universal lower bound for R and also the tolerance
η needs to be accommodated in (28), a significant distance from x to ∂D̂ and ∂Ω̂ is needed.
This will be the case when we apply this lemma below, because the domains D̂ and Ω̂ will be
rescaled versions of fixed ones, with freedom to choose the rescaling factor.

We would also like to have a conclusion, for points in D, of the type ûn(x) > θ. In this case,
the Dirichlet condition on R

d\Ω̂ makes this harder and harder to satisfy if x is very close to
∂Ω̂. To take this effect into account, we use the input 1 − 𝟙D and obtain a lower bound on the
corresponding output. This leads us to consider denoising of the constant function 1. Again
because of the Dirichlet condition on R

d\Ω̂, the resulting solution is not constant, and instead
it must decay close to the boundary ∂Ω̂, so let us denote this result by Ξ̂. With it, we have then:

Lemma 6. In the situation of lemma 5 but replacing (28) by

CB(R + 1 − r)−2s � 1 − θ − η, (31)

we also have that

ûn � θ − (1 − Ξ̂) on B(x, r) and ûn(x) > θ −
(

1 − Ξ̂(x)
)

,

for all x ∈ D̂ with d(x, ∂D̂) > R.

Proof. We consider as announced the denoising of 1 − 𝟙D̂ with solution Ξ̂− û0 and choose
a point x ∈ D̂ with d(x,Rd\D̂) > R, where we note that since D̂ ⊂ Ω̂, it is automatically true
that d(x, ∂Ω̂) > R.
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Let w again be the barrier of lemma 4 with a = 0 and b = 1. We have then

−(−Δ)sw � w and (−Δ)s(Ξ̂− û0) = 1 − 𝟙D − (Ξ̂− û0)

= −(Ξ̂− û0) on B(x, R)

Summing these two equations, we obtain

(−Δ)s(Ξ̂− û0 − w) + (Ξ̂− û0 − w) � 0 on B(x, R).

and moreover, since Ξ̂, u0 ∈ [0, 1] which implies Ξ̂− û0 − w � 0 on R
d\B(x, R), we have

(Ξ̂− û0 − w) � 0 on R
d\B(x, R),

after extending Ξ̂, u0 by 0 outside Ω. The maximum principle of proposition 1 implies then that
the same inequality holds also in B(x, R). The rest follows exactly as in lemma 5, taking into
account that the level gets transformed to 1 − θ which is the distance to the new energy well
(where the fidelity term vanishes). �

We also use the barriers to quantify the boundary effects on Ξ̂:

Lemma 7. Let Ξ̂ be the unique minimizer of

u �→
∫
̂Ω

(u(x) − 1)2 dx + |u|2
Hs(̂Ω)

.

Then we have that for all x with d
(

x, ∂Ω̂
)
> R0,

1 − Ξ̂(x) � CB

(
1 + d

(
x, ∂Ω̂

))−2s
. (32)

Proof. Using lemma 2 we know that Ξ̂ takes values in [0, 1]. For convenience and using the
linearity of the equations, we consider ζ = −Ξ̂ and the barrier of lemma 4 with a = −1 and

b = 0. In that case setting R := d
(

x, ∂Ω̂
)

we have

(−Δ)sζ = −1 − ζ on B(x, R) and

−(−Δs)w � w + 1 on B(x, R),

which added up and considering (25) imply{
(−Δ)s(ζ − w) + (ζ − w) � 0 on B(x, R)

(ζ − w) � 0 on R
d\B(x, R).

By the maximum principle of proposition 1 and (27) we get then

ζ(x) � w(x) � −1 + CB(1 + R)−2s, or

Ξ̂(x) � 1 − CB(1 + R)−2s

and hence (32). �
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Undoing the rescaling in lemmas 5–7, we arrive at:

Theorem 1. Let Ω be a bounded domain with Lipschitz boundary and satisfying an exterior
ball condition, D ⊂ Ω also with Lipschitz boundary and

inf
x∈∂D

d(x, ∂Ω) > 0, (33)

where we remark that ∂D is considered in R
d. Moreover, let uα,n be the unique minimizer of

u �→
∫
Ω

(u(x) − 𝟙D(x) − n(x))2 dx + α|u|2Hs .

Then, if ‖n‖H → 0, α→ 0 and the parameter choice is such that

‖n‖Lq(Ω)

α
→ 0 for some q >

d
2s

, (34)

then we have that for almost every θ ∈ (0, 1)

dH(∂{uα,n > θ}, ∂D) −−−→
α→0

0.

Proof. To maintain the strategy of lemma 5 of using the maximum principle and the barrier
w but with some noise n added to f , we will need to control the effect of the noise in L∞ norm.
Denoting uα,n and uα,0 the corresponding solutions with and without noise, we have that{

(−Δ)s(uα,n − uα,0) + (uα,n − uα,0)/α = n/α on Ω

uα,n − uα,0 = 0 on R
d\Ω

,

and on this equation we may apply the boundedness estimate of proposition 2 to obtain

‖uα,n − uα,0‖L∞(Ω) � CS(Ω, q, d, s)

(
‖n‖Lp(Ω)

α

)2d/(d−2s)

for each q >
d
2s

.

This means that with the parameter choice we are able to enforce, for any η > 0 and possibly
looking further into the vanishing sequence of α and noise instances that

‖uα,n − uα,0‖L∞(Ω) � η.

Now, we can apply lemma 5 on the rescaled domain Ω̂ = α−1/2sΩ with parameters (indepen-
dent of α) given by θ = θ, η = θ/2, and r = R/2 for a radius R > 0 satisfying

R > max
(

Cθ−1/2s − C, R0

)
(35)

for an adequate constant C that could be made explicit by solving in (28) with these parameters.
The conclusion of lemma 5, taking into account remark 4 after lemma 3 leads us then to

uα,n(x) � θ for all x ∈ Dc with max(d(x, ∂D), d(x, ∂Ω)) > Rα1/2s,

from which we would like to deduce that

sup
x∈{uα,n>θ}

d(x, D) � Rα1/2s for α small enough,
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which is one half of the definition (3) of dH({uα,n > θ}, D). We cannot immediately conclude
this though, since we need to additionally ensure that

{uα,n > θ} ∩ {d(x, ∂Ω) � Rα1/2s} = ∅ for α small.

For this, we can first denote by Ξα the result of denoising with input the constant function 1,
no noise and the given regularization parameter, and then use the comparison principle and the
result of regularity up to the boundary of proposition 3, to obtain

θ < uα,n(x) � (1 + η)Ξα(x) � (1 + η)(d(x, ∂Ω))s‖Ξα‖C0,s(Ω)

� CG(1 + η)
α

(d(x, ∂Ω))s,

so that taking into account η = θ/2, we have for all x for which uα,n(x) > θ that

d(x, ∂Ω) >

(
2θ

2 + θ

1
CG

α

)1/s

> Rα1/2s, (36)

for all 0 < α � αθ and some αθ depending only on θ. Note that R depends itself on θ, but still
αθ > 0 for all θ, although αθ → 0 as θ → 0.

For the other half, we need a conclusion of the type uα,n(x) > θ for x ∈ D. Under the
same rescaling onto Ω̂ = α−1/2sΩ, the function Ξα defined above transforms to Ξ̂ appearing in
lemmas 6 and 7. From the latter we find then that for all x ∈ D

1 − Ξα(x) � CB

(
1 + d(x, ∂Ω)α−1/2s

)−2s

� CB

(
1 + inf

x∈D
d(x, ∂Ω)α−1/2s

)−2s
:=BD(α) −−−→

α→0
0, (37)

where we have used (33). Since this uniform bound vanishes asα→ 0, we can always restrictα
so that BD(α) < (1 − θ)/3. We can then use this estimate to apply lemma 6 with θ = θ + (1 −
θ)/3 (which is always strictly below 1) and η = (1 − θ)/3, and imposing on R the additional
condition

R > max
(

C′(1 − θ)−1/2s − C′, R0

)
, (38)

where we remark that the constant C′, derived from (31), is independent of α but different than
the one appearing in (35). As conclusion of the lemma, we finally get that

uα,n(x) > θ for all x ∈ D,

and this in turns means that

sup
x∈{uα,n�θ}

d(x, Dc) � Rα1/2s for all α such that BD(α) < (1 − θ)/3.

Since {uα,n � θ} = {uα,n > θ}c, we can combine the two estimates above for a distance
between boundaries (see [23, proposition 2.6], for example) and end up with

sup
x∈∂{uα,n >θ}

d(x, ∂D) → 0.

22



Inverse Problems 38 (2022) 124003 J A Iglesias and G Mercier

To complete the Hausdorff convergence dH(∂{uα,n > θ}, ∂D) → 0 we also need that

sup
x∈∂D

d
(
x, ∂{uα,n > θ}

)
→ 0.

This is satisfied (see [23, propositions 2.2 and 2.6] for a proof) if {uα,n > θ} converges to D
in L1 (which is true for a.e. θ, since uα,n → 𝟙D in L2) and D satisfies inner and outer density
estimates as in (4). These density estimates are in particular implied by ∂D being either a strong
Lipschitz boundary or a Lipschitz manifold. �

Remark 6. We note that in these arguments we needed to assume the conditions (35) and
(38) in which R →∞ if θ → 0 or θ → 1. A restriction in R from below in turn forces us to
choose α smaller and smaller, so the speed of convergence one can obtain degenerates if θ is
very close to the values 0 and 1 attained by 𝟙D. This motivates the results of section 4.1 below.

Remark 7. The proof of the result above relies just on comparison principles and the barriers
of lemma 4. If instead of fractional Laplacian regularization one would use the H1 seminorm,
leading to the usual Laplacian, one could use the same proof just by replacing the barriers
with the ones of [12] (see the proof of lemma 3 there). In the total variation case this kind of
result with denoising and 𝟙D as limit is true even without regularity assumptions on D, see
[23, theorem 1.2].

Such as a result is also straightforward to extend to piecewise constant functions on regular
enough partitions:

Corollary 2. Assume that f � 0 is piecewise constant and with compact support on Ω, that
is, there are 0 = c0 < c1 < . . . < cN and Ω ⊃ Ω1 ⊃ . . . ⊃ ΩN with infx∈Ω1d(x, ∂Ω) > 0 such
that

f =

N∑
i=1

(ci − ci−1)𝟙Ωi , so that Ωi = { f > ci−1},

where the boundaries ∂Ωi are Lipschitz, and n,α are such that the parameter choice condition
(34) holds. Then for uα,n the minimizers of (5) and θ ∈ (ci−1, ci) with i = 1, . . . , N we have that

dH(∂{uα,n > θ}, ∂Ωi) −−−→
α→0

0.

Proof. The proof follows in a completely analogous manner, when considering x ∈ Ωi\Ωi−1

with max(d(x, ∂Ωi−1), d(x, ∂Ωi)) > Rα1/2s. The barrier should then have a = f (x) = ci and be
above uα,0 far away from x, which is accomplished with b = cN = maxΩ f . �

Remark 8. In corollary 2 we have used that every level set of f should have a Lipschitz
boundary.Note that this is a stronger assumption than the domains of constancyΩi\Ωi−1 having
a Lipschitz boundary. One can easily construct a counterexample with the union of two tangent
balls in the plane, for instance.

4.1. Convergence rates in Hausdorff distance for denoising with indicatrix ideal data

Since we have obtained our results by comparison with barriers with values between those
attained by the piecewise constant ideal input f , the speed of the convergence one can obtain
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with this method depends on how close the level θ is to those values. This is reflected in the
following convergence rates result:

Theorem 2. In the situation of theorem 1 and with s < 1/2, there is a constant
α0(Ω, D, θ) > 0 for which we have for θ ∈ (0, 1) the estimate

dH

(
∂{uα,n > θ}, ∂D

)
� C(Ω, D) max

(
1
θ

,
1

(1 − θ)

)min(2/d,1/2s)

α1/d, (39)

for all α � α0(Ω, D, θ).

Proof. Using the Markov/Chebyshev inequality we get for t � 0 and any f that,

|{uα,n − f � t}| � 1
t2

∫
{(uα,n− f )�t}

|uα,n − f |2 � 1
t2
‖uα,n − f ‖2

L2 .

For t � 0, we have as well

|{uα,n − f � t}| � 1
t2

∫
{(uα,n− f )�t}

|uα,n − f |2 � 1
t2
‖uα,n − f ‖2

L2 .

Now, since we assume that f is an indicatrix f = 𝟙D, one can rewrite, if t � 0,

|{uα,n > t + 1} ∩ D|+ |{uα,n > t}\D| � 1
t2
‖uα,n − 𝟙D‖2

L2

which in particular implies for θ > 0 that

|{uα,n > θ}\D| � 1
θ2

‖uα,n − 𝟙D‖2
L2 .

For t ∈ (−1, 0), we obtain similarly

|D\{uα,n > t + 1}| � |{uα,n − 𝟙D � t}| � 1
t2
‖uα,n − 𝟙D‖2

L2

which also reads, for θ = (t + 1) ∈ (0, 1),

|D\{uα,n > θ}| � 1
(θ − 1)2

‖uα,n − 𝟙D‖2
L2 .

Collecting these results, we obtain for all θ ∈ (0, 1) that

|DΔ{uα,n > θ}| �
(

1
θ2

+
1

(θ − 1)2

)
‖uα,n − 𝟙D‖2

L2 .

Now, if D satisfies the density estimates

|D ∩ B(x, r)|
|B(x, r)| � CD and

|B(x, r)\D|
|B(x, r)| � CD for all r � r0 and x ∈ ∂D,

we infer that

|DΔ{uα,n > θ}| � CD|B(0, 1)|rd whenever

r � min

(
sup
x∈∂D

d
(
x, ∂{uα,n > θ}

)
, r0

)
,
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but since |DΔ{uα,n > θ}| → 0, for α small enough we end up for each θ ∈ (0, 1) with

sup
x∈∂D

d
(
x, ∂{uα,n > θ}

)
� (CD|B(0, 1)|)−1/d|DΔ{uα,n > θ}|1/d

�
(

2
CD

)1/d

max

(
1

θ2/d
,

1
(1 − θ)2/d

)
‖uα,n − 𝟙D‖2/d

L2 .

Combining this with the estimate of lemma 1, which can be applied since a bounded set with
Lipschitz boundary has finite perimeter and

α � C‖n‖Lp � C|Ω|(p−2)/2p‖n‖L2 ,

we obtain

sup
x∈∂D

d
(
x, ∂{uα,n > θ}

)
� C(Ω, D) max

(
1

θ2/d
,

1
(1 − θ)2/d

)
α1/d. (40)

For the other half of the Hausdorff distance, we have by recalling (35) and (38) (whose valid-
ity determines α0(D, Ω, θ) through (36) and (37) which quantify the boundary effects), and
applying theorem 1 that

sup
x∈∂{uα,n>θ}

d(x, ∂D) � C(Ω, D) max

(
1

θ1/2s
,

1
(1 − θ)1/2s

)
α1/2s,

which, since s ∈ (0, 1/2), d � 2 and we can assume α ∈ (0, 1), can be combined with (40) to
get (39). �

Remark 9. This method will not work when regularizing with the usual Laplacian, since
we have used s < 1/2, which permits 𝟙D ∈ Hs(Rd) and the application of lemma 1. It is easily
adapted to the total variation, though: under the source condition and for adequate choices
of exponents in the data term, one has density estimates for the level sets of solutions with
uniform constant along the sequence and level θ, and also holding for the limit 𝟙D (see [22,
theorem 4.5] for a result in any dimension). In that case, the density estimates are also true
beyond denoising, but to follow the argument of the proof of theorem 2 we start with a rate of
convergence in L2 norm, which again is in principle only easily obtained in the denoising case
(see [40] for some slightly more general settings where it also holds, though).

5. Geometric convergence to continuous ideal data

We now consider Hausdorff convergence when the ideal data is continuous, so that it becomes
flatter by the same rescaling used for theorem 1, and with nontrivial operators A. This section
is (except for corollary 3 regarding denoising) devoted to the proof of the following result:

Theorem 3. Let Ω be an open bounded set with Lipschitz boundary and satisfying the
exterior ball condition, and the operator A be such that A∗ maps H to Lq(Ω) with q > d/2s
compactly as well as H to L∞(Ω) continuously. Moreover, assume that for u† � 0 the source
condition A∗z ∈ ∂[ 1

2 | · |2Hs ](u†) holds.
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Then, for uα,n the unique minimizer of (5) and for almost every θ > 0 and all ε > 0, we
have as ‖n‖H → 0 and α→ 0 and with ‖n‖H/α � C that

sup
x∈{uα,n>θ}

d
(
x, {u† � θ − ε}

)
→ 0, and sup

x∈{uα,n�θ}
d
(
x, {u† � θ + ε}

)
→ 0.

Moreover, if for a.e. θ ∈ R\{0} we have that {u† > θ} satisfies inner and outer density esti-
mates in the sense of (4), then the Hausdorff convergence

dH

(
∂{uα,n > θ}, ∂{u† > θ}

)
→ 0

holds for a.e. θ ∈ R\{0} for which

lim
ε→0

dH

(
{u† � θ − ε}, {u† > θ}

)
= 0,

that is, we need to exclude levels θ corresponding to ‘flat’parts of u†.

Proof. It follows by combining propositions 6 and 7 below. Note that because A∗ maps into
L∞(Ω), and that the source condition is equivalent to the weak formulation (19) (with v = A∗z)
of a Dirichlet problem with zero outer/boundary condition, we can apply proposition 3 to infer
that u† is Hölder continuous up to the boundary and u† = 0 on ∂Ω. �

Remark 10. For total variation regularization and assuming the source condition the same
convergence also holds, also for more general cases of operators: this is the main result of both
[22, 24].

We first show that under these assumptions, we can also treat regularization with nontrivial
operators as if it were denoising.

5.1. From inversion of strongly smoothing operators to denoising

As in section 3.1, the optimality condition reads

vα,n := − 1
α

A∗(Auα,n − f − n) ∈ Lq(Ω) with q >
d
2s

, and

(−Δ)suα,n = vα,n on Ω.

Our goal is to transform this into a denoising problem for a perturbed measurement. To this
end, we define

fα,n :=αvα,n + uα,n, so that (−Δ)suα,n =
1
α

(
fα,n − uα,n

)
in Ω, (41)

and notice that the last equation means that

uα,n = arg minu∈L2(Ω)

∫
Ω

(u − fα,n)2 + α|u|2Hs

where the denoising problem with L2 fidelity term and data fα,n can also be posed to lead to
(41), since the Sobolev inequality (7) can be used and

p < 2 <
2d

d − 2s
, so fα,n ∈ L2(Ω).
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Proposition 6. Assume that A∗ maps H to Lq compactly as well as H to L∞ continuously,
the source condition A∗z ∈ ∂[ 1

2 | · |2Hs ](u†) and the parameter choice ‖n‖H/α � C holds. Then
for the fα,n defined in (41) we have∥∥ fα,n − u†∥∥

L∞ → 0 as α, ‖n‖H → 0. (42)

Proof. Given the source condition, the parameter choice, and the assumed compactness of
A∗ into Lq, by proposition 5 we have vα,n → A∗z strongly in Lq. By the Stampacchia bound-
edness estimate of proposition 2 this implies also ‖uα,n − u†‖L∞ → 0. Moreover, in the proof
of proposition 5 we also saw that the set {(Auα,n − f )/α}α is bounded in H, so using the
assumption that A∗ maps continuously into L∞ we have that ‖vα,n‖L∞ � C. Combined with
the previous convergence and in light of (41), we end up with (42). �

Example 1. Let us assume that p, q satisfy p−1 + q−1 = 1 and q > d/2s, and that we have
a convolution operator A : Lp(Ω) → L2(Ω+ Σ) = H defined by

Au(x) =
∫
Rd

K(x − y)u(y) dy with K ∈ Lq(Σ),

where Σ ⊂ R
d is bounded. Then by the Hölder inequality we have

‖Au‖L∞(Ω+Σ) � ‖K‖Lq(Σ)‖u‖Lp(Ω),

so A maps into L∞ continuously. Now, the adjoint is the operator A∗ : L2(Ω+ Σ) → Lq(Ω)
given by

A∗g(x) = 𝟙Ω(x) ·
∫
Rd

K(y − x)g(y)dy, (43)

which analogously is bounded into L∞(Ω) on L2(Ω+ Σ) ⊂ Lp(Rd). Moreover, A∗ is compact
from H→ Lq(Ω) as well. To see this, consider a L2-weakly converging sequence gn ⇀ g and
notice that by (43) and K ∈ Lq(Σ) ⊂ L2(Σ), we have that A∗gn(x) → A∗g(x) for a.e. x ∈ Ω + Σ
as well. Moreover since gn is bounded in L2 and Σ is bounded, we also have

|(A∗gn)(x)|2 � C‖K‖2
L2(Σ) � C‖K‖2

Lq(Σ),

and since all the A∗gn have a common compact support we may use a constant function in the
dominated convergence theorem.

Example 2. Another class of examples which fits these assumptions are inverse source prob-
lems in which the operator A maps the right-hand side of a linear elliptic PDE problem on a
bounded domain Ω ⊂ R

d with smooth boundary to its solution.
For instance, in the most basic case of an elliptic Dirichlet problem, the adjoint is again of

the same type [39, lemma 2.24]. This means that for d = 2, 3 we also have that A∗ is continuous
from H = L2(Ω) into L∞(Ω), by the classical Stampacchia boundedness estimate analogous to
proposition 2, which holds for right-hand side in Lr(Ω) with r > d/2. Compactness of A∗ into
Lq(Ω) follows by elliptic regularity and Rellich–Kondrachov for H2(Ω) automatically when
d � 4, and otherwise under the additional condition

2d
d − 4

> q >
d
2s

, that is s >
d
4
− 1.
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5.2. Denoising with uniformly converging data

With section 5.1 and proposition 6 in mind, we now treat the case of denoising in which the data
is uniformly continuous and uniformly converging. The structure of the proofs is analogous to
those of lemmas 5 and 6 and theorem 1, but now we need to take care of the modulus of
continuity of the data:

Lemma 8. Let Ω̂ ⊂ R
d be open but otherwise arbitrary, f̂ ∈ C

(
Ω̂
)

with f̂ � 0, max
̂Ω f̂ = 1,

and modulus of continuityω
̂f . Assume that ‖ f̂α − f̂‖L∞ → 0 asα→ 0 and let ûα be the unique

minimizer of

u �→
∫
̂Ω

(
u(x) − f̂ α(x)

)2
dx + |u|2

Hs(̂Ω)
.

Then for any R > R0 :=R0(d, s) as defined in lemma 4, a point x0 ∈ Ω̂ with d(x0, ∂Ω̂) > R,
radius 0 < r < R, level θ > f̂ (x0) and tolerance η < θ − f̂ (x0) satisfying

CB(R + 1 − r)−2s � θ − f̂ (x0) − η and ω
̂f (R) � η

2
(44)

where CB :=CB(d, s, 1), we have that whenever

‖ f̂α − f̂‖L∞ <
η

2
,

also

ûα � θ on B(x0, r), and ûα(x0) < θ.

In condition (44), having a fixed lower bound on R as well as an upper bound for it depending
on the modulus of continuity might seem very restrictive, and it is. This means that we can only
apply this lemma to functions that ‘change very slowly’, which will be precisely the case when
f̂ is obtained from a uniformly continuous function by rescaling with a small factor, as we do
in proposition 7 below.

Proof of Lemma 8. Let w be again the translation to x0 of the barrier of lemma 4, this time
with a = f̂ (x0) and b = max

̂Ω f̂ = 1. Moreover, we first consider f̂ instead of f̂α (the solution
is denoted by û). Then, on B(x0, R), we have

−(−Δ)sw � w − f̂ (x0)

as well as the Euler Lagrange equation

(−Δ)sû = f̂ − û on B(x0, R).

Summing up, we obtain

(−Δ)s(û − w) − f̂ + û − w + f̂ (x0) � 0,

which, using f̂ � f̂ (x0) + ω
̂f (R) on B(x0, R), writes

(−Δ)s(û − w) − ω
̂f(R) + û − w � 0,

or

(−Δ)s
(

û − w − ω
̂f (R)

)
+
(

û − w − ω
̂f (R)

)
� 0,
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so that we can apply the maximum principle to û − w − ω
̂f(R) on B(x0, R) and take into account

that by lemma 2 we have û − w � 0 on R
d\B(x0, R), to obtain that

û(x) � w(x) + ω
̂f(R) � w(x) +

η

2
for all x ∈ B(x0, R).

To conclude, notice that as soon as f̂ − ε � f̂ α � f̂ + ε, we have thanks to corollary 1 and
taking into account that the constant function with value ε solves (−Δ)su + u = ε with itself
as outer/boundary condition in any domain, also ‖û − ûα‖L∞ � ε. This implies, thanks to (44),
the inequality

‖û − ûα‖L∞ <
η

2

but then the last inequality combined with (27) implies, since CB is nondecreasing in the
amplitude of the barrier, that

w � CB

(
d, s, 1 − f̂ (x0)

)
(R + 1 − r)−2s

� CB(d, s, 1)(R + 1 − r)−2s < θ − η on B(x0, r) ⊂ B(x0, R),

so that

B(x0, r) ∩ {ûα � θ} = ∅, and ûα(x0) < θ.

�
We will also need the ‘flipped’ comparison, analogous to lemma 6:

Lemma 9. In the situation of lemma 8 but with f̂ (x0) > θ, η < f̂ (x0) − θ and replacing (44)
by

CB(R + 1 − r)−2s � f̂ (x0) − θ − η and ω
̂f (R) � η

2
(45)

we have that

ûα � θ − (1 − Ξ̂) on B(x0, r) and ûα(x0) > θ −
(

1 − Ξ̂(x0)
)
.

Proof. Similarly to lemma 6, we consider denoising of 1 − f̂ α with solution Ξ̂− ûα.
Since the function 1 − f̂ α again takes values in [0, 1], we can compare with the same bar-
rier and follow the same argument to obtain a conclusion for the level 1 − θ of Ξ− ûα. Notice
that since we are comparing the possible value 1 − θ with the input value 1 − f̂ α(x0), it is
1 − θ − (1 − f̂ (x0)) = f̂ (x0) − θ that appears in condition (45). �

Again undoing the rescaling, we arrive at:

Proposition 7. Let Ω be an open bounded set with Lipschitz boundary and satisfying the
exterior ball condition and let f ∈ C(Ω) with f = 0 on ∂Ω, fα with

‖ fα − f ‖L∞ −−−→
α→0

0, (46)

and uα be the unique minimizer of

u �→
∫
Ω

(u(x) − fα(x))2 dx + α|u|2Hs .
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then given θ ∈ R\{0} and any ε > 0 we have that

lim
α→0

sup
x∈{uα>θ}

d
(
x, { f � θ − ε}

)
= 0, and lim

α→0
sup

x∈{uα�θ}
d
(
x, { f � θ + ε}

)
= 0.

(47)

Moreover, if for a.e. θ ∈ R\{0} we have that { f > θ} satisfies inner and outer density
estimates in the sense of (4), then the Hausdorff convergence

dH

(
∂{uα > θ}, ∂{ f > θ}

)
−−−→
α→0

0

holds for a.e. θ ∈ R\{0} for which

lim
ε→0

dH

(
{ f � θ − ε}, { f > θ}

)
= 0. (48)

Proof. By linearity and taking into account lemma 2, we have that considering the positive
part f +α as input leads to u+

α,0, and − f −α to −u−
α . Therefore, without loss of generality we can

assume θ > 0, f � 0, and prove just the first limit of (47). Moreover, since the result is not
quantitative and the problem is linear, it is invariant by multiplication with a constant, and we
can also assume maxΩ f = 1. With this in mind, our plan is to apply lemmas 8 and 9, which
assume both upper and lower bounds on R, depending on the modulus of continuity of the
function f̂ that it is applied to. Here, we use f̂ α(x) = fα(α1/2sx) and f̂ (x) = f (α1/2sx), that
is, with the same rescaling as applied to minimizers in remark 4 after lemma 3, and also in
theorem 1.

First, since f ∈ C(Ω) it is uniformly continuous it has a modulus of continuity ω f , and by
definition we have that

ω
̂f (R) = ω f (Rα1/2s),

and for any fixed R > 0 this quantity can be made as small as needed by reducing α further,
ensuring in particular that for any given η > 0, we can satisfy ω

̂f (R) < η/2. Moreover, we can
also enforce ‖ fα − f ‖L∞ < η/2, and this quantity is invariant to rescaling.

Now, if x ∈ { f < θ − ε} then we can apply lemma 8 with η = (θ − f (x))/2 and θ = θ
which gives us that for every ε > 0

uα � θ for all x ∈ { f < θ − ε} with max
(
d
(
x, { f � θ − ε}

)
, d(x, ∂Ω)

)
> Rα1/2s,

where R > Rε := max
(

Cε−1/2s − C, R0

)
> C(θ − f (x))−1/2s − C,

where C is a constant that could be computed explicitly from (44), directly implying that

sup
x∈{uα>θ}∩{d(x,∂Ω)>Rα1/2s}

d
(
x, { f � θ − ε}

)
� Rα1/2s.

Here, we run into the same problem as in the proof of theorem 1, because we need to guaran-
tee that if uα(x) � θ then d(x, ∂Ω) > Rα1/2s. However, since we have assumed f ∈ [0, 1] we
can use the estimate (36) without modifications. Therefore, considering only α < αθ we can
remove the restriction and obtain the first limit in (47).

For the opposite inequality uα > θ which should hold for x ∈ { f > θ + ε} away from the
boundary of this set, as in theorem 1 we use the modified comparison lemmas 9, and 7 to
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quantify the boundary effect on the function Ξα. First, notice that the condition f = 0 on ∂Ω
implies that given θ, there is δθ such that ω f (δθ) < θ, which implies

{ f > θ} ⊂ {d(·, ∂Ω) > δθ} =: Ωθ.

In particular, we have x ∈ Ωθ. Analogously to (37) we have now for all y ∈ Ωθ that

1 − Ξα(y) � CB

(
1 + δθα

−1/2s
)−2s

:=Bθ(α) −−−→
α→0

0.

Note that Bθ(·) depends only of θ and not on x ∈ { f > θ + ε} and we may restrict α so that
Bθ(α) < ( f (x) − θ)/3. To apply lemma 9, we use the parameters θ = θ + ( f (x) − θ)/3 and
η = ( f (x) − θ)/3, additionally restrict R so that

R > R′
ε := max(C′ε−1/2s − C′, R0) > C′( f (x) − θ)−1/2s − C′,

where C′ is derived from (45) and in general C′ �= C, to finally obtain

uα > θ for all x ∈ { f > θ + ε} with d
(
x, { f � θ + ε}

)
> Rα1/2s,

and hence

sup
x∈{uα�θ}

d
(
x, { f � θ + ε}

)
� Rα1/2s,

leading to the second limit in (47).
Moreover, we have

d
(
x, { f > θ}

)
� d

(
x, { f � θ − ε}

)
+ dH

(
{ f � θ − ε}, { f > θ}

)
and analogously for d

(
x, { f � θ}

)
. If (48) holds, then by diagonalization in α and ε we obtain

lim
α→0

sup
x∈{uα>θ}

d
(
x, { f > θ}

)
= 0. (49)

On the other hand, because the { f � θ + ε} are nested decreasing and closed (note that f
is continuous) and { f � θ} is their intersection, the limit dH

(
{ f � θ + ε}, { f � θ}

)
−−−→
ε→0

0

holds unconditionally as we show in lemma 10 below, so we also have

lim
α→0

sup
x∈{uα�θ}

d
(
x, { f � θ}

)
= 0. (50)

Combining the limits (49) and (50) as in the proof of theorem 1 we have

sup
x∈∂{uα>θ}

d
(
x, ∂{ f � θ}

)
−−−→
α→0

0.

To complete the Hausdorff convergence of level sets dH

(
∂{uα > θ}, ∂{ f > θ}

)
→ 0 we

also need the convergences

sup
x∈∂{ f>θ}

d
(
x, ∂{uα > θ}

)
−−−→
α→0

0,

and these are, as in theorem 1, implied by combining the L1 convergence of the level sets (that
follows for a.e. θ from ‖uα − f ‖L2 → 0) with the density estimates we have assumed for the
level sets of f . �
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Remark 11. Condition (48) is in some sense natural when trying to deduce convergence of
level sets, since subsets where f is constant are inherently unstable when applying any kind
of smoothing to it. In particular, it also appears in [23, theorem 1.3] for a similar result on
TV regularization. A natural question arising from this condition is if it could fail for many
levels of a given function simultaneously. In [23, example 5.10] a function is constructed for
which it fails for almost every θ. This function belongs only to BV though, and here we deal
with continuous data. On the other end of the spectrum, if f ∈ Cd (i.e. d times continuously
differentiable) the classical Morse–Sard theorem tells us that the set of critical values θ is of
measure 0 in R, so (48) holds for almost every θ. In between these two extreme cases the
situation is more intricate. In the recent work [18, theorem 1.2] a Morse–Sard type result is
proved in Bessel potential spaces, which on R

d (we may extend f by zero since it’s com-
pactly supported) equal the Gagliardo–Slobodeckij spaces we consider here. Since q > d/2s
and assuming s ∈ (1/2, 1) this result can be applied to u† ∈ W2s,q(Rd), which is the best we
could hope to obtain from the source condition (in fact such regularity is true only locally in Ω,
see [5, theorem 1.4 and section 5]), to conclude that for a.e. θ the Hausdorff dimension of the
set of critical points of f with value θ is bounded above by d − 2s. However, (48) holds only
when this set is empty, so it remains a genuine additional assumption that we cannot deduce
from the regularization framework.

Compared to the parameter choice in Lq norm (34) used in theorem 1, the convergence (46)
assumed in the above result is in a different norm but without rate, so neither implies the other.
Moreover, it is also not possible to fit plain denoising into proposition 6, since considering the
identity map between Lp(Ω) and L2(Ω) does not satisfy any of the assumptions on A. In any
case, the result still holds with the noise and parameter conditions of theorem 1 and continuous
limit:

Corollary 3. Let Ω be as in proposition 7, f ∈ C(Ω) vanish on ∂Ω, and uα,n be the unique
minimizer of

u �→
∫
Ω

(u(x) − f (x) − n(x))2 dx + α|u|2Hs .

Then, if the parameter choice is such that

‖n‖Lq

α
→ 0 for some q >

d
2s

,

then we have the same conclusions as in proposition 7.

Proof. As in theorem 1, we can control the effect of the noise in L∞ norm, that is, we can
obtain

‖uα,n − uα,0‖L∞(Ω) � CS(Ω, q, d, s)

(
‖n‖Lq(Ω)

α

)2d/(d−2s)

for each q >
d
2s

.

so by reducing α, for any given ε > 0 we can enforce

‖uα,n − uα,0‖L∞(Ω) �
ε

2
. (51)

For the rest of the proof, we apply first proposition 7 to the result of the denoising problem

u �→
∫
Ω

(u(x) − f (x))2 dx + α|u|2Hs .
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(so with fα = f for all α) which directly implies

lim
α→0

sup
x∈{uα,0>θ}

d
(

x,
{

f � θ − ε

2

})
= 0, and lim

α→0
sup

x∈{uα,0�θ}
d
(

x,
{

f � θ +
ε

2

})
= 0.

Now, we only need to note that (51) also implies

{uα,0 > θ} ⊃
{

uα,n � θ +
ε

2

}
and {uα,0 � θ} ⊃

{
uα,n � θ − ε

2

}
.

This last inclusion of sets implies then, for any fixed θ and ε,

lim
α→0

sup
x∈{uα,n>θ+ ε

2}
d
(

x,
{

f � θ − ε

2

})
= 0 and

lim
α→0

sup
x∈{uα,n�θ− ε

2}
d
(

x,
{

f � θ +
ε

2

})
= 0,

which changing θ into θ ± ε/2 provides

lim
α→0

sup
x∈{uα,n>θ}

d
(
x, { f � θ − ε}

)
= 0, and lim

α→0
sup

x∈{uα,n�θ}
d
(
x, { f � θ + ε}

)
= 0

which is (47) and allows to conclude similarly as in proposition 7. �
Let us now state the lemma for nested sets used in the proof of proposition 7.

Lemma 10. Let Ek ⊂ R
d be nonempty, closed, bounded, and nested decreasing, that is

Ek+1 ⊂ Ek for all k � 1. Then denoting

E :=
∞⋂

k=1

Ek, we have dH(Ek, E) −−−→
k→∞

0.

Proof. We start with the definition

dH(Ek, E) = max

(
sup
x∈Ek

d(x, E), sup
x∈E

d(x, Ek)

)
.

Since E is the intersection of all Ek, the second argument in the maximum is zero. Assume now
for a contradiction that there is δ > 0

xk ∈ Ek with d(xk, E) > δ for all k.

Now, since the Ek are nested we have that for any fixed k0, then xk ∈ Ek0 for all k � k0. Since
Ek0 is bounded and closed, up to a subsequence xk converges to some point in Ek0 . But since
this is the case for any k0, we could by diagonalization (that is, recursively) find a subsequence
converging to some x0 with x0 ∈ Ek for all k � 1. Then x0 ∈ E, but also d(x0, E) � δ, which
is impossible. �
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