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A B S T R A C T   

ABSTRACT: Biomarker measurements are essential for the early diagnosis of complex diseases. However, many 
current biomarker assays lack sensitivity and multiplexing capacity, work in a narrow detection range and 
importantly lack real time quality control opportunities, which hampers clinical translation. In this paper, we 
demonstrate a toolbox to kinetically characterize a biomarker measurement assay using Surface Plasmon 
Resonance imaging (SPRi) with ample opportunities for real time quality control by exploiting quantitative 
descriptions of the various biomolecular interactions. We show an accurate prediction of SPRi measurements at 
both low and high concentrations of various analytes with deviations <5% between actual measurements and 
predicted measurement. The biphasic binding sites model was accurate for fitting the experimental curves and 
enables optimal detection of heterophilic antibodies, cross-reactivity, spotting irregularities and/or other con
founders. The toolbox can also be used to create a (simulated) calibration curve, enabling calibration-free 
measurements with good recovery, it allows for easy assay optimizations, and could help bridge the gap to 
bring new biomarker assays to the clinic.   

1. Introduction 

Early diagnosis of diseases can avoid progression, improve clinical 
outcomes and reduce healthcare costs [1]. However, in the onset of 
diseases, changes between healthy subjects and patients are often minor 
and difficult to detect. Disease specific proteins, in this paper referred to 
as biomarkers, can give vital information on the disease progression 
from an early stage. In addition, the complexity of many diseases, and 
the heterogeneity of the patient populations, requires the measurement 
of several biomarkers simultaneous in order to acquire the desired 
differentiating capacity [2]. Therefore, early disease diagnosis would 
benefit from sensitive, multiplex biomarkers assays. 

The most important biomarker assay currently used in both research 
and clinic relies on the ELISA format or variations thereof. This tool has 
proven clinical effectivity and has shown to be reliable for over 30 years. 

However, it can measure only a single biomarker at a time and has a 
relatively small dynamic range, often requiring multiple dilution series 
[3]. To be able to diagnose more complex diseases, several multiplex 
assays have been developed [2]. These assays can be subdivided into 2D 
planar and bead suspension assays. Planar assays function similarly to 
ELISAs, with a sequential build up in complexity relying on one 
end-point measurement. The final read-out can be colorimetric, fluo
rescent, chemiluminescent or electro-chemiluminescent, with Search
light (chemiluminescent) [4] and Mesoscale Discovery 
(electro-chemiluminescent) [5] as examples. Sensitivity of these assays 
is generally high, but the dynamic range is still limited [5,6]. This is 
especially important for multiplex assays, as different biomarkers often 
exist in a wide variety of concentrations. Furthermore, these assays are 
shown to experience difficulty from spotting irregularities and unreli
ability, low precision [7,8], and lack of quality control opportunities [8, 
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9]. Suspension assays are other multiplex alternatives to the standard 
ELISA. These assays combine all reagents in suspension and therefore 
avoid the need for washing steps. Well-known examples are the flow 
cytometry bead arrays [6,10]and the Luminex™ assay [10]. These as
says show acceptable sensitivity and dynamic range [11]. However, they 
suffer from large inter-assay variation at low concentrations [12] and 
inherent increase in cross-reactivity due to the suspension format [13]. 

Despite the development of several multiplex platforms, currently 
none are routinely used for patient diagnosis in a clinical setting [9]. The 
main reason for this is the increasing complexity of the measurements as 
the number of biomarkers increases. For each biomarker added, addi
tional cross-reactivity can occur, leading both to more difficult assay 
development and to more complex quality control [13]. In addition, 
confounders in the sample matrix, for example heterophilic antibodies, 
can interfere in the interaction with any of the individual biomarkers 
[14]. The black-box nature of the current multiplex assays, based on 
end-point measurements, only makes it extremely difficult to detect 
these confounders and hampers quality control, seriously limiting clin
ical use. 

In order to advance the use of multiplex assays in clinical settings, 
more advanced methods for quality control with respect to end-point 
assays are needed. Potentially interesting in this respect are assays 
that enable real-time signal measurements. In combination with 
amplification steps, this can enable measurements in low fg/ml [15], 
with acceptable dynamic range [16] and multiplexing capabilities [17, 
18]. We have recently described the development of a multiplex 
biomarker measurement system based on the real time surface plasmon 
resonance array imaging (SPRi) system. We have applied a sandwich 
antibody system followed with a neutravidin and biotinylated gold 
nanoparticle cascade to sequentially improve the detection signal [19]. 
With this platform we have shown that we can quantitatively measure 
biomarkers in low fM (~fg/ml) concentration in combination with 
biomarkers up to 1 μg/ml in one assay depending on the quality of the 
capture antibody. In addition, this method proved that it is suited for 
multiplex measurements in a complex sample matrix such as serum and 
synovial fluid. This assay measures biomarker interactions in real-time 
allowing for extensive quality control and optimization opportunities 
for multiplex measurements. 

In this paper, we describe the development of a simulation toolbox 
incorporating these opportunities. The method consists of a complete 
kinetic characterization of the biomarker cascade and the individual 
steps. First, we have fitted the individual cascade steps for test bio
markers IL-1β, IL-6, TNF-α and IFN-γ by applying both a simple 1:1 
monophasic model kinetics model and a biphasic model of binding sites. 
We subsequently determined the relationship between the interaction 
steps over a concentration between 10 pg/ml and 10 ng/ml. This 
allowed us to fit the entire cascade and extrapolate the results accurately 
for all concentrations tested. We show that this toolbox enables 
improved quality control by simple detection of confounders, avoids the 
need of extensive calibration series and it can be used for rational assay 
optimization. Furthermore, besides saving time, it can reduce effort and 
costs. 

2. Methods 

2.1. Chemicals, immunological reagents, and equipment 

Acetic Acid, Sodium Acetate, Phosphorous Acid, Phosphate buffered 
saline, Tween 20, Tween 80 and Bovine serum Albumin (BSA) were 
obtained from Sigma Aldrich (Zwijndrecht, the Netherlands). The cap
ture antibodies (cAb) and biotinylated detection antibodies (dAb) for IL- 
1β (cAb clone JK1B1, dAb clone JK1B2), as well as the recombinant 
proteins IL-1β were purchased from Biolegend (San Diego, USA). Neu
travidin was obtained from Thermo Fisher (Waltham, USA). 40 nm 
biotinylated gold nanoparticles were purchased from Cytodiagnostics 
(Burlington, Ontario, Canada). Pre-activated sensors for amine coupling 

(G-type easy2spot) were purchased from Ssens bv (Hengelo, The 
Netherlands). 

2.2. Sensor preparation 

Il-1β antibodies were immobilized on G-Type easy2spot sensors 
(Ssens, Enschede, The Netherlands) by reaction to free amines using the 
Wasatch microfluidics continuous flow spotter (Carterra, Salt Lake City, 
UT, US) for 30 min. We have used a gel-type sensor for the efficient use 
of the evanescent field and large binding capacity. The antibodies were 
prepared in a reaction buffer of 50 nM acetic acid (150 μl per spot). 
Optimal reaction pH was 4.6 and assured concentration to negatively 
charged sensor and favoured coupling to primary amines. After suc
cessful spotting, the sensor was deactivated with 1% BSA in reaction 
buffer for 7 min and with 0.2 M ethanolamine at pH8.5 for another 7 min 
to reduce non-specific interactions. 

2.3. Instrumentation 

The SPRi measurements were performed on the IBIS MX96™ (IBIS 
Technologies, Enschede, the Netherlands). The instrument applies an 
angle-scanning method with automatic fitting to determine SPR shift 
with 0.5 Hz frequency. An automatic fluid-handling system controls a 
back-and-forth flow (20 μl, 30 μl/s) through a microfluidic flow cell (12 
μl) to ensure minimal sample use. It can measure up to 96 spots simul
taneously, making it highly suitable for multiplex experiments. The 
measurements were programmed using SUIT software (IBIS Technolo
gies, Enschede, the Netherlands). The type of interaction, interaction 
times, samples, and regions of interest (ROIs) for the antibodies were set 
and a template was created that was loaded into IBIS data acquisition 
software. Before each experiment the angle offset was set to ensure wide 
dynamic detection range. SPRintX software was used for data collection 
and referencing. Data was subsequently exported to Matlab R2015A for 
evaluation using custom scripts which are available upon request. 

2.4. SPRi enhancement cascade 

SPRi signal enhancement cascades measurement was performed 
with IL-1β, IL-6, TNF-α and in a broad dynamic detection range as 
described before [19]. Antibodies (cAb) were spotted at 5 μg/ml, 2.5 
μg/ml, 1.25 μg/ml, 0.625 μg/ml, 0.3125 μg/ml and 0.15625 μg/ml, to 
achieve multiple ligand densities, with eight spots per concentration. 
Samples were dissolved in system buffer, containing PBS with 0.075% 
Tween80 and 0.5% BSA. Cytokines were measured at a concentration 
ranging from 100 fg/ml (~5 fM) to 1 μg/ml (~50 nM), spanning a dy
namic detection range of 7 logarithms. The cascade interaction was 
performed as follows: First a cytokine (Cyt) was injected for 120 min, 
followed by a specific biotinylated detection antibody (dAb) at 5 μg/ml 
(33 nM) for 30 min, neutravidin (NeuAv) at 1.5 μg/ml (25 nM) for 15 
min and a biotinylated gold nanoparticle (GNP) (40 nm diameter) at 
77.69 mg/ml (0.2 nM) for another 15 min. After each interaction, the 
sensor was washed to reduce the non-specific signal and after each 
cascade, the sensor was regenerated using a double regeneration pulse 
for 30s, consisting of 200 mM phosphoric acid at pH 1.5. Every exper
iment starts with at least two blank measurements to obtain a steady 
baseline. In this cascade, each step sequentially grows the complex and 
therefore the SPRi signal. This is summarized in table S1. 

2.5. Fitting of cascade steps 

The cascade steps were kinetically characterized using a biphasic 
model (a 1:1 monophasic model, figure s1, and mass transport limitation 
model, figure s2, did not explain the curvature), accounting for two 
binding sites, one with relatively high and one with relatively low af
finity. For this we used exponential equation (1) [20,21] representing 
the biphasic binding sites model: 
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R(t)=
Rmax 1

1 + kd1
ka1c

∗
(
1 − e(− (ka1c+kd1 )∗t))+

Rmax 2

1 + kd2
ka2c

∗
(
1 − e(− (ka2c+kd2 )∗t)) (1)  

In this equation Rmax1 and Rmax2 are the binding capacities (RU), ka1 and 
ka2 the association rate constants (M− 1 s− 1), and kd1 and kd2 the disso
ciation rate constants (s− 1) of the ligand species 1 and 2, respectively, c 
is the analyte concentration (M) and t is time from start of the interaction 
(s). 

We have used custom Matlab scripts to fit the different models 
(available upon request). For the 1:1 and biphasic model, we have used 
the “lsqcurvefit” function embedded in Matlab. As input, we have pro
vided time, R signal, and concentrations. Additionally, we applied upper 
and lower limits to the fits, determined by initial guess and physiological 
feasibility. We applied different fitting strategies for the analyte inter
action step and the cascade enhancement steps. We fitted the antibody- 
analyte kinetics globally over the analyte concentrations of 1 ng/ml, 10 
ng/ml and 100 ng/ml and over the spotting concentrations range (5 μg/ 
ml- 0.15 μg/ml) simultaneously. ka (1,2) and kd (1,2) were shared var
iables, c a concentration dependent input, and Rmax (1,2) was allowed to 
vary between the different ligand spotting concentrations. 

The enhancement cascade steps interact with the previously 
captured ligand – analyte complex. This complex can be considered as a 
ligand with a specific binding capacity (ligands defined in table s1). The 
variable in these interactions is now not the ‘analyte’ concentration, but 
the ligand density. For these steps we applied global fitting over all 
signals from the analyte concentration range from 10 pg/ml to 10 ng/ml 
and the spotting concentrations range (5 μg/ml - 0.15 μg/ml) simulta
neously (30 signals in total per step). ka (1,2) and kd (1,2) were shared 
variables, c a cascade step dependent input, and Rmax (1,2) was allowed 
to vary between the different ligand spotting concentrations. 

The simple 1:1 fits and fits accounting for biphasic behavior resulted 
in a large number of Rmax(1,2) values for each cascade step depending on 
the ligand density. It is likely that binding is dominated by high affinity 
spots at low ligand densities leading to a high Rmax1/Rmax2 ratio [21]. 
This would resemble a simple 1:1 fit. At higher binding capacities the 
number of lower affinity spots could increase, partially due to steric 
effects, and could lead to a low Rmax1/Rmax2 ratio. We analyzed these 
relationships in detail in supplemental figures s6-s8. 

2.6. Relationship between cascade steps 

The relationship between the cascade steps was determined by first 
acquiring Rsat values (RUend – RUstart) at an analyte concentration range 
from 1 pg/ml to 10 ng/ml over a spotting concentration range from 5 
μg/ml - 0.15 μg/ml. Rsat values for the analyte step at low concentrations 
(below 1 ng/ml) were below measurable threshold. For this specific 
subset, simulated Rsat values from the biphasic model were used. We 
subsequently determined the relationship of the Rsat values between the 
analyte-detection antibody, detection antibody - neutravidin, and neu
travidin - gold nanoparticle steps. 

2.7. Prediction of enhancement cascade 

We applied the information on the kinetics of the individual cascade 
steps, the correlation between Rmax and Rsat and the relationship be
tween the cascade steps to simulate the enhancement cascade. To ach
ieve this, we first simulate the analyte step for three low [1 pg/ml, 3.3 
pg/ml, 10 pg/ml] and three high [100 pg/ml, 1 ng/ml and 10 ng/ml] IL- 
1β concentrations at a spotting concentration of 5 μg/ml by either the 
1:1 model or the biphasic model (specific analyte concentrations for IL- 
6, TNF-α and IFN-γ are described in supplemental figure s12-s14). The 
resulting Rsat,analyte is used to calculate Rsat,dAb by applying the fitted 
model. Rmax,dAb(1,2) is derived from the Rsat,dAb by the appropriate model 
and the detection antibody step can be simulated. Rsat,dAb is subse
quently used to calculate Rsat,NeuAv, which is used to derive Rmax,NeuAv 

(1,2). The same steps are again used to calculate the parameters for the 
GNP step. This leads to the complete simulation of the enhancement 
cascade for the concentrations tested for the four biomarkers of interest. 

2.8. Calibration free measurements 

The accurate prediction of the enhancement cascade allows for 
calibration free measurements. In principle only knowledge of the Rmax 
of the analyte binding to the ligand spot is required to predict the entire 
cascade. To demonstrate the potential, we have fitted the curves at a 
specific step in the enhancement cascade (Cyt, dAb, NeuAv or GNP) and 
reverse calculated the concentration. We have performed this for a 
concentration range from 1 pg/ml to 10 ng/ml at spotting concentration 
of 5 μg/ml by either the 1:1 model or the biphasic model. The procedure 
is as follows: For example, a fit is performed at the GNP step resulting in 
Rmax(1,2), this can be recalculated to Rsat,GNP, which can be recalculated 
to Rsat,NeuAv, to Rsat,dAb and to Rsat,analyte. From this Rsat,analyte the con
centration of the analyte can be calculated based on the kinetics data. 
Using this method, we have created a simulated calibration curve. We 
have compared the simulated calibration curve to the concentrations 
calculated from calibration curve derived via the standard method in 
biomarker assays (fit according to equation (1)) and to the actual 
concentrations. 

2.9. Assay optimization 

The kinetic characterization of the enhancement cascade allows for 
optimization experiments using simulations. We have demonstrated this 
by adjusting the concentrations of the individual cascade steps and their 
association times. This results in enhancement cascades with different 
timings and signals. We have subsequently optimized the cascade to 
obtain maximal signal (by adjusting concentration) and optimized for 
both time and signal (by adjusting concentration and association times). 

3. Results 

3.1. Kinetic characterization of biomarker assay 

We have used the SPRi enhancement cascade that was described 
before [19], as a model biomarker assay that can be fully kinetically 
characterized. For our model reactions, we have measured IL-1β, IL-6, 
TNF-α and IFN-γ in a concentration range between 100 fg/ml and 1 
μg/ml over six spot densities. A representative measurement for IL-1β at 
10 ng/ml at a spotting concentration of 5 μg/ml is shown in Fig. 1A. 

Fig. 1A shows the sequential increase in SPRi signal in the cascade, 
from 25 RU after analyte interaction to 125 RU after detection antibody, 
475 RU after neutravidin and to 4500 RU after gold nanoparticle 
interaction. This results in a total signal increase of 5, 15 and 180 times 
respectively. This large signal increase enables a lower limit of detection 
of 50 fg/ml in a dynamic range of more than 7 logarithms or >
10,000,000 times. Each step of the enhancement cascade is governed by 
specific kinetics and can as such be kinetically characterized. We applied 
a biphasic binding sites model (Fig. 1B and S2, S5) to characterize the 
antibody – analyte interaction step (1:1 Langmuir interaction model 
shown in S1, S4 and S5). The figure shows that the antibody-antigen 
interaction can be fitted with small residuals with the two binding 
sites model (residuals increase slightly at high concentration, 100 ng/ 
ml, yet stay below 5%). This may indicate the presence of two different 
affinity sites, but more likely it is expected to indicate a range of affin
ities caused by surface heterogeneities. The fits provided a KD1 of 3.7 nM 
and a KD2 of 7.6 nM. The weighted KD was 6.9 nM which closely re
sembles the KD of the 1:1 fit (KD = 5.1 nM) and the 1:1 fit KD determined 
with extensive single cycle kinetics (SCK) experiment (KD = 1.7 nM). In 
the Supplemental Fig. S4, the fits for the other spot densities are shown. 
Similarly, the enhancement steps (1C-E) could be fitted with small re
siduals (more detailed results in figure s5). We have tested a more 
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complex model with three ligand species, but this did not result in 
further reduced residuals (data not shown). Therefore, we suggested 
that these residuals might have a different origin. 

We looked further into the two distinct binding species in each 
cascade step: one with faster association and one with slower association 
kinetics. We have assessed the correlation between the Rmax (1, 2) of the 
ligand species and total ligand density over a set of IL-1β and spotting 
concentrations. Here, we found a clear non-linear relationship between 
the Rsat signal (and thus ligand density) and the Rmax of the ligand 

species. In all cascade steps we found a slow transition from a dominance 
of one ligand species at low total density to the second ligand species at 
higher total density (more details in supplemental figures s6-s8). 

After the characterization of the individual cascade steps, the rela
tionship between these steps was determined (Fig. 1F–H). The 4-param
eter logistic model best described the relationship between the cascade 
steps, both the curvature at higher concentrations (missed by linear 
model, Fig. S9) and lower concentrations (missed by the exponential 
model, Fig. S10). The curvature is especially prominent in the 

Fig. 1. A: The sequential build up in SPRi signal is shown in the enhancement cascade for IL-1β. Det.Ab = Detection antibody, NeuAv = Neutravidin, GNP = Gold 
nanoparticle. B) The fits for antibody-antigen interaction are shown over the concentrations 1, 10 and 100 ng/ml at a spotting concentration of 5 μg/ml (~1900 RU). 
The residuals, i.e. the difference between fit and actual measurements are shown in the subplot below. C-E) the fits of the enhancement cascade steps are shown. 
Fitting parameters are shown in table s3. F–H) Relation between the enhancement cascade steps. From left to right the relationship between analyte vs detection 
antibody, detection antibody vs neutravidin and neutravidin vs gold nanoparticle is shown. The signals for specific IL-1β concentration over the six spot densities is 
grouped by colour. The fits depict the results from the 4-parameter logistic model. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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relationship between analyte vs detection antibody and neutravidin vs 
gold nanoparticle and is characterized by a declining slope, indicating 
saturation. 

3.2. Prediction of enhancement cascade 

The characterization of the individual enhancement steps and their 
inter relationships allows us to predict the enhancement cascade at a 
specific IL-1β concentration and spotting concentration(Fig. 2, predic
tion 1:1 model in Fig. S11). 

Fig. 2 shows that the enhancement cascade can be predicted with 
good accuracy for both very low (deviation 2.9%) and high (deviation 
4.3%) concentrations by applying the parameters from the biphasic 
binding sites model and the relationship between the cascade steps. This 
is in contrast with the 1:1 model that could only predict the correct 
curvature for the low concentrations (Fig. S11). These accurate pre
dictions allow for extensive quality control opportunities. For example, 
spotting irregularities can be detected when deviation from expected 
curvature occurs at the capture antibody-analyte interaction. Similarly, 
deviation in the detection antibody steps suggest possible cross- 
reactivity, where absence of curvature might indicate possible hetero
philic antibodies. These confounders are easily missed in end-point as
says and these quality control possibilities are a strength of our 
approach. 

To show the universal application of this method, we additionally 
performed cascade characterizations of IL-6, TNF-α and IFN-γ. We 
demonstrate that these cascades can be accurately predicted using the 
same fitting procedures, and cascade step correlations (see figure s12- 
s14). In figure s15 we show how deviations in fitting parameters influ
ence the accuracy of the cascade predictions. To show reproducibility, 
we repeated the affinity measurement 3 times in identical setting. We 
show that the fitting is reproducible with CV<15% (Table S6). 

3.3. Calibration free measurements 

In addition to extensive quality control, the accurate prediction of 
the enhancement cascade also allows for calibration free measurements. 
This can be achieved by reversing the steps required to predict the 

cascade at a specific IL-1β concentration. A fit at any step in the cascade 
can then be used to acquire the IL-1β concentration. The results are 
shown in Fig. 3 (results for 1:1 fit in Fig. S16). 

Fig. 3 shows that the IL-1β concentration can be calculated from the 
simulations accurately until a lower limit of detection (LLoD) that is 
dependent on the step in the enhancement cascade (LLoD are 600 pg/ml, 
200 pg/ml, 75 pg/ml and 1 pg/ml for analyte, detection antibody, 
neutravidin and gold nanoparticle step respectively), below this LLoD 
the experimental calibration curve is more accurate. However, the 
simulated calibration curve is as good as the normal calibration curve to 
determine concentrations in the linear range (mean recovery, defined as 
measured concentration divided by standard concentration x 100%, in 
linear range for gold nanoparticle is 108% in simulated calibration curve 
vs 94% for standard curve). This avoids the need for extensive calibra
tion measurements, saving time and money. 

3.4. Assay optimization 

The kinetic characterization of the enhancement cascade allows us to 
easily optimize the biomarker assay without requiring large number of 
experiments. We can simply adjust concentrations and times of indi
vidual steps and simulate the cascade. As a proof of concept, we have 
performed two assay optimizations, one optimizing the signal and one 
optimizing both time and signal. The results are shown in Fig. 4. 

In Fig. 4A the simulations to increase the total signal in the 
enhancement cascade is shown. Here, we explored the parameter space 
by increasing the concentration of each component of the enhancement 
cascade by 5 times (detection antibody, neutravidin and gold nano
particle). This leads to an improvement in signal by ~25% (signal in
crease from 125 to 160 RU) and thus a higher sensitivity. Similarly, we 
optimized the enhancement cascade for both time and signal (Fig. 4B). 
When a 5 times higher concentration was used, this resulted in a 
reduction of assay time by 50% (180 min–90 min) with no signal 
decrease, improving the applicability for point of care applications. To 
further optimize the assay for the intended application, we simulated the 
limit of detection based on assay time (Fig. 4c). Based on this curve 
optimal assay times can easily be chosen, short (suitable for point of 
care, but with reduced LLOD), or long (suitable for standard diagnosis, 

Fig. 2. Prediction of the enhancement cascade. The predictions (dashed lines) are shown in comparison with the SPRi signals (solid lines) for three high (A–B) and 
three low (C–D) IL-1β concentrations (spotting concentration: 5 μg/ml). The analyte – detection antibody step (A and C) and neutravidin – gold nanoparticle step (B 
and D) are shown separately to increase clarity. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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with improved LLOD). This proof of concept demonstrates that optimi
zations for biomarker assays can be easily designed using our method, 
which can then be subsequently experimentally validated. 

4. Discussion 

Current biomarker assays lack required sensitivity, dynamic range, 
multiplexing capacity [2] and essential quality control making them 
unsuitable for large scale clinical applications [7]. We have previously 

Fig. 3. Predictions of enhancement cascade can be used for calibration free measurements. A-D) IL-1β calculated concentration is plotted against the actual IL-1β 
concentration in the biomarker, detection antibody, neutravidin and gold nanoparticle step respectively. The dashed line shows the actual concentration, x shows 
calculated concentration based on the experimental calibration curve and the squares the calculated concentration based on the simulations (Results for 1:1 langmuir 
model are shown in Fig. S16). When signals fall below the calibration curves, calculated concentrations are set to 0. Signals above the calibration curve can also not 
be measured and are not shown. Additionally, due to fitting procedure calibration curves are only accurate between input data points (10 pg/ml – 100000 pg/ml). 
Together, this means the calibration curves are limited between the LLoD and the HLoD, which are dependent on cascade step.. 

Fig. 4. Simulations to increase assay signal or reduce assay time for the enhancement cascade. A) The simulation to improve signal is shown compared to the 
standard cascade at an IL-1β concentration of 100 pg/ml. B) At the same IL-1β concentration the optimization for both time and signal is shown. C) The relationship 
between limit of detection and assay time is shown. 
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developed a biomarker assay based on SPRi [12] that enables biomarker 
measurements in multiplex with both high sensitivity and specificity in a 
broad dynamic detection range. 

While kinetic modelling of individual SPR interactions has been 
extensively studied [22], in this paper we demonstrate that combining 
1) full characterization of individual cascade steps and 2) the relation
ship between these steps in biomarker assays, enables extensive quality 
control, calibration-free measurements and allows for simple optimiza
tions. The same steps can be applied to any biomarker assays using real 
time technologies, both label free and with enhancement tags. This can 
help bridge the gap and finally bring these technologies to the clinic. 

Kinetic characterization of the biomarker assay showed a biphasic 
behaviour was required to accurately fit the interactions at both high 
and low concentrations. The 1:1 monophasic model strongly deviated at 
high spotting concentration and high analyte concentration, and inter
estingly no mass transport limitation was observed, despite high ka 
(>105 M − 1 s-1) in dAb, NeuAv and GNP steps [14]. 

These results indicate that there are distinct binding species in all 
steps of the enhancement cascade (both with high and with low affinity 
[13]). At low concentrations only the high affinity species will be 
occupied resulting in 1:1 behaviour, while at higher concentrations both 
high and low affinity species will become occupied leading to a biphasic 
curvature. This behavior was confirmed by the data showing that the 
Rmax of a binding species was highly correlated to the ligand (or cascade 
complex) density. The heterogeneity in the enhancement cascade can be 
caused by several processes. The covalent immobilization process of the 
capture antibody is random and can lead to differences in orientation 
and steric freedom leading to different affinities [23]. This works 
through the cascade and partly explains the heterogeneity of subsequent 
steps. However, other factors unique to the architecture of each indi
vidual step could play a role in the enhancement steps. The biotinylation 
of the detection antibody is achieved by similar random chemistry, 
potentially leading to different species with specific steric biotin avail
ability and antibody affinity [24]. The interaction between the neu
travidin and the gold nanoparticle is also limited by steric effects, 
especially at high concentrations, further increasing heterogeneity. This 
diversity would suggest a continuum of binding affinities instead of just 
two, as was described by Ref. [14]. However, tests using three or four 
distinct species did not result in better fits for any of the steps. Therefore, 
because of the good fits and by applying Occam’s razor, we decided to 
continue to use the biphasic binding model with two binding species. 

Similar biphasic behaviour and heterogeneity can be expected in 
other biomarker assays to which our method can be applied. ELISAs for 
example use physical immobilization of antibodies, in which random 
orientation can be expected. Additionally, random biotinylation of 
detection antibodies will also play a role. For biomarker assays using 
SPR platforms, chemiluminescence, electro-luminescence, electro- 
chemical or bead suspension methods similar or additional heteroge
neity can be expected. Therefore, our approach is likely necessary and 
suitable for characterization of a broader range of assay types. 

The relationship between the enhancement cascade steps could be 
captured accurately with the 4-parameter logistic model (and moder
ately with an exponential model), indicating a linear relationship be
tween the cascade steps at relatively low concentrations that reaches a 
saturation at higher concentrations. This might be related to the satu
ration of the higher affinity binding spots, altering binding kinetics. 
Despite this, the good fits demonstrate that the cascade was well defined 
over the entire concentration range that was tested. As similar fits are 
standard use in biomarker assays, it is likely that these cascade re
lationships are universally applicable [25]. 

The kinetic characterization allowed accurate simulations of the 
enhancement cascade at both low and high IL-1β concentrations with 
average deviations of less than 5%. Additionally, accurate predictions 
were shown for IL-6, TNF-α (with small deviations due rebinding effect) 
and IFN-γ demonstrating general functionality of a broad range of an
tibodies and affinities. Accurate fitting of curvature using biphasic 

model (in contrast to 1:1 Langmuir fitting) enables detection of con
founders that affect binding characteristics. This enables extensive 
quality control opportunities. Cross-reactivity is an important limitation 
in all multiplex assays, caused by cross-reactivity of capture- and 
detection antibodies to off-target biomarkers or other components of the 
sample matrix. This will result in a lower or higher signal, which will be 
interpreted as a lower or higher biomarker concentration. This is noto
riously difficult to detect [15] and can lead to false positives or negatives 
that can be devastating in a clinical setting [10]. Using our method, we 
can detect this cross-reactivity through knowledge of the kinetics. When 
a capture- or detection antibody non-specifically cross-reacts with a 
biomarker, this will impact the different binding curves of both the 
capture antibody – biomarker and the biomarker – detection antibody 
interactions [26,27]. In addition, the relationship between the 
enhancement cascade steps will start to deviate from expectation. 
Similarly, common confounders such as heterophilic antibodies and 
spotting irregularities will translate into experimentally determined 
binding curves which deviate from predicted curves. These deviations 
can be automatically detected leading to accurate quality control both 
for assay development and clinical application. In future work these 
applications will be experimentally verified. 

The cascade simulations were additionally used to create a simulated 
calibration curve, resulting in accurate concentration measurements 
(108% recovery) vs a standard calibration curve (94% recovery). This 
indicates that the kinetic characterization of the biomarker assays allows 
for calibration free measurements. The only requirement is knowledge 
of the binding capacity of the capture antibody spot. This knowledge can 
be gained by a simple triple biomarker injection requiring very limited 
time. According to Mehand et al. [28] it might even be possible to 
achieve calibration free measurements with this method, without sensor 
specific knowledge on the ligand density, by determining this density in 
real time. This reduced need for calibrators can save time and reagents 
and can be very useful, especially in point of care applications. 

Finally, we showed in proof of concept that kinetic characterization 
enables simple offline assay optimization. Resulting in signal improve
ment of 25% or assay time reduction of 50%. These simulations need to 
be tested in real experiments, but show that simple changes in concen
tration or assay time can be easily simulated enabling rational assay 
optimization rather than trial and error. This can save a lot of time, 
reagents and money in optimizing biomarker assays, especially when 
multiple markers are added and assays become more complex. 

Currently, multiplex biomarker measurements fail to reach routine 
clinical application. This is caused in part by increased complexity when 
measuring multiple, and especially a large number of biomarkers. At 
high multiplexing, confounders, such as cross-reactivity, spotting ir
regularities and heterophilic antibodies are increasingly difficult to 
detect in end-point assays. 

We have demonstrated that the kinetic characterization of optical 
biomarker assays can lead to extensive quality control opportunities, can 
lead to calibration free measurements, and can help in assay optimiza
tion. We have shown this for the enhancement cascade that we have 
developed, but the principles are applicable to all real-time assay tech
nologies. The method works well for complex kinetics with a wide range 
of affinities (nM for antibodies and fM for neutravidin/GNP) and can be 
applied in label free and other nanoparticle tags assays. In addition, 
when knowledge on the specific kinetics of antibody – biomarker pairs is 
gathered using a real time technology, this can also easily be applied to 
optimize traditional end-point assays, such as the standard ELISA and 
multiplex assay. 

We will make our scripts publicly available, so researchers can apply 
our method to their assay of choice. In principle, the scripts can be 
applied to automatically detect confounders for routine clinical use. This 
can help optimize these assays and enable useful quality control possi
bilities. In turn this can hopefully lead to widespread use of these assays 
in a clinical setting where they are desperately needed. 
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5. Conclusion 

Biomarker assays are essential for the early diagnosis of diseases, but 
are currently lacking for clinical application. In this paper, we have 
developed a toolbox to kinetically define biomarker assays and show 
that this has large potential for quality control, calibration free mea
surements and assay optimizations. To achieve this characterization, we 
have performed three steps. 1) Kinetically defining the individual assay 
steps of the amplification cascade using a biphasic binding sites model, 
2) Defining the correlation of ligand binding species to interaction signal 
and 3) determining the relationship between cascade steps. Combined 
this resulted in an accurate prediction of SPRi measurements at both low 
and high concentrations of analytes with deviations <5% between 
actual measurements and predicted measurement. Deviation between 
prediction and real time measurements could point to cross-reactivity, 
heterophilic antibodies, spotting irregularities and/or other con
founders. This method is applicable to all real-time assay technologies 
and can also be applied to optimize standard end-points assays. Finally, 
we show in a proof of concept that these simulations can be used to 
easily optimize signal (25% increase) while reducing assay time (>50% 
reduction), compared to the original assay, without requiring extensive 
experimental work. The theoretical framework of our assay can be 
applied to any real time biomarker assay relying on molecular in
teractions. It can also be used to optimize standard end-point assays. 
Therefore, this could be a useful tool to bring the desired biomarker 
assays for early diagnosis one step closer to the clinic. 
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