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Abstract. This paper presents a case study where a concurrent mod-
ule of a tunnel control system written in Java is verified for memory
safety and data race freedom using VerCors, a software verification tool.
This case study was carried out in close collaboration with our indus-
trial partner Technolution, which is in charge of developing the tunnel
control software. First, we describe the process of preparing the code for
verification, and how we make use of the different capabilities of Ver-
Cors to successfully verify the module. The concurrent module has gone
through a rigorous process of design, code reviewing and unit and inte-
gration testing. Despite this careful approach, VerCors found two mem-
ory related bugs. We describe these bugs, and show how VerCors could
have found them during the development process. Second, we wanted to
communicate back our results and verification process to the engineers
of Technolution. We discuss how we prepared our presentation, and the
explanation we settled on. Third, we present interesting feedback points
from this presentation. We use this feedback to determine future work
directions with the goal to improve our tool support, and to bridge the
gap between formal methods and industry.

Keywords: Case study · Verification · Concurrency

1 Introduction

Software components for critical infrastructure should be kept to the highest
standards of safety and correctness. Traditional methods for acquiring high safety
standards include code reviewing and testing. These improve the reliability of
software, but do not and cannot guarantee the absence of bugs. Software is also
becoming more concurrent every year. The number of execution scenarios in
concurrent software is even greater than in classical sequential software, due to
interleaving and timing aspects. This makes code reviewing and testing even
less effective. Specifically, there are too many interleavings of multiple threads,
causing problematic interleavings to easily be missed during code reviewing and
testing. Furthermore, concurrency related bugs such as data races and race con-
ditions are intrinsically difficult to analyse with testing, since their effects are
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platform dependent. For example, changing the OS of the system could cause
previously passing tests to fail, due to different scheduling policies. It is also
hard to test for specific interleavings. Hence, methods besides testing and code
reviewing are needed to achieve the highest standards of safety and correctness
in concurrent software.

To complement classical methods in the context of concurrent and critical
infrastructure software, we believe formal methods must be considered. In par-
ticular, formal methods that can deal with the concurrent context must be used.
In contrast to code review and testing, formal verification is exhaustive and can
formally guarantee the absence of bugs in different stages of the software devel-
opment cycle. Moreover, formal verification uses a standard semantics of the
language in question, which guarantees consistent behaviour across platforms.
Whenever platforms disagree, formal verification ensures that this difference is
accounted for in the code. These properties of formal verification makes software
more predictable, and hence safer.

Despite recent advances in software verification capabilities, the use of formal
methods in industry is still limited. We think that case studies that show the
successful application of formal methods will greatly contribute towards further
adoption of formal methods in industry in two ways. First, it showcases the
advances and capabilities of software verification tools to our industrial partners.
Second, it generates valuable feedback, with which we can improve our tools and
further adapt them to the software production cycle. This work discusses such
a case study, where we verify a safety critical software for tunnel traffic control
using our software verification tool VerCors.

VerCors is a deductive verifier, specialised in the verification of concurrent
software [4]. It supports Java, C, OpenCL, and a custom input language called
PVL. VerCors can prove several useful generic properties about programs, such
as memory safety and absence of data races. Additionally, VerCors can prove
functional correctness properties, such as “the sum of all integers in the array is
computed”. To verify programs with VerCors, the programs must be annotated
by the user, following a Design by Contract like approach. Annotations are
pre- and post-conditions of methods, specifying permissions to access memory
locations and functional properties about the program state. VerCors processes
the program and the annotations, and verifies if the program adheres to the
annotations by applying a deductive program logic optimised for reasoning about
concurrent programs. VerCors has been applied to concurrent algorithms [19,21,
22], and also to industrial code in earlier case studies [11,18].

This paper is the result of a close collaboration with Technolution [25],
a Dutch software and hardware development company located in Gouda, the
Netherlands, with a recorded experience in developing safety-critical industrial
software. It is also the next part in a series of papers to investigate the fea-
sibility of applying formal methods within the design and production process
of Technolution. For more information on the earlier parts, we refer the reader
to [11,18]. Finally, this paper is also an attempt to approach industrial partners
to collaborate on the broader goal of making deductive verification, and specifi-
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cally VerCors, available for industrial practitioners. This collaboration is carried
out in the context of the VerCors Industrial Advisory Board, with the goal to
learn how to introduce deductive verification into the production cycle of soft-
ware, and to improve the tool and make it easier to use. Another important goal
of the VerCors Industrial Advisory Board is to make industrial partners aware
of the guarantees of formal verification, in contrast to the weaker guarantees of
testing based quality assurance. This paper discusses our efforts to communicate
our results and explain the verification process to the engineers at Technolution,
as well as their feedback on our approach.

In particular, we discuss the verification of software for a tunnel on a road
called the Blankenburgverbinding [3]. This tunnel and the hard- and software
supporting it will be responsible for funnelling thousands of cars every day. The
control software of this tunnel monitors and controls almost every aspect of the
tunnel, in both normal and calamity situations. Thus, in order to give some safety
guarantees to its daily users, it is highly important that the software conforms to
the requirements of the national regulations and to the specifications provided
by the engineers who design and develop it. To demonstrate how formal methods
can help here, we applied our software verification tool VerCors to a submodule
of the control software of the tunnel, in particular to analyse concurrency related
issues such as data races and memory safety.

To develop the tunnel software, Technolution followed an iterative V-model
approach. The customer handed in the requirements in form of a BSTTI doc-
ument [16] and LTS specifications. These were used to derive actual software
requirements via system decomposition and design. In addition to the custom
validation flow of the V-model, the customer also imposed requirements on
the development process. These included, but were not limited to, units being
inspected to verify that they implement their requirements via Fagan inspec-
tion performed by a developer not involved in creation and review of the code,
requirements-based testing at software module level (i.e. higher integration level
than units) using the MC/DC coverage approach, and UI-design based testing
at a software chain level (i.e. integration of multiple systems) with a process flow
approach.

This rigorous approach to software development resulted in them spotting
some unexpected behaviour in their tunnel software, where a certain condition
over the state snapshot of a component was evaluated differently at two spots
throughout which the snapshot should remain unchanged. Nevertheless, later
they could not reproduce this behaviour and, by the time we were given the
code to analyse, they had not been able to spot a bug that might explain this
behaviour. The code we received was already in testing phase. As can be seen
in this paper, we discovered concurrency related bugs in this code, which we
think were likely the cause of the unexpected behaviour. We show that VerCors
can effectively catch this kind of bugs, in production phase, by using simple
code annotations in the form of methods pre and post-conditions specifying the
memory access pattern of such methods.
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The goal of this particular study is three-fold. First we want to investigate
how much we can support the verification of industrial Java software with Ver-
Cors. Second, we want to focus this time on a concurrent piece of software and
on concurrency issues such as data races, for which our tool is specialised. Notice
that to exploit modern architectures, modern software is often concurrent, and
not many deductive verification tools can deal with this. Third, we want to inves-
tigate how our verification procedure can be improved for industrial adoption.
For this, we are particularly interested in the feedback from the Technolution
team with respect to the verification procedure we followed.

Contributions. In this paper we discuss the following:

– Details of the tunnel verification case study, such as the analysis workflow
and the problems we discovered.

– The process of communicating our results to Technolution.
– The feedback from Technolution and its engineers regarding our analysis and

our presentation of it.
– Future plans for VerCors and the analysis of concurrent industrial software.

Outline. Section 2 presents the background for this research, i.e., we describe
the tunnel software and architecture. We also explain how to use VerCors for
concurrent software verification. In Sect. 3 we discuss our process of verifica-
tion of the concurrent data manager module, we explain the bugs we spotted,
and we show how applying VerCors would have avoided these bugs. Section 4
describes the experience of explaining our procedure and reporting our results
to the engineers at Technolution, and their feedback. Section 5 describes our
own reflection and future directions towards our goal of improving VerCors for
industrial application. Additionally, we mention some broader goals for the for-
mal methods community. Finally, Sect. 6 summarises and concludes.

2 Background

In this section we describe the two technologies relevant to this paper. First,
we describe the system architecture of the tunnel software. Then, we describe
VerCors, the tool used for verification of Java code.

2.1 Tunnel System Architecture

In the Netherlands, the architecture of software for tunnels is regulated by
the Basic Specification of Technical Installations for Tunnels (BSTTI1). The
BSTTI [16] specifies that the architecture for tunnel software is strictly hierar-
chical. The system is summarised in Fig. 1.

At the top layer of this hierarchy are the human operators that operate the
system. These operators give commands to the system, and inspect the values
1 In Dutch: BasisSpecificatie Tunnel-Technische Installatie.
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Operator

MMI

3B

LFV

Fig. 1. Informal overview of the architecture specified by the BSTTI.

of various sensors in the system, using the Human-Machine Interface (MMI2)
layer. The MMI processes these commands and forwards these to components of
the Control, Instruct, Guard (3B3) layer. The 3B layer and its components are
responsible for the high-level control of the physical subsystems of the tunnel.
Examples of 3B components are water drainage, lighting, and electricity systems.
As 3B components can be responsible for controlling entire subsystems, they also
have a degree of autonomy. The individual 3B elements communicate with com-
ponents in the Logical Function Fulfiller (LFV4) layer. Components in the LFV
layer abstract the communication with the sensors and actuators of the tunnel to
check and control them. Examples of these sensors and actuators are the smoke
sensors and fans, the lights, or the entrance barriers. They can be located at
various places in the tunnel and are connected to their LFV counterparts over
various kinds of network connections following different protocols.

According to the BSTTI [16], the system must follow these general principles:

– Control must flow from the human operator level to the LFV level.
– Communication must take place along the parent-child hierarchy outlined in

Fig. 1. Specifically, sideways communication between neighbouring 3B/LFV
components, or between 3B components and LFV components that have no
parent-child relation, must not take place.

These principles were prescribed because they make actions taken by the sys-
tem traceable. If the physical system takes a certain action, the strict hierarchy
allows tracing back to which component or decision caused the action. Note that
it might not always be a human who caused the action. Since 3B components
can have a degree of autonomy, it is possible that an autonomous action causes
a physical action to take place.
2 Man-Machine Interface.
3 Besturing, Bediening, Bewaking.
4 Logische Functie Vervuller.
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2.2 VerCors

VerCors [4] is a deductive verifier for concurrent programs. It supports Java,
C, OpenCL, and the Prototypal Verification Language (PVL). To make verifica-
tion of concurrent programs tractable, VerCors uses permission-based separation
logic [10]. This version of separation logic uses permissions to decide whether
threads can read or write shared data. A complete permission allows a thread
to write, but does not obligate it to. A fraction of a permission only allows a
thread to read. This ensures that at any given moment, there can only be one
writer, or many readers, but not both at the same time. We refer to a write
permission as “write” while we refer to a fractional read permission as “read”.
Fractions of permissions can be distributed between threads. When a thread no
longer needs a permission, fractions of a permission can be recombined into a
complete permission. In particular, permissions are never duplicated, ensuring
that there can only be at most one write permission.

Alternatively, permission fractions can also be represented as concrete num-
bers. In this case, a “write” permissions corresponds to a fraction of 1. A “read”
permission corresponds to any fraction between 0 and 1, such as 1

2 or 3
4 . Opera-

tionally, having a permission fraction bigger than 0 and smaller than 1 allows a
thread to read a memory location, but not write to it. In this work, we mostly
use the terms read and write, but in more complicated contracts, sometimes
the numerical form is required. For a more thorough introduction to permission-
based separation logic, we refer the reader to “Specification and Verification of
Multithreaded Object-Oriented Programs with Separation Logic” by Clément
Hurlin [12].

To prepare methods for analysis with VerCors, they need to be annotated
with pre- and post-conditions. Pre- and post-conditions are sometimes also
referred to as the contract of a method. Pre-conditions describe the permissions
a method needs from the caller, as well as any functional properties that must
hold when the method is called. Post-conditions indicate the permissions that a
method returns to the caller, as well as any functional properties that may be
assumed. For example, when an object is constructed, permissions to access the
fields of the object are returned by the constructor of the object. As a functional
property, the constructor can guarantee that all fields are zero-initialized.

In Listing 1 an example is shown of such permission annotations in Java. The
annotations are placed in comments and are highlighted. In the annotations, the
expression after the requires keyword specifies the pre-condition of the method.
In this case, permission is required for the total field of class C. The ensures
keyword indicates the postcondition. In this case, the permissions from the pre-
condition are returned to the caller of the add method, as well as the functional
property that total is incremented by x.

When verifying an individual method, methods that are called are not
re-verified, instead their pre-condition is established and their post-condition
assumed. This is called modular verification, and it ensures that the correct-
ness of a method does not depend on the implementation of other methods.
This means that it is easy to update method implementations without break-
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1 class C {

2 int total;

3
4 //@ requires Perm(total , write );

5 //@ ensures Perm(total , write) ** total == \old(total) + x;

6 void add(int x) {

7 total += x;

8 }

9 }

Listing 1. Example usage of permissions in Java. Write permission is required in the
pre-condition of method add. Because of this, add can only be called when the caller
has write permission for total. Then, the field total is incremented by the value
x. Finally, the write permissions are returned via the post-condition, as well as the
functional property that total is incremented by x.

ing the correctness of other methods. If necessary, implementations of methods
can also temporarily be omitted, which can be useful for describing and enforc-
ing interfaces between independent teams, or when implementations are not yet
available.

3 Verification of the Concurrent Data Manager Module

When discussing our plans for collaboration with Technolution, the engineers
suggested as a case study their new control software for the Baak tunnel. For
this tunnel, they have developed a system that is responsible for controlling and
reporting on all critical and non-critical components, such as escape doors, fire-
prevention measures, water drainage systems, lighting, ventilation, etcetera. In
order to reduce the time spent in spotting a concurrent candidate module to
analyse, we agreed to meet a first time with an engineer, experienced with the
tunnel software, who could guide us through it.

In this first meeting the engineers from Technolution not only suggested a
set of modules to verify, but also pointed out a problem that they would like
us to consider, since it was most likely a concurrency issue. The system they
had built at that point was functional, behaved properly, and passed all tests.
However, sometimes, according to their data logs, certain status data would
unexpectedly change during execution of the system. These unexpected changes
were never problematic in realistic scenarios, so therefore they considered it
benign. However, it was still unexpected, and they would like to understand
why this happens.

As a first step, we decided to go through the code base and try to understand
the structure. We used a couple of meetings with the Technolution team to get
some guidance around the code. Also, several times we asked for further code to
inspect, such as supporting libraries of the system.

We found that the components of a tunnel can be quite diverse, and to cope
with that diversity, several layers of abstraction and interfacing code had been
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built into the tunnel software, which made it non-trivial to understand for us.
Nevertheless this was not a problem for our verification approach, as it is modular
at the level of methods, and annotating the code was straightforward. We ran
VerCors on the fly, while annotating the code, and even mocked some library
calls, by means of abstract methods and ghost code. We did have problems
with VerCors lacking support for some frequently used Java features, such as
inheritance and generics. Once we decided on the module to verify, the effort to
abstract from unsupported Java features and annotate the code was very little;
the annotations were trivial to us, and it took just an afternoon to reach the
conclusions. Moreover, due to the simplicity of the specification, VerCors was
able to verify the code in just a couple of seconds.

3.1 Event Loop Analysis

Receive child
component state

Processing
step 1

Processing
step N

Publish state
to parent

components

Fig. 2. The 3B function processing event loop.

We inspected the event loop of the main module, because most of the concur-
rent behaviour happens there. This involved peeling off the abstraction layers
of the event loop framework, which is responsible for receiving and dispatching
messages and executing each step of the processing loop of 3B components. This
process repeats until the main module is shut down. An illustration of the typical
processing loop of a 3B function can be found in Fig. 2. A processing loop starts
by obtaining the state of all the child components for this 3B function (first
rectangle in the figure). This state is then used to take control decisions along
several processing steps inside the loop (shaded rectangles in the figure). It is
here that the Technolution engineers where suspecting that something is wrong.
In particular, during this control decision period, this state must not change.
The suspicion was that somehow the state was being changed.

Continuing the explanation of Fig. 2, at the end of the loop our own state
is prepared and made available to the upper 3B functions in the hierarchy (see
Fig. 1 for clarification). In general, 3B functions and LFV components work
asynchronously. The communication of the state between LFVs and 3B functions
is managed by specialised data managers which need to synchronise the state of
these asynchronous elements at the start and end of the 3B function processing
loop. In a generic data manager of the event loop framework, we were able to
spot two problems through manual inspection of the source code.

Problem 1: Forbidden Data Sharing. The first problem was related to
aliasing between references to data structures representing the status of the
child components of a 3B function. To better understand this, let us look at
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Fig. 3: each 3B function uses two copies of the data structure representing the
status of its child LFVs and 3B functions. One of these copies, the “internal”
copy, represents the internal knowledge that a 3B function has of its children.
It is used by the 3B function processor to make control decisions and should
remain unchanged during the time of a processing loop iteration, this is, along
the shaded steps in Fig. 2. On the other hand, the “dynamic” copy is updated
each time a status update message from a child component is received. These
messages arrive at any point during a processing loop iteration and the updates
are asynchronously applied. At the end of an event iteration, the dynamic copy
is used by the data manager to update the internal copy.

3B function
processor

Data manager Child com-
ponents

Internal data Dynamic data
Mutates Receives

Reads

Aliasing hazard

Sends

Fig. 3. Shared data snapshots.

It turns out that the data manager accidentally aliased both the internal
and the dynamic copies. This is a simple but common mistake, and in line with
the expectations of the Technolution engineers. The internal copy would then
change midway through a processing loop iteration whenever the dynamic copy
would receive an update.

As a verification exercise, we decided to annotate the data manager module in
order to demonstrate how we could have avoided this mistake by using VerCors.
Actually, we simplified the module for the sake of focusing on the interesting
aspects, and to avoid incompatibilities with our current support of the Java
language. We further discuss this in Sect. 5. As we expected, it turned out to
be straightforward to rule out this mistake. List. 2 shows a simplification of
the actual aliasing bug and the annotations we used. Lines 9 and 10 are the
preconditions specifying that we need permissions to write on internal and its
field value while we need to be able to read dynamic and its field value. Our
postconditions, at lines 11 and 12, specify that these permissions should also be
returned to the caller. We specify permissions to each of them separately, using
the separation conjunction (**), since they should correspond to two different
data structures.

At line 16, dynamic is assigned to internal. Therefore, internal.value
and dynamic.value represent the same memory location. At this point VerCors
complains about our postcondition. List. 3 shows the VerCors output for this
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1 class Data{
2 int value;
3 }
4
5 class Manager{
6 Data internal;
7 Data dynamic;
8
9 //@ requires Perm(internal , write) ** Perm(dynamic , read);

10 //@ requires Perm(internal.value , write) ** Perm(dynamic.value , write);
11 //@ ensures Perm(internal , write) ** Perm(dynamic , read);
12 //@ ensures Perm(internal.value , write) ** Perm(dynamic.value , write);
13 void sync() {
14 internal.value = dynamic.value;
15 ...
16 internal = dynamic;
17 }
18 }

Listing 2. Ruling out aliasing with VerCors

faulty case. The error message “PostConditionFailed:InsufficientPermission” at
line 11 indicates that we are missing permissions to access a memory location.
The brackets and dashes at lines 5 and 7 indicate where the problem lies: we do
not posses the amount of permission we want to ensure in the second half of line
12 of our code. In fact, we already gave up all the permission we had on this
memory location through its alias, in the first half of the same postcondition
line. After VerCors indicates something is wrong, the user must find out why
this is the case and spot the undesired aliasing.

After analysing this bug with the engineers involved in our case study, we
concluded that this aliasing would likely have been the reason of the unexpected
behaviour they had detected. It apparently had not affected the overall behaviour
of the system, but the reason why such a bug did not extend into a serious fault
was not clear. The enormous amount of execution scenarios due to interleaving
and timing aspects also makes it difficult to reproduce the immediate effects of
this bug. The bug should be fixed since we cannot exclude that it may, under
certain circumstances, trigger a major fault in the tunnel control system.

Problem 2: Internal Data Leakage. A second bug was spotted while anno-
tating this module for verification with VerCors. Another method of the module
was leaking a reference to a private field of the class. List. 4 illustrates this case.
This is not harmful on its own, but it is usually considered bad practice. This
may unintentionally allow a user of this class to concurrently access the field
without following its synchronisation regime, which may result in a data race.
Permission annotations in VerCors will not disallow acquiring the reference, but
the annotations will ensure that there is no way to access any fields of this ref-
erence without holding the necessary permissions. This restriction rules out any
data races.
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1 Errors! (1)
2 === Manager.java ===
3 //@ requires Perm(internal.value , write) ** Perm(dynamic.value , write);
4 //@ ensures Perm(internal , write) ** Perm(dynamic , read);
5 [-------------------------
6 //@ ensures Perm(internal.value , write) ** Perm(dynamic.value , read);
7 -------------------------]
8 void sync() {
9 internal.value = dynamic.value;

10 -----------------------------------------
11 PostConditionFailed:InsufficientPermission
12 =========================================
13 === Manager.java ===
14 //@ requires Perm(internal.value , write) ** Perm(dynamic.value , write);
15 //@ ensures Perm(internal , write) ** Perm(dynamic , read);
16 [-------------
17 //@ ensures Perm(internal.value , write) ** Perm(dynamic.value , read);
18 -------------]
19 void sync() {
20 internal.value = dynamic.value;
21 -----------------------------------------
22 caused by
23 =========================================
24 The final verdict is Fail

Listing 3. VerCors output for alias spotting

1 class Manager{
2 private Data internal; // protected_by(this)
3
4 synchronized Data get_internal () {
5 return internal;
6 }
7 }

Listing 4. Reference to private data leakage

3.2 Discussion on the Discovered Bugs

The two bugs we found are typically overlooked by testing and manual inspec-
tion: their effects are triggered by very specific combinations of timings and
interleaving that are too complicated to cover by test cases. A manual inspec-
tion may mistakenly consider these usages to be safe, or overlook them while
searching for functional behaviour bugs instead of memory safety.

The effects of these bugs in a deployed system might be dangerous as it is hard
to claim they do not cause incorrect behaviour. To prove that they do not cause
incorrect behaviour, one would have to consider all possible interleavings of the
processes of the system. The difficulty of this inspection increases exponentially
when the number of concurrent processes and timing factors increases. In other
words, proving that the system is not affected by the bugs by manual inspection
is untractable.

Fortunately, the memory bugs we found are detectable with VerCors, by
annotating methods in a straightforward manner with the permissions they
require/ensure for the fields that they read/modify. An example of this can
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be found in the the pre- and post-conditions of List. 2. These annotations are
made compulsory by the tool, meaning that if they are not there the tool will
terminate with an error. If verification succeeds, then VerCors guarantees that
there is no data race in the code.

4 Results Presentation

In this section we describe our preparation process and presentation of the results
to the bigger team of engineers at Technolution, which included a broader group
than just those involved in the case study. We also describe our impressions of
the final presentation and discuss the most interesting feedback points from the
audience.

4.1 Presentation Design Process

After the case study was analysed by hand and translated to VerCors, we wanted
to present our findings to a bigger audience of engineers at Technolution. How-
ever, we had experienced in former meetings with the Technolution team that we
had not been able to effectively explain what VerCors checks, and how to anno-
tate programs for VerCors. Therefore, we agreed to be careful and first present
the results only to the Technolution team involved in the case study.

It turned out the initial presentation had several shortcomings, which we
discuss here, because we think they provide important general insights.

First, the initial presentation tried to explain several useful verification con-
cepts. For example, it discussed the benefits of fractional permissions, compared
to non-splittable ownership tickets. It also discussed the difference between anno-
tating only for memory safety, and annotating for functional properties as well.
This was done to show how we use VerCors. However, without a formal methods
background, the explanation of these tradeoffs is hard to follow. Additionally,
most of these concepts are not necessary in order to explain the basis of our
approach to verification of memory safety. The solution was to only focus on
this basis, which is: annotating code with permissions.

Second, the examples used in the initial presentation combined orthogonal
concepts to make the examples non-trivial. While engaging for experts, we found
out that this is bad for teaching how an approach works. This is especially
relevant in the context of a presentation, where the audience needs to understand
the slides quickly and explanations need to be short. The solution is to make
the examples more targeted. Even when discussing the fundamental basis of
our verification approach, each example should only highlight the one relevant
aspect of it. For instance, our final presentation contained a code example that
had exactly one error. The code example on the next slide added exactly one
annotation, consisting of only one permission, to resolve the error. Additionally,
examples from the initial presentation were split up such that each sub-example
fit on one screen with a large font. With each example presented in isolation and
using as few lines of code as possible, they were also easier to understand.
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Third, some of the examples in the initial presentation contained concerns
unrelated to verifying concurrency, such as division by zero and rounding. The
solution was to ensure that no concerns appear in the example that are unrelated
to concurrency or memory safety, since we experienced that this would deviate
the attention of the audience to topics we are not interested in discussing.

For the particular case of Technolution, we found out that it was useful to
compare our approach with the Rust language, which was familiar to them [17].
This was actually suggested by the Technolution side during our presentation
preparation meetings. We also took care with how we phrased certain concepts.
Since there might be a difference between what we regard as a permission and
what an engineer regards as a permission, we had to ensure this was not a
problem from the beginning.

Finally, we made sure to clarify that we do not execute the code, but logically
analyse it. For this, we compared it to making a pen and paper proof. This is
needed to step away from the usual runtime verification approach of unit and
integration testing.

To summarise, we learned that a “good” formal methods presentation to a
non-formal audience should have at least the following properties:

– Introduce only key concepts of the formalism in question that are actually
needed to understanding the basic idea of the formalism.

– Examples should present only one new concept at a time. Combining orthog-
onal concepts into one example is not helpful.

– Examples must be short, to ensure they fit on one slide, can be interpreted
quickly by the audience, and also be explained quickly by the presenters.

– Examples must not contain unrelated concerns. The domain of the audience
might introduce concerns the presenters are not aware of. Therefore, experts
in the domain of the audience should be asked beforehand.

– Determine concepts the audience is already familiar with, and draw parallels
between those and the concepts in the presentation. However: take care that
the audience does not take this analogy too far, to avoid misunderstanding.
Avoiding reuse of terms from the audience domain can help.

Additionally, our overall approach consisted of several iterations of refining
the presentation using feedback of the smaller group. We think this helped us to
narrow down what the Technolution engineers would most likely be interested
in, what information would benefit them, and what information could be safely
discarded from the presentation. It also helped us to agree on the proper language
to transfer this knowledge. The drawback of this approach is that it is time
consuming, because the presentation had to be presented twice before the final
presentation. Furthermore, the feedback had to be documented by Technolution,
and also had to be processed by us. Nevertheless, we think that this process will
be quicker next time, due to reusing lessons learned in this case study.
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4.2 Presentation Conclusions

During and after the final presentation, several questions were asked and com-
ments were made, both by the presenters and the audience. We have collected
the most insightful and applicable ones below.

Testing Exceeds Verification in Short term Gains. During the presen-
tation it was mentioned that some teams do not even use testing to its fullest.
We agree with the observation that it is more beneficial for most projects to
first test 80% of their code base, before starting to consider formal verification.
Additionally, there are formal methods to enhance and/or multiply the test-
ing effort. Some examples are generation of test cases, mutation testing and
QuickCheck-like testing [6,13,26].

Annotation & Specification Culture. Speaking from the experience of the
Technolution engineers, it is impossible to ask engineers to write the annotations
needed to use VerCors, or formal verification tools in general. Engineers do not
even write comments that you would like to have in the general case. There-
fore, there is a big gap between the annotations engineers are willing to write,
and what verification tools require. This can be improved upon by the formal
verification tools, by having smarter tools, generating some annotations, having
design shorthands, and setting effective defaults. But, the difference is so big,
that to adopt formal verification tools widely, there also needs to be a culture
shift about commenting and annotating code.

Similarities to Rust. Most engineers have heard of or worked with Rust.
Verification tools can exploit this to lower the barrier for using verification tools,
and make them more easily understandable and adoptable.

Optimise for the Common Case. Related to Rust, an approach that the
engineers thought could be useful to verification tools is the “optimise for the
common case” approach. In this approach, tools optimise for the use case that
is most common in practice. For exceptional or unsafe use cases, alternative
syntaxes and escape hatches are added. Usually, these alternative syntaxes are
also more verbose, making non-standard code also visually distinct. Furthermore,
the general case should be safe and hard to get wrong. If applied successfully, we
expect that the usage of this approach could reduce the amount of annotation
needed for verification, improve the readability and decrease the unwillingness
of the programmer to follow the verification path.

Library Calls. Some engineers expressed concerns about not having contracts
for libraries that a team uses. It is true that if a library has no contracts, someone
needs to write them. However, it is not a problem that the source of the library
is not available due to modular verification (explained in Sect. 2.2). Additionally,
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there are ways to reduce friction caused by these missing contracts. For example,
it is possible to create a central database of library contracts. For cases where
the specification for a library is not in the database, the specification language
could offer syntax for defining contracts for a library separately.

Why not Use Automatic Static Analysis Tools Instead? An engineer
pointed out that he had some experience with various static and automatic
analysis tools. They raised the valid question of why code should be annotated for
VerCors, when there are tools that can spot memory bugs without annotations.
Some examples of such tools are Klocwork [14], FindBugs [9], Coverity [8] and
SonarQube [24]. Our answer to this question is that these kind of static analysis
tools are not verification tools. Instead, they do a “best effort” analysis to find
patterns that may relate to bugs. This means such tools are not exhaustive, and
can report false positives and warnings which have to be manually inspected.
Verification tools, in contrast, give strong formal guarantees on the validity of the
queried property over the analysed system. In other words, given a specification
that faithfully models the desired behaviour, false positives are rare.

Additionally, code analysis tools often can be used in tandem. Therefore,
we think it can be beneficial for teams to use tools with different purposes at
different stages of development, or even simultaneously. This way the quality of
the final product can be maximised.

5 Future Research

Future research for the VerCors team will go in several directions.
One direction of research is to reduce the number of annotations required

before VerCors can be used. Currently, if there are no annotations in the code,
VerCors cannot make any assumptions about the code. However, for industrial
code, simple assumptions are often correct. For example, two fields on one object
usually do not contain the same reference. We expect that it will cost less effort
to annotate for the exceptions of the previous rule, than to annotate wherever it
applies. Additionally, research is already being done to see if some of the required
annotations can be generated instead.

Another direction of research is to improve the support of VerCors for Java
features such as inheritance and generics. Currently a manual translation to a
subset of Java is necessary to verify industrial Java code with VerCors, however
efforts are being made to improve the support [20,23].

Finally, we think future research of the formal methods community as a
whole should be about designing simpler specification languages which are closer
to the concepts and models of software development teams. We found that the
semantics of our specification terminology is distant from the intuition of the
engineers. The understandability of specification languages is a common problem
in the formal verification community. For example, consider Linear or Branching
time logics [15], µ-calculus [5] and other algebras commonly used to specify
designs in model checking. The learning curve of these languages is too steep
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and they become impractical for the daily use of a software engineer. Therefore
the next step has to be one of effective reduction: reducing the expressive power
of these languages down to a level where they can be easily understood, while
retaining enough power to check properties that are of interest to the engineers.
Progress is already being made on this with languages such as SALT [1] and
Sugar [2], and all the work surrounding the Bandera Specification Language
(BSL) [7].

6 Conclusion

We have applied VerCors to a submodule of tunnel control software. This soft-
ware contained a known benign but unexpected runtime behaviour, which lacked
an explanation. Through manual analysis, a bug and a weakness were found,
one of which is a possible explanation of the unexpected runtime behaviour. We
have communicated our results to the Technolution team and the Technolution
engineers through a carefully prepared presentation that underwent multiple
feedback rounds from the Technolution team. This allowed us to focus on the
information that is most useful to the engineers, and leave out the information
that is not directly necessary.

The results of this presentation are suggestions and insights from the engi-
neers of Technolution. For example, it was suggested that there are similari-
ties between Rust and our annotations which VerCors can exploit. It was also
suggested that there should be support for easily modelling contracts of soft-
ware libraries. Another observation we have made is that there is a large gap
between the annotations that must be written to apply VerCors, and the maxi-
mum amount of annotations engineers are typically willing to write. There was
also an observation from an engineer that, in the short term, proper testing
practices yield more benefits than formal verification does in the short term.

Finally, we have discussed future directions for our work, such as implement-
ing assumptions about the typical structure of industrial Java code in VerCors,
as well as adding more extensive support for the Java language in VerCors.

Acknowledgements. We thank Technolution for the opportunity to analyse their
code, their guidance and support.
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