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Abstract

An evolutionary equilibrium is DSC-stable if it is (a) Dynamically

stable, i.e., if the system at equilibrium is slightly disturbed, it re-

turns to it, (b) Structurally stable, i.e., preserves defining properties

for small perturbations of the underlying structure of the system, (c)

Conceptually stable, i.e., equivalent to at least one other evolutionary

equilibrium (concept), for a non-singleton class of dynamics.

Attractiveness is a minor refinement of the defining properties of

certain evolutionary equilibria. We show that attractive evolution-

arily stable strategies, attractive evolutionarily stable equilibria and

attractive truly evolutionarily stable states are DSC-stable for specific

(‘dense’) classes of dynamics, and that each strict saturated (Nash)

equilibrium is DSC-stable for a vast class of evolutionary dynamics.

So, generically neither the exact specification of the dynamic sys-

tem, nor the equilibrium concept matter for qualitative conclusions

about the system’s behavior nearby.

Key words: attractive evolutionary equilibria; evolutionary dynam-

ics; dynamic, structural & conceptual stability.

JEL-Codes: C62; C72; C73.

1 Introduction

The evolutionarily stable strategy (or evolutionarily stable state, ESS) of

Maynard Smith & Price [1973], probably the best-known concept from evo-

lutionary game theory, was introduced almost 50 years ago. Although meant

for and originally applied to a strictly biological framework, its appeal has

lead to applications of evolutionary game theory to various topics beyond

mathematical biology such as social dilemmas, the evolution of language,
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mating behavior of animals, computer science, engineering and control the-

ory (see also e.g., Sigmund [2011], Preface).

Game theory was in use in biology at the time but it is fair to say

that biologists drew inspiration from game theory, and developments lagged

somewhat behind those in game theory. Lewontin [1961] played an impor-

tant role in making biologists aware of game theory and of the concepts of

(playing the field) strategies and optimality. The paper mentions Von Neu-

mann & Morgenstern [1944] and Luce & Raiffa [1957]. The latter however,

presumably in a desire to pay tribute to the then recently deceased John Von

Neumann, attribute a somewhat modest role to the work of Nash. Admit-

tedly, Nash may not have been recognized sufficiently yet, and he was under

attack by Von Neumann and Morgenstern (cf., e.g., Kuhn et al. [1996]).

This may explain why Lewontin [1961] does not cite Nash [1950, 1951].

Maynard Smith and Price1 may not have been aware of the relation-

ship between their ESS and the Nash equilibrium initially (cf., e.g., Kuhn

et al. [1996]). Even Maynard Smith [1982] in an overview of developments

since Maynard Smith & Price [1973], cites Lewontin [1961] and the game-

theoretical classics mentioned there repeatedly, but still fails to mention

Nash. An indication that novel concepts, ideas and approaches tend to dif-

fuse slowly even within a discipline, let alone across disciplinary boundaries.

Maynard Smith & Price [1973] altered the picture quite drastically, as

biology inspired game theory instead of the other way around, and diffusion

of this new concept was uncharacteristically rapid. Though the success of

evolutionary game theory is to be attributed to the invention of the ESS

(cf., e.g., Hofbauer [2000], Sigmund [2011]), Taylor & Jonker [1978] deserve

credit too. The latter added the arguably second-best-known concept from

evolutionary game theory, the replicator dynamics, to the framework and

proved that the (essentially static) ESS is an attractor under these dynamics.

The idea of low-cognition driven adaptive dynamics potentially induc-

ing a refinement of a Nash equilibrium (asymptotically) stable under the

same dynamics, proved too attractive to ignore by various other scientific

disciplines. Ambitions to extend evolutionary theorizing to economics,2 to

finance,3 to game theory and mathematics,4 and to the social sciences,5 as

well as a surge of micro-foundation approaches for aggregate adjustments6

1Maynard Smith & Price [1973] thank RC Lewontin for suggestions at the end.
2See e.g., Dow [1986], Silverberg [1988], Saviotti & Mani [1996], Saviotti [1996], Met-

calfe [1994,1998].
3See e.g., Amir et al. [2005], Amir et al. [2011], Amir et al. [2013], Amir et al. [2021],

Evstigneev et al. [2008,2016], Hens & Schenk-Hoppé [2008,2009].
4See e.g., Hofbauer & Sigmund [1998], Fudenberg & Levine [1998], Sigmund [2011],

Samuelson [1998].
5See e.g., Bicchieri et al. [1997], Skyrms [1996,2004], Axelrod & Hamilton [1981],

Axelrod [1984], Sigmund [2010].
6See e.g., Börgers & Sarin [1990], Schlag [1998,1999], Björnerstedt &Weibull [1996],

Sethi [1998], Ritzberger & Weibull [1995], Sandholm [2010].
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led to a proliferation of dynamics eligible for the formalization of all kinds

of ‘evolutionary’ changes (cf., also Section 3).

Remarkably, Kuhn et al. [1996] reporting from a Nobel Seminar in honor

of John Nash, devote nearly one-third of the contents to applications of the

Nash equilibrium which without any doubt may be labelled evolutionary

game theory, thereby implicitly giving tribute to Maynard Smith & Price

[1973], too. Evolutionary game theory today is a rich, perhaps even indepen-

dent, field with roots in biology and game theory proper, branching out into

multiple scientific disciplines integrating or unifying these to some degree.

The introduction of Chapter 2 of Maynard Smith [1982], starts with the

author taking a rather modest and almost apologetic position:

This chapter aims to make clear the assumptions lying be-

hind evolutionary game theory. I will be surprised if it is fully

successful. When I first wrote on the applications of game theory

to evolution (Maynard Smith & Price, 1973), I was unaware of

many of the assumptions being made and of many of the distinc-

tions between different kinds of games which ought to be drawn.

No doubt many confusions and obscurities remain, but at least

they are fewer than they were.

Several of these obscurities/confusions induced interesting developments,

one, the inception of a static concept lacking dynamics to make sense, has

already been mentioned. Another one is how to cement the ESS in a for-

mula, as several versions have been around for decades (cf., e.g., Vickers &

Cannings [1987], Lessard [1990]). Distinctions are subtle, e.g., most see the

unbeatable strategy of Hamilton [1967] as a stricter concept than the ESS

(e.g., Kojima [2006], Amir et al. [2020]), whereas Maynard Smith & Price

[1973] and Maynard Smith [1982] see it as essentially equivalent. To be clear

about the definition employed, we define the ESS in the ensuing subsection,

before comparing it to related evolutionary equilibrium concepts.

1.1 Technical introduction

The state  ∈ ∆ is an ESS if and only if an open neighborhood  ⊂ ∆

containing  exists such that  ∈ \{} implies

( − ) · ()  0 (1)

Here,   are vectors of shares subgroups have in a population representing

the latter’s composition, or alternatively interpreted, mixed strategies (e.g.,

Weibull [1996], Fudenberg & Levine [1998]); therefore the set of all possible

vectors of population shares (or weights) is∆ = { ∈ R+1
+ |P  = 1} the

-dimensional unit simplex; the relative fitness function  (Joosten [1996])
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attributes for every composition of the population to every subgroup its

fitness relative to the population-share-weighted-average fitness.7

Although the concept is meant to capture ‘if the dynamical system while

being in or sufficiently near an ESS is disturbed by an invasion of a small

group, the system returns to it’, the formalization by Eq. (1) yields a thor-

oughly static concept (Zeeman [1980]) as nothing in it deals with dynamics.

Plausible candidates for the latter may be motivated by an alternative nar-

rative inspired by Darwinian thoughts (Darwin [1859]) namely that ‘fitter

groups grow faster than less fit groups’. For systems with two subgroups, the

ESS narrative is readily satisfied under the Darwinian one, as all dynamics

plausible in view of the latter, coincide. However, for environments with

more subgroups, matters are much more involved as evolutionary dynamics

on a higher dimensional unit simplex may, even for bilinear relative fitness

functions, display rather complex behavior.

Efforts to reconcile the ESS narrative with a mathematical formaliza-

tion (for suitable dynamics in higher dimensions) started early. Taylor &

Jonker [1978] introduced the replicator dynamics, and presented conditions

guaranteeing that the ESS is an asymptotically stable fixed point under the

replicator dynamics. Zeeman [1981] showed that the eigenvalue conditions

of the dynamics closely related to the underlying payoff structure of the

game assumed and subsequently exploited by Taylor & Jonker [1978], are

in fact rather weak. This implies that each generic ESS is asymptotically

stable under the replicator dynamics.

Another way of dealing with the discrepancy between narrative and for-

malization is to find alternatives for (1) such that both concur. In this line of

thought, dynamics should enter the defining part of any useful concept, and

several such concepts have been proposed. For instance, the state  ∈ ∆ is

an evolutionarily stable equilibrium (ESE, Joosten [1996]) if and only if an

open neighborhood  ⊂ ∆ containing  exists such that  ∈ \{} implies

( − ) · ()  0 (2)

where  : ∆ → O+1 = { ∈ R+1| P+1
=1  = 0} represents relevant

evolutionary dynamics, yielding a system of + 1 differential equations




= () for all  ∈ ∆

Here, 

is the continuous-time change of composition of the population;

function  should be connected to  in a manner that makes sense in an

evolutionary framework (see also Section 3). Eq. (2) implies that along any

trajectory starting at 0 ∈ \{} the Euclidean distance to  decreases

7We discuss the advantages of our notation in Section 7. Important here is that  is

motivated in settings considerably more general than the usual bi-matrix games (cf., e.g.,

Hofbauer & Sigmund [1998]).
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monotonically in time (cf., Joosten [1996]). Beyond the optical similarity

between Eqs. (1) and (2), if one defines dynamics based on  extended to

the positive orthant by means of a function homogeneous of degree zero in

, then (1) implies that any trajectory starting at 0 ∈ \{} converges
monotonically to

||0||
|||| 

Joosten [2013] introduced TESS and GESE: the truly evolutionarily

stable state and the generalized evolutionarily stable equilibrium. TESS

places restrictions on dynamics similar to those on the replicator dynamics

near an ESS ;8 GESE relaxes ESE requirements to monotone convergence

towards equilibrium under a function homothetic to some metric.

We are guided here by the following. Can we find conditions such that

several types of evolutionary stability concur for classes of dynamics (in-

stead of isolated instances), and can we regain9 a hold on structural stability?

Let evolutionary equilibrium  ∈ ∆ satisfy () ≤ 0+1 = () let

property  induce consequence  and let us write this as a chain of im-

plications (    ) →  Now, imagine perturbations to (    ) We

distinguish three types of stability related to three types of perturbations of

this tuple: dynamic (to ), structural (to  or ) and conceptual stability

(to  ). For instance, let  be an ESE, i.e.,  is (2), and  be {}≥0 →∞→ 

under  if 0 ∈  . Now, if the system is perturbed slightly to 0 ∈ \{}
consequence  is immediate. This is the usual issue of dynamic stability,

also known as asymptotic stability (cf., e.g., Perko [1991]).

Next, let    as before, yet  be (1), and  the replicator dynamics,

clearly (    )→  is covered by e.g., Taylor & Jonker [1978]. Now, lete be the ray-projection dynamics of Joosten & Roorda [2008, 2011]. Suf-

ficiently near  these can be regarded as a perturbation of  Joosten &

Roorda [2011] prove that  is preserved under e, i.e., the ESS is asymp-
totically stable under e as well. Part of the literature implicitly focusses on
structural stability, too, by finding dynamics for which  holds if  is

(1).

Continuing, we interpret the TESS and the GESE as perturbations of

some  : the one defining TESS is a variant of (1), the one defining GESE

is a modification of (2). We call an evolutionary equilibrium conceptually

stable if in the chain of implications (    )→ , we can substitute 

by a non-trivial alternative e for a non-singleton class of dynamics.

An evolutionary equilibrium is DSC-stable if it is dynamically, struc-

turally and conceptually stable for a class of evolutionary dynamics. As a

8See Fryer [2012], Harper & Fryer [2015] for a related concept: incentive stable state.
9Early analysis on the dynamic stability of ESS yielded structural stability as a by-

product: if all eigen values of the matrix of first derivatives of the dynamics have negative

real parts at equilibrium, asymptotical as well as structural stability are guaranteed (cf.,

Perko [1991] and more specifically Zeeman [1980]). Lyapunov’s second method used by

e.g., Hofbauer et al. [1979], gives answers on dynamic stability (even if eigen value analysis

on stability is inconclusive) at the price of losing grip on structural stability.

5



way of obtaining DSC-stability we came up with the notion of attractiveness,

to be introduced next.

For given evolutionary equilibrium  ∈ ∆ let  =
¡
1 2

¢
with 1 2 :

R+1 → R+1 such that 1() · 2() = 0 To make sense here,  must be

connected to the mathematics defining the evolutionary equilibrium. More

precisely, we connect the first to the present location relative to the equilib-

rium, and the second to a possible direction at the present location. Then, 

is attractive with respect to  iff an   0 and open neighborhood  ⊂ ∆

containing  exist such that

1() · 2()
||1()|| · ||2()||   for all  ∈ \{} (ATT)

Here, for  ∈ R+1 |||| = pP
 

2 Note that taking  =
¡
1 2

¢
=

(− ()) in the inequality above with  = 0 induces the ESS -condition.

We show that attractive evolutionary equilibria satisfy structural sta-

bility, i.e., preserve their defining properties for perturbations of the payoff

system or the dynamics. So, slight miss-specifications of  or  are harmless

for conclusions regarding ‘stability’ of the equilibrium at hand.

Attractive evolutionary equilibria may also satisfy conceptual stabil-

ity, i.e., consequences  in the above may be robust against slight discrepan-

cies in specifications of the equilibrium concept at hand, i.e., perturbations

of  , as well. Each attractive ESS concurs with an attractive ESE un-

der subclasses of the barycentric projection dynamics (Joosten & Roorda

[2008]) and of the -deformed replicator dynamics (Harper [2011]), and with

an attractive TESS under a subclass of the latter dynamics, as well as un-

der a subclass of the dynamics of Sethi [1998]. So, we not only know that

(    ) and (   e ) imply  for certain attractive evolutionary equi-

libria, but we may take any e 6=  from a set of evolutionary dynamics

 3  such that the chain of implications holds for both.

Remarkably, strict saturated (or Nash) equilibria satisfy DSC-stability.

Every such state is an ESS, and both a TESS and an ESE for weakly sign

compatible dynamics, a class containing the vast majority of evolutionary

dynamics proposed in the literature (cf., Joosten [2013]). We show that each

strict saturated equilibrium is structurally stable and an attractive ESS. Fur-

thermore, if an attractive ESS is located sufficiently near the barycenter of

the unit simplex, then similar results can be obtained easily, as the dynamics

used in the proofs throughout this paper (almost) coincide.

The viability of any refinement hinges on the value added of its prop-

erties not necessarily shared by the original, i.e., structural and conceptual

stability. A drawback might be that a refinement is too strict. The three

equilibrium concepts examined however, generically satisfy attractiveness as

well, as   0 may be chosen arbitrarily small in the above.
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2 Evolutionary equilibria and attractiveness

Let  ∈ ∆ denote a vector of shares +1 distinguishable, interacting sub-

group have in a population; recall, ∆ is the -dimensional unit simplex.

The interaction of the subgroups has consequences on their respective abil-

ities to reproduce, and ‘fitness’ may be seen as a measure of this ability to

reproduce depending only on the state of the system, i.e., the composition

of the population 

Let  : ∆ → R+1 be a fitness function, i.e., a continuous function

attributing to every subgroup its fitness at each state  ∈ ∆. Then, the

relative fitness function  : ∆ → R+1 is given by:

() = ()−
P

 () for all  ∈ +1 = {1  + 1}
So, a relative fitness function attributes to each subgroup the difference

between its fitness and the population share weighted average fitness, given

the composition of the population. Note that  satisfies complementarity,

i.e.,  · () = 0 for all  ∈ ∆

Let  : ∆ → O+1 represent the dynamics in a system of  + 1 au-

tonomous differential equations:

·
 = 


= () for all  ∈ ∆ (3)

A trajectory under the dynamics  is a solution, {()}≥0 to (0) = 0 ∈
∆ and Eq. (3) for all  ≥ 0. We ‘merely’ require existence and uniqueness
of trajectories under (3). For the former, continuity of  suffices, for the

latter, Lipschitz continuity of  suffices.

The state  ∈ ∆ is a saturated equilibrium (SAT, Hofbauer & Sig-

mund [1988]) if () ≤ 0+1  is a strict saturated equilibrium (SSAT )

if max 6= ()  () = 0 for some subgroup  (cf., Joosten [1996]); a

fixed point if () = 0+1. A fixed point  is (asymptotically) stable

if, for any neighborhood  ⊂ ∆ of , there exists an open neighborhood

 ⊂  such that any trajectory starting in  stays in  (converges to )

The fixed point  ∈ ∆ is a generalized evolutionarily stable state

(GESS, Joosten [1996]) if and only if there exists an open neighborhood

 ⊂ ∆ of  such that (1) holds.10 The fixed point  ∈ ∆ is a truly

evolutionarily stable state (TESS, Joosten [2013]) if and only if an open

neighborhood  ⊂ ∆(()) of  exists such thatP
∈()

(−)()


−P∈() ()  0 (4)

where () is the carrier of , and ∆(()) is the corresponding face of the

unit simplex. Joosten [2013] shows that (4) guarantees asymptotic stability

(cf., Fryer [2012], Harper & Fryer [2015]).

10GESS allows arbitrary relative fitness functions. If restricted to  () = −( ·)·
1+1 for some square matrix , GESS and ESS coincide, so do Nash equilibrium and SAT.
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Joosten [2013] also generalized the idea behind the ESE. Let  : R+1 ×
R+1 → R be a distance function, and  : R+1 × R+1 → R− ∪ {0}
be differentiable, − homothetic to  and  ( ) = 0 for all possible 

Then,  ∈ ∆ is a generalized evolutionarily stable equilibrium if

and only if a nonempty open neighborhood  ⊆ ∆ containing  exists

such that for all  ∈ \{} it holds that
·
 ( ) =

P




 ()  0 So,

each trajectory sufficiently near a GESE converges such that at least one

homothetic transformation of at least one distance decreases monotonically.

Now, we are ready to present the attractive variants of the concepts

mentioned in the preceding sections. As highlighted in the introduction,

 = (1 2) should be connected to the mathematics defining the original

concepts. Therefore, let  ∈ ∆  ⊂ ∆ be a nonempty open neighborhood

of , and −

≡ [1−1

1
 

+1−+1
+1

]> ∈ R+1 with 0
0
≡ 1, then we say

•  is an attractive (G)ESS iff (ATT ) holds for all  ∈ \{} with
1() = ( − ) 2() = ()

•  is an attractive ESE iff (ATT ) holds for all  ∈ \{} with
1() = ( − ) 2() = ()

•  is an attractive TESS iff (ATT ) holds for all  ∈ \{} with
1() = −


 2() = () for all  ∈ +1

To avoid inessential technicalities, we focus on equilibria either in the interior

of the unit simplex, or at its vertices. Equilibria on faces or facets of the

state space can be easily dealt with, but notational burdens increase (too

much), all kinds of exceptions must be formulated regarding the boundary.

Such technicalities distract from the main issues which are our extended

notion of stability and the minor refinement that gets the job done.

3 Connections among dynamics and equilibria

Technically speaking, the evolution of the composition of the population is

represented by system (3). To make sense in an evolutionary framework 

is assumed to be connected to the relative fitness function  in one of the

many ways proposed in the literature, cf., e.g., Nachbar [1990], Friedman

[1991], Swinkels [1993], Joosten [1996], Ritzberger & Weibull [1995].

For so-called sign-compatible (SC ) dynamics, the change in popula-

tion share of each subgroup with positive population share corresponds in

sign11 with its relative fitness, i.e.,  () =  () for all  ∈ +1;

for weakly sign-compatible (WSC ) dynamics, at least one subgroup with

positive relative fitness grows, i.e.,  () =  ()  0 for at least

11Here,   = +1 iff   0   = −1 iff   0 and   = 0 =  for all  ∈ R
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one  ∈ +1. Weibull [1995] calls this property weak payoff positivity. Dy-

namics are one-sided sign-compatible (OSSC ) if one of two cases hold

everywhere: either (i) all subgroups having above-average fitness grow, 

() = +1 whenever  () = +1 or (ii) all non-extinct subgroups

having below-average fitness shrink, i.e.,  () = −1 whenever 
() = −1 &   0. Friedman [1991] calls dynamics weakly compatible

(WC ) if  () ·  () ≥ 0 (with strict inequality if  is not an equilibrium),
order compatible (OC ) if ()  ()⇐⇒ ()  () for all  ∈ 

∆. Figure 1 visualizes relations between these classes of dynamics.

Let the following functions from the interior of the -dimensional unit

simplex to O+1 be componentwise, i.e., for all  ∈ +1 given by:

 () = ();


−
 () = 




∙
()−


 


()
 




¸
;

 () = [(∗)− ] ;

 () = [()]+ −  ·
P

 [()]+ ;

 () = () −  ·
³P

 
()

´
;


 () = 

h
() −P 

()
i
;

 () = ()− 1
+1

P
 ();

 () = ()−  ·
³P

 ()
´
;

 () = ()− ( − )


 ()

1−(+1) for some  ≤ 0;
 () = 

hP
  [()− ()]+ −

P
  [()− ()]+

i
with  ∈ [0 1] for all  ∈ +1

All functions above are well-defined and continuous, except  for which

∗ ∈ { ∈ +1|() = max∈+1 ()} is to be uniquely determined in or-
der to make the time-derivative of its solutions continuous ‘from the right’;

 () is the -th unit vector in ∆; []+ = max{0 } Superscripts REP,
-REP, BR, BN, L, WL OPD, RPD,  and SE above refer to replicator,

-deformed replicator (cf., Harper [2011]), best-response (Gilboa & Matsui

[1991], Matsui [1992], Rosenmüller [1971]), Brown-von-Neumann- (Brown

& Von Neumann [1950]), logit (Fudenberg & Levine [1998]), weighted logit

(Björnerstedt & Weibull [1996]), orthogonal-projection (Lahkar & Sand-

holm [2008]), ray-projection (Joosten & Roorda [2011]), -barycentric ray-

projection dynamics (Joosten & Roorda [2014]), and Sethi (ibid [1998]),

respectively. Continuity of dynamics guarantees ‘existence of a solution’,

Lipschitz continuity guarantees ‘uniqueness’. All functions above are as-

sumed Lipschitz continuous on the unit simplex.

Quite strikingly, the replicator dynamics are in each of the larger classes

of dynamics mentioned. Replicator and orthogonal-projection dynamics

are -deformed replicator dynamics for  = 1 and  = 0 respectively; -
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barycentric ray-projection dynamics connect ray- ( = 0) and orthogonal-

projection dynamics (→ −∞).

Figure 1: Links between dynamics: classes are ovals indicated in light blue,

and specific ones are indicated as dots, all relevant abbreviations are in the

text. The dark red (resp. blue) curve represents -barycentric projection

(resp. -deformed replicator) dynamics.

Figure 2 treats links between equilibrium concepts under different dy-

namics. (S)SAT, (G)ESE, (G)ESS, TESS, (A)SFP, LP and FP denote the

sets12 of (strictly) saturated equilibria, (generalized) evolutionarily stable

equilibria, (generalized) evolutionarily stable states, truly evolutionary sta-

ble states, (asymptotically) stable fixed points, limit points of at least one

interior trajectory not starting in it, and fixed points respectively. QRE

denotes the set of quantal response equilibria, i.e., limit points of logit dy-

namics (McKelvey & Palfrey [1995]). SSS denotes the set of socially stable

states, i.e., states out of which deterministic best response dynamics do not

leave (Gilboa & Matsui [1991], Matsui [1992]).

4 Structural stability

Our first results pertain to perturbations of  or  in the chain (    )→
 Unless mentioned otherwise,  means {}≥0 →∞→  under  if

0 sufficiently close to equilibrium , so simply standard convergence to

equilibrium. Next, we examine whether equivalences of certain attractive

evolutionary equilibria, i.e., perturbations of  can be shown to hold for

certain classes of dynamics.

To examine the topic of structural stability we use the following notion.

Given 2 : ∆ → R+1  ∈ (0 1) and   0 let (2 ) be the set of

12Using the same letters for a point and a set should not be confusing in context.
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Figure 2: Evolutionary equilibrium or fixed point concepts (in large black

caps) are connected by arrows indicating inclusions: red in general, black

for special classes of dynamics; yellow under extra conditions on the system.

perturbations of 2 given by

(2 ) =

½
 : ∆\{}→ R+1| 2()·()

||2()||·||()|| ≥
q
1− ()2

¾


Obviously, (2 ) = ∪∈(01)(2 ) is always nonempty as it contains 2

The next result links the  above to the  in the definition of an attrac-

tive equilibrium and gives a lower bound for the cosine between 1 and a

continuous perturbation taken from (2 ).

Proposition 1 Let  ∈  ∆ be attractive with respect to  = (1 2)

Then,  = { ∈ ∆| 1()·2()
||1()||·||2()||   and 0  ||−||  } 6= ∅ Moreover,

for  ∈ (0 1)    0 and a continuous perturbation  ∈ (2 ) with () =

0+1 if  ∈  then
1()·()

||1()||·||()||  

µq
1− ()2 −

q
2 − ()2

¶


The closer  is to unity, the more slack can be offered to the perturbations

of the dynamics;  is necessary to specify the part behind the inequality sign.

Corollary 1 For every attractive ESS, ESE and TESS, a set of sufficiently

small continuous perturbations of the payoffs or dynamics exists such that

the equilibrium is attractive under these perturbations, too.

For ESE and TESS, the proposition and its corollary pertain to continuous

perturbations of the function , i.e., the one representing the dynamics,
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in the chain (    ) → , whereas for ESS these results pertain to

continuous perturbations to  , i.e., the relative fitness function in the chain.

5 Conceptual stability

As a starting point regarding the topic of conceptual stability, i.e., perturba-

tions of  in the chain (    )→  we focus on the attractive variants

of the ESS and the ESE. Our natural ally in this endeavor is the OPD

of Lahkar & Sandholm [2008] for which Hofbauer & Sandholm [2009] im-

plicitly show that interior ESS and ESE concur. This can be (informally)

checked by examining Figures 1 & 2. However, we want to establish a class

of dynamics for which said equivalence holds. Next, we reveal potential of

-barycentric ray-projection dynamics  of Section 3 in this respect.

Lemma 2 For given relative fitness function  and -barycentric ray-projec-

tion dynamics  and  ∈  ∆ :

• (−)·()
||−||·||()|| ≥

q
1−2(+1)
(1−(+1))2

(−)·()
||−||·||()|| −

√
+1

1−(+1) ;

• (−)·()
||−||·||()|| ≥

q
1 +

(+1)

(1−(+1))2
−1 h

(−)·()
||−||·||()|| −

√
+1

1−(+1)
i


The right hand sides of both inequalities must be made strictly positive to

show equivalence between attractive ESS and attractive ESE for certain

barycentric projection dynamics. The following hinges on the possibility to

do so for both inequalities at the same time.

Proposition 3 Given relative fitness function  , let  ∈  ∆ Then, 0 ∈
R exists such that for all  ≤ 0 the following statements are equivalent:

•  is an attractive ESE for the -barycentric ray-projection dynamics;

•  is an attractive ESS.

For the next proposition, we focus on the attractive variants of the TESS,

ESE and ESS for which we draw support from -deformed replicator dy-

namics of Harper [2011], as well as from the following lemma’s inequalities.

Lemma 4 For given relative fitness function  , open  ⊂  ∆ with

 ∈  , 0     ≤ 1 0  ∠ ≤ 1 exist such that for all  ∈ \{} :

• 1

|| − || ≤ ||−


|| ≤ 1


|| − ||;

•  ||()|| ≤ || ()|| ≤ ||()||;
• ∠||()|| ≤ ||()|| ≤ ||()||

12



As it is hard to prove conceptual stability for all variants at once, we pair the

TESS and the ESS up for one range of the parameter defining the dynamics

of Harper [2011], and the ESE and the ESS for another.

Proposition 5 For given relative fitness function  ,  ∈  ∆ there exist

a strictly increasing sequence  converging to 1, and a strictly decreasing

sequence e converging to 0, such that the statement ‘ is an attractive ESS’

is equivalent to

•  is an attractive TESS for − with  ∈ ;

•  is an attractive ESE for − with  ∈ e
So, interior attractive ESS, ESE and TESS are conceptually stable in the

sense that they concur for the classes of dynamics specified above. This

means in terms of the chain of implications used before that a specific class

of dynamics  is shown to exist such that (    )→  is equivalent to³
   e´→  for several  ∈  Moreover, each  ∈  mentioned in the

respective statements must have a set of perturbations of either the relative

fitness function, or the dynamics at hand such that the chains (    )→
 and

³
   e´→  remain valid for the respective equilibria.

Now, we focus on conceptual stability for an attractive ESS and an

attractive ESE for a subclass of the dynamics of Sethi [1998].

Lemma 6 (Sethi [1998], Proposition 3) For arbitrary relative fitness func-

tions and for  = (1  1),  =  .

This intermediate result is a stepping stone to the following.

Proposition 7 For given relative fitness function  and  ∈  ∆ ∗  1
exists such that the following two statements are equivalent:

•  is an attractive ESS;

•  is an attractive TESS for  for all  satisfying  ≥ ∗ for all
 ∈ +1

6 Special states and DSC stability

Each strict saturated equilibrium is asymptotically stable for weakly sign

compatible dynamics. If we regard two different dynamics in this class

as mutual perturbations, it follows immediately that such an equilibrium

is also structurally stable with respect to perturbations of  in the chain

(    ) → . For the same class of dynamics each strict saturated

equilibrium is a GESE and a TESS, and for a smaller class of dynamics it is

13



also an ESE, cf., Figure 2, hence it is also conceptually stable with respect

to perturbations of  in the same chain. Our next result covers further

stability properties of strict saturated equilibria.

Proposition 8 Every strict saturated equilibrium is structurally stable with

respect to perturbations of the relative fitness function. Furthermore, each

strict saturated equilibrium is an attractive evolutionarily stable strategy.

Another special state is the barycenter of the unit simplex, i.e.,  =
1

+1
1+1. The following lemma is a stepping stone to the ensuing result.

Lemma 9 Let  = 1
+1

1+1, then for relative fitness function  ,  ∈ 

∆\{}: if () 6= 0+1 then for all  ∈ [0 1] and for all  ≤ 0 :h
(−)·()

||−||·||()||
i
=

=
h

(−)·()
||−||·||()||

i
=

=
h

(−)·− ()
||−||·||− ()||

i
=

=∙
−

·− ()

||(−)||·||− ()||

¸
=

=

∙
−

·()

|| −

||·||()||

¸
=



If () = 0+1 the equality signs hold by 0
0
≡ 1 At  the barycentric ray-

projection dynamics collapse into the orthogonal projection dynamics. The

deformed replicator dynamics collapse into dynamics that differ from the

relative fitness function only in speed. So, the next result follows easily.

Proposition 10 For all  ∈ [0 1] and all  ≤ 0, the following statements
are equivalent for  =  (or  sufficiently close to the barycenter ):

•  is an attractive ESS;

•  is an attractive ESE and an attractive TESS for the -deformed

replicator dynamics;

•  is an attractive ESE and an attractive TESS for the -barycentric

ray-projection dynamics.

7 Discussions

We use the relative fitness function  (cf., Joosten [1996], Sandholm [2005]),

rather than the fitness function  . Although for all   ∈ ∆ we have

( − ) · () = ( − ) ·  ()

an analogy regarding attractive ESS with respect to  can not be con-

structed for an interior saturated equilibrium  as

( − ) ·  ()
|| − || · || ()||

→→ 0

14



Clearly,  () = ·1+1 is well defined for  6= 0 and perpendicular to ∆ and

therefore perpendicular to (−) which implies the arrow in the statement.
An attractive version of the generalized evolutionarily stable equilibrium

(cf., Section 3), GESE, is easily formulated abstractly as follows

 ( ) · ()
|| ( )|| · ||()||  

where (1() 2()) = ( ( ) ())  ( ) =
h
 ()
1

 
 ()
+1

i


So, the ‘normalized’ time-derivative of the distance-related Lyapunov func-

tion  is strictly bounded away from zero, too. However, given the gener-

ality of  connections of an attractive GESE with the attractive equilibria

treated in the previous section must unfortunately be shown case-by-case.

7.1 System restrictions inducing attractive equilibria

Hofbauer & Sandholm [2009] introduce strict monotonicity formulated in

terms of our relative fitness function  as

( − ) · (()− ())  0 for all   ∈ ∆  6=  (5)

Monotonicity has a weak inequality sign. Hofbauer & Sandholm [2009] call

games for which (5) holds ‘strictly stable games’. Strict monotonicity implies

that each interior saturated equilibrium is unique and an ESS, since (5)

implies (1) in that case. Under strict monotonicity of  an interior ESS

seems to satisfy the criterion of an unbeatable strategy (cf., Hamilton [1967],

Kojima [2006]). Strict monotonicity applied to the dynamics  excluding

the boundary of ∆, yields the defining condition for an interior ESE as

(5) implies (2) in that case. Monotonicity of  or  implies that the set of

equilibria is connected and convex.

Strict monotonicity of  is sufficient for convergence of various adaptive

processes to equilibrium and if the latter is interior, it is unique (cf., e.g.,

Joosten [2006], Harker & Pang [1990], Nikaidô [1959], Nikaidô & Uzawa

[1960]). So, strict monotonicity ( e given by (5)) implies that an interior

equilibrium () is an asymptotically stable fixed point (consequence ) of a

class of evolutionary dynamics () as well, i.e.,
³
   e´→  for several

 ∈  In other words, strict monotonicity implies structural stability of

an interior equilibrium for a large class of plausible evolutionary dynamics.

The yellow arrow in Figure 2 is motivated by strict monotonicity applied to

the dynamics indicated (cf., e.g., Hofbauer & Sandholm [2009]).

Attractive monotonicity of  or  may be used similarly to induce

the corresponding attractive interior evolutionary equilibrium (  0), i.e.,

( − ) · (()− ())  − · || − || · ||()− ()|| or
( − ) · (()− ())  − · || − || · ||()− ()||
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for all   ∈  ⊆  ∆  6=  Under attractive monotonicity of  or 

the statement () = () = 0+1 for  ∈  implies for all  ∈ \{} :

− (−)·(()−())
||−||·||()−()|| = −

−(−)·()
||−||·||()|| =

(−)·()
||−||·||()||  

− (−)·(()−())
||−||·||()−()|| = −

−(−)·()
||−||·||()|| =

(−)·()
||−||·||()||  

Attractive monotonicity is clearly more stringent than strict monotonicity.

If the system satisfies attractive monotonicity, then DSC-stability of the

three evolutionary equilibria examined in this paper, is immanent.

7.2 Recruiting dynamics for conceptual stability

One-parameter variants of dynamics presented in Section 3 are used else-

where to form families of dynamics, among which these prominent ones:



 () = ·() −  ·

³P
 

·()
´
;



 () = 

h
·() −P 

·()
i
;



 () = [()]


+ −  ·

P
 [()]


+ 

The first and third yield dynamics similar to the best response dynamics 

(sufficiently far away from any saturated equilibrium) for   →∞ cf., e.g.,

Hofbauer [2000]. Note that for  → 0, the dynamics from the second family

are quite similar to the replicator dynamics, i.e., lim→0  → 

and dynamics taken from the first are quite similar to the ray-projection

dynamics, i.e., lim→0  → . However, for the desired proofs of

conceptual stability the third dynamics have very limited use, we suspect.

Joosten & Roorda [2008] introduced generalized projection dynamics,

and, as shown, many dynamics in the literature are of the generalized ray-

projection type with close relatives in a generalized orthogonal-projection

variant. This gives rise to a series of two-parameter families for which further

conceptual stability results may be obtained



 () = ·() − (−)

1−(+1)
P

 
·();



 () = 

·() − (−)
1−(+1)

P
 

·();



 () = 


 

·() − 

³P
 




·()
´


Here,  ≥ 0 and as before  ∈ [0 1]  ≤ 0 For  → 0,  → 

and  =   Recall 0 =  and −∞ =  Observe that

lim↓0 lim→∞  =  So, BR-dynamics may be approximated for

appropriate limits ( → ∞  → 0) and the logit ( = 0  = 1) and

weighted logit ( = 1  = 1) dynamics may be captured as special cases.
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8 Conclusion

An evolutionary equilibrium is DSC-stable if it is (a) Dynamically stable,

i.e., if the system at equilibrium is slightly disturbed, it returns to it, (b)

Structurally stable, i.e., preserves defining properties for small perturbations

of the underlying structure of the system, i.e., the payoffs or dynamics (c)

Conceptually stable, i.e., equivalent to at least one other attractive evolu-

tionary equilibrium (concept), for a non-singleton class of dynamics.

We presented attractiveness, a refinement criterion for equilibria in

evolutionary game theory meant to be applied to the mathematics defin-

ing them. One interpretation of this criterion is geometric and intrinsically

linked to Lyapunov’s second method, the dominant mode for proving as-

ymptotic stability of evolutionary equilibria nowadays. In case namely, that

a pair of appropriately chosen vectors with a positive inner product for a

neighborhood of the equilibrium exists linked to its defining properties, we

bound the cosine between these vectors strictly away from zero.

We proved structural stability of attractive evolutionary equilibria.

We proved conceptual stability under attractiveness for the evolutionarily

stable state (ESS, Maynard Smith & Price [1973]), the evolutionarily stable

equilibrium (ESE, Joosten [1996]), and the truly evolutionarily stable state

(TESS, Joosten [2013]). We showed that interior attractive ESE and ESS

concur for subclasses of two distinct one-parameter families of evolutionary

dynamics, the barycentric projection dynamics (Joosten & Roorda [2008])

and -deformed replicator dynamics (Harper [2011]). Also, equivalence was

shown of interior attractive ESS and TESS for a subclass of the -deformed

replicator dynamics and the dynamics of Sethi [1998]. This means that the

attractive variants of these three concepts are dynamically, structurally and

conceptually stable for a non-singleton class of dynamics.

Our findings add a layer of robustness to results as neither the complete

specification of the dynamics and payoff structure, nor the equilibrium con-

cept used, matter for qualitative conclusions about the dynamics nearby.

After all, the system or the underlying payoff structure might be known

imprecisely, or how the latter translates into fitness or utilities, or how the

latter guide micro-adjustments of agents. Heterogeneity of learning rules is

likely in large populations (cf., Hommes [2006], Kirman [2006]), and mixes of

rules may induce complicated convergence behavior (e.g., Golman [2011]).

Furthermore, aggregate dynamics remain deterministic approximations of

very complex underlying stochastic processes (cf., e.g., Sandholm [2010]).

Our results indicate that DSC-stability offers the kind of resilience to cope

with various kinds of ambiguities inevitable in the framework of evolutionary

game theory. Attractive ESS, ESE and TESS fit the bill for DSC-stability

for certain classes of evolutionary dynamics.

Maynard Smith & Price [1973] were almost ‘on the money’ as generic

ESS are attractive, hence DSC-stable, i.e., almost all ESS are DSC-stable.
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We see a parallel here to the difference between Taylor & Jonker [1978] and

Zeeman [1981] on the dynamical stability of ESS, i.e., the latter points out

that generically the matrix of first derivatives of the replicator dynamics

of an ESS have eigen values with strictly negative real parts stated as a

condition in the first. Moreover, interior attractive ESS share desirable

stability criteria met only by strict saturated (Nash) equilibria.

Strict saturated (i.e., Nash) equilibria are attractive ESS, and they are

also attractive ESE, as well as attractive TESS for all weakly sign compatible

dynamics, a class much larger than the classes of dynamics for which interior

saturated equilibria are DSC stable. For saturated equilibria ‘close enough’

to the barycenter of the unit simplex, the sets of dynamics used in the

proofs of DSC-stability for interior evolutionary equilibria examined here,

make the same angle with the vector pointing to equilibrium, i.e., all fulfill

attractiveness simultaneously, or not. So, conceptual stability is immediate

for a larger set of dynamics than for interior equilibria located farther away.

We took single perturbations to the tuple (    ) leading to con-

sequences . A higher notion of stability involves robustness to multi-

ple perturbations. To prove conceptual stability of certain equilibria, we

focussed on replicator and orthogonal-projection dynamics, where distinct

one-parameter families of evolutionary dynamics meet. This can be extended

to -parameter ( ≥ 2) families of dynamics meeting at these dynamics.

9 Appendix

Proposition 1 Let  ∈  ∆ be attractive for  = (1 2) and let 

be as stipulated by (ATT ), take e() ∈ (2 ),  ∈ (0 1) We use the
trigonometric identity cos( + ) = cos · cos  − sin · sin  as follows:
 ≡ sup∈\{} () and  ≡ sup∈\{} () where () is the angle

between 1() and 2() and () is the angle between 2() and e()
Then,  is also attractive for (1 e) since cos  ≥  cos  ≥

q
1− ()2,

and inf∈\{}
1()·()

||1()||·||()|| ≥ cos( + ) ≥ 

q
1− ()2 − √1− 2 =



µq
1− ()2 −

q
2 − ()2

¶
 0

Lemma 2 For  =  · 1+1 and () = (1− (+ 1))−1P ()

(−)·()
||−||·||()|| =

(−)·()−(−)·()·(−)+(−)·()·(−)
||−||·||()||

=
(−)·()−(−)·()·(−)

||−||·||()|| + ()
(−)·(−)
||−||·||()||

=
||()||
||()||

(−)·()
||−||·||()|| +

()

||()||
(−)·
||−||

=
||()||
||()||

(−)·()
||−||·||()|| +


 ()

||()||
(−)·

||−||·||||
||||

1−(+1) 

Observe furthermore that


 ()

||()|| ≤
||()||1
||()|| ≤

√
+1||()||
||()|| =

√
+ 1 So,
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−
√
+1

1−(+1) ≤


 ()

||()||
(−)·

||−||·||||
||||

1−(+1) ≤
√
+1

1−(+1) 

Now, several calculations yield

||()||2 = (() + ()(− )) · (() + ()(− )) =

||()||2 + 2(1− (+ 1))()2 + ()2||− ||2 =
||()||2 + ()2

¡||||2 − 2(+ 1)
¢


This in turn leads to the following series of implications

1− 2(+ 1)
()2

||()||2 ≤
||()||2
||()||2 ≤ 1 +

()2

||()||2 =⇒
1− 2(+ 1)

(+1)

(1−(+1))2 ≤
||()||2
||()||2 ≤ 1 +

(+1)

(1−(+1))2 =⇒
1−2(+1)
(1−(+1))2 ≤

||()||2
||()||2 ≤ 1 +

(+1)

(1−(+1))2 

Here, the first implication follows from (5). So, this yields the first inequality

of the statement of the lemma as:

(−)·()
||−||·||()|| ≥

||()||
||()||

(−)·()
||−||·||()|| −

√
+1

1−(+1)
≥
q

1−2(+1)
(1−(+1))2

(−)·()
||−||·||()|| −

√
+1

1−(+1) 

Moreover, the second inequality of the lemma is proven by

||()||
||()||

(−)·()
||−||·||()|| ≥

(−)·()
||−||·||()|| −

√
+1

1−(+1) =⇒
(−)·()

||−||·||()|| ≥
q
1 +

(+1)

(1−(+1))2
−1 ³

(−)·()
||−||·||()|| −

√
+1

1−(+1)
´


Proposition 3 Let  ∈  ∆ To prove the statement of the proposition

we show equivalence of the following two inequalities

(−)·()
||−||·||()||   and

(−)·()
||−||·||()||   

for all   0 ≡ min{− 1
22


−
q

1
(+1)2



}
Let  be an attractive ESE, i.e., for all  6=  sufficiently near  :

(−)·()
||−||·||()||  

Then by Lemma 2

(−)·()
||−||·||()|| ≥

||()||
||()||  −

√
+1

1−(+1) ≥
q

1−2(+1)
(1−(+1))2  −

√
+1

1−(+1) 

Hence, if
p
1− 2(+ 1) −

√
+ 1  0  then  must be an ESS as

well, i.e., we havep
1− 2(+ 1) 

√
+ 1 =⇒ 1− 2(+ 1)  1

2


(+ 1) =⇒
  − 1

22


+ 1
2(+1)



19



If   0, the right-hand inequality above is satisfied.

Now, let  be an attractive ESS, , i.e., for all  6=  sufficiently near  :

(−)·()
||−||·||()||   

Then Lemma 2 implies

(−)·()
||−||·||()|| ≥

q
1 +

(+1)

(1−(+1))2
−1 h

 −
√
+1

1−(+1)
i


As the term before the brackets is strictly positive for  ≤ 0, for  to be an
attractive ESE for these dynamics, it suffices that

1− (+ 1) 
√
+ 1 1


=⇒

  −
q

1
+1

1


+ 1
+1

= −
q

1
(+1)2



+ 1
(+1)



If  ≤ 0 the left inequality above is satisfied.

Lemma 4 Let  ≡ inf∈ min  and  0 ≡ sup∈ max  Then,
rewriting the first two inequalities yields for all   ∈  :rP+1

=1

³
−)
 0

´2
≤
rP+1

=1

³
−)


´2
≤
rP+1

=1

³
−)
0

´2
qP+1

=1 
2
 0()

2 ≤
qP+1

=1 
2
 ()

2 ≤
qP+1

=1 
2
 0()

2

To prove the validity of the statement for the third inequality: as  · () =
0 = 1+1 · () we have () ∈ 1 = { ∈ R+1|  ·  = 0} and
() ∈ 2 = { ∈ R+1|  · 1+1 = 0} Let () = ∠(() ())
denote the angle between () and (). It is well known that for

 ∈  ∆, () is the orthogonal projection of () on 2 (cf., e.g.,

Joosten & Roorda [2011]). So, ||()|| = cos () · ||()|| For what
follows, we are interested in finding more restrictive lower bound for cos ()

than 0 Let

b() = max{∠(1 2)| 1 ∈ 1 2 = 1 − 1
+1

¡
1 · 1+1

¢ · 1+1 ∈ 2}

denote the largest angle between any vector in 1 and its orthogonal pro-

jection on the hyperplane 2 By definition this is the angle between hy-

perplanes 1 and 2, which in turn equals the angle between their normal

vectors  and 1+1 (cf., e.g., Golub & Van Loan [1996]), hence

cosb() = ·1+1
||||·||1+1|| =

1
||||·||1+1|| ≤ cos () ≤ 1

So, aiming to find a global upper and lower bound by varying  over all

possible elements of the unit simplex we obtain for an arbitrary e ∈ ∆

1√
+1
≤ cosb(e) ≤ 1
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where the lower (upper) bound is reached at any of the vertices (at the

barycenter) of ∆. So, 1√
+1
≤ cosb() ≤ cos () ≤ 1 Let ∠ ≡ 1√

+1


then for  ∈ ∆

∠||()|| ≤ ||()|| ≤ ||()||
These upper and lower bounds clearly also hold for  ∈  0 ⊂  ∆

Proposition 5 Observe that for an interior state  and  sufficiently nearby

lim↑1 −

· − () = −


·  () = ( − ) · ()

lim↑1 ||− ()||2 = || ()||2 =P 
2
()

2

As ( ) ≡ − () is continuous in ,   0 the above and Lemma
4 (noting 0− = ) imply that a monotonically increasing sequence

 = {}∞=1 converging to 1 and numbers 0     1 exist such that

1

( − ) · () ≥ −


· − () ≥  ( − ) · () and

0

||()|| ≥ ||− ()|| ≥  · 0 ||()|| for all  ∈  0

Let  ∈  ∆ be an attractive  i.e., for some open neighborhood

 3  :  ∈ \{} implies
(−)·()

||−||·||()||    0

Let  0 3  be a closed subset of  and let  0 ⊂  ∆. Then, for  ∈ 

and for all  ∈  0\{} :
−

·− ()

|| −

||·||− ()|| ≥ 

(−)·()
|| −


||·||− ()||

= 
(−)·()

||−||·||()||
||−||·||()||

|| −

||·||− ()||

  ·  · ||−|||| −

|| ·

||()||
||− ()||

≥  ·  · 0 · 
0

 0

Hence,  is an attractive 

Conversely, let  ∈  ∆ be an interior attractive  for − with
 ∈  i.e.,

−

·− ()

|| −

||·||− ()||    0

for some open neighborhood  3  then for all  ∈  0 3  being a closed

subset of  in the interior of the state space,

(−)·()
||−||·||()|| ≥

· −

·− ()

||−||·||()||
=  ·

−

·− ()

|| −

||·||− ()||

|| −

||·||− ()||
||−||·||()||

  ·  · ||
−

||

||−|| ·
||− ()||

||()||
≥  ·  · 1

0
·  · 0  0
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So,  is an attractive  This ends the proof of the part connecting ESS

and TESS.

Along the same line, to prove the part connecting attractive ESS and ESE,

note that 0− =  and

( − ) · 0− () =
P

 ( − )
0


∙
()−


 

0
()
 

0


¸
=

P
 ( − )

h
()− 1

+1

P
 ()

i
=

P
 ( − ) () = ( − ) · ()

Let  ∈  ∆ be an attractive  i.e., for some open neighborhood

 3  :
(−)·()

||−||·||()||    0

By continuity of ( ) = − () a monotonically decreasing sequencee = {e}∞=1 converging to 0 and numbers 0     1 exist such that for

all  ∈ 

1

( − ) · () ≥ ( − ) · − () ≥ ( − ) · ()

1

||()|| ≥ ||− ()|| ≥ ||()||

Then, if e ∈ e for all  ∈ \{}, we obtain in view of Lemma 4:
(−)·− ()

||−||·||− ()|| ≥ (−)·()
||−||·||− ()||

≥  ·  ||()||
||− ()||

≥  ·  ||()||
||0− ()|| ·

||()||
||− ()||

≥  ·  ·   0

So,  is an attractive , too.

Conversely, let  ∈  ∆ be an attractive  for dynamics − ()
with e ∈ e then an open set  3   ⊆ ∆ exists such that for all

 ∈ \{}
(−)·− ()

||−||·||− ()||    0

then in view of Lemma 4

(−)·()
||−||·||()|| ≥

(−)·− ()
||−||·||()|| ≥  ·  ||

− ()||
||()||

≥  ·  ||
()||
||()||

||− ()||
||()|| ≥  ·  ·  ·∠  0

So,  is an attractive , too.

Proposition 7 For given relative fitness function  ,  = (1  +1) ∈
 ≡ [0 1]+1\{0+1} the Sethi dynamics for all  ∈ +1 are given by



 () = 

³P
  [()− ()]+ −

P
  [()− ()]+

´
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Let ( ) ≡ () then clearly this function is continuous on the

domain  ×∆ Define for  ⊆ ∆ min ∈ [0 1]
 = inf{ ∈ [1∞)| 1


|| ()|| ≤ ||( )|| ≤ || ()||

 ∈   ∈ }
min = sup { |  ∈  and min∈+1  = min} 

Let ( ) = (1( )  +1( ))
> be for each  ∈ +1 be given by

( ) = 
P+1

=1 (1− ) ·  [()− ()]+−

P+1

=1 (1− ) ·  [()− ()]+ 

Then, by Lemma 6, for all  ∈ +1



 () =  ()− ( ) = ()− ( )

Clearly, −

= 0+1 and if () = 0+1, then ( ) = 0+1. Both func-

tions are continuous, and therefore for arbitrary  0  0  0 an open

neighborhood  0 of an interior saturated equilibrium  exists such that for

all  ∈  0
max∈+1 |()− ()| ≤ 0 ||()||
max∈+1 |− · | ≤ 1

+1
 0|| − ||

Therefore, for all  ∈  0

−(1− min) 0 ||()|| ≤ ( ) ≤ (1− min) 0 ||()||
where min = min (1  +1). So, we have

|()− 

 ()| = |( )| ≤ (1− min) 0 ||()||

Note −

·  () = (− ) · ¡b−1b¢ · () = (− ) · () which leads to

| −

·()|

||()||·||−|| =
| −


·()−(−)·(−1)·()|

||−||·||()||
=

| −

·()−(−)·()|
||−||·||()||

≤ (1−min)0 ||()||·( − ·1+1)
||−||·||()||

≤ (1−min)0 ·0||()||·||−||
||−||·||()||

= (1− min) 0 · 0

If  is an interior attractive ESS,   0 and open neighborhood  exist

such that for all  ∈ \{} :
(−)·()

||−||·||()||   

We choose the numbers  0  0 and the associated neighborhood  0

of  such that

(1− min) 0 · 0 ≤ 1
4
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Next, we obtain

−


()

|| −

||·||()|| =

||−||·||()||
|| −


||·||()||

(−)·()− −

·()

||−||·||()||

=
||−||·||()||

|| −

||·||()||
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The first inequality is implied by the inequalities immediately above, the

second one requires Lemma 4 and the inequalities derived at the beginning

of this proof, the third only requires Lemma 4. Then, ∗ exists such that
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Hence,  is an attractive TESS for the dynamics of Sethi [1998].

Similarly, if  is an interior attractive TESS,   0 and open neigh-

borhood  exist such that for all  ∈ \{} :
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Then ∗∗ exists such that for all  ∈  00\{} and  with min ≥ ∗∗ :
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Hence,  is an attractive ESS for the dynamics of Sethi [1998].

Proposition 8 Let  be a strict saturated equilibrium, then  =  for some

 ∈ {1  + 1}. Let () = 0  − ≡ max 6= () ≥ − ≡ min ()
Let  = 

2
and consider a perturbation eof  such thatmax∈∆ max |()−e()|   Since  =  it follows immediately that e() = 0 furthermore

max 6= e()  − 
3
. This implies that  is also a strict saturated equilibrium

with respect to e This proves the first part.
Let  = { ∈ ∆| − 

2
 max 6= () and −32  min ()} then

clearly  ∈  By continuity of  there exist   0 and an open neighborhood

 0 of  satisfying that  0 = { ∈ ∆| 0  || − ||  } ∩  6= ∅ Observe
that  · () = 0 for all  ∈ ∆ hence for all  ∈  0\{} :
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This implies that  is an attractive evolutionarily stable strategy.

Lemma 9 Let () =
P+1

=1 (), since  · () ≡ 0 for all  ∈ ∆ we have

() = (+ 1) ( · ()) = 0
Therefore, we obtain for all  ≤ 0,  ∈ +1,
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Additionally, this implies∙
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Proposition 10 Let  =  be an attractive ESS, then an open neighborhood

 containing  exists such that

(−)·()
||−||·||()||    0

for all  ∈ \{}. Then, by the preceding lemma and continuity in  some
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||·||− ()|| are greater than  Moreover, the difference between any

pair of these four expressions taken in absolute values is smaller than  This

means that  is an attractive ESE and TESS for all -deformed replicator

dynamics and -barycentric projection dynamics. The statement between

brackets follows furthermore by realizing that continuity in  guarantees

that the above must also hold for all  6=  with || − || sufficiently small,
since for all  ∈ 1\{} such that () 6= 0+1 :¯̄̄
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Since, lim→
||−||
||−|| = 1 and lim→ || − || = 0 we have

(−)·()
||−||·||()|| ≥ 

for any  sufficiently close to the barycenter and all  sufficiently nearby. As

the same can be done by taking any other defining property of an attractive

evolutionary equilibrium among the two remaining candidates and the two

classes of dynamics, we may consider the proof complete.
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