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Abstract

Scene graph construction / visual relationship detection
from an image aims to give a precise structural description
of the objects (nodes) and their relationships (edges). The
mutual promotion of object detection and relationship de-
tection is important for enhancing their individual perfor-
mance. In this work, we propose a new framework, called
semantics guided graph relation neural network (SGRN),
for effective visual relationship detection. First, to boost
the object detection accuracy, we introduce a source-target
class cognoscitive transformation that transforms the fea-
tures of the co-occurent objects to the target object do-
main to refine the visual features. Similarly, source-target
cognoscitive transformations are used to refine features of
objects from features of relations, and vice versa. Second, to
boost the relation detection accuracy, besides the visual fea-
tures of the paired objects, we embed the class probability
of the object and subject separately to provide high level se-
mantic information. In addition, to reduce the search space
of relationships, we design a semantics-aware relationship
filter to exclude those object pairs that have no relation. We
evaluate our approach on the Visual Genome dataset and
it achieves the state-of-the-art performance for visual rela-
tionship detection. Additionally, Our approach also signifi-
cantly improves the object detection performance (i.e. 4.2%
in mAP accuracy).

1. Introduction

In recent years we have witnessed the important break-
throughs in object-centric visual scene understanding, such
as object detection [26, 25] and semantic segmentation [19,
36]. The further analysis of the relationship between ob-
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Figure 1: Illustration of visual relation detection and its
scene graph representation. Among the detected objects
(left), relations of pairwise objects are detected (middle).
The visual relation can also be represented by a scene graph
(right) based on the detected objects (nodes) and their rela-
tionships (edges).

jects is central to a rich understanding of our visual world.
The task of visual relationship detection aims to infer the
relations of pairwise objects within an image as illustrated
in Fig. 1. A relationship is defined as a triplet 〈subject-
predicate-object〉 [20]. All the relationships in an image
can be described by a scene graph as a collection of objects
(nodes), and their relationships (edges).

For visual relationship detection, one naive way is to
train a generic detector for handling each triplet combina-
tion [27, 2], namely visual phrase. Then, O(N2K) cat-
egories from 〈subject-predicate-object〉 combinations need
to be considered for N object classes and K predicates.
However, each class needs to be fed with sufficient train-
ing data, which is hard to collect in reality because of the
limitation of human efforts, and scarcity of many relation-
ships (i.e. long-tail problem [20, 29]). To address this prob-
lem, most works train detectors for the object and predicate,
respectively. The detection results are aggregated to have
triplet combinations [20, 31, 1, 16]. In fact, objects and rela-
tions are not semantically independent. For example, a per-
son and a horse are more likely to be in relation “ride” than
“eat”. In order to improve the prediction accuracy, many
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recent works [29, 12, 13, 32] consider this dependence and
jointly infer the objects and their relationships.

Two important problems arise. i) One is how object de-
tection and relation detection can mutually enhance each
other. Physically, objects and relations are semantically de-
pendent. To jointly infer the object and predicate categories,
recent works [12, 13, 30] distill the visual representation of
objects and phrases, by passing messages to each other to
capture their context dependencies. In those models, they
learn weights to determine the amount of information col-
lected from other objects or phrases [13, 30]. Features of
different types of objects are different. To avoid the mis-
leading caused by merging features of other types of ob-
jects, those models tend to give large weights to the objects
of the same type and exclude the contribution from objects
of other types. They are not optimal without making full
use of objects of other types in the context for feature en-
hancement. ii) The other is how to effectively tackle the
superabundant 〈subject, object〉 combinations from the ob-
ject proposals for further recognizing the relation. Among
theN(N−1) combined object pairs fromN object propos-
als, the feasible combinations having meaningful relations
are rare/sparse. Such superabundant phrases will make the
training process ineffective/intractable, and deteriorate the
final prediction performance. Most of the previous works
use the strategies of randomly sampling the object pairs
[27], or design simple criteria to filter some object pairs
[12, 1], or use fewer object proposals [14, 29]. They are
far from satisfactory.

In this work, we propose a semantics guided graph rela-
tion neural network (SGRN) to extensively exploit the de-
pendence of objects and relations for effective visual re-
lationship detection. In our model, semantic embedding
are introduced to complement the visual appearance in-
formation to (1) enable the source-target class aware vi-
sual feature refinement by transforming the features of the
source domain to the target domain; (2) help filter the redun-
dant object pairs; (3) enable effective predicate prediction
through awareness of “subject” and “object” respectively.

Our contributions are five-fold.

• We propose a new semantics guided graph relation
neural network (SGRN). The important semantic in-
formation is extensively exploited for enhancing both
object detection and relation detection.

• We propose a source-target-aware transformation that
transforms the features of the co-occurent objects to
the target object domain to refine the visual features.
Similarly, source-target cognoscitive transformations
are used to refine features of objects from features of
relations, and vice versa. Both the performance of ob-
ject detection and relationship recognition are signifi-
cantly improved.

• We propose a semantics guided relation proposal sub-
network (SRePN) to remove the object pairs with low
semantic relatedness to reduce the redundancies and
result in a sparsely connected graph, which facilitates
the training and relationship detection.

• For relation detection, besides the visual features, we
introduce the object and subject class embedding to ex-
plicitly provide semantic dependence between object
categories and predicate types.

• We extensively explore the effectiveness of embedding
semantics in the joint inference models for object de-
tection and relationship recognition. The ablation stud-
ies of semantic embedding is a reference for future
studies in this field.

2. Related Work
As an important topic of scene understanding, visual re-

lationship detection has attracted increasing attention in re-
cent decades. In recent years, deep learning technologies
facilitate more accurate detection of objects as well as vi-
sual relationships [20, 1, 15].
Context for Visual Reasoning. There is rich context
for entities in the real-world visual scene. It is a piece
of important information to improve the visual prediction
performance[10, 21, 6, 18]. There is also rich semantic
inter-dependence between object categories and predicate
types, which is an important cue for accurate visual rela-
tionship detection. The joint inference models for scene
graph generation are designed to learn the semantic depen-
dence and exploit the context between object proposals and
phrases [29, 12, 14, 1, 13, 30]. Dai et al. [1] propose a
CRF-like model [11] to exploit the statistical dependencies
between objects and their relationships and refine the pre-
dicted labels. Li et al. [14] learn the context from region
captions for scene graph generation. Xu et al. [29] use two
sub-graphs to process objects and relationships respectively,
and messages are propagated between these sub-graphs to
collect the context. The graph-based message passing mod-
els are used in [13, 30] to learn the semantic dependence
between objects and relationships and refine their represen-
tation in order to improve the object and predicate detection
accuracy. Attention mechanism is used in their models to
control the amount of information collected from other en-
tities. Zellers et al. [32] utilize a set of LSTM models [5]
to explore the motifs (i.e. regularly occurring graph struc-
tures). Interestingly, they built a strong baseline which di-
rectly predicts relationships using frequency priors from the
dataset.

In our work, we propose SGRN to extensively exploit
the semantic dependence among objects (nodes) and rela-
tionships (edges). Specifically, our model passes messages
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Figure 2: Overview of our SGRNN. (1) Object detection. We use Faster R-CNN for object detection. (2) Relation filtering.
A fully-connected graph is formed by associating any two objects as a possible relationship. We remove the connection
between a pair of objects that are semantically weakly dependent through our SRePN. (3) Source-target-aware refinement.
To refine features, source-target-aware message passing is performed by exploiting contextual information from the objects
and relationships that the target entity (object or relationship) is semantically correlated with for feature refinement. (4)
Object and relation prediction. Objects are predicted from the refined object features. The predicates are inferred based
on the the refined relationship features, and the separate embedding of object and subject probabilities. Note that solid
circles and squares refer to object and relationship/phrase features respectively. The colors indicate different entities. Dashed
arrows indicate that the target object or phrase is used together with the source object/relation for the source-target-aware
transformation to the target object or phrase domain.

in a carefully designed source-target-aware manner. We are
the first to include both the source and target features and
semantics as the input of transformation function to enable
effective message passing.

Semantic Embedding for Visual Tasks. Embedding tech-
nologies are popular in NLP communities and have been
resorted to for visual tasks in recent decades, such as im-
age caption [8, 7] and image retrieval [4]. Motivated by the
success of embedding technologies, some works attempt to
learn embedding for visual relationship detection. Seman-
tic word embedding is used to explore the language priors
between objects in order to improve the relation prediction
accuracy [20, 16, 31, 37]. Zero-short visual relationship
detection can also benefit from the language priors [20, 35].
Zhang et al. [33] learn relation translation vectors from vi-
sual triples by embedding object and subject respectively.
To deal with the appearance variation of visual relations,
some works learn the visual phrase embedding [35, 24]. All
these works either directly use language priors in semantic
word embedding or learn visual embedding.

In our work, we leverage the embedding of object class
information for effective relation proposal, source-target-
aware passage passing, and predicate prediction to explic-
itly use the available predicted class information.

Object Pairs Proposal. To handle the intractable number
of possible pairwise object combinations, Dai et al. [1] use
a simple filter to remove many of the unnecessary object
pairs. Li et al. [13] cluster the phrase regions into some
important ones and pass messages between them. The most
related work to ours is [30] which also proposes a relation
proposal network to estimate the relatedness of each object
pair based on the predicted class probabilities but without
semantic embedding. Different from their work, our SRePN
uses semantic embedding to choose the most semantically
inter-dependent object pairs.

3. Semantics Guided Graph Relation Neural
Network

An overview of the proposed framework Semantics
Guided Graph Relation Neural Network (SGRN) is shown
in Fig. 2. Given an image, our model generates a scene
graph by jointly reasoning the object categories and their
relationships. More precisely, (1) objects are detected via
Faster R-CNN [26]. (2) A fully connected graph is built
with all the detected objects as nodes, and the possible rela-
tionships of each pair as edges. Then, our SRePN estimates
the semantic dependence of each object pair and retains the
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Figure 3: Illustration of the process of extracting the repre-
sentation of relationship from its visual appearance features
and the spatial information.

ones being semantically highly dependent, i.e. those that are
likely to have meaningful relations. (3) Source-target-aware
message passing is applied to exploit contextual informa-
tion from the objects and relationships that the target entity
(object or relationship) is semantically correlated with. (4)
The classifiers learn to recognize object categories using the
refined features. The predicates are inferred based on the
refined relationship features, and the separate embedding of
object and subject probabilities. In the following, we will
discuss each component of our framework in details.

3.1. Proposals of Objects and Relationships

In our model, the N objects are detected by Faster R-
CNN [26] from an input image. Each detected object oi
is associated with a bounding box bi = [xi, yi, wi, hi] that
indicates the center coordinate (xi, yi) of the box and its
width wi and height hi, its initially predicted class distribu-
tion over allC classes poi ∈ R1×C , and its pooled visual fea-
ture vectors xoi . Then, a scene graph is initially constructed
with the n detected objects as nodes and O(n2) edges be-
tween all object pairs, as shown in Fig. 2 (2nd block).

However, as discussed in previous sections, only a small
fraction of object pairs among all the O(n2) pairs are likely
to have meaningful relationships. A large number of object
pairs will make the training and inference intractable, and
the redundant relationship proposals will deteriorate the re-
call performance. To reduce the number of object pairs,
we propose a semantics guided relation proposal network
(SRePN) which is trained to estimate the semantic depen-
dence of an object pair based on the real-world regulari-
ties. In this paper, we exploit the semantic dependence be-
tween a pair of objects using word embeddings learned by
a Word2vec model [23] trained on the region caption anno-
tations of visual genome [9] dataset. The embedding matrix
is denoted as We, where each row is an embedding vector
for an object class. Then, the semantic embedding repre-
sentation of oi is obtained as:

eoi = poi ·We, (1)

which yields a soft embedding. Compared with the hard
embedding, which takes the embedding vector correspond-
ing to the class that has the highest predicted probability,
soft embedding considers the uncertainty of the object class
prediction given by the generic Faster R-CNN. It is capable
of alleviating the negative effect introduced by the errors
of the object classifier. Then, for an object pair (oi, oj),
their relationship is represented as the concatenation of the
subject embedding, spatial information, and object embed-
ding: xij = [eoi , b̃i, b̃j , e

o
j ]. b̃i is the bounding box param-

eters of oi renormalized with respect to the union box of
(oi, oj). A multi-layer perceptron (MLP) takes as input xij ,
and outputs an estimated semantic dependence score which
ranges from 0 to 1 regularized by a sigmoid function. The
score indicates how possible it is for the object pair (oi, oj)
to have a meaningful relationship. Then, the object pairs,
whose semantic dependence score falls in the top K scores
and is larger than a threshold, are selected. Different from
[12, 30], we do not apply non-maximal suppress operation
(NMS) on the object pairs to reduce the number of relation-
ship proposals because NMS will decrease the recall rate of
the relationship proposals, which matters for the final eval-
uation metric in recall of relationship detection. Instead, we
use K to limit the maximum number of relationship pro-
posals in order to improve the training effectiveness and use
a score threshold to reduce the redundancy. The set of se-
lected relationships are denoted as R = [r1, . . . , rK ].
Representation of Phrase. The visual appearance infor-
mation is the most important information for visual tasks,
and the spatial configuration of subject and object reflects
their relationship directly. Therefore, a relationship should
be represented by its visual appearance information and the
relative spatial information of the involved pair of objects
together. This kind of representation is extracted as shown
in Fig. 3. First, the relative spatial information is repre-
sented by using a two-layer binary mask which indicates the
positions of subject (first layer) and object (second layer)
within the union bounding box. On each layer, the pixels
that are within the bounding box of the object are assigned
1, otherwise 0. Then, the mask is fed to an MLP to learn the
relative spatial features. The spatial features are added to
the visual appearance features, and then a fully connected
layer is used to fuse them sufficiently to obtain the phrase
representation xr.

3.2. Source-taregt-aware Refinement

We have achieved a graph including detected objects O
(nodes) and selected meaningful phrases (edges) R. Each
object has visual appearance features xo and semantic em-
bedding eo obtained by Eq. (1). Each phrase has the repre-
sentation xr. From the graph, we also know that an object
can be in multiple relationships with other objects and each
relationship involves two objects.
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Our message passing principle is based on the assump-
tion that the objects which have relationships are semanti-
cally strongly dependent, and the relationships which have
overlap object(s) are also semantically related to each other.
For instance, as shown in Fig. 2 (2nd block), the yellow
node has a relationship with the purple, blue and cyan ones
respectively. The relationship between yellow and purple
nodes overlaps with the relationships of between yellow and
blue nodes, and yellow and cyan nodes. It shares the yellow
node with the other two relationships. The phrases contain
context information for each entity within it, and objects
are the core components of phrases. Our message passing
manner is unlike, e.g. [13, 30], which transforms the source
object feature with ignorance of the target object, i.e. takes
only the source object as the input of transformation func-
tion, we take both the source and target object features as
the input of transformation function.
Pass Message to Target Objects. We denote that an object
oi is involved in a set of phrases Roi , and it has meaning-
ful relationships with the set of objects Ooi . Given a target
object oi, our SGRN learns to collect context from other ob-
jects inOoi , and phrases inRoi to refine xoi and enhances its
representation ability. More formally, this message passing
is defined as:

x̂oi = σ

(
xoi+

1

2‖Ooi‖
∑
Ooi

(
f (o→o)([xoi , ei], [x

o
j , ej ])

+
1

2‖Roi‖
∑
Roi

f (r→o)(xoi , x
r
j)
)) , (2)

where σ() is an activation function ReLU, “[ , ]” is the fea-
ture concatenation operation, and “‖.‖” is the number of
the entities of the set. f (o→o) denotes the message passing
function from other objectsOoi to the target object oi, while
f (r→o) denotes the message passing function from phrases
Roi to oi. Each f() is an individual MLP. The process of
this message passing targeting on an object is illustrated in
Fig. 2 (3rd block (a)). The sum of transformed features is
averaged over the number of sources to limit the magni-
tude of the value of the features. Division of two means that
objects and relationships contribute equally to the target ob-
ject. The target’s features are added to ensure that the main
information of the target is reserved and not overwhelmed
by the transformed information from others. f(a, b) can
be mathematically understood as a conditional transforma-
tion operation: conditioned on target a, extract informa-
tion from the sources b, i.e. source-target-aware message
passing. Particularly, for the second term f (o→o), target
and sources are represented by their visual appearance fea-
tures and semantic embedding features together. Therefore,
f (o→o) fully exploits the semantic dependence between ob-
jects using visual information learned by the CNN and the
language priors in the semantic embedding. Our source-

target-aware message passing is essentially different from
the other message passing works, such as [13, 30]. They
attempt to learn a shared projection matrix to project the
source features to a shared target domain disregard what
the target is. In other words, a source will be projected to
the same representation even the target is different. For in-
stance, as shown in Fig. 2 (1st block), to refine the features
of “boat” and “hat” from the source of “water”, “water” pro-
vides identical information to both of them. Then, they use
attention approaches to compute weights to determine how
much information will be collected from other objects to the
target.

Intuitively, our method of message passing formally de-
scribed by Eq. (2) also can be described as to learn the
residual representation of xoi , which is expected to be the
context. Therefore, the representation x̂oi contains its vi-
sual appearance information and the contextual information
around it.

Pass Message to Target Phrases. The representations of
phrases are also refined in a similar approach as below:

x̂rm = σ

(
xrm+

1

2‖Rrm‖
∑
Rrm

f (r→r)(xrm, x
r
n)

+
1

2‖Orm‖
∑
Orm

f (o→r)(xrm, x
o
j)

) (3)

where Rrm is the set of phrases, which have shared ob-
jects with rm. Orm is the object pairs involved in phrase
rm. f (r→r) and f (o→r) are the source-target-aware mes-
sage passing to the target phrase from the source phrases
and objects, respectively. They also consist of MLP. The
process of this message passing targeting on a phrase is il-
lustrated in Fig. 2 (3rd block (b)).

For a phrase rm, the most important information is the
participating pair of objects, and the other objects affect the
recognition of the relationship negligibly. For instance like
us human, when we attempt to understand the interaction of
two objects before us, we focus on the two objects but not
others. Therefore, Orm only contains the pair of objects.
The other phrases that overlap with rm provide context.

3.3. Relationship Recognition

An object classifier is trained to classify object category
using the refined features x̂o, and output the predicted dis-
tribution p̂o. The object is assigned with the label with the
highest predicted probability. With the predicted objects
labels, we need to recognize the predicate types. To im-
prove the accuracy of relationship recognition, we embed
the pair objects similar to Eq. (1). Here we study two em-
bedding approaches: i) two embedding matrices are learned
for “subject” and “object” respectively, formally defined as
Eq. (4); ii) the pair of objects share an embedding matrix,
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Method SGGen SGCls PredCls

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

MESSAGE PASSING [29] 3.4 4.2 21.7 24.4 44.8 53.0
Graph R-CNN [30] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1

MSDN [14] - 10.7 14.2 - 24.3 26.5 - 65.2 67.1
ASSOC EMBED [22] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4

MotifNet [32] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1
MotifNet† 13.7 17.4 19.7 25.4 31.7 34.8 47.4 59.8 65.2

SGRN (w/o fine-tune, w/o SRePN) 19.5 24.2 29.0 30.2 33.8 35.7 57.3 62.4 65.5
SGRN (w/o SRePN) 22.4 29.3 33.1 34.2 37.3 38.3 61.8 66.5 67.7

SGRN (w/o SRePN) + freq 21.0 28.4 31.1 32.7 35.1 35.8 61.5 66.0 67.6
SGRN 23.8 32.3 35.4 35.1 38.6 39.7 60.3 64.2 66.4

Table 1: Comparison with existing methods on Visual Genome test set [29]. All numbers in %. The results of ASSOC
EMBED [22], MP [29], and Motifnet [32] are taken from [32]. They are reimplemented in [32] using the authors’ object
detection backbone, and output better results than their original reports. Motifnet† is our reimplementation of the full code
provided by the authors. The results of the last 4 rows (all about SGRN) are achieved by using the same object detection
backbone as Motifnet†. This basic object detection backbone (without being jointly trained with our SGRN) has the object
detection performance of mAP 16.6% (COCO metric).

formally defined as Eq. (5).

esub = p̂osub ×W sub
emb, e

obj = p̂oobj ×W
obj
emb, (4)

esub = p̂osub ×Wemb, e
obj = p̂oobj ×Wemb. (5)

Note that the embedding matrix W sub, W object, Wemb are
randomly initialized, which is different from the embed-
ding matrix We in Eq. (1) initialized from a pretrained
Word2vec. A predicate classifier is trained to recognize
the predicate types by using the predicate features xp =
[esub, x̂r, eobj ]. The relationship is assigned with the predi-
cate label with the highest predicted probability.

4. Experiments
In this section, we will introduce the experimental set-

tings and implementation details of SGRN. Additionally,
ablation studies will be conducted to validate the effective-
ness of different parts of the framework. Our SGRN will
be compared with state-of-the-art methods in terms of ac-
curacy of object detection and relationship recognition.

4.1. Datasets

Our proposed method is evaluated on the Visual Genome
dataset [29] that is the standard large-scale datasets used
for visual relationship detection and scene graph generation
[29, 14, 32]. However, the data preprocessing strategies and
data split are inconsistent in different works. In our experi-
ments, we use the most commonly used data split and data
preprocessing proposed by [29]. In their data preprocessing,
the most-frequent 150 object categories and 50 predicate
types are selected. The whole dataset is split into training
(75, 651 images) and test (32, 422 images) set.

4.2. Implementation Details

Faster R-CNN [26] with a VGG16 [28] backbone using
the codebase in [32] is implemented as our underlying de-
tector and visual feature extractor. The input images are
scaled and then zero-padded to be 592× 592. ROI-pooling
[3] is applied to extract features of object and phrase from
the shared feature maps output by the backbone network.
Then the pooled object features are fed to two FC lay-
ers which generate a 512-d feature vector. Pooled phrase
features are fused with the spatial configuration to learn a
4096-d relationship feature vector, as shown in Fig. 3. The
embedding matrix used in the RePR module is initialized
with the 300-d Word2vec provided by [20]. A two-layer
MLP is used in the RePR module and outputs a 1-d vector
which is then go through a sigmoid function to squash the
predicted score in (0, 1). RePR retains at most 256 phrases,
and its threshold used to select the relationships in SRePN
is empirically set as 0.55. All MLPs in the message pass-
ing module consist of two FC layers which generate 512-d
feature vectors for objects and 4096-d feature vectors for re-
lationships, respectively. The loss is the sum of the cross en-
tropy for predicates and cross entropy for objects predicted
by their own classifiers. SGD (lr = 5 × 10−3) with mo-
mentum is applied to optimize the network parameters.

4.3. Metrics

We follow three standard evaluation modes. (1) Pred-
icate classification (PredCls): given an image associated
with the ground truth bounding boxes and labels of objects,
predict predicate labels. (2) Scene graph classification
(SGCls): given an image associated with the ground truth
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Model MP ObjE PredE Detection SGGen SGCls PredCls

mAP R@50 R@100 R@50 R@100 R@50 R@100

1 - - - 16.6 12.7 15.9 26.6 27.4 52.4 54.1
2 X - - 18.5 17.1 19.9 29.7 32.4 58.3 60.4
3 X X - 20.2 24.7 27.1 33.0 35.1 62.0 64.2
4a X - X 18.7 19.2 22.5 30.1 32.8 61.6 64.5
4b X - X 18.7 21.5 24.6 31.4 33.8 62.9 65.1
5 X X X 20.8 29.3 33.1 37.3 38.3 66.5 67.7

Table 2: Ablation studies on SGRN. All numbers in %. ObjE denotes the semantic embedding of object during message
passing. PredE denotes the semantic embedding of subject and object of a relationship. Both of ObjE and PredE use soft
embedding. MP denotes whether to pass message between objects and predicates. Model 4a uses Eq. (5) embedding method
while model 4b uses Eq. (4) ones. The Detection reports the object detection performance (mAP) following COCO metrics
[17]. SRePN is not utilized here.

bounding boxes of objects, predict object labels and recog-
nize their relations. (3) Scene graph detection (SGDet):
given an image, detect objects and recognize their relations.
Only when the labels of the subject, predicate, and object of
a detected relationship match the ground truth annotation,
and the bounding boxes of subject and objects have more
than 50% IoU with the ground truth bounding boxes simul-
taneously, this detection is counted as correct. Following
most of the existing works, recall@K is used to evaluate the
performance of relationship detection. In addition to most
commonly used R@50 and R@100, we also use the more
challenging R@20 for a more comprehensive evaluation.

4.4. Results and Comparison

The experimental results are presented in Tab. 1 1. Be-
cause different works use different data split on visual
genome, we compare our proposed SGRN with several re-
cent works, which use the data split [29], including Iterative
Message Passing (IMP) [29], Multi-level scene Description
Network (MSDN) [14], and the state-of-the-art MotifNet
[32] and Graph R-CNN [30]. The results of IMP, MSDN
are taken from the paper [32]. The authors reimplemented
these methods using their own detector and got better per-
formance. For a fair comparison, we use the same detector
provided by [32] in our model. Results of Graph R-CNN
are taken from the original paper [30].

Our reimplementation of MotifNet results in lower per-
formance than that are reported in the original paper, which
means that the object detection backbone we use is at least
not better than the one used in their implementation. From
Tab. 1 we can see that SGRN (w/o fine tune & SRePN) out-
performs other methods significantly in most of the evalua-
tion modes, except the originally reported MotifNet. Here,
the same object detection backbone as MotifNet† is imple-

1More quantitative results and qualitative examples are shown in sup-
plementary material.

mented but is not jointly trained. The proposed SRePN is
not implemented either. To limit the number of object pairs,
we naively random sample at most 256 object pairs as the
relationship proposals, so as in the experiments of the fol-
lowing two rows. Larger number of proposals makes the
training ineffective/intractable because of computation abil-
ity. The improvements compared with other methods vali-
dates that our proposed source-target-aware message pass-
ing is effective in scene graph generation.

In Tab. 1, the last three rows are the results when the
whole model is jointly trained till convergence. SGRN
(w/o SRePN) have higher number than other methods in all
evaluation modes consistently. It validates that our method
learns powerful representations for object detection and re-
lationship recognition, and what it has learned impacts the
backbone network positively with respect to our task. When
the proposed SRePN is implemented (the last row), it shows
further improvements in SGCls, and especially in SGGen.
The improvements verify the effectiveness of our proposed
SRePN, which aims to reduce redundant relationship pro-
posals. For PredCls, the model w/o SRePN performs
better because SRePN outputs some false negative results.
When applying the motif frequency prior [32] on the re-
sults predicted by our model, the performance decreases
slightly. It indicates that the semantic embedding in our
model is able to capture the co-occurent semantic depen-
dence between objects and predicates that is similar to mo-
tif frequency prior [32]. However, the frequency prior is ob-
tained by counting using the training dataset, which leads to
a strong bias. Even though the learned semantic embedding
also has the bias, it is fused into the whole framework as a
complement of visual features.

4.5. Ablation Studies

Our proposed SGRNN consists of three important
components: ReRN, source-target-aware message passing
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(MP), and semantic embedding. The effectiveness of the
proposed SRePN has been discussed above. Therefore, we
conduct ablation studies to validate how different compo-
nents affect the final performance w/o SRePN. The results
of ablation studies are presented in Tab. 2.

Source-Target Message Passing. Model 1 is the baseline,
which directly uses Faster R-CNN as the object detector
and to learn shared features. The predicates are predicted
based on the concatenated pooled feature vectors of sub-
ject, phrase and object. Model 2 adopts the source-target
message passing module to refine both of the object and re-
lationship features. Note that the embedding approach is
not used in model 2, i.e. the embedding items ei and ej are
removed from Eq. (2). Compared with model 1, we can see
that the object detection performance of model 2 increases
1.9% mAP. Model 2 gets significant improvements in the
recall accuracy of the three evaluation modes. In particu-
lar, there are 5.9% and 6.3% gains on R@50 and R@100
respectively in the PredCls setting, which indicates that our
proposed source-target message passing not only learns bet-
ter representations of objects but also better representations
of relationships. The overall improvements in SGGen and
SGCls are introduced by better object detection and rela-
tionship prediction performance together.

Semantic Embedding of Objects. As discussed in
Sec. 3.2, semantic embedding of objects is used as a com-
plement of visual features and guides the message passing
between objects. Model 3 adopts semantic embedding of
objects on top of model 2, as formally defined in Eq. (2).
By comparison, we can see that model 3 gets further im-
provement on object detection: 1.7% mAP gain. Benefits
from better object detection performance, the performance
of SGGen and SGCls are improved 3.3% ∼ 7.6%. It in-
dicates that semantic embedding of objects can explicitly
provide semantic dependence between objects, which asso-
ciates the visual appearance features to help the model cap-
ture the contextual information and pass message between
semantically dependent objects. Because of better message
passing guided by the introduced semantic information, bet-
ter representations of relationships are learned, as described
in Eq. (3), and results in better PredCls performance.

Semantic Embedding for Representation of Predicates.
To achieve better representations of predicates in order to
improve the relationship prediction accuracy, we propose to
semantically embed the subject and object into embedding
vectors, and then concatenate these vectors with the phrase
feature vectors as the representation of predicates, as dis-
cussed in Sec. 3.3. To validate the effectiveness of semantic
embedding of the subject and object for predicate predic-
tion, we adopt the embedding strategy of Eq. (4) on model
4b (i.e. two different embedding matrix are learned for sub-
ject and object respectively), and adopt the embedding strat-

ObjE PredE SGGen SGCls

R@50 R@100 R@50 R@100

h h 26.1 30.4 33.2 35.6
h s 26.9 31.7 34.8 36.8
s h 28.2 32.3 35.2 37.6
s s 29.3 33.1 37.3 38.3

Table 3: Ablation studies on different soft (s) and hard (h)
embedding methods. Note that PredCls is equivalent to
hard embedding, and there is no need to compare here.

egy of Eq. (5) on model 4a. Compared with the results of
model 2, we can see that both models 4a and 4b achieve im-
provements in the three evaluation modes. However, model
4b reports better number than model 4a. It indicates that us-
ing two individual embedding matrix, which are for subject
and object respectively, is better to exploit the semantic de-
pendence between objects and relationships. Note that the
object detection performance is improved negligibly, which
means the improvements of relationship detection are in-
troduced by the semantic embedding of subject and object
for predicates rather than by a better object detector. Espe-
cially, this semantic embedding module is a plug-in module
and can be adopted by any visual relationship methods be-
cause it is based on the object detection results.

Model 5 is the full model of our framework (as illustrated
in Fig. 2). It reports the best performance on both object
detection and relationship detection. It indicates that each of
our proposed modules can be effectively combined together
to improve the overall performance of the framework for
scene graph generation.
Effectiveness of Different Embedding Strategies. As dis-
cussed in Sec. 3.1, there are two embedding strategies: soft
embedding and hard embedding. To validate their differ-
ence, we experiment on different combination of embed-
ding strategies on model 5 and present the outcomes in
Tab. 3. We can see that soft embedding always gets better
performance than hard embedding. We analyze the reason
as follows. Soft embedding takes the predicted probabili-
ties as the weights to sum the word vectors. It considers
the uncertainty of prediction results and tolerates the error
prediction to a certain degree. In contrast, hard embedding
directly selects the embedding vector corresponding to the
highest predicted probability as representation. When the
prediction is incorrect, the embedding is also wrong. There-
fore, soft embedding provides better performance than hard
embedding in our model.

5. Conclusion
In this paper, we introduce a new model for scene graph

generation - semantics guided graph relation neural net-
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work (SGRN). Our model consists of a semantics guided
graph relation neural network that effectively removes the
pairs of objects that are semantically not highly depen-
dent, and a source-target-aware message passing module
that effectively propagates information across the graph and
learns better representations of objects and relationships.
We extensively explore the effectiveness of embedding ap-
proaches for visual relationship detection and therefrom
provide a reference for future study. The experimental re-
sults show that our approach significantly outperforms the
state-of-the-art methods for scene graph generation.

References
[1] B. Dai, Y. Zhang, and D. Lin. Detecting visual relationships

with deep relational networks. In CVPR, pages 3076–3086,
2017. 1, 2, 3, 10

[2] S. K. Divvala, A. Farhadi, and C. Guestrin. Learning ev-
erything about anything: Webly-supervised visual concept
learning. In CVPR, pages 3270–3277, 2014. 1

[3] R. Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015. 6
[4] A. Gordo and D. Larlus. Beyond instance-level image re-

trieval: Leveraging captions to learn a global visual repre-
sentation for semantic retrieval. In CVPR, pages 6589–6598,
2017. 3

[5] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. 2

[6] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei. Relation networks
for object detection. In CVPR, pages 3588–3597, 2018. 2

[7] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, pages
3128–3137, 2015. 3

[8] A. Karpathy, A. Joulin, and L. F. Fei-Fei. Deep fragment
embeddings for bidirectional image sentence mapping. In
NIPS, pages 1889–1897, 2014. 3

[9] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Vi-
sual genome: Connecting language and vision using crowd-
sourced dense image annotations. IJCV, 123(1):32–73,
2017. 4

[10] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Graph
cut based inference with co-occurrence statistics. In ECCV,
pages 239–253. Springer, 2010. 2

[11] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In ICML, 2001. 2

[12] Y. Li, W. Ouyang, and X. Wang. Vip-cnn: Visual phrase
guided convolutional neural network. In CVPR, pages 1347–
1356, 2017. 2, 4

[13] Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang.
Factorizable net: an efficient subgraph-based framework for
scene graph generation. In ECCV, pages 346–363. Springer,
2018. 2, 3, 5, 10

[14] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang. Scene
graph generation from objects, phrases and region captions.
In ICCV, pages 1261–1270, 2017. 2, 6, 7

[15] X. Liang, L. Lee, and E. P. Xing. Deep variation-structured
reinforcement learning for visual relationship and attribute
detection. In ICCV, pages 848–857, 2017. 2

[16] W. Liao, L. Shuai, B. Rosenhahn, and M. Y. Yang. Natural
language guided visual relationship detection. arXiv preprint
arXiv:1711.06032, 2017. 1, 3

[17] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV, pages 740–755. Springer,
2014. 7

[18] Y. Liu, R. Wang, S. Shan, and X. Chen. Structure inference
net: Object detection using scene-level context and instance-
level relationships. In CVPR, pages 6985–6994, 2018. 2

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, pages 3431–
3440, 2015. 1

[20] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual re-
lationship detection with language priors. In ECCV, pages
852–869. Springer, 2016. 1, 2, 3, 6

[21] T. Mensink, E. Gavves, and C. G. Snoek. Costa: Co-
occurrence statistics for zero-shot classification. In CVPR,
pages 2441–2448, 2014. 2

[22] A. Newell and J. Deng. Pixels to graphs by associative em-
bedding. In NIPS, pages 2171–2180, 2017. 6

[23] J. Pennington, R. Socher, and C. Manning. Glove: Global
vectors for word representation. In EMNLP, pages 1532–
1543, 2014. 4

[24] J. Peyre, I. Laptev, C. Schmid, and J. Sivic. Detect-
ing rare visual relations using analogies. arXiv preprint
arXiv:1812.05736, 2018. 3

[25] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.
In CVPR, pages 6517–6525, 2017. 1

[26] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, pages 91–99, 2015. 1, 3, 4, 6

[27] M. A. Sadeghi and A. Farhadi. Recognition using visual
phrases. In CVPR, pages 1745–1752, 2011. 1, 2

[28] K. Simonyan and A. Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv:1409.1556, 2014. 6

[29] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph
generation by iterative message passing. In CVPR, pages
5410–5419, 2017. 1, 2, 6, 7

[30] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. Graph r-cnn
for scene graph generation. In ECCV, pages 690–706, 2018.
2, 3, 4, 5, 6, 7

[31] R. Yu, A. Li, V. I. Morariu, and L. S. Davis. Visual relation-
ship detection with internal and external linguistic knowl-
edge distillation. In ICCV, pages 1974–1982, 2017. 1, 3

[32] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi. Neural
motifs: Scene graph parsing with global context. In CVPR,
pages 5831–5840, 2018. 2, 6, 7

[33] H. Zhang, Z. Kyaw, S.-F. Chang, and T.-S. Chua. Visual
translation embedding network for visual relation detection.
In CVPR, pages 5532–5540, 2017. 3

[34] J. Zhang, M. Elhoseiny, S. Cohen, W. Chang, and A. M. El-
gammal. Relationship proposal networks. In CVPR, vol-
ume 1, page 2, 2017. 10

9



[35] J. Zhang, Y. Kalantidis, M. Rohrbach, M. Paluri, A. Elgam-
mal, and M. Elhoseiny. Large-scale visual relationship un-
derstanding. arXiv preprint arXiv:1804.10660, 2018. 3

[36] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, pages 2881–2890, 2017. 1

[37] B. Zhuang, L. Liu, C. Shen, and I. Reid. Towards context-
aware interaction recognition for visual relationship detec-
tion. In ICCV, pages 589–598, 2017. 3

Appendix
This appendix to the paper “Exploring the Semantics

for Visual Relationship Detection” provides more ablation
studies and visualization results.

A. Iterations of Message Passing
For the source-target-aware message passing stage (i.e.,

the third stage in Fig. 2 of the main manuscript), this mes-
sage passing procedure can be done once or repeated several
times. Tab. 4 presents the model’s performance with respect
to the number of iteration applied of the message passing.
We can see that the message passing of 2 iterations out-
performs that of 1 iteration. That enables the use of refined
features for the second round message passing. Using larger
than 2 (i.e., 3) iterations helps very little and even brings a
slight performance decrease on SGGen and SGCls. We sus-
pect this phenomenon is caused by the diffusion of noise of
the learned features which is common in message passing
models [1, 34, 13]. However, there are some slight gains
on PredCls mode in which the performance of object detec-
tion is isolated (i.e. groudtruth bounding boxes and labels
of objects are used). We think that the learning of phrase
representations are more difficult than that of individual ob-
ject representations and more iterations are beneficial for
phrase representation refinement. On the other hand, object
representations are more susceptible to noise than phrase
representations. The weaker object detection decreases the
performance of SGGen and SGCls. We use 2 iterations in
our final scheme.

B. Effect of Different Information Sources

For the source-target-aware message passing, we study
the influences of different information sources to the per-
formance with respect to object detection and relationship
recognition respectively (as defined in Eq. (2) and Eq. (3) in
the main manuscript).

Tab. 5 presents the experimental results of using differ-
ent information sources for message passing. Model 0 is
a baseline which uses Faster R-CNN as the object detector
and uses SRePN to reduce redundant relationship propos-
als, and uses subject and object embeddings for predicate
prediction. But Model 0 does not use any message pass-
ing. Note that this baseline Model 0 here is different from
the baseline Model 1 in Tab. 2 of our main manuscript.
Compared with Model 1 in Tab. 2 of our main manuscript,
the gains achieved by Model 0 are attributed to using the
SRePN and the embedding method in phrase representation
for the predicate prediction. It also indicates the effective-
ness of our proposed SRePN and the semantic embedding
for phrase representation.

Message Passing to Target Phrase. We analyze the in-
fluences of using source objects and source phrases on the
message passing to the target phrase for the target phrase
feature refinement, respectively (as defined in Eq. (3) in
the main manuscript). As shown in Tab. 5, for Model 0
to Model 3, the message passing to the target objects (Eq.
(2) in the main manuscript) is not applied for clear com-
parisons. We have the following observations. By com-
paring Model 1-3 with Model 0, we can see that refine-
ment of phrase features is not helpful for object detection.
The improvements in the three evaluation modes of these
three models are attributed to the better predicate represen-
tations that are refined by our message passing (to the target
phrase). Compared with Model 2, which only uses source
phrases (the third term in Eq. (3)) to refine the target phrase,
Model 1 which only uses source objects (the second term
in Eq. (3)) to refine the target phrase achieves better per-
formance. It indicates that for predicate prediction, infor-
mation of objects participating in the relationship is more
important than the information from external relationships.
The gain in Model 2 compared with Model 0 indicates that
information of the semantically related phrases is also use-
ful for predicate prediction. Model 3 uses information of
both source objects and source phrases to refine the predi-
cate features and achieves better performance.

C. Qualitative Results

Message Passing to Target Object. We study the influ-
ence of using source objects and source phrases on the mes-
sage passing to the target object for the target object feature
refinement, respectively (as defined in Eq. (2) in the main
manuscript). As shown in Tab. 5, for Model 4 to Model 6,
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IteNr. Object Detection SGGen SGCls PredCls

mAP R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

1 19.1 19.3 26.5 30.1 29.8 32.3 34.7 57.6 59.8 62.1
2 20.8 23.8 32.3 35.4 35.1 38.6 39.7 60.3 64.2 66.4
3 20.6 23.1 32.2 35.4 34.4 37.1 40.1 60.5 65.7 67.8

Table 4: Ablation study of the effect of the number of iterations of message passing. The full Model is implemented and the
whole Model is jointly trained.

Model T.Obj T.Phr Detection SGGen SGCls PredCls

S.Obj S.Phr S.Obj S.Phr mAP R@50 R@100 R@50 R@100 R@50 R@100

0 - - - - 16.6 14.1 18.5 27.7 30.5 54.2 58.4
1 - - X - 16.7 14.8 19.7 28.7 32.0 59.7 62.8
2 - - - X 16.6 14.7 19.6 27.9 31.4 58.2 61.3
3 - - X X 16.7 15.1 20.2 29.0 32.3 60.9 63.4
4 X - - - 19.8 25.5 28.1 32.5 36.8 55.8 59.7
5 - X - - 16.8 14.2 18.5 28.0 31.1 55.5 59.5
6 X X - - 20.2 26.4 28.6 33.8 37.7 56.1 59.8
7 X X X X 20.8 32.3 35.4 38.6 39.7 64.2 66.4

Table 5: Ablation studies on using different sources for message passing. We validate the influence of source objects and
source phrase on refining features of the target object and target phrase respectively. T.Obj and T.Phr denote target object
and target phrase respectively, while S.Obj and S.Phr denote source object and source phrase respectively. Both of Object
embedding, and subject and object embeddings are applied (soft embedding). Messages are passed 2 iterations here. Model 0
is the baseline which uses SRePN, subject and object embeddings for predicate prediction but does not use message passing.

Model ObjE PredE Detection SGGen SGCls PredCls

init. train init. train mAP R@50 R@100 R@50 R@100 R@50 R@100

8 w2v x w2v x 20.7 29.2 32.8 36.2 37.4 62.2 63.9
9a w2v x w2v X 20.7 29.3 33.1 36.4 37.3 62.7 64.4
9b w2v x w2v X 20.7 31.8 34.9 38.7 39.7 63.7 66.0
10 rand X rand X 18.3 22.4 25.4 31.9 34.8 62.7 64.2
11 w2v X rand X 20.7 32.1 35.4 38.6 39.8 64.3 66.4
12 w2v x rand X 20.8 32.3 35.4 38.6 39.7 64.2 66.4

Table 6: Ablation studies on the initialization and training of the embedding matrices for object embedding (ObjE) (for
message passing purpose), and subject/object embedding (PredE) (for predicate prediction purpose), respectively. init.
denotes the initialization methods of embedding matrices: using pre-trained word2vector (w2v) or randomly initialized
matrix (rand). train denotes whether to train the embedding matrices during training. If PredE is initialized by using
pre-trained word2vector but is fixed during training, it is equivalent to embedding the subject and object using the same
embedding matrix, i.e. Eq. (5). Random initialization of any embedding matrix without later training makes no sense in this
task and then is not shown. Soft embedding is used for embedding and messages are passed in two iterations here. SRePN is
utilized.

and Model 0, the message passing to the target phrases (Eq.
(3) in the main manuscript) is not applied for clear compar-
isons. We have the following observations. Compared with
Model 0, Model 4 and Model 6 achieve significant improve-
ments on object detection accuracy (i.e. 3.2% and 3.6% in

mAP), both of which use source objects (the second term
in Eq. (2) in the main manuscript) to refine the features of
the target objects. Compared with Model 0, Model 5 brings
small improvements on object detection accuracy. It indi-
cates that, the objects which are highly semantically depen-
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Figure 4: Visualization of relationship detection results from our SGRN. Green boxes denote the correctly detected objects
while orange boxes denote the ground truth objects that are not detected. Green edges correspond to the correctly recognized
relationships by our model at the R@20 setting, orange edges denote the ground truth relationships that are not recognized,
and blue edges denote the recognized relationships that however do not exist in the ground truth annotations. Only predicted
boxes that overlap with the ground truth are shown.

dent on the target object, provide more useful information
than the semantically related phrases (third term in Eq. (2)
in the main manuscript) to refine the features of the target
object. Model 4 and 6 achieve significant improvements
on SGGen and SGCls but small gain on PredCls. It indi-
cates that the improvements from Models 4 and 6 are mainly
brought by the improvements of object detection rather than
by obtaining better predicate representations. Model 7 is
our full Model which uses both of source objects and source
phrase to refine the features of the target objects as well as
the target phrases simultaneously and achieve the best per-
formances.

Summary. These ablation study results validate that our
proposed message passing method is capable of efficiently
propagating information between objects and phrase and

exploiting the contextual information among them effec-
tively. The performance of object detection and relation-
ships recognition mutually benefit from each other.

D. Influence of Different Embedding Initializa-
tions

For the proposed semantic embedding, we study the in-
fluences of different initialization methods for the embed-
ding matrices to the performance with respect to object de-
tection and relationship recognition respectively. Tab. 6
presents the experimental results of using different initial-
ization methods for the embedding matrices of object em-
bedding (ObjE) for message passing purpose, and the sub-
ject and object embedding (PredE) for predicate prediction
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purpose.
Subject and Object Embedding (PredE) for Predicate

Prediction Purpose. It is worth noting that Model 9a and
Model 9b are the same (uses pretrianed word2vector (w2v)
to initialize both ObjE and PredE) but they result in different
performances. Model 9a has similar performance as Model
8, which uses one shared embedding matrix for subject and
object of a relationship (i.e. Eq. (5)), while Model 9b per-
forms comparably as Model 12, which uses two separate
embedding matrices for the subject and object respectively.
In fact, we often archive different experimental results when
initializing PredE using w2v: system is unstable. Model 9a
is the worst we have archived under this setting while Model
9b is the best. We analyze the results as follow. When PredE
is initialized using w2v, the two sets of parameters (for sub-
ject and object respectively) are similar to each other. Dur-
ing training, these two sets of embedding parameters are up-
dated in a similar tempo and gradient direction. Then, we
often get two similar embedding matrices. It is equivalent
to that we use a shared embedding matrix for both subject
and object. That is why Model 9a has a similar performance
as Model 8.

It achieves better performance when using random ini-
tialization (e.g. comparing Model 8 or Model 9a with Model
12). This is because the semantic embedding in PredE is to
embed the subject and object to their corresponding seman-
tic “role” in their relationship rather than use the language
prior in w2v.

Object Embedding (ObjE) for Message Passing Pur-
pose. By comparing Model 10 and Model 11, we can see
that the randomly initialized ObjE has much worse perfor-
mance than that initialized using w2v. It is because the
pre-trained word2vector contains semantic interdependence
between object categories which could guide the message
passing for the objects, as discussed in the main manuscript.
The randomly initialized embedding matrix does not have
any prior information and may be difficult to train.

Comparing Model 11 with 12, we can see that fixing
the object embedding matrix has similar or slightly better
performance. Fixing the object embedding matrix will pre-
serve the language prior in the w2v which is important to
guide the message passing to refine object features effec-
tively.

In summary, using w2v for object embedding and fixing
it during training is sufficient to guide the message passing
for objects, and randomly initializing PredE could make the
training stable and get better performances.

Examples of generated scene graphs from our approach
are shown in Fig. 4. For each image, green box denotes the
object is correctly detected while orange box denotes the
missed detection. Green edges correspond to the correctly
recognized relationships by our model, orange edges denote
the ground truth relationships that are not recognized, and

blue edges denote the recognized relationships that how-
ever do not exist in the ground truth annotations. With our
proposed SRePN, semantic embedding and source-target-
aware message passing, our model is able to generate scene
graphs with high recall. However, for this task, we think
there is still large space for further enhancing of the perfor-
mance. First, we observe that the object detection perfor-
mance is still not perfect even though our message passing
solution can enhance it. This could limit the quality of the
generated scene graphs. As the examples shown in the first
row of Fig. 4, many objects are not detected and then only
a partial of the scene graph is correctly built. Second, the
quality of annotations would bring difficulty to the model
training. For example, some objects are repeatedly anno-
tated and some annotate classes are ambiguous (e.g. “wear”
and “wearing”, “with” and “has”, “person” and “man”).
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