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Member, IEEE, Siliang Tang, and Yueting Zhuang

Abstract—Recently, Convolutional Neural Networks (CNNs)
have been successfully adopted to solve the ill-posed single
image super-resolution (SISR) problem. A commonly used strat-
egy to boost the performance of CNN-based SISR models is
deploying very deep networks, which inevitably incurs many
obvious drawbacks (e.g., a large number of network parameters,
heavy computational loads, and difficult model training). In
this paper, we aim to build more accurate and faster SISR
models via developing better-performing feature extraction and
fusion techniques. Firstly, we proposed a novel Orientation-Aware
feature extraction and fusion Module (OAM), which contains a
mixture of 1D and 2D convolutional kernels (i.e., 5 × 1, 1 × 5,
and 3×3) for extracting orientation-aware features. Secondly, we
adopt the channel attention mechanism as an effective technique
to adaptively fuse features extracted in different directions
and in hierarchically stacked convolutional stages. Based on
these two important improvements, we present a compact but
powerful CNN-based model for high-quality SISR via Channel
Attention-based fusion of Orientation-Aware features (SISR-CA-
OA). Extensive experimental results verify the superiority of
the proposed SISR-CA-OA model, performing favorably against
the state-of-the-art SISR models in terms of both restoration
accuracy and computational efficiency. The source codes will be
made publicly available.

Index Terms—Single Image Super-Resolution, Channel Atten-
tion, Orientation-aware, Feature Extraction, Feature Fusion

I. INTRODUCTION

S INGLE image super-resolution (SISR) restores a high-
resolution (HR) image containing abundant details and

textures based on its low-resolution (LR) version. It provides
an effective technique to increase the spatial resolution of op-
tical sensors and thus has attracted considerable attention from
both the academic and industrial communities. In last decades,
many machine learning SISR algorithms have been developed,
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such as sparse coding [1], [2], local linear regression [3] and
random forest [4]. However, SISR remains a challenging ill-
posed problem because one specific LR input can correspond
to many possible HR versions, and the mapping space is too
vast to explore.

In recent years, Convolutional Neural Networks (CNNs)
have been successfully adopted to solve the SISR problem by
implicitly learning the complex nonlinear LR-to-HR mapping
relationship based on numerous LR-HR training image pairs.
SRCNN [5] proposed a three-layer CNN model to learn the
nonlinear LR-to-HR mapping function. It is the first time that
deep learning technique is applied to tackle the SISR prob-
lem. Compared with the many traditional machine-learning-
based SISR methods, the lightweight SRCNN model achieved
significantly improved image restoration results. Since then,
many CNN-based models have been proposed to achieve more
accurate SISR results [6]–[14]. Note that a common practice
to improve the performance of CNN-based SISR models is
either increasing the depth of the network or deploying more
complex architectures [9], [15]. For instance, VDSR [6] is a
20-layer deep super-resolution convolutional network (VDSR),
and more recent DRRN [7], SRDenseNet [8], and MemNet
[9] SISR models contain 52, 68, and 80 layers, respectively.
However, deploying very deep CNN models for SISR comes
with many obvious drawbacks such as difficult model training
due to the gradient vanishing problem, slow running time,
and a large number of model parameters [16]–[18]. In this
paper, our motivation is to explore alternative techniques to
improve the performance of SISR in terms of both accuracy
and computational load. More specifically, we look into (1)
designing better-performing feature extraction modules and (2)
exploring more effective schemes for multiple feature fusion.

The first and most important improvement is incorporat-
ing an orientation-aware mechanism to the feature extraction
modules in CNN-based SISR models. Our key observation is
that image structures/textures are the complex combinations
of features extracted in different directions (e.g., horizontal,
vertical, and diagonal). Thus the optimal way of reconstructing
missing image details should also be orientation-dependent.
However, the existing CNN-based SISR models (e.g., SRCNN
[5], VDSR [6], DRRN [7], SRDenseNet [8], and MemNet
[9]) typically utilize standard 3 × 3 or 5 × 5 convolutional
kernels, which are square-shaped and orientation-independent,
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to extract feature maps for the following super-resolution
reconstruction. One possible solution to achieve orientation-
aware SISR is to deploy convolutional kernels of various
shapes in a single feature extraction module. In this paper,
we proposed a novel Orientation-Aware feature extraction and
fusion Module (OAM), which contains the mixture of 1D and
2D convolutional kernels (i.e., 5 × 1, 1 × 5, and 3 × 3) for
extracting orientation-aware features.

The second improvement is to optimize the fusion scheme
for integrating multiple features extracted in different direc-
tions and at various convolutional stages. Inspired by the
channel attention mechanism for re-calibrating channel-wise
features [19], we firstly propose to incorporate local channel
attention (LCA) mechanism within each orientation-aware
feature extraction module. It performs the scene-specific fusion
of multiple outputs of orientation-dependent convolutional
kernels (e.g., horizontal, vertical, and diagonal) to generate
more distinctive features for SISR. Moreover, we utilize global
channel attention (GCA) mechanism as an effective technique
to adaptively fuse low-level and high-level features extracted
in hierarchically stacked OAMs. Finally, we experimentally
evaluate a number of design options to identify the optimal
way to utilize the CA mechanism for re-calculating channel-
wise weights for the concatenated orientation-aware and hier-
archical features.

Based on the above improvements (a. the orientation-aware
feature extraction and b. the channel attention-based feature
fusion), we present a compact but powerful CNN-based model
for high-quality SISR via Channel Attention-based fusion
of Orientation-Aware features (SISR-CA-OA). The proposed
SISR-CA-OA model shows superior performance over the
state-of-the-art SISR methods on multiple benchmark datasets,
achieving more accurate image restoration results and faster
running speed. Overall, the contributions of this paper are
mainly summarized as follows:

• We present a novel feature extraction module (OAM)
containing a number of well-designed 1D and 2D con-
volutional kernels (5 × 1, 1 × 5, and 3 × 3) to extract
orientation-aware features.

• We design channel attention-based fusion schemes (LCA
and GCA), which can adaptively combine features ex-
tracted in different directions and in hierarchically stacked
convolutional stages.

• We present a powerful SISR-CA-OA model for high-
quality SISR, achieving higher accuracy and faster run-
ning time compared with state-of-the-art deep learning-
based SISR approaches [6], [7], [9], [20]–[26].

In this paper, we make the following substantial extensions
to our preliminary research work [27]. Firstly, we perform
ablation studies to systematically validate the effectiveness of
the proposed orientation-aware feature extraction technique.
Secondly, we utilize the channel attention mechanism for the
local fusion of features extracted in different directions and the
global fusion of features extracted in hierarchical stages. More-
over, we investigate a number of design options to identify the
optimal way to utilize the channel attention mechanism for
feature fusion in SISR tasks. Thirdly, we significantly extend

the experiments, comparing the proposed SISR-CA-OA model
with a number of recently published SISR methods [6], [7],
[9], [17], [20]–[26] using various benchmark datasets (Set5
[28], Set14 [29], B100 [30], Urban100 [31], and Manga109
[32].).

The remainder of this paper is organized as follows. We first
review a number of learning-based SISR models and different
feature extraction/fusion techniques in Sec. II. Then Sec. III
provides details of important components in our proposed
SISR-CA-OA model. Qualitative and quantitative evaluation
results are provided in Sec. IV, showing the superiority of our
proposed method. Finally, Sec. V concludes this paper.

II. RELATED WORK

Over the past decades, developing effective SISR tech-
niques to reconstruct a HR image from its corresponding
single LR version has attracted extensive attention from both
the academic fields and the industrial communities. In this
work, we mainly focus on reviewing the existing CNN-based
SISR methods which deploy various network architectures to
construct distinctive feature representations for high-accuracy
image restoration.

A. Deep-learning-based SISR

Dong et al. formulated the first 3-layer convolutional neural
network model (SRCNN) to implicitly learn the end-to-end
mapping function between the LR and HR images [5], [20].
Following this pioneering work, Kim et al. presented deeper
networks (VDSR [6] and DRCN [21]) to generate more
distinctive feature over larger image regions for more accurate
image restoration. To alleviate the gradient vanishing problem
that occurs when training a deep CNN model, they integrate a
global residual learning architecture, which is firstly proposed
by He et al. [33] into their SISR models. Dong et al. proposed
to deploy a deconvolution layer to up-scale the feature maps
at the end of the neural network to achieve faster speed and
better reconstruction accuracy [34]. For the same purpose, Shi
et al. proposed a pixel-shuffle operation for fast and accurate
upscaling of the LR images via rearranging the feature maps
[35].

It is noted that the most previously proposed SISR methods
attempted to achieve more accurate restoration results by
either increasing the depth of the network or deploying more
complex architectures. For instance, Tai et al. developed a
52-layer DRRN model [7] which deploys local and global
residual learning and recursive layers and a 84-layer MemNet
model [9] which contains persistent memory units and multiple
supervisions. More recently, some very deep CNN models
such as RDN [26], D-DBPN [24], MSRN [23], and RCAN
[15] are trained using the high-resolution DIV2K [36] dataset
(containing 800 training images of 2K resolution), achieving
the state-of-the-art SISR performance. However, their training
process took a long time to complete and cannot deliver real-
time processing speed. In this paper, we aim to develop better-
performing feature extraction modules and more effective
feature fusion schemes to improve the performance of SISR
in terms of both accuracy and computational load.
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Fig. 1. The overall architecture of our proposed SISR-CA-OA model. Given the LR input image ILR, we first employ a 3× 3 convolutional layer to extract
low-level features. Then a number of OAMs are hierarchically stacked to infer the non-linear LR-to-HR mapping function. Note here we incorporate a local
channel attention (LCA) mechanism for the local fusion of features extracted in different directions and a global channel attention (GCA) mechanism for the
global fusion of features extracted in different convolutional stages. Global residual learning is added to ease the training process. Finally, we use two 3× 3
convolution layers and the pixel-shuffle operation to reconstruct the final HR image output ISR.

B. Feature Extraction and Fusion

The existing CNN-based SISR models such as SRCNN [20],
VDSR [6], DRRN [7], SRDenseNet [8], and MemNet [9]
typically deploy square-shaped 3×3 or 5×5 convolutional ker-
nels to extract feature maps for the following super-resolution
reconstruction. Li et al. proposed to utilize convolution kernels
of different sizes to construct scale-dependent image features
for better restoration of both large-size structures and small-
size details [23]. He et al. designed multi-receptive-model
to extract features in different receptive fields from local to
global [18]. In some other computer vision tasks, researchers
attempted to deploy a number of kernels of different shapes
to generate more comprehensive and distinctive features. For
instance, Liao et al. introduced TextBoxes [37] which em-
ployed irregular 1×5 convolutional filters to yield rectangular
receptive fields for text detection. In Google Inception-Net V2
[38], Ioffe et al. utilized different 1×n and n× 1 rectangular
kernels instead of n × n square kernels so as to decrease
parameters. Li et al. introduced multi-scale feature extraction
blocks which contain convolutional kernels of various shapes
(e.g., 3× 3, 1× 5, 5× 1, 1× 7, 7× 1, and 1× 1 ) to generate
informative features for classification of eye defects [39]. In
this paper, we present a novel feature extraction module which
contains the mixture of 1D and 2D convolutional kernels (i.e.,
5×1, 1×5, and 3×3) for computing orientation-aware features
for the SISR task.

To perform high-accuracy HR image reconstruction, it is im-
portant to utilize the hierarchical features extracted in different
convolutional stages. Many deep CNN models added dense
skip connections to combine low-leave features extracted in
shallower layers with semantic features computed in deeper
layers to generate more informative feature maps and tackle
the problem of gradient vanishing [6], [7], [10], [25]. Huang et
al. introduced dense skip connections into DenseNet models,
reusing the feature maps of preceding layers to enhance
the representation of features, and alleviate the problem of
gradient vanishing [10]. Zhang et al. proposed to fuse hi-
erarchical feature maps extracted in stacked residual dense

blocks, achieving better reconstruction results [26]. Tai et al.
proposed densely concatenated memory blocks to reconstruct
accurate details for the task of image restoration [9]. Given the
channel-wise concatenated features, it is desirable to design an
effective fusion scheme for selecting the most distinctive ones.
The channel attention (CA) mechanism, which was initially
proposed for image classification tasks [40], [41], has recently
been adopted to solve the challenging SISR problem via re-
calibrating the feature responses towards the most informative
and important channels of the feature maps [11], [15], [42].
In this paper, we design/optimize CA-based fusion schemes to
adaptively combine features extracted in different directions
and in hierarchically stacked convolutional stages.

III. APPROACH

In this section, we propose a CNN-based model for fast
and accurate SISR via Channel Attention-based fusion of
Orientation-Aware features (SISR-CA-OA). We first present
the architecture of the proposed SISR-CA-OA model. Then
we provide details of the key building blocks of the SISR-CA-
OA model include a. the orientation-aware feature extraction
modules and b. the channel attention-based multiple feature
fusion schemes.

A. Network Architecture

As illustrated in Fig. 1, the SISR-CA-OA model consists
of three major processing steps: (1) initial feature extraction
on the input LR image ILR, (2) orientation-aware feature
extraction and fusion, (3) HR image reconstruction.

Given a LR input image ILR (H×W ), a 3×3 convolutional
layer is firstly deployed to extract low-level features F0 ∈
RC×H×W (C- channel number, H - image height, W - image
width) as

F0 = Conv3×3(I
LR), (1)

where Conv3×3 denotes the convolution operation using a
3 × 3 kernel. Then, the extracted F0 is fed to a number
of stacked OAMs to compute orientation-aware features Fn
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in different convolutional stages (more details of orientation-
aware feature extraction are provided in Sec. III-B). Within
each OAM, we design a LCA-based fusion scheme to perform
the scene-specific fusion of multiple orientation-aware fea-
tures. Moreover, we present a feature fusion technique based
on the GCA mechanism to integrate low-level and high-level
semantic features extracted in hierarchically stacked OAMs.
Detail information of these channel attention-based feature
fusion schemes is provided in Sec. III-C.

We adopt the global residual learning technique in the
proposed SISR-CA-OA model by adding an identity branch
from its initial input F0 to the hierarchically fused feature
FGCA (green line in Fig. 1) as

Fout = F0 + FGCA, (2)

where + calculates the sum of feature maps F0 and FGCA at
the same spatial locations and channels. The computed feature
maps Fout is then fed to two convolutional layers and an
up-sampling layer to reconstruct the HR image. For a ×R
upscaling SISR task, two 3×3 convolutional layers are utilized
to convert the channel number of Fout from C to R×R and
the up-sampling layer performs the pixel shuffle operation [35]
to reconstruct the super-resolved output ISR (RH ×RW ).

The SISR-CA-OA model is optimized by minimizing the
pixel-wise difference between the predicted super-resolved
image ISR and corresponding ground truth IGT . In this paper,
the training and testing of SISR models are performed on
the Y channel (i.e., luminance) of transformed YCbCr space
[5], [7], [9], [26]. We adopt the two-parameter weighted
Huber loss function to drive the weights learning [18]. The
weighted Huber loss function sets larger back-propagated
derivatives to accelerate the training process when the training
residuals are significant. In comparison, it linearly decreases
the back-propagated derivative to zero when the residual value
is approaching zero. As a result, the weighted Huber loss
combines the advantages of L1 and L2 loss functions and
fits the reconstruction error more effectively.

B. Orientation-aware Feature Extraction

The CNN-based SISR models typically deploy a set of con-
volutional kernels to extract semantic features for HR image
reconstruction. The 3 × 3 convolutional kernel is the most
widely used option in many state-of-the-art SISR models such
as VDSR [6], DRCN [21], DRRN [7], SRDenseNet [8], EDSR
[25], and TSCN [22]. More recently, some researchers adopted
convolutional kernels of larger sizes (e.g., 5 × 5 or 7 × 7) to
generate multi-scale features [18], [23], [43]. It is noted that
the existing SISR models typically utilize square-shaped and
orientation-independent convolutional kernels (e.g., 3 × 3 or
5× 5) to extract feature maps for reconstructing image struc-
tures/textures in different directions. One possible solution
to build more distinctive features for high-accuracy SISR is
incorporating multiple convolutional kernels of various shapes
for extracting orientation-aware features in a single feature
extraction module.

In each OAM, we deploy a standard convolutional layer
using the 3 × 3 square-shaped kernel and two additional
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Fig. 2. The architecture of the backbone OAM for feature extraction. The
input is firstly fed into three individual convolutional layers using kernels of
different shapes (3 × 3, 1 × 5, and 5 × 1). Then the extracted orientation-
aware feature maps are concatenated and then processed by a LCA-based
fusion block to adaptively re-calibrate the channel-wise weights towards the
most informative and important channels. The residual learning is also added
to OAM to ease the training process.

convolutional layers using 1D kernels (i.e., 1 × 5 and 5 × 1)
to extract features in different directions, as illustrated in
Fig. 2. Let Fn−1 denote the input feature maps of n-th OAM,
the orientation-aware feature maps FH

n , FV
n , and FD

n are
computed as:

FH
n = Conv5×1(Fn−1), (3)

FV
n = Conv1×5(Fn−1), (4)

FD
n = Conv3×3(Fn−1), (5)

where Conv5×1, Conv1×5 and Conv3×3 represent the con-
volution operations using the 5 × 1, 1 × 5, and 3 × 3
kernels, respectively. The 1D 1× 5 kernel only considers the
information in the horizontal direction thus can better extract
vertical features. On the other hand, the 5 × 1 kernel only
covers vertical pixels thus is more suitable for the extraction
of horizontal features. In this manner, we propose to firstly
extract orientation-aware features in different directions (e.g.,
horizontal, vertical, and diagonal) and then perform scene-
specific fusion to generate more informative features for SISR.
In Sec. IV-C1, we will set up experiments to systematically
evaluate the effectiveness of the proposed orientation-aware
feature extraction technique.

C. Channel Attention-based Feature Fusion

Previous research works have proven the effectiveness of
Channel attention (CA) mechanism [19], providing a way
to re-calibrate channel-wise features via explicitly modeling
interdependencies between channels in the task of super-
resolution [15], [42], [44], [45]. In this paper, we design CA-
based fusion schemes to integrate multiple features extracted
in different directions and different convolutional stages. More
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specifically, we incorporate a LCA mechanism within each
OAM, performing the scene-specific fusion of orientation-
aware features, as shown in Fig. 3 (a). Moreover, we present
a GCA-based fusion scheme to integrate low-level and high-
level features extracted in various convolutional stages, as
illustrated in Fig. 3 (b).
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Fig. 3. CA-based fusion schemes for integrating multiple features extracted
in different directions and different convolutional stages. (a) The LCA
mechanism and (b) the GCA mechanism for the channel-wise weights re-
calibration of concatenated orientation-aware and hierarchical features.

1) Fusion of Orientation-aware Features: Within the n-th
OAM, the computed orientation-aware feature maps FH

n , FV
n ,

and FD
n are firstly combined through a simple concatenation

operation as
FCO
n = [FH

n , F
V
n , F

D
n ], (6)

where [·] denotes the concatenation operation, and FCO
n ∈

R3C×H×W is the concatenated orientation-aware features.
Given features extracted in different directions, we deploy
the LCA mechanism to emphasize the informative features
as well as to suppress redundant ones, performing an adaptive
fusion of orientation-aware features. As illustrated in Fig. 3
(a), LCA firstly shrinks the concatenated orientation-aware
features FCO

n ∈ R3C×H×W along the spatial dimensions
H×W through a global average pooling operation. A channel-
wise descriptor z ∈ R3C×1×1 is computed and the c-th
element of z is

zCO
c = GP (FCO

n,c ) =
1

H ×W

H∑
h=1

W∑
w=1

FCO
n,c (h,w), (7)

where GP (·) denotes the global average pooling operation and
FCO
n,c (h,w) is the value at coordinate position (h,w) of the c-

th channel of FCO
n . A gating mechanism [19] consisting of two

fully connected (FC) layers and a ReLU activation function is
then deployed to assign weights to different feature channels
as

αCO = σ(FC(δ(FC(zCO)))), (8)

where FC(·) are the FC layers, δ(·) represents the ReLU
function. Note a sigmoid function σ(·) is utilized to adjust
the channel attention weights to the range between 0 and 1.

The first FC layer reduces the channel dimension to 1
s and

the second FC layer increases the channel dimension from 3C
s

back to 3C. The re-calculated output FCO−LCA
n is obtained

by rescaling the concatenated orientation-aware FCO
n with the

attention weights αCO channel-wisely. More specifically, the
c-th channel of FCO−LCA

n can be calculated as

FCO−LCA
n,c = αCO

c · FCO
n,c . (9)

It is worth mentioning that the scene-specific channel weights
αCO
c are completely self-learned without supervision. As a

result, LCA adaptively assigns higher weights for the informa-
tive features as well as to suppress redundant ones to perform
the adaptive fusion of orientation-aware features.

The computed features FCO−LCA
n is then activated using

a ReLU function and fed into a 3 × 3 convolutional layer,
squeezing the channel number of FCO−LCA

n from 3C to C
as

FLCA
n = Conv3×3(δ(F

CO−LCA
n )). (10)

Local residual learning technique (green line in Fig. 2 (a))
is also deployed to alleviate the gradient vanishing/exploring
problem [25], [26], thus the output of the n-th OAM is

Fn = Fn−1 + FLCA
n . (11)

2) Fusion of Hierarchical Features: It is important to
utilize the hierarchical features extracted in different convolu-
tional stages for high-accuracy SISR [8], [21], [26], [46], [47].
As illustrated in Fig. 2 (b), we deploy a GCA mechanism to re-
calibrate the channel weights for the concatenated hierarchical
features, adaptively combining semantic features extracted in
deeper layers and low-level features extracted in shallower
layers. Given the outputs of N OAMs (F1, F2, · · · , FN ),
we compute the concatenated hierarchical features FCH ∈
RNC×H×W as

FCH = [F1, F2, · · · , FN ]. (12)

Similarly, the GCA mechanism calculates channel-wise atten-
tion weights for the concatenated hierarchical features FCH

as
αCH = σ(FC(δ(FC(GP (FCH))))). (13)

The re-calibrated concatenated hierarchical features
FCH−GCA are calculated by rescaling FCH with the
attention weights αCH channel-wisely as

FCH−GCA
c = αCH

c · FCH
c . (14)

Note the computed FCH−GCA is also activated using a ReLU
function to embed more nonlinear terms into the network.
Moreover, a 1× 1 convolutional layer is utilized to compress
the channel number from N × C to C. The final output of
GCA-based hierarchical feature fusion is

FGCA = Conv1×1(δ(F
CH−GCA)). (15)

In Sec. IV-C2, we set up systematical experiments to vali-
date the effectiveness of the proposed LCA/GCA-based fusion
schemes. Moreover, we investigate a number of design options
for integrating the CA mechanism in our proposed SISR-
CA-OA model to achieve better fusion of multiple features
extracted in different orientations and different convolutional
stages.
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IV. EXPERIMENTAL RESULTS

In this section, we systematically evaluate the performance
of our proposed SISR-CA-OA model and compare it with the
state-of-the-art SISR methods quantitatively and qualitatively
on a number of commonly used benchmark datasets.

A. Datasets and Metrics

Training: Following [6], [21], we train a light-weight
version of SISR-CA-OA model consisting of 10 OAMs on
RGB91 dataset from Yang et al. [2] and another 200 images
from Berkeley Segmentation Dataset (BSD) [30]. Moreover,
we make use of the DIVerse 2K resolution image dataset (i.e.,
DIV2K) [36] to train an enhanced SISR-CA-OA model (SISR-
CA-OA∗) which contains 64 stacked OAMs. Three commonly
used data augmentation techniques are utilized to expand our
training dataset, including 1. Rotation: rotate image by 90◦,
180◦ and 270◦. 2. Flipping: horizontally flip image. 3. Scaling:
downscale image with the scale factors of 0.9, 0.8, 0.7, 0.6
and 0.5. After the augmentation, we randomly crop these
images into a number of sub-images (48× 48 for the RGB91
and BSD datasets and 96 × 96 for the DIV2K dataset). The
LR images are obtained by down-sampling corresponding HR
images using bicubic interpolation.

Testing: Five commonly used public benchmark datasets are
utilized for evaluating the performance of our SISR-CA-OA
model. Set5 [28] and Set14 [29] are widely used datasets in
SISR tasks. B100 [30] contains 100 natural images collected
from BSD, and Urban100 [31] consists of 100 real-world
images which are rich of structures. Manga109 dataset, which
consists of a variety of 109 Japanese comic books, is also
employed [32].

Evaluation Metrics: Peak signal-to-noise-ratio (PSNR) and
structural similarity index (SSIM) [48] are used for SISR
performance evaluation. The training and testing of SISR
models are performed on the Y channel (i.e., luminance)
of transformed YCbCr space [5], [7], [9], [26]. For a fair
comparison, we crop pixels near image boundary according
to [20].

B. Implementation Details

We implement our SISR-CA-OA model with Caffe [49]
platform and train this model by optimizing Modified Huber
Loss function on a single NVIDIA Quadro P6000 GPU with
Cuda 9.0 and Cudnn 7.1 for 60 epochs. When training our
model, we only consider the luminance channel (Y channel of
YCbCr color space) in our experiments. Adam [50] solver
is utilized to optimize the weights by setting β1 = 0.9,
β2 = 0.999 and ε = 1e−8. In each training batch, we randomly
crop these augmented training images into 48×48 patches and
the batch size is set to 64 for training our SISR-CA-OA. The
initial learning rate is set to 1e−4 and halved after 50 epochs.
Training of SISR-CA-OA models approximately takes two
days. When training our SISR-CA-OA for scale factors ×3
and ×4, we initialize the weights with pre-trained ×2 model
and decrease the learning rate to 1e−5. The source codes will
be made publicly available in the future.

C. Performance Analysis

In this section, we set up ablation experiments to evaluate
the effectiveness of (1) orientation-aware feature extraction,
and (2) channel attention based feature fusion.

1) Orientation-aware Feature Extraction: We evaluate the
performance of three different designs of residual blocks
including (a) a standard residual block which consists of
two 3 × 3 convolutional layers and a ReLU activation layer
[25], [42], (b) a residual block which utilizes three individual
square-shaped (3×3) convolutional kernels to extract features,
(c) our propose orientation-aware residual block which uses a
standard 3×3 and two additional 1×5 and 5×1 convolutional
kernels to extract features in different directions. For a fair
comparison, three different residual blocks are implemented in
the same EDSR the baseline model [25] without performing
CA-based feature fusion. We set the number of residual blocks
N = 10 and the channel number of each convolutional layer
to 64. Tab. I summarizes the quantitative evaluation results
(PSNR and SSIM) on Set5, Urban100, and Manga109 datasets
with the scale factor ×2. First of all, it is experimentally
demonstrated that incorporating multiple convolutional kernels
within a residual block (i.e., design (b) and (c)) can generally
construct more distinctive features and achieve higher SISR
accuracy. Moreover, the residual block incorporating a mixture
of 1D and 2D convolutional kernels (3× 3, 1× 5, and 5× 1)
performs better than the one based on three square-shaped
kernels (3 × 3), achieving higher PSNR and SSIM indexes
with fewer parameters. The experimental results manifest
the effectiveness of the orientation-aware design, utilizing
convolutional kernels of various shapes to extract orientation-
aware features for more accurate reconstruction of image
structures/textures in different directions.

TABLE I
EXPERIMENTAL EVALUATION OF RESIDUAL BLOCKS OF THREE DIFFERENT

DESIGNS. PSNR(DB) AND SSIM METRICS ARE CALCULATED ON SET5,
URBAN100 AND MANGA109 DATASETS WITH SCALE FACTOR ×2.

Different Residual Blocks
Design (a) Design (b) Design (c)

Set5 PSNR 37.76 37.79 37.84
SSIM 0.9596 0.9596 0.9600

Urban100 PSNR 31.17 31.35 31.41
SSIM 0.9187 0.9206 0.9216

Manga109 PSNR 37.89 37.95 38.02
SSIM 0.9747 0.9748 0.9749

2) CA-based Feature Fusion: In this section, we set up
three ablation experiments to evaluate the effectiveness of the
proposed CA-based feature fusion schemes, as illustrated in
Fig. 5. In Experiment A, the concatenated orientation-aware
and hierarchical features are directly fed to a ReLU activation
layer and a convolution layer to compute the fused feature
map without utilizing the LCA/GCA mechanisms for channel
weights re-calibration. In Experiment B, we only perform the
LCA-based fusion in individual OAMs to combine multiple
outputs of orientation-dependent convolutional kernels. In Ex-
periment C, we perform both LCA-based orientation-aware
feature fusion and GCA-based hierarchical feature fusion.
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Fig. 4. Structures of three residual block designs: (a) A residual block utilized
in many SISR models [25], [42], (b) A residual block which contains three
square-shaped (3 × 3) convolutional kernels for feature extraction, (c) Our
proposed orientation-aware residual block which incorporates a mixture of
1D and 2D convolutional (3× 3, 1× 5, and 5× 1) kernels.

TABLE II
COMPARATIVE RESULTS OF THREE ABLATION EXPERIMENTS

WITH/WITHOUT PERFORMING THE CA-BASED CHANNEL WEIGHTS
RE-CALIBRATION. PSNR(DB) AND SSIM METRICS ARE CALCULATED ON
SET5, URBAN100 AND MANGA109 DATASETS WITH SCALE FACTOR ×2.

Different Fusion Schemes
Exp. A Exp. B Exp. C

LCA × X X
GCA × × X

Set5 PSNR 37.86 37.90 37.97
SSIM 0.9659 0.9600 0.9605

Urban100 PSNR 31.45 31.51 31.57
SSIM 0.9217 0.9220 0.9226

Manga109 PSNR 38.03 38.11 38.38
SSIM 0.9748 0.9750 0.9755

Tab. II shows the comparative results (PSNR and SSIM) on
Set5, Urban100, and Manga109 datasets with the scale factor
×2. It is experimentally observed that the CA mechanism pro-
vides a generally effective technique for the fusion of features
extracted in different directions and at various convolutional

stages. For instance, the PSNR index increases from 38.03 dB
to 38.11 dB on the Manga109 dataset when incorporating a
LCA mechanism within each individual OAMs. The index is
further boosted from 38.11 dB to 38.38 dB by utilizing the
GCA mechanism to re-calculate channel-wise weights for the
concatenated hierarchical features. The underlying principle
is that LCA/GCA mechanisms can adaptively assign higher
weights for the informative feature channels as well as to
suppress redundant ones to generate more informative fused
features and achieve higher SISR accuracy.

Moreover, we experimentally evaluate a number of design
options in which the CA mechanisms are placed in different
positions in a feature fusion module. In Design (a) (Fig. 6 (a)),
we place the LCA/GCA mechanisms after a ReLU activation
function and a convolutional layer which is the commonly
adopted configuration in many SISR models [11], [15], [42],
[44], [45]. In Design (b) (Fig. 6 (b)), we put the CA re-
calibration functions between the ReLU and convolutional
layers. In Design (c) (Fig. 6 (c)), we move the LCA/GCA
mechanism to the position before the ReLU and convolutional
layers. Note the ReLU activation layer is utilized to embed
more nonlinear terms into the network, and the convolutional
layer compresses the channel number of concatenated features.
Tab. III shows the experimental results of different designs
on Set5, Urban100, and Manga109 datasets with the scale
factor ×2. It is observed that Design (c) achieves higher
PSNR and SSIM indexes on all testing datasets than other
alternatives. The experimental results illustrate that it is better
to immediately utilize the CA mechanism to re-calibrate
channel-wise weights for concatenated feature maps before
squeezing the channel number of features (the convolutional
layer) or converting the negative inputs to zeros (the ReLU
activation function).

TABLE III
COMPARATIVE EVALUATION OF THREE DESIGN OPTIONS IN WHICH THE

CA-BASED CHANNEL WEIGHTS RE-CALIBRATION IS PERFORMED IN
DIFFERENT POSITIONS IN A FEATURE FUSION MODULE. THE

EXPERIMENTAL METRICS (PSNR(DB) AND SSIM) ARE CALCULATED ON
SET5, URBAN100 AND MANGA109 DATASETS WITH SCALE FACTOR ×2.

Comparison Different CA-based Fusions
Design (a) Design (b) Design (c)

Set5 PSNR 37.91 37.93 37.97
SSIM 0.9603 0.9602 0.9605

Urban100 PSNR 31.46 31.50 31.57
SSIM 0.9220 0.9221 0.9226

Manga109 PSNR 38.13 38.21 38.38
SSIM 0.9751 0.9748 0.9755

D. Comparisons with State-of-the-art SISR Methods

Firstly, we compare our proposed light-weight SISR-CA-
OA model (containing 10 OAMs) with a number of fast and
accurate SISR methods which are also trained on the RGB91
[2] and BSD [30] datasets. More specifically, we consider
Aplus [3], SelfExSR [31], SRCNN [20], VDSR [6], DRCN
[21], ms-LapSRN [17], DRRN [7], MemNet [9], and TSCN
[22]. Source codes or pre-trained models of these methods are
publicly available.
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Fig. 5. Ablation experiments to evaluate the effectiveness of the proposed CA-based feature fusion schemes. (a) Feature fusion without utilizing the LCA/GCA
mechanisms for channel weights re-calibration, (b) Feature fusion with LCA-based channel weights re-calibration only, (c) Feature fusion incorporating both
LCA and GCA mechanisms.

Tab. IV (PSNR and SSIM indexes) show quantitative evalu-
ation results on Set5, Set14, B100, Urban100, and Manga109
with the scale factors ×2, ×3, ×4. Tab. V shows the averaged
running time of different SISR methods to process 100 input
images of three different resolutions including 480 × 360,
640 × 480 and 1280 × 720. The testing is conducted on a
PC which is equipped with NVIDIA Quadro P6000 GPU (24
GB memory). It is observed that our proposed SISR-CA-OA
model performs favorably against these SISR models in terms
of both restoration accuracy and computational efficiency. It
achieves higher PSNR and SSIM values than some very deep
networks (e.g., DRCN [21], DRRN [7], MemNet [9]) and runs
faster compared with some light-weight SISR models such as
TSCN [22] and ms-LapSRN [17]. Some visual comparative
results with state-of-the-art deep-learning-based SISR methods
are shown in Fig. 7, 8, and 9. It is observed that our SISR-CA-
OA model can achieve better image restoration results for three
different scale factors (×2, ×3, and ×4). As shown in Fig. 7
and Fig. 9, the SISR-CA-OA model can restore sharper and
clearer texture patterns in the highlighted regions. Moreover, it
can effectively suppress undesired artifacts or distortions when
reconstructing parallel edges/structures, as illustrated in Fig. 8.

Moreover, we compare the enhanced SISR-CA-OA∗ model
(containing 64 OAMs) with the best-performing SISR models
trained on the high-resolution DIV2K dataset including MSRN
[23], D-DBPN [24], EDSR [25], and RDN [26]. The pre-
trained models of these methods are publicly available. We cal-
culate the average PSNR and SSIM values for scale factors×2,
×3 and ×4 on Set5, Set14, B100, Urban100 and Manga109
testing datasets. As illustrated in Tab. VI, the proposed SISR-
CA-OA∗ model also achieves the highest PSNR and SSIM

values in most cases. Compared with other SISR models
trained the high-resolution DIV2K dataset, our SISR-CA-OA∗
can more accurately restore complex image details (Fig. 10)
without incurring undesired artifacts (Fig. 11) in large scale
factor (×4) SISR tasks.

V. CONCLUSION

In this paper, we proposed a novel CNN-based model
for high-quality SISR via channel attention-based fusion of
orientation-aware features. Instead of utilizing square-shaped
convolutional kernels (e.g., 3× 3 or 5× 5) to extract features
[5]–[9], we integrate multiple convolutional kernels of various
shapes (i.e., 5×1, 1×5, and 3×3) in a single feature extraction
module to extract orientation-aware features. Moreover, we
adopt the channel attention mechanism for the local fusion
of features extracted in different directions and the global
fusion of features extracted in hierarchical stages. Extensive
benchmark evaluations well demonstrate that our proposed
SISR-CA-OA model achieves superiority over state-of-the-
art SISR methods [6], [7], [9], [20]–[26] in terms of both
restoration accuracy and computational efficiency.
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INDICATE THE BEST AND THE SECOND BEST PERFORMANCE RESPECTIVELY.

Dataset Scale MSRN [23] D-DBPN [24] EDSR [25] RDN [26] SISR-CA-OA∗

Set5
×2 38.08 / 0.9605 38.09 / 0.9600 38.11 / 0.9601 38.24 / 0.9614 38.22 / 0.9613
×3 34.38 / 0.9262 – – 34.65 / 0.9282 34.71 / 0.9296 34.73 / 0.9297
×4 32.07 / 0.8903 32.47 / 0.8980 32.46 / 0.8968 32.47 / 0.8990 32.55 / 0.8994

Set14
×2 33.74 / 0.9170 33.85 / 0.9190 33.92 / 0.9195 34.01 / 0.9212 33.91 / 0.9208
×3 30.34 / 0.8395 – – 30.52 / 0.8462 30.57 / 0.8468 30.59 / 0.8470
×4 28.60 / 0.7751 28.82 / 0.7860 28.80 / 0.7876 28.81 / 0.7871 28.86 / 0.7882

B100
×2 32.23 / 0.9013 32.27 / 0.9000 32.32 / 0.9013 32.34 / 0.9017 32.35 / 0.9016
×3 29.08 / 0.8041 – – 29.25 / 0.8093 29.26 / 0.8093 29.29 / 0.8099
×4 27.52 / 0.7273 27.72 / 0.7400 27.71 / 0.7420 27.72 / 0.7419 27.76 / 0.7424

Urban100
×2 32.22 / 0.9326 32.55 / 0.9324 32.93 / 0.9351 32.89 / 0.9353 33.03 / 0.9359
×3 28.08 / 0.8554 – – 28.80 / 0.8653 28.80 / 0.8653 28.98 / 0.8680
×4 26.04 / 0.7896 26.38 / 0.7946 26.64 / 0.8033 26.61 / 0.8028 26.74 / 0.8060

Manga109
×2 38.82 / 0.9868 38.89 / 0.9775 39.10 / 0.9773 39.18 / 0.9780 39.24 / 0.9778
×3 33.44 / 0.9427 – – 34.17 / 0.9476 34.13 / 0.9484 34.38 / 0.9493
×4 30.17 / 0.9034 30.91 / 0.9137 31.02 / 0.9148 31.00 / 0.9151 31.22 / 0.9168

Local/Global
Feature 
Fusion

LCA/GCA

R
eL
U

C
o
n
v

+

(a)

R
eL
ULocal/Global

Feature 
Fusion

LCA/GCA C
o
n
v

+

(b)

Local/Global
Feature 
Fusion

LCA/GCA

R
eL
U

C
o
n
v

+

(c)
Fig. 6. Three design options in which the CA mechanisms are placed in
different positions in a feature fusion module. (a) The CA-based re-calibration
functions are applied after a ReLU activation function and a convolutional
layer, (b) The CA-based re-calibration functions are placed between the ReLU
and convolutional layers, (c) The LCA/GCA mechanisms are deployed before
the ReLU and convolutional layers. Note Design (a) is the commonly adopted
CA configuration in many SISR models [11], [15], [42], [44], [45].
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Fig. 7. Visual comparison of ×2 SISR results for “img030” in the Urban100 dataset. Note all SISR models are trained on the RGB91 [2] and BSD [30]
datasets.
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Fig. 8. Visual comparison of ×3 SISR results for “img012” in the Urban100 dataset. Note all SISR models are trained on the RGB91 [2] and BSD [30]
datasets.
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Fig. 9. Visual comparison of ×4 SISR results for “img099” in the Urban100 dataset. Note all SISR models are trained on the RGB91 [2] and BSD [30]
datasets.
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Fig. 10. Visual comparison of ×4 SISR results for “img004” in the Urban100 dataset. Note all SISR models are trained on the DIV2K dataset [36].

Urban100
img076(×4)

Ground Truth
PSNR/SSIM

MSRN
23.06/0.7395

D-DBPN
23.18/ 0.7430

EDSR
23.90/0.7718

RDN
24.06/0.7791

SISR-CA-OA∗
24.32/0.7877

Fig. 11. Visual comparison of ×4 SISR results for “img076” in the Urban100 dataset. Note all SISR models are trained on the DIV2K dataset [36].
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