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Efficient Computation of Large
Deformation of Spatial
Flexure-Based Mechanisms
in Design Optimizations
Design optimizations of flexure-based mechanisms take a lot of computation time, in partic-
ular when large deformations are involved. In an optimization procedure, statically
deformed configurations of many designs have to be obtained, while finding the statically
deformed configuration itself requires tens to hundreds of load step iterations. The kinemat-
ically started deformation method (KSD-method) (Dwarshuis, K. S., Aarts, R. G. K. M.,
Ellenbroek, M. H. M., and Brouwer, D. M., 2020, “Kinematically Started Efficient Position
Analysis of Deformed Compliant Mechanisms Utilizing Data of Standard Joints,” Mech.
Mach. Theory, 152, p. 103911) computes deformed configurations fast by starting the com-
putation from an approximation. This approximation is obtained by allowing the mecha-
nism only to move in the compliant motion-direction, based on kinematic equations,
using data of the flexure joints in the mechanism. This is possible as flexure-based mecha-
nisms are typically designed to be kinematically determined in the motion directions. In this
paper, the KSD-method is extended such that it can also be applied without joint-data, such
that it is not necessary to maintain a database with joint-data. This paper also shows that
the method can be used for mechanisms containing joints that allow full spatial motion.
Several variants of the KSD-method are presented and evaluated for accuracy and required
computation time. One variant, which uses joint-data, is 21 times faster and shows errors in
stress and stiffness below 1% compared to a conventional multibody analysis on the same
model. Another variant, which does not use joint-data, reduces the computation time by a
factor of 14, keeping errors below 1%. The KSD-method is shown to be helpful in design
optimizations of complex flexure mechanisms for large range of motion.
[DOI: 10.1115/1.4054730]
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1 Introduction
Flexure joints have no backlash and friction and therefore allow

excellent predictable motion, in contrast to sliding or roller bear-
ings. Therefore, they are often used in precision applications like
electron microscopes and lithography equipment [1–7]. A challenge
is the limitation in the range of motion of flexure joints, which is
mainly limited by stress in the material and by a dramatically
drop of the support stiffness and load bearing capacity under defor-
mation [8]. Design optimizations are used to obtain flexure joint
designs in which this loss of support stiffness is as low as possible
[9,10].
However, these design optimizations are taking a lot of computa-

tion time. For example, it takes several hours to optimize five design
parameters of a spherical flexure joint [10] (see Fig. 6) that is
modeled with 48 spatial beam elements. Although the analysis of
a single design for this flexure can be executed in about 10 s, the
optimization takes several hours as it requires the analysis of hun-
dreds of designs. Therefore, the number of design parameters that
can be optimized is limited. Moreover, as the computation time sig-
nificantly increases with increasing complexity of the analyzed part,
the optimization of a complete flexure-based mechanism that con-
tains multiple flexure joints is still practically unfeasible.
A large part of the computation time is used to obtain the config-

uration of a mechanism after deformation. A considerable amount

of literature has been published on modeling of the deformation
of flexure mechanisms, and literature overviews can be found in
Refs. [11–13]. Most literature focuses on the modeling of a single
leafspring (i.e., a single flexure, which is a thin flexible beamlike
element that is the common building block of flexure mechanisms
for large range of motion). These leafsprings can be modeled by
beam elements using the finite element method, see, e.g., Refs.
[14,15], but a single beam element is only accurate for small defor-
mation. An analytical solution for large bending of beams exist
which is based on elliptic integrals [16–19]. However, the applica-
tion of this solution in 3D leads to an infinite series of elliptic inte-
grals [20,21]. A method that works well in 3D is the beam constraint
model, which is a model for slender beams that captures nonlinear
effects [21–24]. Models for beams with a rectangular cross section
of which the width is much larger than the thickness are derived in
Refs. [25,26]; these models are more appropriate to model leaf-
springs. In all the before mentioned techniques, leafsprings can be
modeled by multiple serial connected elements [14,19,23,27,28],
which can optionally be solved by the chain algorithm. The chain
algorithm solves the displacement of the beams individually in a
sequence starting from the beams root [2,29]. However, flexure
mechanisms for large range of motion tend to be composed of
many leafsprings such that all the before mentioned techniques
that model each leafspring individually make the analysis still
cumbersome.
The most widely used method to reduce the computation time of

static computations on general mechanisms is model order reduc-
tion technique [30–32]. However, many of these techniques are
only accurate for small deformations such that they cannot be
used for the optimization of flexure joints for large range of
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motion. The available model order reduction techniques for large
deformation typically use a data of the mechanism which have to
be available before the actual simulation [33,34]. In a design opti-
mization, these required data are typically not available and obtain-
ing the required data before the actual optimization is unpractical as
this requires a lot of computation time. Therefore, model order
reduction techniques that require data of the full mechanism are
not suitable for design optimizations.
The main reason for the large computation time of conventional

methods is that a large deformation cannot be applied in a single
computation step. A large deformation has to be applied in multiple
small steps and for each step, equilibrium has to be achieved by
applying an iterative procedure in order to ensure the mathematical
system to converge. In the kinematically started deformation
method (KSD-method) [35], we avoided this by starting the compu-
tation from a cheap obtained approximation of the deformed config-
uration instead of the undeformed configuration.
The essence of this approximation is the fact that flexure-based

mechanisms for precision mechanisms are typically designed to be
compliant in the motion directions and stiff in the other directions
[36]. The kinematic behavior of thesemotion directions is well deter-
mined, meaning that its motion is almost independent of the stiffness
properties of themechanism and therefore thismotion can be approx-
imated by kinematic equations. The KSD-method approximates this
motion and uses the result as a starting point for finding equilibrium
of the mechanism. Henceforth, the motion in the motion-direction
will be called “intended motion” (in other papers referred to as
“degrees-of-freedom (DOFs)”) and the motion in the stiff, ideally
constraint direction is called “unintended motion” (also referred to
as “support-directions” or “off-axis directions” in other papers).
In Ref. [35], the approximation was made using previously

obtained data of the flexure joints in the mechanism. These data
(henceforth joint-data) describe the kinematic behavior of the
joints deforming in the intended directions. It is useful to store
joint-data in a database as the required data are almost independent
on the stiffness properties of the joint, but mainly depend on the
joint-composition (i.e., the way in which the flexures in the joint
are positioned and connected with respect to each other). Flexure
mechanisms are often built from joints with a standard composi-
tions, examples of such standard joint-compositions are the cross-
flexure [37] and the butterfly hinge [38].
Two different variants of the KSD-method were introduced,

KSD-full and KSD-reduced. KSD-full computes exactly the same
deformed configuration as a conventional method, but more effi-
cient. The computation time required for KSD-reduced was even
lower than that of KSD-full by calculating only an approximation
of the deformed configuration.
However, two issues are related to the KSD-method. In the first

place, there is a strong tradeoff between computation time and the
accuracy. On the one hand, the KSD-full requires a lot of computa-
tion time with respect to KSD-reduced. On the other hand,
KSD-reduced can accidently result in an error that is far over 10%,
especially the stress results are unreliable. The second issue is that
the KSD-method requires joint-data of the joints in the mechanism.
Obtaining these data requires a lot of time and therefore the
KSD-method is mainly valuable for mechanisms that consist of
flexure joints with compositions of whose data are already available.
In this paper, new variants of the KSD-method are developed to

address the two issues mentioned before. These variants are more
efficient than KSD-full and more accurate than KSD-reduced. In
this way, the user can select a different variant that reduces the com-
putation time significantly in case a lower accuracy is permitted.
One of the variants does not require joint-data such that the
KSD-method can also be efficiently used for mechanisms contain-
ing joints of which no joint-data are available.
Section 2 gives a summary of the existing variants of the

KSD-method and Sec. 3 presents the new variants of the method.
Section 4 gives results to show the efficiency and accuracy of the
different variants of the KSD-method in comparison to a conven-
tional method. In this section, the KSD-method is applied to

several mechanisms, of which one contains spatial spherical
flexure joints where Ref. [35] only applied the KSD-method to
joints for planar motion. Section 4 also shows that the computation
time can be reduced significantly by neglecting the geometric part
of the stiffness matrix during the computation. One of the prerequi-
sites for using joint-data in the KSD-method in design optimizations
is that these data are almost unaffected by changes of dimensions of
flexure joints. Section 5 examines this requisite and analyzes the
accuracy of the KSD-method. Section 6 performs design optimiza-
tions using the KSD-method. The paper ends with the conclusions.

2 Summary of the Existing Variants of the
Kinematically Started Deformation Method
Goal of the KSD-method is to make static computation more effi-

cient by avoiding the long iterative procedures that are required in
conventional methods. All variants of the KSD-method consist of
several steps that will be summarized after two introductory notes.

(1) In the KSD-method, the motion of a flexure-based mecha-
nism is split into intended motion and unintended motion.
The intended motion is approximated in the first two steps
of the KSD-method, mainly based on kinematic relations.
The remaining motion is computed in later steps.

(2) A flexure mechanism is considered as a combination of
flexure joints and stiff links. Each flexure joint is modeled
by a small finite element model. Two nodes of this model
are connected to the links; these are called interface nodes
and their displacements are interface displacements, see
Fig. 1. The other nodes are called internal nodes, and their
displacements are called internal displacements. The term
displacement is used for the combination of rotations and
translational displacements.

Two different variants of the KSD-method were introduced in
Ref. [35], KSD-full and KSD-reduced. KSD-full consists of the
five steps described below. Steps 1 and 2 both require joint-data
that describe the kinematic behavior of the joints. The method to
obtain these data is explained after the description of the five
steps. The steps are visualized in Fig. 2 for a 2D four-bar mecha-
nism consisting of four cross-flexures and three stiff links. Each
flexure is modeled by four rigid and six flexible beam elements as
also shown in Fig. 1. The five steps are:

(1) Estimate the interface displacements based on a prescribed
displacement of the end-effector and by using joint-data to
constrain motion in unintended directions. For the 2D cross-
flexures, these joint-specific constraint equations can be the x
and y positions as a function of the intended motion, i.e., the

Fig. 1 Two-dimensional cross-flexuremodeled by four rigid and
six flexible elements in deformed configuration. Functions of x(θ)
and y(θ) have to be stored in a database to constrain the unin-
tended motion.
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rotation θ, see Fig. 1. If the mechanism is kinematically
determinate [36], the resulting kinematic equations can be
solved uniquely.

(2) Estimate for each joint internal displacements based on the
interface positions of that joint, and use the internal configu-
ration to obtain the stiffness matrices of the joints. In order to
speed up this step, we use the element orientation-based body
that is introduced in Ref. [35], which approximates the inter-
nal configuration based on joint-data. The main idea is that an
estimation of the internal configuration can be obtained effi-
ciently if the orientations of all the elements in the joint are
known. This is possible as the orientations are the only var-
iables that make the static equilibrium equation nonlinear.
Reference [35] explains the method for planar joints. Appen-
dix A summarizes the method and explains how this tech-
nique can be used for joints with spatial intended motion.

(3) Update the displacements of the interface points based on
static equilibrium of the mechanism. To do this, for each
joint the stiffness matrix of step 2 is reduced using the
Craig–Bampton boundary modes to obtain the stiffness
matrix in terms of its two interface points.

(4) Update the internal configuration for each joint based on the
new position of the interface points and the stiffness matrices
of step 2.

(5) Update all displacements by solving the full model for static
equilibrium. This step is similar to a conventional method.
However, where conventional methods start from the unde-
formed configuration, the KSD-method starts this step from
the positions that are obtained in steps 3 and 4 as initial
configuration.

These are the five steps of KSD-full. Step 5 of KSD-full is the
most computationally expensive, where the error in the positions
after step 4 is already small. Therefore, KSD-reduced was intro-
duced which only performs step 1 till 4 of KSD-full, shown in
column 2 of Fig. 2.
The joint-data that is used in steps 1 and 2 are obtained based on

static simulations with the finite element model of the joint. One of
the interface nodes of the joint is fixed and the other interface node
is prescribed in the intended directions. For a finite number of
values of the intended motion, the configuration of the joint is
obtained based on static equilibrium. Based on the resulting config-
urations of the joint in the intended deformation, the required data
for steps 1 and 2 are approximated based on a least-square fit.
Using the cross-flexure in Fig. 1 as an example, we can fix interface
point A and prescribe the rotation of interface point B at a finite
number of values between −30 and 30 deg. Based on the resulting
configurations from static equilibrium, we can fit the positions x and

Fig. 2 Overview of the steps in various variants of the KSD-method
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y as a function of the rotation θ which is the joint-data that are
required for step 1.
The rotation of each individual element can also be fitted as a

function of the intended rotation θ which is the data required for
step 2. If a third-order polynomial least-square fit is used, the result-
ing equation for the rotation of element k in the cross-flexure will be

θk = c1θ + c2θ
2 + c3θ

3 (1)

where the constants ci are approximated by the least-square fit. The
resulting constants will be insensitive to many of the dimensions of
the joint like the thickness and the width of the flexures. This is as
the kinematic behavior of joints deforming in the intended direction
is well determined, i.e., insensitive to the stiffness properties. This
means that the same fit functions can be used for cross-flexures
with different dimensions making it useful to store the result in a
database.
Some dimensions may change the geometry of the flexure joint

significantly and therefore influence the element rotations. In that
case, the simulation results should be obtained for multiple values
of this dimension and it should be taken into account explicitly in
the function. As the rotations are sensitive to angle α (see Sec. 5),
the function for the rotation of element k of a third-order approxima-
tion will be

θk = c10θ + c20θ
2 + c30θ

3 + c11θα + c21θ
2α + c12θα

2 (2)

This ends the summary of the existing variants of the
KSD-method, and more details can be found in Ref. [35].

3 New Variants of the Kinematically Started
Deformation Method
For complex mechanisms, the error of the stress result of

KSD-reduced is very sensitive to the accuracy of the joint-data. It
was found that without an iterative procedure to find internal config-
urations of the flexure joints, the stress result was unreliable. A
second observation is that the performance of the KSD-method is
sensitive to errors in the unintended displacements of the joints
after step 3.
Based on these two observations, a new variant of the

KSD-method is introduced, referred to as KSD-it1 (shown in the
third column of Fig. 2). KSD-it1 performs the first three steps of
the KSD-method similar to KSD-full and KSD-reduced. In step 4,
the configuration of the joints is updated with two differences
with respect to KSD-full and KSD-reduced. In the first place, the
update is iterative. So, where KSD-full and KSD-reduced only
update the configuration once based on the stiffness matrix that
was obtained in step 2, KSD-it1 recomputes the stiffness matrix
after the update of the configuration. This is repeated till certain
accuracy is reached. The second difference is related to the bound-
ary conditions. In KSD-full and KSD-reduced, the positions of the
interface nodes are used. KSD-it1 uses positions for the intended
directions and reaction forces for the unintended directions as
boundary conditions. Using the cross-flexure in Fig. 1 as an
example, we define the rotation of point B with respect to point A
(i.e., the position of B in intended direction) and the reaction
forces on point B in horizontal and vertical directions (i.e., the reac-
tion forces in unintended directions) as boundary conditions. The
reason for this second change is that small errors in the deforma-
tions in the unintended directions have a large influence on the reac-
tion forces and therefore on the resulting stress in the flexure joints
where a small variation in the reaction forces does not significantly
change the stress, the position, or the stiffness. Because of this
second difference in step 4, the position of both interface points
with respect to each other may change a little in this step. Therefore,
a fifth step is required which updates the interface positions, and this
step is performed the same as step 3.
In step 2, the internal configuration is obtained based on

joint-data. However, this step can also be applied by an iterative

procedure starting from the undeformed configuration of the joint.
The resulting procedure is similar to step 4 of KSD-it1, except
from the fact that forces in the unintended directions will be set
to zero as they are not available in step 2. The resulting approach
will be referred to as KSD-it2 and is shown in the fourth column
of Fig. 2. The disadvantage of this approach is that step 2 will
require significantly more computation time. The advantage of
this procedure is that it does not require the joint-data that are oth-
erwise used in step 2.
In KSD-it2, it still requires some joint-data to perform step 1 of

the KSD-method, i.e., the data that describe the intended motion.
Therefore, KSD-it3 is introduced which does not require joint-data.
KSD-it3 is the same as KSD-it2 except from the approximation of
the intended motion in step 1. This intended motion is obtained by
assuming the hinges to be ideal, i.e., neglecting parasitic motion.
For example, the intended motion of the cross-flexure is assumed
to be a pure rotation around its initial center. Using such a rough
approximation is possible because in step 2 the internal configura-
tion is obtained by assuming the reaction forces in the unintended
directions to be zero instead of using the displacements in the unin-
tended directions. Some flexure joints cannot be described as ideal
hinges as their intended motion is not a simple combination of ideal
rotations or translations. An example is the folded leaf spring which
has five intended directions that are not a simple combination of
rotations and translations. KSD-it3 does not work for mechanisms
containing these joints. However, for these joints, a rough approx-
imation of the intended motion based on a few simulation results
can be used.
Many more variants of the KSD-method could be defined. It is

also possible to use different update methods for different joints.
For example, if a mechanism contains two types of joints and for
only one of them joint-data are available, then it is possible to
update one of the joint-types based on the joint-data (similar to
KSD-it1) and the other joint type can be assumed to be ideal with
an iterative procedure in step 2 (similar to KSD-it3). In this
paper, we stick to the five introduced methods as their results
together give a representative overview of the achievable reduction
in computation time and achievable accuracy.
The results described below indicate that KSD-reduced is the

most suitable method to use in a design optimization if the accu-
racy requirements are not high and joint-data for all joints are avail-
able, as KSD-reduced is the most efficient variant. Otherwise,
KSD-it1 is probably most suitable for the joints of which the
joint-data are available and KSD-it3 for the joints of which no
data is available.
Five conditions need to be fulfilled in order to obtain an accurate

approximation based on kinematic relations in the first two steps of
the KSD-method. Although this may seem to limit the applicability
of the method significantly, the first four conditions hold for most of
the common flexure-based mechanisms and optimization criteria:

• The analyzed mechanism should be built from separable joints
and links.

• The analyzed mechanism should be kinematically
determinated.

• The large displacement of the mechanism should be prescribed
by kinematic relations (i.e., by input displacements) and not by
input forces.

• The displacement of the mechanism in the unintended direc-
tion should be small, as it is initially approximated linearly.

• Most variants of the KSD-method require data of the flexure
joints to be available.

The KSD-method can be applied to all flexure-based mechanisms
that fulfill these criteria to obtain a deformed configuration. After
this configuration is determined, the results that are required for a
design optimization can be evaluated like the stress in the leaf-
springs, the reaction forces on the mechanism, the required actua-
tion forces, the stiffness of the mechanism, and its eigen
frequencies.
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4 Efficiency Results
This section evaluates the performance of the KSD-method based

on three different mechanisms:

• Four-bar mechanism with four cross-flexures, see Fig. 3 and
Table 1. The top bar is displaced by d= 0.29m. This case
was introduced in Ref. [35] with a displacement of 0.3 m.
However, in KSD-it3 (which assumes ideal hinges in
step 1), a displacement of 0.3 m results in exactly 90 deg rota-
tion of the two vertical bars, which is a singular configuration
making this method to fail.

• Manipulator with three 3 × -infinity joints, see Fig. 4 and
Table 2. The displacement of the tip of the mechanism is
chosen such that the rotation of each of the joints is 45 deg

(the first joint in positive z-direction, the other joints in nega-
tive y-direction). This case was also introduced in Ref. [35],
and the 3 × -infinity joint has been developed in Ref. [9].

• T-flex: a flexure-based hexapod with 12 identical spherical
joints, see Figs. 5 and 6 and Table 3. Each spherical joint con-
sists of two serial stacked groups with each group comprising
three folded leaf springs in parallel. Their z-axes are aligned
with their corresponding upper arm. The six lower spherical
joints are combined with a folded leafspring that constrains
the rotation around the local z axis of that spherical joint.
The six revolute joints at the bottom are assumed to be ideal
joints. Two cases are analyzed in which each side of each
folded leafspring is modeled with two and with four elements,
respectively. In deformed configuration, the rotation of each of
the six rotational joints at the bottom is 20 deg, in counter-
clockwise direction seen from outside (indicated by the
dotted arrows in Fig. 5). This mechanism is described in
Ref. [39] and the spherical joint in Ref. [10].

The required joint-data for the four joints (cross-flexure,
3 × -infinity, spherical joint, and folded leafspring) are fitted by
fourth-order polynomials. KSD-it3 cannot be executed on the
T-flex as the intended motion of the folded leafspring cannot be
approximated by an ideal joint. Instead a linear expression is used
to imprecisely approximate this motion.
The performance of the KSD-method is compared to the perfor-

mance of a conventional method. The theoretical background of this
reference method is that of the multibody software SPACAR [40],
as this software has often been used to model flexure-based mech-
anisms [9,10,39]. The solver initially tries to solve the full displace-
ment in one step and continues till the error in forces is below a
certain lower threshold. If the error in forces is more than a
certain upper threshold or the current iteration step cannot be com-
puted, then the step-size in the displacement is reduced by a factor
of 2 as explained in more detail in Appendix B of Ref. [35]. The
KSD-method is implemented within the same theoretical back-
ground. All algorithms have been implemented in Matlab2017b
for a fair comparison between the reference method and the
KSD-method. The mechanisms are modeled using the beam
element that is described in Appendix A of Ref. [35].

Fig. 4 Manipulator in undeformed configuration with lengths and orientations of the links and
3× -infinity joint

Table 2 Dimensions of the 3× -infinity joint

Width inner leaf spring cross flex, w1 12mm
Width outer leaf spring cross flex, w2 6mm
Width inner leaf springs, w3 60mm
Thickness leaf springs, t1, t2, t3 0.45mm
Length joint, L1 45mm
Length side leaf springs, L2 38.2mm
Horizontal size inner leaf springs, h 25mm
Angle leaf springs cross flex, α 53 deg
Angle cross flex, β 20 deg
Length of part between cross flexs, d 8mm
Total length cross flexs, D 38mm
Length rigid part between inner leaf springs, s 2.5mm

Fig. 5 T-flex

Fig. 3 Four-bar mechanism in deformed and undeformed con-
figuration and cross-flexure modeled with three beam elements
per leaf spring

Table 1 Dimensions of four-bar mechanism and cross-flexure

Height mechanism, H 0.4m
Width mechanism, W 0.4m
Leaf spring length, L 0.1m
Angle leaf spring, α 45 deg
Thickness leaf springs, t 1mm
Width inner leaf spring, w1 40mm
Width outer leaf springs, w2 20mm
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For all the four cases, it was found that the computation of
updates in the configuration could be performed by neglecting the
geometric part of the stiffness matrices, i.e., only using the material
part of the stiffness matrix. Table 4 shows that the computations
without these terms are much more efficient in the framework of
SPACAR. The convergence plot in Fig. 7 shows the most important
reason for this increase in efficiency: without the geometric term,
the full displacement can be added in one step, but with the geomet-
ric term the displacement had to be split in four steps for conver-
gence. Another reason is that the computation of the geometric
part of the stiffness matrix takes a significant amount of time. In
the remaining part of this paper, the geometric part of the stiffness

matrix is not used during the update of positions, not for the refer-
ence method and not for the iterative updates in the KSD-method.
Figure 8 shows the computation times per step of the

KSD-method. It shows that the reduction in computation time is
in general more significant for more complex mechanisms, i.e.,
the mechanisms with a higher number of degrees-of-freedom. The
figure also indicates that the computation time of the steps which
only update the interface coordinates is almost negligible.
KSD-reduced is the most efficient method and reduces the compu-
tation time up to a factor of 90 with respect to the conventional
method. KSD-full gives a reduction up to a factor 1.8 for the
most complex mechanism (T-flex 4). The time reduction for
the manipulator is much higher. This has to do with the fact that
the 3 × -infinity joints in this manipulator are very stiff in the unin-
tended directions, and therefore the approximation of the configura-
tion is already very accurate after step 4, such that step 5 can be
performed in only a few iterations. The computation times by
KSD-it2 and KSD-it3 are on average a factor of 1.75 higher than
the computation time of KSD-it1 which uses joint-data. This indi-
cates that the computation time in the KSD-method can be
reduced by a factor of 1.75 using joint-data. The computation
time of KSD-it2 and KSD-it3 is comparable, indicating that the
required computation time is insensitive to the accuracy of the esti-
mation in step 1.

Table 3 Dimensions of T-flex

Center to revolute joints, r1 250mm
Distance to revolute joints, d1 75mm
Distance to spherical joints, d2 50mm
Length lower arm, L1 251mm
Length upper arm, L2 304mm
Undeformed height end-effector, h2 265mm
Length side folded leafspring, L3 40mm
Angle folded leafspring, α 50 deg
Distance folded leafspring to z axis spherical joint, d3 15mm
Length leaf springs, L 27.4mm
Distance center to center folds, r 11mm
Angle folded leaf springs, ψ 86 deg
Angle between fold and z axis, θ1 30 deg
Width leaf spring, w 15mm
Thickness leaf spring, t 0.4mm
Counterclockwise rotation of the upper layer 25 deg

Table 4 Computation times in seconds of the reference method
with and without geometric stiffness

With geom. Without geom.

Four-bar (305 DOF) 4.9 1.0
Manipulator (249 DOF) 48.6 5.0
T-flex 2 (1518 DOF) 333 39.9
T-flex 4 (3246 DOF) 1951 188

Note: The number of degrees-of-freedom is given as a measure for the
complexity of the mechanism.

Fig. 7 Convergence of the conventional method for the four-bar
mechanism. The numbers indicate the size of the step that is
converged. The upper dotted line indicates the upper threshold
(if the error is above this norm, the step-size is reduced by a
factor of 2) and the lower dotted line indicates the lower thresh-
old (if the error is below this line the current step is converged).

Fig. 6 (a) Spherical joint, consisting of two identical serial stacked groups of
three folded leafsprings. “A” indicates connections of the dark group to one of
the rigid links, “B” indicates the connections of the light group to the other
rigid link, and “I” are rigid connections to one intermediate ring. (b) Dimensions
and position of folded leaf spring.
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Fig. 8 Computation time per step for the reference without geometric stiffness and the
KSD-method (KSD-reduced is equivalent to the first four steps of KSD-full). The black
numbers indicate the time reduction factor with respect to the reference. The plot of T-flex 4
is zoomed in, and the times of the reference and KSD-full are 188 and 103 s, respectively.

Table 5 Influence of dimension parameters on rotation of elements during intended motion

Joint Range of motion Significant influence Negligible influence

Cross-flexure [−30 deg, 30 deg] α, [30 deg, 60 deg] t/L, [0.001, 0.05]
w1/L, [0.1, 1]
w2/w1, [0.25, 1]

3 × -infinity [−45 deg, 45 deg] β, [30 deg, 120 deg] d/D, [0, 0.3]
D/L, [0.5, 1] h/L, [0.2, 0.8]

s/L, [0, 0.1]
α, [30 deg, 60 deg]
t1/L, [0.001, 0.05]
ti/t1, [0.5, 2], i= 2, 3
w1/L, [0.2, 4]
w2/w1, [0.05, 1]
w3/w2, [0.25, 1]

Spherical joint Tip-tilt:a [−30 deg, 30 deg] θ1, [25 deg, 45 deg] w/L, [0.1, 0.5]
Pan: [−15 deg, 15 deg] ψ, [70 deg, 100 deg] t/w, [0.01, 0.1]

r/L, [0.1, 0.5]

Note: Significant influence means that element rotations have more than 10% deviation. For each dimension parameter, the range for common values is
given.
aTip-tilt is rotation around the x and y axes. Pan is rotation around the z axis.

Fig. 9 Analysis results for three flexure joints in which one dimension is varied
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5 Accuracy Results
This section evaluates the accuracy of the KSD-method and its

dependency on variations of dimensions of the flexure joints. In
step 2 of KSD-full, KSD-reduced, and KSD-it1, the element config-
uration is computed by element orientation-based bodies. In this
method, the element rotations are obtained as a function of the
intended deformation based on a least-square fit on simulation
results as explained in Appendix A. For each of the three joints,
it has been analyzed which dimension parameters have a significant
influence on the rotations of the elements, and the results are given
in Table 5. A significant influence means more than 10% deviation
of the rotations for common values of the dimension parameters and
common values of motion. In general, the width and thickness of
flexures have a negligible influence. For the two joints with a
simple motion (cross-flexure and 3 × -infinity), only a limited
number of dimension parameters have influence. For the spherical
joint with a complex three-dimensional motion, more dimensions
have influence.
Figure 9 shows the results for three introduced flexure joints on

which one of these dimensions is varied. It shows the required
applied moment and the maximum stress for a certain intended
deformation:

• The cross-flexure is rotated 30 deg.
• The 3 × -infinity is rotated 45 deg.

• The spherical joint is rotated 10 deg around the z axis and then
20 deg around the y axis, and the graph only shows the
required moment around the z axis.

The results are given for the reference method, for KSD-reduced
which uses joint-data obtained with the default dimensions and for
KSD-reduced which uses joint-data that is explicitly made depen-
dent on the dimension parameters with significant influence based
on fourth-order polynomials.
The results are accurate as there is almost no deformation in the

unintended directions in these cases. The only significant error is the
stress computed for the spherical joint with KSD-reduced, but this
error is reduced by making the joint-data dependent on the dimen-
sion parameter. However, to obtain this accuracy, a fourth-order
polynomial was required for the joint-data, and using a third-order
polynomial gives similar results to the case where the data did not
depend on the dimension parameters. This indicates that the stress
result of KSD-reduced can be quite sensitive to the accuracy of
the joint-data.
Figure 10 shows the results for the mechanisms with the defor-

mations as described in Sec. 4, in which dimension parameters
are varied. The forces are:

• For the four-bar: the required force applied at the center of the
top bar.

• For the manipulator: the total required force on the tip.

Fig. 10 Analysis results in which one dimension of the flexure joints is varied. For some lines the average error is given. The
reference line is often hidden behind the line of KSD-it1 (dim. dep).
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• For the T-flex: the required moment applied by one of the rev-
olute joints, indicated by “A” in Fig. 5.

The stiffness results are in unintended directions where the
motion in the intended direction of the mechanism is constrained
at the displacements given in Sec. 4:

• For the four-bar: the stiffness at the center of the top bar in the
vertical direction.

• For the manipulator: the rotational stiffness of the tip around
the y axis.

• For the T-flex: the vertical stiffness at the center of the
end-effector.

In these stiffness results, the geometric stiffness terms are taken
into account although it was not used to find the deformed config-
uration. The computation of the geometric stiffness and the stresses
is not part of the KSD-method and it is therefore not included in the
computation times in Fig. 8.

6 Optimizations
The performance of the KSD-method in a design optimization is

tested with the four-bar and the manipulator.
In the four-bar, the flexure thickness (t) and the length of the flex-

ures (L) were used as design variables. The other dimensions were
the same as in Secs. 4 and 5, see Table 1. The four-bar was opti-
mized for stiffness in the z-direction at the center of the top bar
under 0.29 m displacement. The stress in the leafsprings was
limited to 600MPa.
In the manipulator, the thickness of the inner flexures (t1) and the

angle of both rigid elements (γ) were used as design variables. The
length of both diagonal rigid links (L3) was adjusted in each design
to keep the undeformed end-position at coordinate (0.35, 0, 0). The

other dimensions were the same as in Secs. 4 and 5, see Table 2. The
manipulator was optimized for rotational stiffness around the z axis
when the end-effector is displaced to the coordinate: (0.2, 0.2, 0.1).
The stress in the leafsprings is limited to 600MPa. The optimization
is executed twice for each method, once with each flexure modeled
by one beam element (similar to the case of the previous sections)
and once with each flexure modeled by two beam elements.
Both cases are optimized using the covariance matrix adaptation

evolution strategy (CMA-ES) algorithm [41], a genetic algorithm,
with a population size of 10. The optimizations required 400–600
function evaluations for convergence, independent of the method.
Each function evaluation includes the computation of one deformed
configuration. Figure 11 shows the average computation times per
function evaluation. The time reduction of the KSD-method with
respect to the reference method is lower than the time reduction
shown in Fig. 8. One reason is that the displacement of the manip-
ulator is smaller than the case defined in Secs. 4 and 5 such that it
can be computed faster by the reference method. Another reason is
that the KSD-method performs especially well on mechanisms with
common flexure dimensions. This is because the kinematic approx-
imation of the indented motion becomes worse if the intended
motion is not much more compliant than the unintended motion.
This happens for example if the flexures are very thick or very
short, which will be the case in some trial-designs during the opti-
mization. This is the reason that the KSD-full method is even slower
than the reference method in case of the four-bar. This also explains
that the difference between the computation time of KSD-it1 is
sometimes slower than KSD-it2 and KSD-it3.
Table 6 shows the resulting optimized design parameters and

support stiffness. All optimizations converged to the same global
optimum although there are some slightly deviations. KSD-it3
gives relatively large errors on the four-bar which is probably due
to the large parasitic error motion of cross-flexures. KSD-reduced

Fig. 11 Average computation time of one function evaluation during the optimizations for the
different methods, split in the time for the computation of the deformation and the
post-processing

Table 6 Accuracy of the optimizations, optimized design parameters, and support stiffness

Four-bar Manipulator 1 Manipulator 2

t(mm) L(mm) K(N/m) t1(mm) γ(deg) K(kNm) t1(mm) γ(deg) K(kNm)

Ref./KSD-full 0.272 83.4 100.7 0.55 48.1 15.4 0.59 52.8 6.47
KSD-red 0.270 (1.0%) 82.2 (1.5%) 96.0 (4.7%) 0.55 (0.6%) 48.2 (0.2%) 15.4 (0.0%) 0.58 (1.1%) 51.9 (1.7%) 6.94 (7.2%)
KSD-it1 0.270 (0.7%) 82.6 (1.0%) 100.7 (0.4%) 0.55 (0.0%) 48.3 (0.5%) 15.4 (0.1%) 0.59 (0.0%) 52.0 (1.5%) 6.80 (5.1%)
KSD-it2 0.270 (0.6%) 82.7 (0.9%) 101.1 (0.4%) 0.53 (3.9%) 47.8 (0.6%) 14.9 (3.4%) 0.57 (3.5%) 53.0 (0.4%) 6.43 (0.7%)
KSD-it3 0.254 (6.8%) 76.6 (8.3%) 91.5 (9.2%) 0.53 (4.0%) 49.0 (2.0%) 14.9 (3.5%) 0.57 (3.5%) 52.8 (0.0%) 6.43 (0.6%)

Note: The numbers between brackets give the accuracy with respect to the reference method.
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results in a significant error in the support stiffness, but still gives a
good result for the design parameters. The errors of the different
KSD-methods for the manipulator are significantly smaller than
the error that is made by modeling all the flexures by only one
beam element instead of two beam elements.

7 Conclusions
The KSD-method, introduced in Ref. [35], efficiently computes

large deformed configurations of flexure-based mechanisms. Exist-
ing variants of the KSD-method utilize a priori obtained joint-data
of flexure joints to efficiently obtain its internal deformed configu-
ration. This paper shows that the KSD-method can also be used
without these joint-data, and this increases the required computation
time but it is still significantly faster than a conventional method.
The computational efficiency and accuracy are compared to a ref-

erence method. This reference method is an implementation of the
conventional method SPACAR in MATLAB. It was found that most
static computations on flexure-based mechanisms can be performed
without using the geometric part of the stiffness matrix in the
updates of the configuration. This reduces the computation time
of the conventional method SPACAR significantly.
The performances of different variants of the KSD-method that

vary in accuracy and computation time were verified. This is veri-
fied by computations on three mechanisms and three joints. One
of these joints is a spatial spherical joint proving that the
KSD-method also works for full spatial joints.
The variant “KSD-full” is as accurate as the reference method

and reduces the computation time up to a factor of 5.6. The
variant “KSD-reduced” is up to 90 times faster than the reference
method but can result in errors up to 15%. The variant “KSD-it1”
reduces the computation time up to a factor of 21 and it gives
errors below 1%. The variants “KSD-it2” and “KSD-it3” which
uses less and no joint-data, respectively, are up to 14 times faster
than the reference method, resulting in errors below 1%.
The KSD-method is especially helpful in design optimizations as

it does not use data that are sensitive to the dimensions of the ana-
lyzed mechanism, which is shown by several design optimizations.
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Appendix A: Spatial Element Orientation-Based Body
This appendix summarizes how the internal configuration of a

spatial element orientation-based body is found. Reference [35]
gives more details about this method for planar joints. This appen-
dix shows that for bodies with a full spatial intended motion, not
only the orientations of the elements but also the orientations of
the nodes are required.
In the element orientation-based body, the deformed configura-

tion is approximated based on the rotations of the elements. This
approximation is referred to as near configuration, see Fig. 12. It
is the configuration that is obtained in step 2 of the KSD-method

(for the variants that use element orientation-based bodies: KSD-
full, KSD-reduced, and KSD-it1). The near configuration is
obtained as follows:

• The intended motion of the element orientation-based body is
obtained in step 1 of the KSD-method.

• The rotations of the elements are obtained based on this
intended motion and the least-square fit that is a priori obtained
by simulation-data.

• The locations of the elements are obtained starting from one of
the interface points. The local displacement of this interface
point is defined to be zero which defines the positions of the
elements that are attached to this interface point. The locations
of the other elements are obtained by placing them in chains to
the previous elements, assuming all elements to be unde-
formed, so it is only rotated and displaced as shown in Fig. 12.

As the orientations of the elements are known in the near config-
uration, the stiffness matrices of the elements can be defined by
rotating the undeformed stiffness matrices to obtain the equation:

Fall=

F1

..

.

FN

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭=

R1K
(undef)
1 RT

1 0 0

0 . .
.

0
0 0 RNK

(undef)
N RT

N

⎡
⎢⎣

⎤
⎥⎦

�q1
..
.

�qN

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭=Kall�qall

(A1)

where Fk are the 12 boundary-forces and moments on element k,
K(undef)

k is its stiffness matrix in the undeformed configuration, Rk

is the rotation matrix of element k that defines the rotation to the
near configuration, and �qk are the 12 displacements with respect
to the near configuration (see Fig. 12). As �qall is the difference
between the displacement to the deformed configuration (qall) and
the displacement to the near configuration (q̂all), we can rewrite
Eq. (A1) to

Fall=Kallqall−Kallq̂all (A2)

This equation is in terms of 12 displacements per element (six
displacements for both sides). However, elements that are con-
nected share a node. Therefore, a Boolean matrix L is defined to
express the displacements of the sides of the elements in terms of
the displacements of the nodes:

qall=Lqnodes,Fnodes=LTFall (A3)

where qnodes is composed of the displacements of the nodes
and Fnodes is composed of the forces on the nodes. Substituting
Eq. (A3) into Eq. (A2) gives

Fnodes=Knodesqnodes+ F̂nodes (A4)

where

Knodes=LTKallL, F̂nodes=−LTKallq̂all (A5)

Fig. 12 Element orientation-based body indicating the three dif-
ferent types of displacement for one element
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This is the stiffness relation that is used to update the interface
positions in step 3 of the KSD-method and to update the internal
configuration in step 4 of the KSD-method.
Equation (A4) can be obtained for joints with planar intended

deformation, but if the motion is spatial the large rotations in qall,
qnodes, and q̂all should be described by parameters that can describe
large rotations, e.g., Euler parameters or Euler angles. Using Euler
parameters as an example, this means that the flexible displacement
�qall is a small difference in Euler parameters. However, the stiffness
matrix Kall relates forces to rotations around the x, y, and z axes.
This means that for each node, the small difference in Euler param-
eters should be rewritten to small differences in rotations around the
x, y and z axes. The required relations to do this do exist, see, for
example, Ref. [42]. The relation between variations in Euler param-
eters {δλ0, δλ

T}T= {δλ0, δλ1, δλ2, δλ3}
T and variations in these rota-

tions δθ= {δθx, δθy, δθz}
T are

δθ= 2 −λ λ01+ λ̃
[ ] δλ0

δλ

{ }
= 2Λ δλ0

δλ

{ }
, λ̃=

0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

⎡
⎣

⎤
⎦

(A6)

However, the matrix Λ depends on the orientation of the node.
Therefore, this orientation has to be estimated on beforehand.
This means that the orientations of the nodes should be obtained
similar to the orientations of the elements, i.e., based on a
least-square polynomial fit on the simulation results.
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