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A B S T R A C T   

As a consequence of rapid urbanization, the pattern of Land Use and Land Cover (LULC) has changed, resulting in 
a significant increase in the risk of waterlogging. Understanding the relationship between LULC change and 
urban waterlogging plays an important role in disaster mitigation and prevention. Taking Haining City as an 
example, the LULC prediction model (CLUMondo) was used to obtain LULC simulation results for 2030.The 
hydrodynamic model (InfoWorks ICM) was used to simulate future urban waterlogging. The results were as 
follows: 1) Between 2005 and 2030, the changes in cultivated land and construction land were predicted to be 
the most obvious. The area of cultivated land was predicted to decrease by 26.62 km2, and the construction land 
was predicted to increase by 25.17 km2. 2) The overall distribution of waterlogged areas and the identified at-risk 
areas in Haining were shown to be relatively scattered. In 2030, urban waterlogging is predicted to be more 
serious than in 2020. 3) The reasons for the predicted change in waterlogging are closely related to the trans
formation of LULC, especially the transformation of cultivated land to construction land. The results provide a 
basis for scientific research and urban planning to reduce the risk of waterlogging.   

1. Introduction 

Urbanization is an inevitable consequence of social and economic 
development (Armeanu et al., 2021). Urban expansion has led to 
massive population growth (Stokes & Seto, 2019). During the process of 
urbanization, Land Use and Land Cover (LULC) change not only im
proves the quality of human life, but also changes the Earth’s surface 
environment, thereby increasing the risk of urban waterlogging disasters 
and changing the original water cycle process (Shrestha et al., 2018). 
Urban rain is intensified by urbanization, contributing to the occurrence 
of extreme rainfall (Oliveira-Junior et al., 2021; Oliveira-Júnior et al., 
2022). Urbanization leads to a significant change in the intensity and 
frequency of flood disasters (Winsemius et al., 2016; Sofia et al., 2017). 
The frequent occurrence of flood disasters will inevitably have an 
adverse impact on people’s productivity and lives, causing huge eco
nomic losses and endangering the safety of residents (Paprotny et al., 
2018; Willner et al., 2018). 

Disaster risk can be effectively reduced through scientific research 

and urban planning (Kumar et al., 2022). The premise for alleviating 
urban waterlogging is to predict and analyze the characteristics of future 
urban LULC change and the related hydrological effects to provide a 
basis for scientific research and urban planning (Aich et al., 2016; Silva 
Cruz et al., 2022). 

Predicting future LULC is the basis for waterlogging projections. In 
the past few decades, researchers have established a variety of simulated 
prediction models to assess future LULC (Liu et al., 2017; Rahnama, 
2021). Deng simulated and predicted the LULC landscape pattern for 
Mianzhu City using the CA-Markov model (Fu et al., 2022). Mallick used 
the prediction-adaptation-resilience (PAR) approach to analyze future 
urban expansion (Mallick et al., 2021). Lin made predictions of LULC 
through the Future Land Use Simulation (FLUS) model and then pre
dicted future urban waterlogging (Lin et al., 2022). Verburg improved 
and optimized the Conversion of Land Use and its Effect at Small 
regional extent (CLUE-S) model by proposing the CLUMondo model 
(Van Asselen & Verburg, 2013; Ornetsmüller et al., 2021). The CLU
Mondo model has been widely used in LULC change studies at the 
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regional scale (H. Wang et al., 2021; Bacău et al., 2022). 
In recent years, urban LULC change prediction and its hydrological 

effects have become major hot issues in the field of urban disaster risk 
management and urban planning (Eum et al., 2016; Wagner et al., 
2019). With its advantages of high efficiency, low time consumption, 
and versatility, the InfoWorks Integrated Catchment Model (ICM) model 
has been widely used for the evaluation of the current situation 
regarding urban drainage systems and urban waterlogging risk assess
ment (Ferguson & Fenner, 2020). 

LULC change is one of the main causes of waterlogging, and many 
scholars have conducted research on the relationship between the two 
(Zhang et al., 2020). Quan took the Pudong New Area in Shanghai as an 
example and combined the GIS method and the Soil Conservation Ser
vice (SCS) model to evaluate the effect of LULC change on surface runoff 
as well as the risk of waterlogging caused by precipitation at different 
intensities (Quan et al., 2010). Wang used the Soil and Water Assessment 
Tool (SWAT) and the Geographically Weighted Regression Model 
(GWR) to assess the impact of LULC change on hydrological processes 
(Wang et al., 2018). Li used improved SCS models and spatial analysis 
methods to compare the differences in runoff before and after urbani
zation to assess the impact of urbanization on runoff and marginal ef
fects (Li et al., 2018). 

In summary, existing research on urban waterlogging has focused on 
the relationship between the current situation of LULC change and 
urban waterlogging. Few studies have explored the impact of future 
LULC change on urban waterlogging. Quan used the Terraset CA- 
Markov model to simulate and predict the spatial distribution of LULC 
in Shanghai in 2030, calculated the level of surface runoff using the SCS 
model, and predicted and analyzed the impacts of future LULC changes 
on surface runoff (Quan, 2018). However, the SCS model relies too much 
on the parameter CN, which can easily cause the final calculation result 
to differ from the actual situation (Herald, 2022). In addition, the 
InfoWorks ICM model takes into account the combination of natural 

factors and urban drainage networks to obtain more accurate results 
regarding urban waterlogging (Peng et al., 2016). Therefore, the Info
Works ICM model is more accepted for waterlogging simulation in 
Haining. 

The main objective of this study was to predict the spatial distribu
tion and depth of urban waterlogging in 2030 on the basis of future 
LULC distribution. In order to accomplish this main purpose, our sub- 
objectives included: (1) simulation of the LULC for Haining City in 
2030; (2) simulation of the urban waterlogging conditions in 2020 and 
2030 to analyze the changes in waterlogging; and (3) exploration of the 
correlation between LULC change and surface runoff. 

2. Materials and methods 

2.1. Study area 

Haining is located in the southern (S) wing of the Yangtze River Delta 
in China, Hangjiahu Plains, north of Zhejiang Province at 30◦15′- 
30◦35′N and 120◦18′-120◦52′E (Fig. 1). It has a total area of 863 km2. 
Haining City is flat and slopes from southwest to northeast. The plains 
account for 87.94% of the total area, and the low hills are concentrated 
in the northeast and southeast of Haining. Although Haining is a small 
city, its urbanization development rate has been relatively fast. From 
2000 to 2020, the built-up area of Haining increased from 10.60 km2 to 
55.85 km2 (JBS, 2021). Therefore, it is a good representative for studies 
on urbanization. The study area is in a subtropical monsoon climate 
zone with significant precipitation and obvious seasonal changes. The 
climate is changeable, and plum rain and typhoons are prone to 
waterlogging. Typhoon floods, such as "Krosa" in 2007, "Fitow" in 2013, 
"Lekima" in 2019, and "In-Fa" in 2021 have all brought serious water
logging disaster losses to Haining. In 2021, the strong typhoon "In-Fa" 
and super typhoon " Chanthu" positively affected Haining City, bringing 
heavy rainfall and strong winds. The " In-Fa" typhoon was associated 

Fig. 1. The geographical location of the study area: (a) Map of China; (b) Location of Zhejiang Province; (c) Location of Haining; (d) Sentinel-2 image of the study 
area in 2020 displayed in true-color composite (Red—Band 4; Green—Band 3; and Blue—Band 2). 
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with surface rainfall of 233.8 mm, resulting in a rapid rise in the water 
level of the river network. (Herald, 2022). This presents a natural 
advantage for studying urban waterlogging. 

2.2. Data 

Landsat images, downloaded from the United States Geological 
Survey (USGS) (http://earthexplorer.usgs.gov/), were employed to 
obtain the LULC classification data. Sentinel-2 data were derived from 
the European Space Agency (ESA) (https://www.esa.int). Google Earth 
images are high-resolution remote sensing stitched data introduced by 
Maxar. For the high-resolution images, Sentinel-2 data, Google Earth 
images, and a 1: 5000 Unmanned Aerial Vehicle (UAV) image were used 
to obtain the validation data for the LULC classification results. The 
above remote sensing images were pre-processed with radiometric 
correction, atmospheric correction, and geometric correction. 

Advanced Spaceborne Thermal Emission and Reflection Radiometer 
Global Digital Elevation Model (ASTER GDEM) data were downloaded 
from the National Aeronautics and Space Administration (NASA) 
(https://www.nasa.gov). The population density data were downloaded 
from WorldPop (https://www.worldpop.org/). The slope and aspect of 
the Digital elevation model (DEM) were extracted using GIS software. 
Together with railway, river, population density, and county-level res
idential area data, they were used to determine the driving factors for 
the LULC predictions. 

ASTER GDEM data were also used to simulate urban waterlogging 
together with the urban drainage network data. The urban drainage 
network data were simplified without changing the original effect of the 
network. The numbers of urban drainage nodes and lines were 2916 and 
2417 after simplification. Flowmeter measurement records were pre
pared for verification of the waterlogging simulation results. The 
detailed data are shown in Table 1. 

The above mentioned data were uniformly projected into the 
WGS_1984_Transverse_Mercator. The spatial resolution was set at 60 m 
× 60 m according to the needs of the CLUMondo model operation. The 
data were clipped by the administrative boundary to form the mapping 
unit. 

2.3. Overall workflow 

The overall workflow Fig. 2) consisted of four parts: ((1) the LULC 
classification, where the Landsat remote sensing images were used to 
obtain the LULC data by the Support vector machine (SVM) method; (2) 
a simulation of future LULC, where the driving factors and LULC data 
were entered into the CLUMondo model and the 2030 LULC simulation 
results were obtained through a regression analysis, parameter setting, 
and model verification; (3) an urban waterlogging simulation, where 
LULC data from 2020 and 2030, data on rainfall events, urban drainage 
network data, and DEM data were entered into the InfoWorks ICM 
model to obtain urban waterlogging results; and (4) a correlation 
analysis between LULC change and urban waterlogging. Based on the 
results of the LULC simulation and urban waterlogging predictions for 
2030, the LULC change and urban waterlogging change and their cor
relation were analyzed, and sustainable development recommendations 
were made based on the analysis. 

2.4. LULC classification 

Based on local knowledge and fieldwork, combined with information 
from similar studies to determine the classification system, LULC was 
divided into five types: urban green space, construction land, roads and 
avenues, cultivated land, and water. 

SVM technology is widely used in LULC classification. It is highly 
accurate for the classification of moderate-resolution remote sensing 
images (Khatami et al., 2016; Hu et al., 2021). In this study, SVM was 
performed using ENVI® 5.3 by the Harris Corporation and was used to 
classify the LULC map from 2005, 2010, 2015, and 2020 landsat data. 

Validation data were obtained from UAV images, Sentinel-2 data, 
and Google Earth images through fieldwork and a visual interpretation 
method. The LULC classification results were verified by the confusion 
matrix and Pearson Chi-square statistics results (Kafy et al., 2021). 

2.5. Simulation of future LULC 

2.5.1. Driving factors of LULC change 
Geographic factors and socioeconomic factors affect LULC change. 

Geographic factors play a decisive role in land cover. Topography, slope, 
aspect, and other natural conditions limit LULC change (Xie et al., 2017; 
Wu et al., 2021). Socioeconomic factors and related directed develop
ment policies also influence LULC change (Stehfest et al., 2019). In this 
context, seven driving factors—DEM, slope, aspect, distance from the 
railway, distance from the river, population density, and distance from 
the nearest county-level residential area—were selected for the 
simulation. 

2.5.2. CLUMondo Construction and Setup 
The CLUMondo model is a widely accepted model for accurately 

predicting future LULC quantities and spatial distributions (Domingo 
et al., 2021). It is divided into two modules: a non-spatial analysis 
module and a spatial analysis module. The former makes use of LULC 
needs, while the latter uses LULC allocation. The simulation of future 
LULC was achieved through the combination of the two (Debonne et al., 
2018). 

The specific parameter settings of the CLUMondo model are as 
follows: 

(1) Conversion resistance and conversion matrix. 
The conversion matrix was used to detail the LULC type conversion 

settings. Conversion resistance is related to the reversibility of LULC 
change. In this study, the conversion matrix and conversion resistance 
were determined based on historical experience (Fan et al., 2021). After 
being adjusted to the actual situation, they were set to the number that 
best suited the study area. The resistance of construction land to other 
types was set to 0, which indicates that conversion is not allowed, and 
other LULC types were set to 1, which means that conversion is allowed. 

Table 1 
Description of the data used in the study.  

Data Type Time Resolution Source 

Raster data 
Landsat-5 TM 2005/3/7 30 m USGS 

2010/5/24 30 m USGS 
Landsat-8 OLI 2015/5/22 30 m USGS 

2020/5/3 30 m USGS 
Sentinel-2 2020/12/ 

24 
10 m ESA 

Google Earth images 2005, 
2010, 2015 

10 m USGS 

UAV image 2016/6/26 2 m Haining Natural 
Resources Bureau 

ASTER GDEM 2013 12.5 m NASA 
Population density 2015, 2020 100 m WorldPop 
Vector data 
Administrative 

boundaries 
2021 - Haining Natural 

Resources Bureau 
railway 2015, 2020 - Vectorization 
river 2015, 2020 - Vectorization 
county-level residential 

area 
2015, 2020 - Haining Natural 

Resources Bureau 
Urban drainage network 2016 - Haining City 

Administration Bureau 
Text data 
Flowmeter measurement 

records 
2018 - Fieldwork 

Meteorological 
precipitation records 

2018 - Haining City 
Administration Bureau  
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The conversion resistance was set to 0.79 for urban green space, 0.40 for 
construction land, 0.88 for roads and avenues, 0.25 for cultivated land, 
and 0.90 for water, where values from 0 to 1 represent conversion from 
easy to hard. 

(2) LULC demand calculation. 
Depending on the different research purposes and information pro

vided by different cases, LULC demand can be calculated based on a 
range of different algorithms (Liao et al., 2022). This study used the 
historical trend extrapolation method to calculate LULC demand. Future 
LULC was predicted using the city’s actual growth rate from 2005 to 
2015. 

2.5.3. Logistic Regression Analysis 
The logistic regression analysis module is a great differentiator of 

CLUMondo from other models. The CLUMondo model analyzes the 
importance of suitability factors by performing a logistic regression 
analysis (Hu et al., 2020). 

The logistic regression analysis calculates the response probability 
for the figure position features and the driving factors to obtain the 
function (Gobin et al., 2002).The formula is as follows: 

Log
{

Pi

(1 − Pi)

}

= β0 + β1X1i + β2X2i + …… + βnXni (1)  

where Pi is the probability of the grid element i transforming into a 
certain LULC type, β is the regression coefficient calculated by the lo

gistic regression analysis of the LULC type and the driving factor, and X 
represents the driving factor. 

Related layers with a relevance of less than 0.8 were selected. On this 
basis, driving factors with a significance value of less than 0.05 were 
selected. No more than 7 suitable layers with the highest area under the 
curve (AUC) value were selected for each LULC type. 

2.6. Urban waterlogging simulation 

2.6.1. Waterlogging simulation model: InfoWorks ICM 
InfoWorks ICM is a drainage model software developed by Innovyze. 

It is widely used in the assessment of urban drainage systems and the risk 
assessment of urban waterlogging (Bailey et al., 2020; Yang et al., 2021). 
InfoWorks ICM can be used to build hydrological and hydraulic models 
of drainage pipe network systems, and meticulously simulate sewage 
systems, storm systems, combined drainage systems, and surface diffuse 
systems. InfoWorks ICM enables more accurate surface flood simula
tions through the coupling of a 1D hydraulic model to a 2D flood 
inundation model. The 1D model provides information such as the 
extent and depth of the water. Two-dimensional models combine com
plex geometric terrain with evolutionary calculations (T. Zhou et al., 
2021). 

The basic formulas for calculating the flow of the nullah are the 
Saint-Venant formulas (Cheng et al., 2017). The specific formulas are as 
follows: 

Fig. 2. Overall workflow for the study.  
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σA
σt

+
σQ
σx

= 0 (2)  

σQ
σt

+
σ
σx

(
Q2

A

)

+ gA
(

cosθ
σy
σx

− S0 +
Q|Q|

K2

)

= 0 (3)  

where A is the cross-sectional area of the pipe (m2), t is time (s), Q is the 
flow rate (m3/s), x is the length along the x direction (m), g is gravity 
(m2/s), θ is the horizontal angle (degree), y is the depth of the water (m), 
S0 is the bed slope, and K is the conveyance. 

The following steps in InfoWorks ICM were used to simulate urban 
waterlogging (H. Zhang et al., 2021). Firstly, the ground elevation 
model was introduced into InfoWorks ICM. Then, buildings and other 
obstacles in the city were introduced based on geographic data. A 
triangulation mesh was automatically generated to calculate the depth 
and flow rate of water in each triangular mesh. Finally, the depth of the 
water, the path of the overflow, and the flow rate were obtained. 

2.6.2. Model construction 
The study area was divided into subcatchments on the basis of the 

Thiessen polygon method and the actual situation of the region. Ac
cording to the LULC data, the underlying surface in the study area were 
generalized into three types: roads, buildings, and other. The runoff 
calculation was carried out according to the spatial division of the 
subcatchment area and the surface composition in relation to different 
flow characteristics. The parameters used are shown in Table 2. 

The rainstorm intensity formula for Haining taken from the Hang
zhou City Planning Bureau is as follows (OHUZP, 2020): 

i =
10.101(1 + 1.057lgP)

(t + 11.3)0.682 (4)  

where i is the rainstorm intensity(mm/min), P is the return period for 
rainfall (a), and t is the rainfall duration (min). 

Chicago Rainfall was used as the design rain type for the study area. 
The peak timing ratio r was set to 0.398. Combined with the rainstorm 
intensity formula, the design rain type was calculated when the return 
period was 0.5 years, 1 year, 2 years, 5 years, and 10 years. 

3. Results 

3.1. Model validation results 

3.1.1. Validation of the SVM classification results 
The confusion matrix results show that the overall classification ac

curacy in 2005, 2010, 2015, and 2020 was 85.20%, 92.85%, 93.27%, 
and 88.77%, respectively, which represents a strong validation agree
ment for the simulated map. 

For Chi-square testing, the rejection level was set at a level of sig
nificance (LoS) of α= 0.05 with 3 degrees of freedom. The Chi-square 
value was 7.815. The computed Chi-square values for 2005, 2010, 
2015 and 2020 were much lower: 0.732, 0.885, 0.907 and 0.842, 
respectively. Therefore, the hypothesis was accepted at the 95% confi
dence level, showing that the classification result and validation data 
significantly matched each other. 

3.1.2. CLUMondo model validation 
The 2010 LULC data and driving factors were entered into the 

CLUMondo model, and the conversion resistance, conversion matrix, 
and LULC demand parameters were used to run the model. Overall AUC 
values ranged between 0.61 and 0.81, indicating a modest to very good 
fit. The simulated LULC data for 2015 were obtained, and the Kappa 
coefficients and confusion matrix (Table 3) were calculated to evaluate 
the accuracy of the simulation results. 

The computed Chi-square value was 0.892, much smaller than the 
value of 7.815, which indicated that the actual map and simulated map 
significantly matched each other at the 95% confidence level. 

3.1.3. InfoWorks ICM model validation 
The flowmeter measurement records collected during rainfall on 3 

August 2018 and 20 June 2018 were used to verify the reliability of the 
model. The results are shown in Fig. 3 and Fig. 4. The Nash–Sutcliffe 
efficiency coefficient (NES) of the rainfall on 3 August 2018 was 0.991, 
and the determination coefficient (R2) was 0.996. The NES on 20 June 
2018 was 0.981, and the R2 value was 0.991. The model fit effect was 
good, and the water level peak and peak occurrence time simulated by 
the model matched the measured data. 

3.2. LULC simulations for 2005–2030 

The results of the 2030 LULC simulation are shown in Fig. 5. The 
central urban area was predicted to be mainly used for construction, and 
roads were shown to be interspersed with it. The eastern, southern, and 
northern marginal areas were predicted to be cultivated land. The 
Changshan River runs through the city from southeast to northwest. The 
urban green space was predicted to be small and scattered across the 
construction land and cultivated land. The area of the city was predicted 
to continue to grow, and mainly encroach on the area of cultivated land, 
gradually expanding to the surrounding area. In 2005, the construction 
land was distributed in the central and southwest areas in a block shape. 
There was a small area of construction in the cultivated land in the 
north, east, and south. The western part was mainly cultivated land. In 
2010, the construction land had slightly expanded into a blocky area. 
Other LULC types did not change much. In 2015, the central and 
southwestern construction land expanded to fill a large area. Small 
blocks of construction land emerged in the north, and scattered con
struction land emerged in the West. Water bodies appeared in the central 
urban area. The number of roads on the east and south sides of the city 
increased. In 2020, the construction land in the north, west and south
west further developed and grew, and the expansion of the central 
construction land was not obvious. By 2030, the central, western and 
southern construction land is predicted to expand to a large area and 
connect. The distribution of green space in the southeast and northeast is 
predicted to increase. 

The statistical results for each LULC type in the area in 2005, 2010, 
2015, 2020, and 2030 are shown in Table 4. The area of cultivated land 
decreased significantly from 2005 to 2020, while the area of construc
tion land increased. There were small-scale changes of varying degrees 
in urban green space and roads. Between 2010 and 2015, Haining Juan 
Lake was artificially built, and the water area increased. The changes in 
cultivated land and construction land were the most dramatic during the 
whole process of change. The cultivated land area constantly decreased, 
and the construction land area increased. The simulation results show 
that, by 2030, the cultivated land area will be further reduced to 41.18 
km2, a total reduction of 26.62 km2. The construction land area will 
further increase to 61.67 km2, an increase of 25.17 km2. The water area 
will increase to 16.11 km2, an increase of 1.02 km2. The roads and av
enues area will increase to 11.89 km2, an increase of 2.29 km2. The 
urban green space area is predicted to change little, increasing to 23.21 
km2, an increase of 0.02 km2. 

Table 2 
Flow surface parameters.  

Surface 
types 

Runoff 
model 

Runoff 
coefficient 

Initial 
losses 
type 

Initial 
losses/ 
m 

Routine 
model 

Routine 
parameter 

Roads Fixed 0.9 Abs 0.002 SWMM 0.018 
Buildings Fixed 0.8 Abs 0.001 SWMM 0.02 
Other Fixed 0.5 Abs 0.005 SWMM 0.025  
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3.3. Simulation results for urban waterlogging 

LULC data, precipitation data, DEM, and drainage network data for 
2020 and 2030 were entered into the InfoWorks ICM model to obtain 
Haining’s urban waterlogging results for 2020 and 2030, as shown in 
Fig. 6. The overall distribution of the waterlogged areas in the study area 
was found to be relatively scattered with greater distribution around the 
central business districts. Considering the local conditions and historical 
records, areas with a depth of more than 1 m were designated as at-risk 
areas (the red area in the figure). It can be seen that the at-risk areas are 
also mostly around the central business districts. There are almost no at- 

risk areas in the north and southeast areas of the city. 
The maximum depth and area of water accumulation for each pre

cipitation event in the study area are shown in Table 5. It can be seen 
that as the return period becomes longer, the intensity of the rainstorm 
increases, the maximum depth of water accumulation becomes deeper, 
and the area of water accumulation becomes larger. 

Regarding the LULC, in 2020, when the return period increased from 
0.5 years to 10 years, the maximum depth of water accumulation 
increased from 1.376 m to 2.251 m, an increase rate of 63.6%. The area 
of water accumulation increased from 0.998 km2 to 3.137 km2, an in
crease rate of 214.5%. Regarding the LULC in 2030, when the return 

Table 3 
The confusion matrix used to test the accuracy of the CLUMondo simulation results.  

Observation/ Urban green space Construction Land Roads and avenues Cultivated Land Water Total UA 
Simulation 

Urban green space 6163 325 178 200 4 6870 95.65% 
Construction Land 231 12601 438 1385 43 14698 82.78% 
Roads and avenues 7 91 1769 120 1 1988 67.16% 
Cultivated Land 15 2053 170 11755 11 14004 86.19% 
Water 27 152 79 179 4243 4680 98.63% 
Total 6443 15222 2634 13639 4302 42240 - 
PA 89.71% 85.73% 88.98% 83.94% 90.66% - - 
KC 0.814 - 
OA 86.48% - 

Note: PA stands for producer’s accuracy; UA stands for user’s accuracy; OA stands for overall accuracy; KC stands for the Kappa coefficient. 

Fig. 3. Results of the rainfall model verification for 3 August.  

Fig. 4. Results of the rainfall model verification for 20 June.  
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period was increased from 0.5 years to 10 years, the maximum depth of 
water accumulation was predicted to increase from 1.513 m to 2.425 m, 
an increase rate of 60.3%. The area of water accumulation was predicted 
to increase from 1.126 km2 to 3.403 km2, an increase rate of 202.2%. 

In addition, the clothing trade in Haining City is very prosperous. In 
order to better develop the apparel industry, the government concen
trated the leather industry enterprise cluster in adjacent areas and 
started the construction of Haining Garment City in 2005. While the 
clothing industry has driven the economic and cultural development of 
Haining City, due to the concentration of impervious water surfaces, the 
insufficient drainage capacity of pipelines, and other reasons, the city 
also faces serious waterlogging problems. 

The results for waterlogging in the Garment City area regarding the 
2030 LULC are shown in Fig. 7. The predicted maximum depth and area 
of water accumulation for each precipitation event in the Garment City 
area in 2030 are shown in Table 6. The results show that waterlogging in 
the region will be concentrated in the central and northwestern parts. 
When the return period is 0.5 years, only a small area of the northwest 
was predicted to be at risk. When the return period was 1 year, the 
predicted at-risk area increased slightly but the growth was not obvious. 

The number of at-risk areas was not predicted to increase. When the 
return period was 2 years, the number of areas at risk of water accu
mulation was predicted to increase with an increase in the area 
accordingly. When the return period was 5 years, a large area of shallow 
water accumulation was predicted for the central region, accompanied 
by an increase in the predicted at-risk area. When the return period was 
10 years, the predicted at-risk area increased, but the number of areas 
did not change. It is sufficient to focus on the northwest region when the 
return period is 2 years. However, the risk will be greatly increased 
when encountering precipitation with a return period of 5 years or more. 
In particular, the depth, area and risk of water accumulation in the 
central region need to be improved and paid attention to. 

3.4. Correlation between urban waterlogging and LULC change 

Forty-six watersheds in the study area were obtained using the D8 
algorithm. The area of cultivated land converted into construction land 
and the area of waterlogging growth in each watershed were calculated, 
and the Pearson correlation coefficient between them was 69.9%. The 
typical areas of waterlogging change in the southwest of the study area 

Fig. 5. LULC simulation results for 2005, 2010, 2015, 2020, and 2030.  

Table 4 
Statistics for the LULC type.  

Year Urban green space Construction Land Roads and avenues Cultivated Land Water Total 

2005 23.195 36.500 9.601 67.795 14.972 152.064 
2010 23.774 41.998 9.706 61.888 14.699 152.064 
2015 24.732 52.913 7.157 50.414 16.848 152.064 
2020 24.534 55.530 7.171 48.190 16.639 152.064 
2030 23.213 61.670 11.892 41.180 16.110 152.064  
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Fig. 6. Urban waterlogging results for 2020 and 2030.  
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were further observed and analyzed. The waterlogging situation from 
2020 to 2030 is shown in Fig. 8. The LULC transfer matrix is shown in 
Table 7, and a statistical table of the waterlogging simulation results is 
shown in Table 8. 

For the five types of precipitation events in 2020, although the depth 
and area of water accumulation in the area showed an increasing trend, 
no at-risk areas appeared. Regarding the 2030 LULC, no at-risk areas due 
to precipitation events were predicted in 0.5 years. Small areas of risk 
will appear in the southwest during periods of precipitation in 1 year. 
When there is precipitation in 2 years, the at-risk area will increase 
slightly, and the number of at-risk areas will increase to 3. When there is 
precipitation in 5 years, the at-risk area will increase significantly. At- 
risk areas will appear in the north and show a scattered pattern, and 
the number of risk areas will increase to 7. When precipitation occurs in 
10 years, the at-risk area will increase further, and the number of at-risk 
areas will increase to 8. Combined with the LULC transfer matrix for the 
region, from 2020 to 2030, 0.374 km2 of cultivated land is predicted to 

be converted to construction land and roads, accounting for 55.9% of the 
cultivated land area. It can be seen that the increased risk of urban 
waterlogging is closely related to the transformation of cultivated land 
into construction land. 

4. Discussion 

4.1. Change of LULC 

Increases in features were determined by overlaying polygons from 
the later year features with those of the earlier year features to be erased. 
Only portions of the later year features falling outside the earlier year 
feature boundaries were copied to the output feature class. The feature 
decrease was determined by looking at the earlier-year features erased 
by the later year features. The LULC change results obtained through the 
above methods for 2005 to 2030 are shown in Fig. 9. 

According to the simulation results (Fig.9), from 2005 to 2030, the 
area of cultivated land around the central urban area will greatly 
reduced. The area of construction land in the same area will increase 
significantly. This is similar to the results for A0 and A1 in Lithuania 
(Gomes et al., 2021) but is inconsistent with the results of Cunha’s study 
(Cunha et al., 2021), because the study area in the Prata River basin 
chosen by Cunha is primarily agricultural, while the area used in this 
study contains a high-growth city. Prior to urbanization, this study area 

Table 5 
Statistical table showing the urban waterlogging results.  

Year Return 
period/a 

Max water 
depth/m 

Average water 
depth/m 

Area of water 
accumulation/km2 

2020 0.5 1.376 0.187 0.9975 
1 1.718 0.211 1.4750 
2 1.995 0.231 1.9905 
5 2.113 0.259 2.6745 
10 2.251 0.286 3.1370 

2030 0.5 1.513 0.196 1.1260 
1 1.927 0.218 1.6835 
2 2.091 0.244 2.2015 
5 2.251 0.277 2.8975 
10 2.425 0.300 3.4030 

2030- 
2020 

0.5 0.137 0.010 0.1285 
1 0.209 0.007 0.2085 
2 0.096 0.013 0.2110 
5 0.138 0.017 0.2230 
10 0.174 0.015 0.2660  

Fig. 7. Results for urban waterlogging in the Garment City area in 2030.  

Table 6 
Statistical table showing urban waterlogging in the Garment City area.  

Year 
ofLULC 

Return 
period/a 

Maximum 
water depth/m 

Area of water 
accumulation/km2 

Area of the 
risk area/ 
km2 

2030 0.5 1.174 0.1068 0.0032 
1 1.284 0.1664 0.0041 
2 1.376 0.2826 0.0068 
5 1.476 0.4815 0.0189 
10 1.551 0.5605 0.0213  
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was mainly cultivated land that was used to provide a living base for 
local residents. After economic development, the local population no 
longer depended on agriculture. In order to adapt to the development of 
the city, the area of cultivated land converted into construction land is 
predicted to be 23.97 km2, accounting for 90.1% of the reduced 

cultivated land and 95.2% of the increase in construction land. Most of 
the reduced cultivated land will be converted into construction land, and 
most of the new construction land will occupy cultivated land. 

As China enters the 21st century, the national economy has entered a 
stage of comprehensive and rapid industrialization. The population has 

Fig. 8. Results for urban waterlogging in typical areas of the southwest.  

Table 7 
LULC transfer matrix in typical areas of the southwest.  

2020/2030 Urban green space Construction Land Roads and avenues Cultivated Land Water Total 

Urban green space 0.1584 0 0.018 0 0 0.1764 
Construction Land 0 1.4652 0.1692 0 0 1.6344 
Roads and avenues 0 0 0.054 0 0 0.054 
Cultivated Land 0 0.3024 0.072 0.2952 0 0.6696 
Water 0 0 0.0036 0 0.3024 0.306 
Total 0.1584 1.7676 0.3168 0.2952 0.3024 2.8404  
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grown significantly, cities have continued to expand, and the phenom
enon of rural areas occupying cultivated land for the building of houses 
has occurred frequently (Gong et al., 2018). From 2005 to 2010, the area 
of cultivated land in the study area was rapidly degraded, and the 
cultivated land area decreased by an average annual amount of 1.18 
km2. Urbanization advanced rapidly, with an average annual increase of 
1.10 km2 in the construction area. Haining City began the construction 
of a compensation policy for cultivated protection in 2009, but the effect 
was not good. The compensation incentives were not attractive, result
ing in low resident engagement. The income brought by cultivated land 
and the incentives for cultivated protection were not enough to meet the 
development needs of residents. The erosion of cultivated land and the 
growth rate of construction accelerated. From 2010 to 2015, the average 
annual decrease in cultivated land area was 2.29 km2, and the average 
annual increase in construction land was 2.18 km2. Haining City further 
established a basic cultivated protection incentive mechanism and a 
joint responsibility mechanism for cultivated protection, continued to 
promote farmland protection policies and increased farmland protection 
incentive funds (Wang et al., 2010; Zhang et al., 2014; Y. Zhou et al., 
2021). The phenomenon of construction-induced erosion of cultivated 
land has been effectively improved. From 2015 to 2020, the average 
annual decrease in cultivated land area was 0.44 km2, and the average 
annual increase in construction land was 0.52 km2. However, at present, 
the protection of cultivated land is still not enough prevent its degra
dation. By 2030, the area of cultivated land is predicted to decrease by 
an average annual rate of 0.70 km2, accompanied by an average annual 
increase in construction area of 0.61 km2. In short, although Haining has 

taken measures to protect its cultivated land, the area of cultivated land 
has still decreased year-by-year, and the construction area has increased 
year-by-year, and this trend will continue in the future. 

In addition, the application of CLUMondo is not limited to the pre
diction of waterlogging. This model includes the LULC intensity, thereby 
effectively improving the accuracy of LULC simulation. Therefore, it can 
be applied to a variety of social and environmental fields related to LULC 
and sustainable issues, including population research, carbon storage 
research, and urban planning research (Nie et al., 2020; Domingo et al., 
2021; Y. Wang et al., 2021). 

4.2. Changes in and causes of urban waterlogging 

Under the 2030 LULC situation, the waterlogging situation was 
predicted to be more severe than in 2020, with a larger area, greater 
depth, and more at-risk areas, a result that is similar to those of Pal‘s 
study conducted in India (Pal et al., 2022). Figs. 5 and 6 show that 
waterlogging is predicted to be distributed around the central business 
districts, where there is a drainage pipe network. According to the field 
work, the drainage pipes here are relatively narrow with insufficient 
capacity to drain the rainwater away, resulting in siltation of the rain
water. In addition, the terrain is relatively low-lying, and the proportion 
of impervious water surfaces is high, making rainwater less likely to seep 
down, causing it to pool in low-lying areas and cause waterlogging. This 
result is similar to Zhang’s discovery in the Chebei Watershed that the 
uneven topography distribution and LULC have resulted in unevenness 
in the spatial distribution of waterlogging (M. Zhang et al., 2021). The 
growth of waterlogging from 2020 to 2030 is also predicted to be mainly 
located in the above areas. The depth and area of water accumulation in 
other areas were not obvious. In the north and southeast areas of the city 
without pipe network distribution, no waterlogging was predicted, a 
result that differs from previous waterlogging results for Xiamen Island 
(Liu et al., 2020). However, according to fieldwork, there will also be 
slight water accumulation in these areas. Because Liu’s drainage 
network was shown to be evenly distributed in the study area, the 
waterlogging results were also evenly distributed. The InfoWorks ICM 
model simulation of water accumulation relies on urban drainage 
network data. Waterlogging occurs only in areas in which urban 
drainage networks are distributed (Song et al., 2021). In subsequent 
studies, in order to further improve the accuracy of the InfoWorks ICM 
model, it is necessary to improve the drainage network data. Combi
nation with other models is also a recommended way to achieve a high 
level of accuracy. 

Table 8 
Statistical table showing the waterlogging simulation results in typical areas of 
the southwest.  

Year 
ofLULC 

Return 
period/a 

Maximum 
water depth/m 

Area of water 
accumulation/km2 

Area of the 
risky area/ 
km2 

2020 0.5 0.621 0.0263 0.0000 
1 0.757 0.0411 0.0000 
2 0.85 0.0576 0.0000 
5 0.884 0.0754 0.0000 
10 0.973 0.0989 0.0000 

2030 0.5 0.916 0.0447 0.0000 
1 1.123 0.0817 0.0014 
2 1.308 0.1077 0.0026 
5 1.492 0.1754 0.0091 
10 1.559 0.2490 0.0146  

Fig. 9. LULC changes from 2005 to 2030: (a) Change in construction land; (b) Change in cultivated land.  
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In the Costume City area, in order to carry out centralized com
mercial development, the area is mainly set up with impervious water 
surfaces, such as construction land and roads. The impervious water 
surfaces are concentrated and distributed across a whole block, which is 
not conducive to the infiltration of water. Xu’s study also supports this, 
since they showed that less surface runoff would be generated in low- 
density settlement areas in Munich (Xu et al., 2020). Moreover, the 
area is low-lying and prone to water accumulation. In addition, although 
there is a pipe network in this area, the number of pipe networks is 
small, and the distribution is sparse. The diameters of the pipes are 
mostly 400–600 mm, and the drainage capacity is weak. The above 
reasons have caused a large area of water accumulation in the Costume 
City area. 

In the typical southwest area, based on the waterlogging results for 
2020 and 2030, it can be inferred that the degradation of large areas of 
cultivated land will cause increases in the depth and area of water
logging, leading to a serious increase in the risk of waterlogging. 

4.3. Recommendations for sustainable development of urban waterlogging 
based on LULC change 

Overall, from 2020 to 2030, the maximum depth and area of water 
accumulation in the study area is predicted to increase. According to 
Fig. 6, Fig. 7, and Fig. 9, combined with the high correlation between 
urban waterlogging and LULC change, it can be seen that the main 
reason for the serious waterlogging is the transformation of urban green 
space and cultivated land, especially the reduction of cultivated land. 
This law also applies to Ren’s discovery that urban imperviousness plays 
an important role in reducing surface runoff (Ren et al., 2020). The area 
where cultivated land is converted into construction land corresponds to 
the area in which the depth and area of waterlogging are predicted to 
increase. Based on this, the following recommendations are made to 
reduce the increase in urban waterlogging caused by LULC change and 
promote the sustainable development of cities. 

The CLUMondo model and the InfoWorks ICM model have high 
levels of simulation accuracy. At the global scale, LULC change has 
brought about serious waterlogging problems (Sterling et al., 2013; 
Lapointe et al., 2022). Regions can predict future LULC and water
logging from simulations using these two models. On this basis, urban 
planning and transformation can be carried out to fundamentally pre
vent the occurrence of waterlogging. This can provide the foundation for 
the rational expansion of the city and the deployment of the urban 
drainage network. 

Many scholars have made recommendations for alleviating urban 
waterlogging Liu et al., 2022; Shahzad et al., 2022). For Haining City, 
there are the following three targeted recommendations: ((1) Haining 
City should improve its compensation system for cultivated land pro
tection and severely crack down on the behavior of arbitrarily occupying 
cultivated land and building houses. Effort should be made to strengthen 
the control, construction, and encouragement of cultivated land for 
protection. It is recommended that the area of cultivated land should not 
be reduced, so that cultivated land protection can be effectively ach
ieved. The construction land growth rate should be controlled, and it is 
suggested that the rate of urban expansion should be slowed down. (2) 
New construction land should be scattered to avoid excessive agglom
eration in the same area, such as in the Garment City area. If necessary, it 
is suggested that construction land should be demolished to restore 
cultivated land. In the case of difficulty in restoring cultivated land, 
more urban green space should be arranged among the construction 
land. It is recommended that the degree of construction land dispersion 
should be increased, and the production of flow should be reduced to 
alleviate urban waterlogging. (3) Construction land and roads in at-risk 
areas should be sponge-remodeled. The underlying surface should be 
optimized to reduce the production of flow. At the same time, it is 
suggested that the urban drainage network should be optimized and the 
drainage capacity of the network should be improved to achieve the goal 

of sustainable urban development. At the same time, the drainage 
network should be transformed and optimized to improve the drainage 
capacity and avoid rainwater siltation. 

4.4. Limitations and Future Perspectives 

Several limitations should be addressed to better understand the 
results. First, the inconsistency in data years resulted in a decrease in 
simulation accuracy. In the future, data collected closer together could 
be used to improve the simulation accuracy. Second, a single simulation 
scenario was used. Scenarios such as the Intergovernmental Panel on 
Climate Change (IPCC), economic development, and natural environ
mental protection should be considered in the future to explore the risk 
of urban waterlogging in the context of climate change and sustainable 
urban development. Third, the historical trend extrapolation method 
used in the calculation of LULC demand is actually a relatively simple 
functional model. In future research, various factors, like areas restricted 
from development by the government, could be included to improve the 
accuracy of the LULC simulation results. 

5. Conclusion 

Taking Haining City as an example, based on the simulation results of 
the LULC in 2030, waterlogging in the city was predicted, and the cor
relation between LULC change and urban waterlogging was discussed. 
The main conclusions are as follows: 

(1) The CLUMondo model applied to Haining has a high level of 
accuracy for LULC predictions (Kappa coefficient is 0.81, overall clas
sification accuracy is 86.48%). It can lay a solid foundation for following 
in-depth studies of future LULC conversion trends. The simulation re
sults show that, among the changes in the LULC structure of Haining 
from 2005 to 2030, the changes in cultivated land and construction land 
will be the most obvious. 

(2) The overall distribution of the waterlogged areas and the iden
tified at-risk areas in Haining were shown to be relatively scattered, with 
greater distribution around the central business districts. Because there 
is a drainage pipe network distribution that is not dense, the terrain is 
relatively low-lying, and the proportion of impervious water surfaces is 
high. The overall results show that urban waterlogging in 2030 will be 
more serious than in 2020. 

(3) The reasons for the change of waterlogging in Haining City be
tween 2005 and 2030 are closely related to the transformation of LULC, 
especially the transformation of cultivated land to construction land. 
The correlation between the two reached 69.9%. In order to alleviate 
urban waterlogging, it is necessary to improve the compensation system 
for cultivated land protection. New construction land should be scat
tered to avoid excessive agglomeration in the same area. It is suggested 
that cultivated land should be restored as much as possible, and urban 
green space should be increased. 

In summary, this study described a complete process for simulating 
waterlogging development based on future LULC predictions. The 
combination of the confusion matrix and Pearson Chi-square statistical 
methods guarantees the accuracy of future LULC predictions. The ac
curacy of the waterlogging simulation was verified by the field investi
gation data. Based on the correlation between LULC development and 
waterlogging disasters, specific urban planning suggestions were pro
posed. This process is recommended in other cities with rapid urbani
zation and severe waterlogging disasters and can provide a basis for the 
construction of livable cities and sustainable development. 
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