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Abstract. Attended home delivery (AHD) is a popular type of home
delivery for which companies typically offer delivery time slots. The costs
for offering time slots are often double compared to standard home deliv-
ery services (Yrjölä, 2001). To influence customers to choose a time slot
that results in fewer travel costs, companies often give incentives (dis-
counts) or penalties (delivery charges) depending on the costs of a time
slot. The main focus of this paper is on determining the costs of a time
slot and adjusting time slot pricing accordingly, i.e., dynamic pricing. We
compare two time slot cost approximation methods, a cheapest insertion
formula and a method employing random forests with a limited set of
features. Our results show that time slot incentives have added value
for practice. In a hypothetical situation where customers are infinitely
sensitive to incentives, we can plan 6% more customers and decrease the
per-customer travel costs by 11%. Furthermore, we show that our method
works especially well when customer locations are heavily clustered or
when the area of operation is sparsely populated. For a realistic case of a
European e-grocery retailer, we show that we can save approximately 6%
in per-customer travel costs, and plan approximately 1% more customers
when using our time slot incentive policy.

Keywords: Time slot management · Dynamic pricing · Vehicle
routing · Machine learning · Cost approximation

1 Introduction

During the last two decades, many e-commerce initiatives have driven the
demand for package delivery services, resulting in several variations of business-
to-consumer business models. One of the ultimate value-adding services is last-
mile delivery, the delivery of packages to the customer’s front door [10]. Home
delivery services present great challenges for retailers, service providers, and
logistics companies. Logistics must be organized in a way that is efficient, prof-
itable, and satisfies the customers’ wishes, while sometimes dealing with stochas-
tic customer arrivals.

In this research, we focus on attended home delivery (AHD), for which it
is necessary that the customer is at home at the delivery moment. AHD might
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be needed for security reasons (e.g., high-value goods), perishable goods (e.g.,
groceries), physically large goods (e.g., home appliances), or because services are
performed (e.g., product installation) [2]. Many companies that offer AHD ser-
vices provide their customers with time slots for choosing the delivery moment.
Delivery time slots are offered to provide a high customer service and prevent
costly delivery failure. When delivery has failed, the goods have to be offered
for delivery at a different moment, which will result in additional storage, trans-
portation and planning costs. In the case of perishable goods, the costs of a
delivery failure are even higher, since the goods may be spoilt before the next
delivery opportunity. An early study shows that AHD costs are often twice the
cost of unattended delivery [26]. The AHD customer ordering process is mostly
comprised of five steps: (i) the customer fills the online basket, (ii) the customer
indicates the required delivery location, (iii) the customer is presented delivery
time slots, (iv) the customer chooses a time slot and completes the order, and
(v) the order is delivered within the required time window.

Time slots have different delivery charges as part of the company’s pricing
policy. Often, time slot pricing policies are intended to steer customer behavior
towards time slots (“nudge”) that are cheaper for the company, i.e., these time
slots represent lower transportation costs. By using incentives or penalties, a
company can influence customer behavior in choosing a time slot, hence, it is
possible to reduce operational costs. The reduction of costs can be done by, e.g.,
smoothing the demand patterns or the geographical spread of customers over
time to reduce demand peaks [2], reducing vehicle routing distance or time, and
reducing the required fleet size.

There is limited time to perform many calculations before offering a time
slot; recent research suggests that each 100-ms delay in the load time of websites
can decrease sales conversion by 7% [3]. Nevertheless, we need to calculate the
impact of the time slot offering in terms of, e.g., fuel, salary, vehicle rent, and
emissions. In addition, the opportunity costs can be considered, which are the
cost of offering a time slot now compared to saving it for potentially more prof-
itable customers that arrive later [25]. The problem is further complicated by
uncertain customer arrivals and customer behaviour. Although much research
has been conducted on time slot allocation, i.e., the offering of only a subset
of the feasible time slots, this study considers the situation in which always all
feasible time slots are offered and we can reduce costs by nudging customers
to time slots. The contributions of this paper are the application of regression
models for approximating transportation costs, a novel parametric rank-based
method for modelling customer behavior, and the application of our approach
to a realistic time slotting case.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
the relevant scientific literature on attended home delivery and time slot man-
agement. In Sect. 3, we describe the problem and introduce our approximation
and dynamic pricing method. Section 4 introduces the synthetic and European e-
grocery retailer cases and in Sect. 5, we validate and illustrate our method using
the two cases. Finally, we close with conclusions and future research directions
in Sect. 6.
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2 Literature

In this section, we give an overview of the state-of-the-art literature consider-
ing operational attended home delivery and time slot management. We discuss
problem characteristics, solution methods, and cost approximation methods. We
close with an overview of the contribution of this paper to the scientific literature.

Since attended home delivery with time slots requires delivery to take place
in a specified time interval, it relates to the well-known Vehicle Routing Problem
with Time Windows (VRPTW). As part of the VRPTW, the field of AHD is
typically divided into the following categories: (i) static time slot allocation, (ii)
dynamic time slot allocation, (iii) differentiated pricing, and (iv) dynamic pricing
[1,14,25]. Time slot allocation can be summarized by the question: “what time
slots should we offer to a customer?” and time slot pricing can be stated as: “what
time slots should we incentivize and what time slots should be penalized?”. Static
methods use forecast data or static rules and can be used to make strategic and
tactical decisions, e.g., to decide on the number of time slots and the width of the
time slots. For differentiated allocation, the goal is to find what time slots to offer
to what delivery area, e.g., certain low-populated areas might be offered fewer
time slots, which is a tactical decision. Differentiated pricing tries to find the best
static price policy to influence customer behavior. When time slot allocation and
pricing happen online, during the decision making, it is called dynamic. Dynamic
decisions can consider real-time information about the customer and the current
schedule to make better decisions [1,14,25].

We review the state-of-the-art scientific literature on operational decision
making techniques for attended home delivery and time slotting, see Table 1
for an overview. We consider the following problem and solution elements: (i)
the delivery horizon length, which indicates how many delivery days a customer
can choose for delivery, (ii) the customer arrival process, which can be modelled
using different probability distributions, (iii) the order generation, which is the
way the orders (e.g., quantity, location or time slot) are generated, (iv) the time
slot design, which indicates what width and possible overlap of time slots is
considered, (v) the time slot allocation method, and (vi) if applicable, the time
slot incentive method.

In [6], a model is presented that allows for a flexible horizon, but does not
consider days of the week, nor seasonality. The customer arrival process is mod-
elled using a non-homogeneous Poisson process, as inspired by scientific work in
revenue management in the airline industry (see [15]). A Markov decision process
model is proposed that dynamically adjusts the delivery charges per customer.
Optimal prices are calculated based on an “equal profit” policy, which means that
the retailer makes the same profit in the remaining booking horizon, regardless
the customer choice. Delivery prices can change based on order size, depending
on the time left in the booking horizon [6]. In [9], the models are tested on ficti-
tious cases for which customers are uniformly scattered on a 60× 60 grid. Their
method dynamically determines the feasibility of a time slot insertion, using
a combination of insertion heuristics and randomization to determine a feasible
schedule. Next, the allocation and size of incentives are determined using a linear
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Table 1. Problem and solution elements in AHD and time slotting literature.

Authors Delivery
horizon

Customer
arrival process

Order
generation

Time slot design Slot allocation
method

Slot incentive
method

[6] Flexible N/A Uniform N/A Feasibility check Dynamic, Markov
decision process
model

[9] Single-day Uniform - Non-overlapping, 1 or
2-h width

Heuristic
feasibility check

Dynamic
LP-based model

[11] - N/A Area-based,
normal dist.

8 time slots Dynamic, ESMR N/A

[12] Single-day N/A Uniform,
Demand peaks

8 Non-overlapping,
1-h width time slots

Static/Dynamic,
I1 insertion
heuristic

N/A

[13] Single-day Random General dist.
of nr. of totes
i ∈ {1,. . . ,10}

4 Non-overlapping,
2-h width time slots

Feasibility check Dynamic,
MILP-model for
opportunity costs

[24] Single-day Homogeneous
Poisson arrivals

General dist.
of nr. of totes
i ∈ {1,. . . ,10}

17 Non-overlapping,
1-hour width time
slots

Feasibility check Dynamic

[25] Single-day Time-dependent
Poisson arrivals

Normal dist. 27 Partly-overlapping,
1-h width time slots

Heuristic
feasibility check

Dynamic,
opportunity costs,
SDP

programming model, which maximizes the profits related to time slot offerings.
The authors conclude the following from their research: (i) incentive schemes can
substantially reduce costs, (ii) performance of incentive schemes can be improved
using intelligent methods, (iii) incentives can reduce walkaways (lost sales), (iv)
it is sufficient to provide incentives to only a few slots (≤3), (v) an increase in
time slots triggers the need for more sophisticated incentive schemes, (vi) it is
easier to persuade customers to choose a wider time window than to let them
choose a specific time slot, and (vii) the use of incentives can be critical already
in the early stages of making a routing schedule [9].

In [11], a computational study is conducted based on the metropolitan area
of Stuttgart, which is divided into nine areas with varying population sizes. Cus-
tomers can choose between eight time slots. Demand is drawn from the normal
distribution and is dependent on the area and the average income in those areas.
There is a fixed fleet of four vehicles and capacity is estimated with vehicle rout-
ing experiments. The offering of time slots to customers is dynamically deter-
mined using the order value. The used method is called “Estimated Marginal
Seat Revenue heuristic” (EMSR), as described in [8]. EMSR determines buckets
for order values and allocates time slots accordingly, i.e., customers with a high
order value, falling in a high-value bucket, will receive more time slot offers than
customers with low order value [11]. In a study that also considers metropolitan
areas, different travel time patterns are considered to model congestion in the
morning peak-hours [12]. Demand for the eight non-overlapping time slots is
uniform, and for some experiments demand peaks for time slots are considered.
The authors define both static and dynamic approaches to determine the time
slot allocation to maximize the number of accepted time slot requests. The static
method uses capacity restrictions and a static rule that considers the time win-
dows in which a delivery must be feasible. The dynamic method uses expected,
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dynamically determined, travel times. The authors expand this method to also
have a buffer for lateness and consider stochastic travel times. Their insertion
heuristic is a time-dependent adaptation to the well-known I1 insertion heuris-
tic by [21]. In [13], 12 areas are served by a single central depot. A set of 1000
customers can arrive randomly, one at a time, and the size of demand is defined
using the number of order totes. The authors develop a mixed-integer linear pro-
gramming model (MILP) which is integrated into a dynamic programming model
for AHD by [25]. The MILP-model maximizes expected profits and is used as
an approximation of opportunity costs. The availability of time slots is checked,
but time slots are always offered when capacity allows it [13]. The dynamic pro-
gramming model as described in [25], is the “de facto” framework for dynamic
pricing. After doing a heuristic feasibility check, based on [9], the insertion costs
are calculated. The pricing solution is dynamic, but for practical reasons it does
not differentiate between customers that choose the same time slot and have
the same location and order value. In [25], two policies are developed, one only
considering the current insertion costs, the other also including the opportunity
costs. Their method is tested on a realistic case, for which bookings on a single
day arrive as early as 22 days in advance, with most bookings coming in the last
three days before the cutoff time. Cancellation and re-scheduling is neglected.
They show that dynamic pricing methods that do not consider future expected
demands (i.e., opportunity costs) can produce worse results compared to static
pricing methods [25]. In a follow-up study, [24] expand their method to use an
area-specific cost estimation as input for an approximate dynamic programming
approach. They show that the decomposition into smaller areas can successfully
reduce computational efforts and estimate the costs [24].

As [20] indicated, attended home delivery literature can also be categorised
on the method for including routing costs. Most literature uses the costs result-
ing from explicit routing decisions, often obtained from a heuristic, since the
VRPTW is NP-hard [9,11,12,25]. Alternatively, an approximation of the rout-
ing costs, without making explicit routing decisions, can be used, e.g., with
Daganzo-approximation [19] or a seed-based approximation method [13,14].
Another option for routing costs approximation, not used before in time slot
management research, is the use of regression models, as shown in [16] or [4].

In summary, we observe that the literature considers exclusively time slot
allocation or time slot incentives. Those focusing on incentives often state that
the closing of time slots for certain customers (i.e., time slot allocation) is a
method that results in lost sales and customer dissatisfaction [6]. Hence, dynamic
pricing is perceived as the best method, since it can balance the trade-off between
lost sales and profits. Also, we see that the topic of cost approximation, being
opportunity costs or transportation costs, is much studied. We recognise two
different options for dynamic pricing: (i) approximate the costs of a time slot
and use this as basis for setting time slot prices [9], or (ii) optimize the time slot
prices, such that the behavior of customers is nudged optimally, like is done in
the approximate dynamic programming model of [25]. Aside from the previous
problem and solution elements, the time slotting literature also differentiates the
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modelling of customer choice. Most literature either use a probabilistic model, a
rank-based model, or the multinomial logit (MNL) model. The latter seems to
be the dominant method for the most recent literature. For more information
about the MNL model we refer to [22].

The contribution of this paper to the existing scientific literature is threefold.
First, we show the application of regression models for approximating transporta-
tion costs instead of the currently in use heuristic methods. Second, we present a
novel parametric rank-based method for modelling customer behavior that, com-
pared to the currently in use multinomial logit choice model, does not require
behavioral data and requires fewer computations. Finally, we apply our solu-
tion approach and customer choice model to realistic time slotting case studies
together with commercial vehicle routing and time slot allocation software.

3 Problem Formulation

In this section, we give the problem formulation in Sect. 3.1, describe the cus-
tomer choice model in Sect. 3.2, and show how we attribute transportation costs
to customers in Sect. 3.3.

3.1 Problem Characteristics

In this section, the notation of all variables, parameters, and sets is introduced,
based on the formulation in [23]. We adhere to the order process as perceived by
a customer. This process consists of three steps: (i) customer arrival, (ii) time slot
offering, and (iii) time slot selection and confirmation. During a certain period,
customers place orders at a retailer, after which the customers are offered a time
slot for delivery. As common in these types of problems, we specify this period
as [0, T ], for which 0 is the first time a customer can place an order and T is
the “cutoff time”, which is the last moment a customer can place an order. After
T , the final delivery schedule is made for a single day, by solving a VRPTW.
The customer arrival times are unknown upfront. A customer i ∈ C can arrive
at any time ti within the horizon [0, T ]. Customer orders have a certain size,
for example, indicated by weight or volume, qi. The order quantity qi is also
unknown upfront. Each customer has a delivery service duration, i.e., the time
it takes for the deliverer, after arrival at the address, to hand over the package.
The service duration is indicated with li. The expected delivery duration can be
estimated with a fixed time component and a variable time component that is
dependent on the order quantity qi.

After the customer arrival, the customer must be offered a set of time slots
for delivery. We consider a single day of delivery time slots, these are all part of
the set T , with the earliest time slot beginning after T . The set of offered time
slots is denoted Si, so that Si ⊆ T . Time slot offering depends on feasibility
and the offering policy. Each time slot s ∈ T can be of different length and can
be overlapping or non-overlapping. The individual time slot duration is denoted
with [as, bs]. s is a single element in this set, i.e., s ∈ Si. Each time slot that is
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offered gets a certain incentive to steer customer behaviour. We consider incen-
tives on a continuous scale, part of the incentive set G. The incentives can be
dynamically determined and differ per time slot. The incentive given to a cer-
tain time slot is Gs. The incentives G are decimal numbers on the domain [−1, 1],
with a negative number indicating a penalty, and a positive number indicating
an incentive. During the calculation time zi, we need to determine (i) what time
slots are feasible to offer to customer i, concerning both vehicle capacities and
time window constraints, and (ii) the costs of offering a certain time slot. We
denote the set of customers that accepted a time slot and need to be planned by
C′. The directed graph G = (V, E) models the system where nodes V = C′ ∪ D
consist of the set of customers C′ and the set of depots D. Each customer i ∈ C′

can be served from every depot in the set D. The travel time on edge (i, j) ∈ E
can be expressed with τi,j . A single depot d ∈ D has a fixed number of vehicles
Ld available for delivery. The fleet is homogeneous, where every vehicle has a
capacity of H. To make a delivery, a vehicle has to visit the nodes along its route.
A vehicle route always starts and ends at the same depot. For the planning of
vehicle routes, we consider three constraining factors: (i) the vehicle capacity H
cannot be exceeded, (ii) the vehicle routes must start and finish in the interval
[ad, bd], dependent on depot d, and (iii) the delivery of customers must be done
within their selected time slot. A vehicle can leave from a customer i only after
the full service duration li.

3.2 Customer Choice Model

To model the way customers react to time slot incentives, we develop a new
rank-based choice model with a utility theory scoring component. Our approach
combines two common methods found in literature, namely, a rank-based model
and a parametric utility theory model, see [14] and [22] for recent examples of
both modelling types. We model customer preference as follows. A customer has
a ranking for all time slots, i.e., the first preferred time slot is ranked highest
and the least preferred time slot is ranked lowest, as is normal for rank-based
models. The ranking of time slots is based on scores and, therefore, the ranking
can be influenced by incentives, similar to models based on utility theory, e.g.,
the multinomial logit model.

Each customer gives “base scores” to all time slots, expressed with Ki ⊆ T .
For our experiments, we use a preference list that includes all time slots, i.e.,
|Ki| = |T |. We model different types of customers. Some customers can be
seen as “rigid”, and others are perceived as more “sensitive" to incentives. The
level of sensitivity is expressed with fi, which is a continuous parameter on
the scale [0, 1], with 0 being rigid and 1 sensitive. The incentive effectiveness is
directly related to the sensitivity parameter fi of a customer. We do not know
the customer sensitivity upfront.

We define the number βi,s as the base score of a time slot s, with βi,s on the
domain [ 1

|Ki| , 1], with |Ki| being the number of time slots in the base preference
list of customer i. The assignment of scores to time slots is done in a decreasing
fashion, i.e., the first preference gets the highest score (1), and the last preference
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gets the lowest score ( 1
|Ki| ). The lowest possible score is 1

|Ki| instead of 0 because
this prevents problems when there are only few time slots and the difference in
base score is too large for incentives to have any effect. The equation to determine
base scores βi,s is given by:

βi,s =
|Ki| − ki,s + 1

|Ki|
, (1)

where βi,s is the base score for time slot s of customer i, |Ki| is the number of
time slots in the preference list of customer i, and ki,s is the randomly drawn
ranking of time slot s for customer i, where the ranking is an integer number
ks ∈ {1, 2, . . . , |Ki|}. We can influence the ranking of the base preferences using
incentives. The incentive decision must be made for all feasible time slots. The
incentives we can give are continuous numbers with Gs on the domain [−1, 1]. A
negative incentive can be interpreted as a penalty. The incentives are multiplied
by the customer sensitivity fi, and then added to the base preference scores.
Next, the list is re-ordered from high to low and the customer chooses the highest
ranking time slot that is offered, as common for utility theory models. The total
score of a time slot for a customer is expressed with ui,s and is calculated using
Eq. 2, as is common for utility theory models [22].

ui,s = βi,s + fi · Gs. (2)

3.3 Determining Transportation Costs

To obtain the routing costs per customer, we need to do some transformations
with routing data. These transformations are necessary since we need to find
the costs of adding a customer, but we only have the total routing costs of the
VRPTW, i.e., the total costs need to be divided over the customers. We use a
method we call “half-edge partitioning” (HEP), which can be applied to most
VRP and VRPTW solutions. HEP is a straightforward, but slightly simplistic
method that allocates half of the costs (time or distance) needed to travel an edge
to the customer from which the edge departs, and the other half to the customer
at which the edge arrives. The edges that depart from and arrive at the depot
are partially allocated to their arriving and departing customers, respectively.
The other half of these depot edges are equally divided over all customers. The
routing costs, expressed in travel time or distance, of a single customer c served
by a vehicle that serves a set of customers C′, can be expressed as:

Travel costs of customer c =
1

|C′| (0.5td,f + 0.5tl,d) + 0.5ti,c + 0.5tc,j , (3)

with ti,j being the travel time or distance in the final routing schedule on edge
(i, j), where i and j are the locations visited before and after customer location
c, respectively. The depot is indicated with d, and customer f and customer l are
the first and last customer of a vehicle route, respectively. For our experiments,
we use travel time as the cost factor.
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4 Solution Approach

In this section, we first describe the cheapest insertion method as cost approx-
imation in Sect. 4.1. Next, we describe the engineered features used in our cost
approximation regression model in Sect. 4.2. We show how we obtain training
data in Sect. 4.3 and finally, we describe our time slot incentive policy in Sect. 4.4.

4.1 Cheapest Insertion Transportation Cost Approximation

The idea of the cheapest insertion cost approximation is relatively simple: dur-
ing the booking horizon, we keep track of a preliminary routing schedule that
contains all booked customer orders up to the respective moment. This prelim-
inary routing schedule is sequentially constructed using cheapest insertion, and
periodically re-optimized after every 20th customer arrival. This re-optimization
interval strikes a balance between computational effort and performance for our
experiments. We use a commercial vehicle routing solver [17] for re-optimization.
When a new customer arrives, the cheapest insertion algorithm calculates how
much it would cost, in terms of travel time, to add the new customer to a vehicle
route. The cheapest insertion algorithm returns the costs of insertion for every
feasible time slot. These costs differ per time slot, since vehicles that serve cus-
tomers in the same time window may be close by, or alternatively have to make
a detour. Cheapest insertion is simple, fast and dynamic, since it uses all current
customer information for estimating costs. Nevertheless, it has the disadvantage
of being myopic, i.e., it makes the best decision at a point in time, but cannot
make a forecast about future customers.

4.2 Regression-Based Transportation Costs Approximation

As discussed in [4], we use a regression model to approximate transportation
costs. For this paper, we show the results of random forests regression, since
this method is able to fit complex functions without too much computational
time. To make transportation costs predictions, we need to supply features to the
model. Therefore, we aggregate customer and routing information using area-
time slot clusters (ATC), as common in the literature [13,25]. The following
information of an ATC is stored: customer locations expressed in latitude and
longitude, customer order volume expressed in kilograms, and the routing costs
per customer. Aggregation-based features give a synopsis of the characteristics
of an area and time slot cluster (ATC) a customer is in. For every feasible
time slot option, we calculate the feature values before and after the potential
insertion of the new customer, to obtain the expected increase in routing costs.
The engineered features are based on the features proposed in [4]. Examples of
these features are: the number of customers in an ATC, the number of days
between customer arrival and the end of the horizon, the distance between the
depot and the ATC-centroid, the variance of the angles between customers in an
ATC and the depot and the average distance between customers in an ATC. A
complete overview of features, including a short description of each feature, and
the data partition over which each feature is calculated, can be found in Table 2.
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Table 2. Summary of features used for the regression model.

Feature Feature description Data partition

Days until the cutoff time
(F1)

The number of days left at the arrival
of the customer until the cutoff time

N/A

Number of customers in
ATC (F2)

The number of customers accepted in
the ATC

ATC

Haversine distance from
ATC centroid to depot
(F3)

The distance from the centroid of all
accepted customers in ATC to the
depot

ATC

Average distance between
customers in an ATC (F4)

The average distance between all
accepted customers in ATC

ATC

Variance customer-depot
bearing (F5)

The variance of the bearings between
the customers in ATC and the depot

ATC

Average customer-depot
bearing (F6)

The mean of the bearings between the
customers in ATC and the depot

ATC

Area ID (F7) Binary vector indicating the area A
Time slot ID (F8) Binary vector indicating the time slot S
Variance of time slot
population (F9)

The variance of the number of accepted
customers per time slot in area a ∈ A

a ∈ A

Time slot distance (F10) The distance measured in time slots
between the first and last populated
time slot in area a ∈ A

a ∈ A

Number of time slots (F11) The number of booked time slots in
a ∈ A

a ∈ A

4.3 Obtaining Training Data

We use a simulation model to test different methods and policies. To train our
methods, we need to obtain data. We do this by generating a separate set of
instances and running full simulations on these. For these training instances, we
do not use any nudging policy, i.e., customers choose the offered time slot that
has the highest base score βi,s. We obtain the following data after a simulation
run: (i) a final VRPTW-schedule, (ii) all customer locations, and (iii) the time
slots chosen by customers.

4.4 Simple Incentive Policy

To test the quality of the cost approximations and the effect they can have on
a dynamic pricing policy, we present a simple dynamic pricing policy that uses
the approximated costs per time slot, and subsequently, returns time slot prices.
The time slot prices are always on the domain [−1, 1] and can be tuned using a
parameter. After obtaining a cost approximation for all feasible time slots, given
by the set S ⊆ T , we first calculate the mean CS and standard deviation σCS of
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the predicted costs over all feasible time slots. Next, we calculate the difference
between the predicted costs for time slot s and the mean estimated costs over
all time slots S:

ĉs = −1 ·
(

cs − CS
)

. (4)

We multiply with −1 to give higher incentives to the time slots with low costs
and vice versa. Next, we use a tunable parameter W multiplied by the standard
deviation σCS to control how much standard deviations distance from the mean
ĉs is considered large, and adjust the magnitude of incentives accordingly. In
our experiments, we tuned W and found that W = 1.0 gives best results. In
case that WσCS � ĉs, we cap the incentives to remain in the domain [−1, 1].
When the costs for all the time slots are the same, i.e., σCS = 0, no incentives
are given:

Incentive for time slot s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if σCS = 0,
−1, if ĉs

WσCS
≤ −1,

ĉs
WσCS

, if − 1 < ĉs
WσCS

< 1,

1, if ĉs
WσCS

≥ 1.

(5)

5 Case Studies

In this section, we explain the two cases on which we test our transportation
cost approximation approach. First, we describe the synthetic case in Sect. 5.1
and then a realistic European e-grocery retailer case in Sect. 5.2.

5.1 Synthetic Case

We generate instances with a single depot from which a fleet of 20 vehicles serves
an area of 50 kilometer radius from the depot. The customers are generated in a
randomly clustered (RC) pattern, i.e., 80% of the customer belongs to one of the
eight customer clusters, while 20% of the generated customers have a random
location. During a booking horizon of 21 days, 750 customers can request a time
slot. We offer six non-overlapping time slots of 2-hour width. Customers have a
base preference list that entails all six time slots, i.e., customers can be nudged
to every time slot that is feasible. In practice, VRPTWs have both a vehicle
capacity restriction and a time window restriction. For these experiments, we
first study the effect of only having a time window (RC-T) restriction, and next,
the effect of adding a capacity restriction of 25 customers per vehicle (RC-TC).
We use two different customer price sensitivity settings: one for which customers
are infinitely flexible (Flex), i.e., customers will always choose the time slot that
we nudge; and a second one that uses a sensitivity of fi = 1 (see Sect. 3.2),
i.e., customers are sensitive but the time slot with the highest incentive is not
necessarily always chosen, since the base scores, before incentives, have influence
on the eventual time slot choice.
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5.2 European E-grocery Retailer

One of the main contemporary application areas of time slotting is e-grocery
retailing, i.e., offering the possibility to order groceries online and delivering
them at home. The reason that grocery retailers use time slots for delivery is
that the goods are often perishable, so a failed delivery can be costly. Compared
to the synthetic case, customers are dispersed over a larger region containing
cities and rural areas. The grocery retailer has a heterogeneous fleet, with smaller
vehicles used for cities and larger vehicles for rural areas. The retailer offers seven
overlapping time slots, and serves from multiple depots (4) with different fleet
sizes. For the individual instances, we use order data obtained from the same
day of the week, to prevent seasonality differences. The fleet is heterogeneous in
terms of vehicle capacity and driving speed. The retailer offers five overlapping
time slots of 2-h width, and two time slots of 4 and 5 h width. Customers arrive
on a booking horizon of 9 days, and on average instances have ∼2000 customer
arrivals. Since some of our features are calculated based on the depot location,
but we do not know upfront which depot serves a customer area, we always use
the main depot for feature value calculations.

6 Computational Experiments

We use a simulation model that mimics customer behavior and integrates com-
mercial time slot allocation and vehicle routing services. The simulation model
is built in C# and maintained by the Math Innovation Team from the soft-
ware development company ORTEC. All cost approximation methods have been
trained using the Python Scikit-learn library [18] and are loaded in C# using
the ONNX standard artificial intelligence format [7]. The general event struc-
ture of the simulator follows the following events: (i) a customer arrives and
requests a time slot offering, (ii) a feasibility check for every time slot is done
using cheapest insertion and the feasible time slots are offered to the customer,
(iii) the customer chooses a time slot, (iv) the customer choice is recorded in the
system. A commercial VRP solver is called after every 20th customer arrival to
update the intermediate routing schedule, and after the final customer arrival to
obtain the final routing schedule. For a full description of the simulation model,
we refer to [5,23].

We report six different statistics: (i) the percentage of all customers that
could be planned and served, (ii) the average number of time slots that were fea-
sible to offer to a customer, (iii), the percentage of customers that were nudged
to a different time slot than their first preference, (iv) the average travel time
per customer in minutes, (v) the average waiting time per customer in minutes,
and (vi) the average travel distance per customer in kilometers. For both cases,
the travel time and the travel distance are calculated with the actual road net-
work costs, using the commercial VRP solver. Traffic congestion has not been
accounted when calculating travel times. Waiting time is reported because it is
an essential element of VRPTWs: potentially, driving times can be low, however,
early arrivals at customer locations result in drivers having to wait.
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In the remainder of this section, we first show the results for a synthetic
case study in Sect. 6.1, using generated instances based on real data. For these
instances, we alter problem attributes to test our approach in different settings.
Next, in Sect. 6.2, we use a real case from an European e-grocery retailer to
validate our approach in a realistic setting.

6.1 Results for the Synthetic Case

Table 3 summarizes the experimental results. First, we show results for the RC
type without time window restriction, that is, RC and RC-C, respectively. Next,
we add the time window restriction and show results for the case without a
time slot incentive policy. The results show that the addition of time slots, disre-
garding incentives, causes a significant decrease (19.9%) in the number of served
customers for the uncapacitated instance. For the capacitated instances, the dif-
ference in served customers is insignificant. However, for both the uncapacitated
and the capacitated instances, the addition of time slots causes a large increase in
travel time, waiting time, and travel distance, e.g., the travel distance increases
by 110.7% and 68.5% for the RC and RC-C instances, respectively.

Table 3. Simulation run statistics on the randomly clustered instances with a time
restriction (RC-T) or capacity restriction (RC-TC), using 5 replications.

Offer
strategy

Instance Planned
customers
(%)

Avg. no. of
feasible TS

Nudged
customers
(%)

Travel
time/
customer
(min.)

Waiting
time/
customer
(min.)

Distance/
customer
(km)

No time slots RC 100% N/A N/A 9.02 0.38 6.94
No time slots RC-C 66.7% N/A N/A 12.0 0.56 9.66
No incentive RC-T 80.1% 4.3 N/A 17.46 0.72 14.62
No incentive RC-TC 66.6% 3.8 N/A 21.74 3.31 16.28
IC RC-T Flex 84.9% 4.8 80.1% 15.70 0.65 13.15
RFR RC-T Flex 84.2% 4.8 78.4% 15.68 0.64 14.25
IC RC-TC Flex 65.9% 3.9 81.3% 21.81 1.81 15.36
RFR RC-TC Flex 66.6% 3.2 79.4% 24.78 1.01 15.37
IC RC-T 85.5% 4.7 58.2% 15.54 0.91 12.49
RFR RC-T 81.9% 4.0 66.5% 16.89 0.86 14.03
IC RC-TC 66.6% 3.9 58.6% 21.93 4.77 14.98
RFR RC-TC 66.7% 3.7 66.3% 22.78 4.81 15.96

When we add our incentive policy, either based on the insertion costs (IC)
or the random forests regression (RFR) model, we see that we can significantly
reduce operational costs and increase the number of served customers for the case
with infinitely flexible customers (Flex). For the uncapacitated case, we can plan
on average 4.5% more customers and decrease travel distance by 5.5%. For the
capacitated case, the incentive policy can reduce travel distance by 5.6%. The IC
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method most often outperforms the RFR method. Possibly this is caused by the
frequent updates of the vehicle routing plan (after every 20th customer arrival),
which makes IC more reliable. Finally, we show results for the case with more
realistic customer sensitivity, i.e., when time slot incentives do not always have
an effect. For most cases, this causes a drop in performance, although we are still
able to significantly reduce costs compared to the situation without incentives.

6.2 Results for the European E-grocery Retailer

Table 4 shows the results for the real case study of an European e-grocery retailer.
We observe from the “No time slots” experiment that we cannot plan more than
81.1% of the customers due to vehicle capacity restrictions. The addition of time
slots causes an increase in travel time and travel distance of 34.5% and 33.9%,
respectively. We observe that IC and RFR both can plan more customers when
nudging to infinitely flexible customers, compared to the situation without incen-
tives. IC saves 15.7% in travel time and 15.0% in distance per customer, com-
pared with the situation without incentives. RFR improves slightly less compared
with the situation without incentives; it saves 7.3% in travel time and 11.2% in
distance per customer. Comparing the situation without incentives with the best
performing incentive policy setting, we see 0.7% more planned customers, 6.2%
less travel time, and 5.3% less traveled distance per customer. Waiting times are
low, and the differences between waiting times are insignificant. Again, IC shows
somewhat better performance in most statistics, but RFR seems to be the more
“active” policy with more nudging.

Table 4. Simulation run statistics for the European e-grocery retailer case, using 2
replications.

Offer
strategy

Planned
customers
(%)

Avg. no. of
feasible TS

Nudged
customers
(%)

Travel
time/
customer
(min.)

Waiting
time/
customer
(min.)

Distance/
customer
(km)

No time slots 81.1% N/A N/A 4.18 0 2.53
No incentive 80.4% 5.6 N/A 5.62 0.03 3.39
IC (Flex) 81.1% 5.7 85.6% 4.74 0 2.88
RFR (Flex) 81.0% 5.6 86.8% 5.21 0.02 3.01
IC 80.5% 5.6 45.4% 5.25 0.02 3.15
RFR 81.0% 5.5 75.1% 5.84 0.08 3.96

7 Conclusions

We explored the possibilities for improving time slot solutions by approximating
the costs of adding a customer to a time slot, and subsequently, we studied the
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effects of dynamic pricing based on these cost approximations. To model cus-
tomer behavior without the need for a behavioral study, we developed a para-
metric rank-based customer choice model for which we can influence the ranking
of time slots by giving incentives or penalties. We developed a simple incentive
policy to test our customer choice model and time slot cost approximation. Our
solution approach for approximating the costs of time slots is centered around
the prediction of transportation costs using regression models. To improve pre-
diction and reduce noise, we aggregated customers in area-time slot combination
(ATC) clusters, after which we trained regression models to predict the travel
times to serve an ATC-cluster. We tested our proposed solution on two different
cases. First, we ran several experiments with a synthetic case, i.e., a case with
generated data using both a time-constrained variant and a capacity-constrained
variant. For the second case, we used data from an European e-grocery retailer.

When we compared the situation without time slots, i.e., customers can be
planned the whole day, with the situation with time slots, we saw a decrease
of the percentage of customers that can be served (∼20%), and a significant
increase in travel time, waiting time, and distance per customer. When giving
incentives, we can plan 6% more customers and decrease travel time, waiting time
and distance per customer by 11% compared to the situation without incentives.
Our random forests method often performed similar or slightly worse compared
to the insertion costs (IC) method. For the Europen e-grocery retailer case, IC
could save in travel times (−15.7%) and distance (−15.0%) per customer, while
planning slightly more customers compared to the case without incentives. Our
random forests method planned a similar number of customers, and saved 7.3%
in travel time and 11.2% in distance per customer, respectively.

Further research can be done on the aggregation structure used for aggre-
gating customers in spatial areas, e.g., using adaptive grids that automatically
identify customer clusters. Our rudimentary incentive policy could be improved
by improving the cost approximation, e.g., by considering more features or using
other supervised learning approaches, e.g., neural networks. The definition of
transportation costs is another interesting aspect that requires more research
since the half-edge partitioning method we used could be improved to consider
more than only travel time or distance. Although we studied the correlation
between customer time slots and costs, there is a lacking causality between giv-
ing incentives and total transportation costs. Hence, the dynamic nature and
complexity of the time slotting cause a disconnect between our time slot cost
approximation, time slot incentive policy and the final costs. Potentially, a (deep)
reinforcement learning model could be valuable for learning this implicit rela-
tionship.
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