
The Integration of Testing and Program
Verification

A Position Paper

Petra van den Bos and Marieke Huisman(B)

Formal Methods and Tools, University of Twente, Enschede, The Netherlands

m.huisman@utwente.nl

Abstract. Formal analysis techniques for software systems are becom-
ing more and more powerful, and have been used on non-trivial exam-
ples. We argue that the next step forward is to combine these different
techniques in a single framework, which makes it possible to (i) analyse
different parts of the system with different techniques, (ii) apply differ-
ent techniques on a single component, and (iii) seamlessly combine the
results of the various analysis. We describe our vision of how this integra-
tion can be achieved for the analysis techniques of testing and deductive
verification. We end with an overview of research challenges that need
to be addressed to achieve this vision.

1 Introduction

As our society depends more and more on software in every aspect of our daily
lives, we have become crucially dependent on software functioning correctly and
reliably, and without doing us any harm. Over the last decades, many differ-
ent techniques have been developed that can help us to obtain such guarantees.
These techniques range from running a few test cases to full formal verification
of the software’s properties. With this wide range of approaches that we have
available, we see that the amount of effort that is required to use such a tech-
nique is typically counterbalanced by the guarantees that are provided by it.
In particular for powerful techniques, the required formal description might be
even larger than the software system or program itself. Therefore, to make effec-
tive use of this wide range of techniques, we need to find a way to balance and
combine the effort and effectiveness of the different approaches in an optimal
way.

To achieve this balance, we argue that an integration of those different tech-
niques is necessary. This integration should enable the following ways of verifying
a system:

– different system parts can be analyzed with different techniques;
– a formal technique used to analyze a system part can be replaced by another;

and
– the analysis results can be combined seamlessly.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 524–538, 2022.
https://doi.org/10.1007/978-3-031-15629-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_28&domain=pdf
http://orcid.org/0000-0003-4467-072X
https://doi.org/10.1007/978-3-031-15629-8_28


The Integration of Testing and Program Verification 525

There are many different reasons why the integration of formal techniques
for software analysis is necessary:

– Usually some parts of a system are more critical than others. Critical parts
should be verified thoroughly, using techniques with strong guarantees, while
other parts can be analyzed with easy-to-apply techniques that provide
weaker guarantees.

– By allowing the flexible use of techniques with proportionally required efforts
and provided guarantees, the threshold for applying formal techniques is
lowered. Consequently, a general boost in software quality can be expected,
because some sort of formal techniques can easily be applied to large parts of
the system.

– Software is almost never a static artifact, but changes continuously, while it
also runs in changing environment. These changes result in different needs for
correctness guarantees. Ease in swapping of applied techniques will support
this change.

– Without clear results from the analysis effort, it is hard to know where to
improve the software. Hence, when combining techniques, combining the anal-
ysis results is essential to transfer the knowledge obtained in the analysis effort
to the development of the system. By combining analysis results, again, a
boost in quality of the software is to be expected, as this will provide more
pointers for improvement, than separate results for parts alone. Also we think
that combining results is a smaller challenge than applying one analysis tech-
nique on the whole system.

To exemplify what such an integration would encompass, this paper sketches
what the integration would look like for the authors’ research areas: testing and
deductive verification. This way, we provide a concrete view on how the integra-
tion could work. Deductive verification [17], or program verification, is a static
analysis method applied on the code level of a system. Testing consists of execut-
ing the system and observing whether the systems behaviour is as expected. We
distinguish between two different testing techniques: automated testing, where
test cases are written by humans (e.g. developers), and model-based testing,
where test cases are derived algorithmically from a formal model [28,38].

To understand how testing and verification can be integrated, we first discuss
the testing and deductive verification in more detail, with their strengths and
weaknesses (Sect. 2). Then we sketch what our ideal approach to integrating
testing and verification would look like (Sect. 3), and after that we discuss what
we see as the open research challenges that need to be addressed to reach this
goal (Sect. 4). We have grouped these challenges in three categories: challenges
that are related to how these techniques can be combined, challenges that need
to be addressed in the area of testing, and challenges that need to be addressed
in the area of deductive verification.



526 P. van den Bos and M. Huisman

2 Strengths and Weaknesses of Testing and Verification

This section gives a brief overview of automated testing, model-based testing,
and deductive verification, and for each of these formal analysis techniques we
discuss strengths and weaknesses.

General Strengths and Weaknesses of Testing. Testing is the most applied app-
roach for validating software, and has already shown its practical value on many
relevant case studies [1,10,20,24,39,41] An important advantage is that testing
can be applied independently from the programming language(s) and internal
details of the system implementation, by focusing on the (black-box) input-
output behaviour of the system. As long as there is an interface that can be
used by the test cases, testing works. Furthermore, by only modeling or select-
ing tests for the most relevant or important aspects of a system, the time needed
for testing can be reduced. A general drawback of testing is that testing is always
limited to a finite number of runs of the program with a finite length, and thus
exhaustively testing all possible behaviours of the system is usually impossible.
Moreover, because testing looks at actual, concrete runs of a system, some situa-
tions require the tests to be run multiple times, to uncover previously undetected
problems in the code, e.g. when the software runs on different types of hardware,
or in threads that can be interleaved in many orders.

Automated Testing. Automated testing [5] is more lightweight than model-based
testing and deductive verification, in terms of effort and expertise required. It
comprises executing hand-written test cases automatically. The test cases are
small programs that execute some system code, e.g. by calling a method/func-
tion/procedure, and then checking that the result of this execution, e.g. a part
of the system state, is as expected.

Because these test cases can be executed automatically, e.g. by using a testing
framework as JUnit, the tests can be run any time, and many times. This allows
for testing after any change made to the system, although execution time poten-
tially increases with the number of tests, making this infeasible and impractical.
Test cases are relatively easy to write. First of all they can check a very specific
property of the system which requires only limited knowledge of the system.
Second, test cases are usually written in a language developers are familiar with.
Furthermore, one can start applying automated testing by just writing the first
test case, and expand the set over time.

However, as the set of test cases grows, the maintenance of this set becomes
an issue. A lack of overview may lead to (almost) duplicate test cases, or parts of
the system without test cases. Code coverage measurements can help to detect
this, but improving the set of test cases is still a manual task. Moreover, a change
in the system may require a change in many test cases to get all test cases
succeeding again. The ‘guarantee’ automated testing provides is often expressed
in the lines of code executed by at least one test case. The lines of code reached
by any test case can be measured easily, but no semantic or formal guarantee,



The Integration of Testing and Program Verification 527

e.g. expressed as a specification of behaviour or functionality, is obtained by just
executing a set of test cases.

We note that, as a set of test cases selected based on an educated guess
and domain knowledge about the system, can find some initial bugs quickly,
automated testing is, especially in the initial stages of building a system, a very
easy to use, and effective technique.

Model-Based Testing. Model-based testing [11] is a testing technique rooted in
formal methods [38], where the specification of the system’s behaviour to be
tested is given as a formal model. Tests are derived automatically, using a test
generation algorithm. The choice of algorithm determines the guarantees that
can be provided after executing the set of generated tests. The formal model
provides the overview that automated testing often lacks. Model-based testing
can be scaled to larger systems by increasing the abstraction level of the model,
i.e. by generating tests at the level of the user or component interface, instead
of generating unit tests.

In this paper we consider white-box testing on the unit level, for automated
testing, and black-box model-based testing on the higher levels. In white-box
testing, test generation algorithms may use information from the code, e.g. to
generate a test for both branches of an if-statement. For black-box testing we
just assume that the system can be tested via some interface. A model then
specifies the system by only using this interface.

Guarantees provided by test generation algorithm can consist of structural
model coverage guarantees [9,10], or semantic guarantees, e.g. in the form of test
purposes [40]. Although these guarantees are based on executions of the system,
and hence do not provide a complete guarantee of correctness, they are much
stronger than automated testing, by expressing the guarantee on the level of
the model instead of the collection of test executions. The main disadvantage of
model-based testing is the requirement of the existence of a model: constructing
it is usually a larger effort than writing a few test cases, and requires more
expertise, because modelling languages are usually formal languages, e.g. finite
state machines or labeled transition systems. Lastly, test generation algorithms
are usually designed for a specific formal modelling language, as the guarantee
they provide is linked to the language. Moreover, the powerful guarantees usually
imply more required restrictions, e.g. only control flow but no (unbounded) data.
More research is needed to integrate and lift test generation algorithms and their
guarantees.

Deductive Verification. In contrast to running tests, program verification (a.k.a.
deductive verification) [17] makes a static analysis of the program, based on
the code only, and in this analysis it considers all possible behaviours of the
program. Thus, any property that is established by program verification holds
for all executions of the program, and will remain to hold if the program is
deployed on different hardware (provided that any assumptions that are made for
the verification are guaranteed by the hardware). Typically, the user writes the
desired properties as special annotations of the program code. Typical examples



528 P. van den Bos and M. Huisman

of annotations are pre- and postconditions of single methods, or global invariant
properties that hold throughout the execution of a program. Also loop invariants
are often written as program annotations. The verifier then uses (variants and
extension of) Hoare logic proof rules [18] to verify that a program respects its
specification. This makes program verification a powerful analysis technique,
which can be used for a large range of different properties.

However, to establish these general properties, often the prover needs to be
guided by a large number of auxiliary annotations, i.e., properties that are sup-
posed to hold at a particular point in the program, such as loop invariants, which
have to be provided by the user manually. Adding all these auxiliary properties
to guide the prover requires substantial expertise in program verification, and
can take a large amount of time, which makes it hard to apply this technique
on large-scale, industrial applications. As the verification is closely connected to
the semantics of the program language that is used to develop the software, any
extension of the program language requires also an extension of the verification
support. Moreover, to make the provers underlying the verification technique
work automatically, we often need to make abstractions over the state space of
the program. For example, most deductive verification tools will abstract the
computer type int into the mathematical type of integers, while the type float
is abstracted to reals (if supported at all).

Despite these challenges, in recent years, enormous progress has been made
to improve program verification tools, making them work for large parts of real-
istic languages (such as Java [3,11–13] and C [25]), and even considering complex
language features such as concurrency [7]. These state-of-the-art program veri-
fiers have been used on relevant case studies, such as the widely used TIMsort
algorithm [34], a parallel nested depth-first search algorithm [31], as used in par-
allel model checking, and implementations of prefix sum algorithms [35], a basic
library function used for many GPU algorithms.

Strengths and Weaknesses of Testing and Verification. Finally, we would like to
stress that there are two inherent properties of testing and verification that are
hard to adapt and need to be considered when applying the techniques:

– The quality of testing and verification depends on the quality of the require-
ments that are formalised. Only requirements that are explicitly formulated
and specified can be tested and/or verified. We note that if the user of the
formal technique does not write the specification, he may still choose a tool
or algorithm that provides a generic specification, e.g. no “crash” or no null
pointer exceptions, but for stronger guarantees a formal property specification
is necessary.

– Testing and verification are post hoc techniques, that require a (partial) imple-
mentation to do the analysis, as no results can be obtained for a non-existent
implementation. Nevertheless, having a specification can help to guide the
implementation effort significantly.



The Integration of Testing and Program Verification 529

3 Our Vision

As discussed above, in order to effectively scale the use of formal analysis tech-
niques, and to make them better applicable and easier to apply, we need to
integrate formal techniques. This way techniques can be combined and switched
between, depending on the required strengths of the correctness guarantees.

First of all, for this approach to work, it is essential to identify the different
parts that make up the system, and to have support to analyse these parts
in isolation, as well as to analyse the interaction between the different parts.
Ideally, at each of these levels, we have different techniques that we can apply
(i.e. support for both testing and verification), such that a user/developer can
decide which technique to use.

To decide what technique would be appropriate, different considerations are
relevant. During the development phase, it is important that one is able to
get quick push-button feedback whether the implementation is “on track”, i.e.,
according to the specification, and testing is often the right approach for this.
Once the implementation is finalised, it depends on the nature of the program
part whether testing, i.e., analysis of some executions, is sufficient, or whether
it should be fully verified. As verification takes more effort, this would typically
be the case for crucial data structures, or parts that are highly safety-critical.
However, it can also be useful elsewhere, for example if in a later stage, a bug is
detected, which did not manifest during testing. Verification will then provide
the means to analyse the executions that were not covered by testing.

Below we propose a scheme to apply and integrate testing and deductive
verification for analyzing a software system. The scheme is visualized in Fig. 1.

1. A model M describes system level behaviour on the level of user interactions.
Model-based test generation algorithms can be used to generate system level
test cases.

2. The model M is decomposed into model parts M0,M1, . . . ,Mn describing
only a part of the system. These model parts can be of any format that helps
describing a part of the system in more detail. A model part Mi corresponds
to an implementation part Ii.

3. From a model part Mi contracts Ci are generated. These contracts are used
to either check the validity of implementation parts with deductive verifi-
cation, or to generate implementations using a correct-by-construction app-
roach. Both the models Mi and contract Ci can be used to generate tests
for sub-parts that are not analyzed with deductive verification or derived by
correct-by-construction techniques.

We motivate and explain this scheme as follows:

1. We use testing for the analysis of system level behaviour, since testing allows
for abstraction, i.e. the model can describe the system at the level of user
interactions instead of at code level. Appropriate test generation algorithms
need to be selected from the abstract model, for generating test cases, to run
concrete executions in the system.



530 P. van den Bos and M. Huisman

M

M0 M1 M2

I0 I1
System

I2

C0 C1 C2

Fig. 1. Scheme for integration of testing and deductive verification

2. To perform more detailed analysis, model M is decomposed into model parts
Mi, describing an implementation part at code level. Part-specific details may
be added at this stage, but is important to maintain the link with the global
model M , such that it remains possible to merge the part-specific analysis
results into an overall analysis result. A system is divided into implementation
parts, where a part can be of different forms, e.g. a system component, a
process, or a function/behaviour of the system. The model parts Mi should
match the implementation parts Ii.

3. To allow for flexible use of testing and deductive verification in analyzing
implementation parts, both should be used at code level, in a way that they
strengthen each other. By generating contracts from the model parts, the
effort of using deductive verification is reduced. If generation cannot generate
a full contract, the contract may be augmented manually. Moreover, develop-
ment effort can also be reduced, by using these contracts, and possibly also
the model parts, for code generation in a correct-by-construction approach.

In the next section we will describe the challenges that we believe need to be
solved in testing, verification, and their combination, in order to implement this
scheme.

4 Challenges

To realise the vision outlined above, there are still a number of important
research challenges that need to be addressed. This section lists some of these
challenges, and divides them into three categories: challenges for integration,
challenges for testing, and challenges for deductive verification.

4.1 Challenges for Integration

Challenge 1 (Common Specification Language). As mentioned above, a
system developer should be able to seamlessly switch between different formal



The Integration of Testing and Program Verification 531

analysis mechanisms. This requires that all the desired properties are speci-
fied in a single specification formalism, which should combine both data and
control-flow related properties. It should provide enough abstraction to describe
the system-level behaviour to be used for model-based testing, but also should
allow to capture precise code-level details. Existing specification languages typi-
cally support a single analysis technique; examples of specification languages are
automata and process algebras [38] for model-based testing and JML [26,27] and
ACSL [6] for contract-based specifications (for deductive verification). An inter-
esting approach in this direction is the ppDATE specification language, which
enhances the control-oriented property language of DATE, with data-oriented
pre- and postconditions [4].

Challenge 2 (Connected Specifications at Different Abstraction Lev-
els). As our specifications can express both system-wide level properties, as well
as properties about the code, we also need to develop techniques that allow to
make the transition between these two levels: given a model that describes the
abstract system-level behaviour, and a method or function that implements one
step in this overall process, we need to define suitable refinement and abstraction
techniques that allow to switch between the different levels, while making sure
that the various levels are properly connected. In particular, this means that we
need to investigate techniques that (i) can generate contracts from model-level
specifications, and (ii) can generate system-level model descriptions from indi-
vidual method contracts, combined with a high-level program that shows the
pattern in which the methods are called.

The particular challenge that we need to handle here is that the different
levels focus also on different aspects of the behaviour: the system-wide level
is more focusing on the control-flow, while the concrete implementation-level
focuses also on data-oriented properties.

In this context, we would also like to mention our recent work on Alpinist [36].
Alpinist takes as input an annotated and verified program, and it then applies
an optimisation to both to the annotations and the code, such that the resulting
optimised program can still be verified and has a better performance. We believe
that similar ideas can be used in the context of program refinements: a high-
level description is annotated and verified, and then via several refinement steps
transformed into efficiently executable code, which can still be verified.

Challenge 3 (Code-level Generation). In addition to having specifications
at different levels, we also would like to understand how system-level models can
be refined into executable code (with suitable annotations). Program synthesis is
an active research area, with a large number of open challenges. We have already
explored this idea in a limited setting, where high-level system descriptions are
given as choreographies, i.e. sequential programs that describe communications
between processes. These sequential programs can then be decomposed into par-
allel programs [8,23]. The functional correctness that was deductively verified for
the sequential program is preserved in the decomposition into parallel programs.
The approach has been implemented in the tool VeyMont [8]. The current app-
roach still works in a fairly restricted setting, in particular the processes need



532 P. van den Bos and M. Huisman

to be named explicitly, and their number is hence bounded. In future work we
plan to support an unbounded number of processes.

Challenge 4 (Educated Choice of Analysis Technique). As mentioned a-
bove, given an implementation part, we can apply both testing and verification.
Testing will often be much less work, but only provides guarantees for the execu-
tions that have been tested, while verification in principle considers all possible
executions, but also requires much extra effort. Therefore, we believe that it is
important to develop heuristics that provide an estimate about the expected
investment versus the payoff of applying the different techniques. These heuris-
tics could depend for example on how a part of the code is used within the
application, on the complexity of the computations that are being done, or on
the sensitivity to changes elsewhere in the program.

Challenge 5 (Error Propagation at Different Specification Levels). If
we have specifications at different levels that describe different aspects of the
code, we also need to have ways to provide error messages at these different
specification levels. For example, if there is an error in the implementation,
then we should also be able to indicate that this error exists in the system-level
model. To support this, this error has to be propagated up and described at the
appropriate level, such that the system-level model developer can understand
that it is the responsibility of the code developer to fix the issue.

Challenge 6 (Using Testing Results for Verification). We believe that
the information that is obtained during the testing phase can be used to extract
information about the code, and to generate auxiliary annotations with possible
intermediate properties, which can help to speed up the analysis process. Of
course, this requires also some way to interact with the developer to discard
annotations that are wrongly inferred. Notice that such a technique also can
help during the testing phase itself: if the system infers unexpected or wrong
properties, they could also point to an error in the implementation.

4.2 Challenges for Testing

Challenge 7 (Maintenance of Test Cases and Models). Almost always
systems are subject to change. Consequently, the test cases used for automated
testing, or the models used for test generation, need to be updated as well. With
automated testing, the test set will grow with the system, but the tests need
to remain a good indicator for the quality of the system, while time spent on
test execution is manageable. A challenge here is to detect and reduce similar
test cases to reduce execution time, while adding test cases for new parts of the
system to guarantee the quality of these new parts. For model-based testing,
the same holds: the model needs to be updated to reflect the changed software,
and the challenge is to understand what parts need to be updated, or added;
(de)composition of models (see next challenge) may help to keep an overview of
the system, as small model parts are easier to understand than one monolithic
model. We note that verification annotations also need to be updated when code



The Integration of Testing and Program Verification 533

changes, but as this all happens at the code level, the correspondence is much
more obvious and direct.

Challenge 8 (Composition and Decomposition of Models). A monolithic
model describing the system as a whole is difficult to construct and hard to
maintain. Like in deductive verification, a more modularized approach is helpful,
as specifying small parts that can be combined is much easier than reasoning
about the system and all its interactions as a whole. Besides such composition
methods, decomposition also helps in specifying a model, as a composed model.
For example, after composing behavioral features into one model, this model can
be decomposed in a different way, e.g. components and processes. Moreover, a
model can describe the system behavior on a global, abstract level, and then
be decomposed into parts, possibly with gaps that need to be filled in with
implementation level details.

Challenge 9 (Test Selection). Selecting the right tests is important to reduce
test execution time, while maximizing the discovery of bugs in the system. Tests
should be selected based on the risk and impact a bug can have on some part
of the system. However, establishing these risks, impacts, and the parts of the
system that are at risk, is usually a rather informal educated guess. Moreover,
this risk then needs to be translated into a formal selection criterion. In case
of automated testing, a categorization of test cases could be used to distinguish
the system parts that they analyse. In case of model-based testing, test selection
boils down to choosing the right test generation algorithm. Moreover, the avail-
able choices in algorithms usually depend on the modelling formalism. In this
direction, a more technical challenge is to find better test generation algorithms.
They should allow for flexible scaling in the number of test cases, and provide a
scaling in the guarantees offered as well. Additionally, better algorithms should
be developed for expressive modelling and specification languages that include
both control flow and (unbounded) data, as such languages will help with the
integration of testing and verification.

4.3 Challenges for Deductive Verification

Challenge 10 (Language Features). In order to make deductive verifica-
tion usable in an industrial setting, the verifiers need to extend their support
for different language features, such as exception support (see [33] for initial
ideas in this direction), floating point numbers (currently partially supported by
some tools, such as KeY [2], Frama-C [29] and Why3 [15]), strings, input/out-
put, reflection, streams, and logging mechanisms. Part of this is an engineering
effort, but to support verification of for example reflection and streams, also new
verification techniques need to be developed.

Challenge 11 (Annotation Generation). A major bottleneck for deductive
verification is the amount of annotations that needs to be written. We conjecture
that for a large part of code, suitable annotations to prove memory safety can
be generated automatically, using e.g. techniques for loop invariant generation,



534 P. van den Bos and M. Huisman

but also by developing suitable heuristics that recognise boilerplate code pat-
terns. The literature already contains ample work on loop invariant generation,
see e.g. [16,19,22,37], however these papers often focus on automatically infer-
ring loop invariants for loops doing complex numerical calculations, while they
ignore many standard code patterns, for example a loop manipulating all single
elements in an array (with [16] as a noteworthy exception). Therefore, we believe
that the combination with recognising frequently occurring code patterns will
be important to actually make progress on this challenge.

Moreover, when reasoning about concurrent software, such as is done by for
example VerCors [7], Viper [30] and VeriFast [21], we typically require permission
annotations, which allow us to prove data race freedom: permission annotations
indicate whether a thread has (shared) read access to a heap location, or (exclu-
sive) write access. Some initial techniques have been developed to infer these
permission annotations [14]. However, also here for many programs, permissions
are following standard patterns, and can be generated automatically, and we
believe that good heuristics can lead to good progress here.

Challenge 12 (Multi-language Software). Moreover, modern software is
often composed of modules written in different programming languages, that
communicate via a well-defined communication interface. Deductive verification
tools typically support single languages, and it is a major effort to add support
for a new programming language. We believe that an important step forward
will be to develop deductive verifiers with multi-language support, that easily
can be extended for new programming languages. One possible approach that we
see to achieve this is by developing verification techniques for a core language,
and for any newly added language, we only need to define an embedding into
this core language. Of course, this raises additional challenges: how to reason
about language features that are not easily embedded into the core language, at
what level to write the specifications, and how to ensure that verification errors
are reported at the right level (ideally, at the level of the source language, rather
than at the core)?

Challenge 13 (Generating Unit Tests). There is a close correspondence
between code contracts and unit tests: a precondition indicates under which cir-
cumstances the test should be executed (the required test set-up), while the
postcondition corresponds to the test goal. This idea has been explored for
sequential programs in tool such as JMLUnitNG [42], and the test case gen-
erator of Whiley [32]. However, it is still an open challenge how to extend this
technique to a concurrent setting, where the testing has to consider possible
interleaving with other threads. Moreover, if one uses permission-based annota-
tions to capture the access permissions of threads, it would also be interesting
to include these permission annotations in the generated test cases, but this
requires setting up a runtime framework to keep track of access permissions.

Challenge 14 (Explicit Platform-dependent Assumptions). When we
verify a program, we often make implicit assumptions about the underlying com-
putation model, in order to keep the verification tractable. It is an important



The Integration of Testing and Program Verification 535

challenge to be able to make these assumptions explicit, such that we know which
parts of the system are verified in a platform-independent manner, and which
parts are platform-dependent. If we have this information, then it means that
we only have to re-test those parts of the system that are platform-dependent
when the system is deployed on a different platform.

5 Conclusion

This position paper motivated the need for integration of formal techniques: their
combination will increase their effectiveness, and enable the right level of analysis
guarantees required for a sufficient level of trust in the correct functioning of the
analyzed system. We proposed a scheme for integrated use of automated testing,
model-based testing, and deductive verification to show how this integration can
be used concretely. Finally, we identified a number of research challenges that
need to be dealt with, in order for this integration to become reality.

References

1. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F., Verwer, S.: Learning and
testing the bounded retransmission protocol. In: Heinz, J., Higuera, C., Oates,
T. (eds.) Proceedings of the Eleventh International Conference on Grammatical
Inference, vol. 21. Proceedings of Machine Learning Research. University of Mary-
land, College Park, pp. 4–18. PMLR (2012). https://proceedings.mlr.press/v21/
aarts12a.html

2. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive ver-
ification of floating-point Java programs in KeY. In: TACAS 2021. LNCS, vol.
12652, pp. 242–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72013-1 13

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification the KeY Book, vol. 10001. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6

4. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: Verifying data- and
control-oriented properties combining static and runtime verification: theory and
tools. Formal Methods Syst. Des. 51(1), 200–265 (2017). https://doi.org/10.1007/
s10703-017-0274-y

5. Ammann, P., Outt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

6. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language, Version 1.14 (2018)
7. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification

of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

8. van den Bos, P., Jongmans, S.: VeyMont: parallelising verified programs instead of
verifying parallel programs. Manuscript

9. van den Bos, P., Tretmans, J.: Coverage-based testing with symbolic transition
systems. In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp. 64–82.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31157-5 5

https://proceedings.mlr.press/v21/aarts12a.html
https://proceedings.mlr.press/v21/aarts12a.html
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-030-31157-5_5


536 P. van den Bos and M. Huisman

10. van den Bos, P., Vaandrager, F.W.: State identification for labeled transi-
tion systems with inputs and outputs. Sci. Comput. Program. 209, 102678
(2021). https://doi.org/10.1016/j.scico.2021.102678. https://www.sciencedirect.
com/science/article/pii/S016764232100071X. ISSN 0167-6423

11. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005).
https://doi.org/10.1007/b137241

12. Cok, D.R.: OpenJML: software verification for Java 7 using JML, Open-JDK,
and Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) 1st Workshop
on Formal Integrated Development Environment (F-IDE). EPTCS, vol. 149, pp.
79–92 (2014). https://doi.org/10.4204/EPTCS.149.8. https://dx.doi.org/10.4204/
EPTCS.149.8

13. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

14. Dohrau, J., Summers, A.J., Urban, C., Münger, S., Müller, P.: Permission inference
for array programs. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10982, pp. 55–74. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96142-2 7

15. Fumex, C., Marché, C., Moy, Y.: Automating the verification of floating-point
programs. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp.
102–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 7

16. Galeotti, J., Furia, C., May, E., Fraser, G., Zeller, A.: Inferring loop invariants
by mutation, dynamic analysis, and static checking. IEEE Trans. Softw. Eng. 41,
1019–1037 (2015)

17. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9 18

18. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969). ISSN 0001-0782

19. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 7

20. Huertas, T., Quesada-López, C., Mart́ınez, A.: Using model-based testing to reduce
test automation technical debt: an industrial experience report. In: Rocha, Á.,
Ferrás, C., Paredes, M. (eds.) ICITS 2019. AISC, vol. 918, pp. 220–229. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11890-7 22

21. Jacobs, B., Smans, J., Piessens, F.: Solving the VerifyThis 2012 challenges with
VeriFast. Int. J. Softw. Tools Technol. Transfer 17(6), 659–676 (2014). https://doi.
org/10.1007/s10009-014-0310-9

22. Janota, M.: Assertion-based loop invariant generation. In: 1st International Work-
shop on Invariant Generation (WING) (2007)

23. Jongmans, S.S., van den Bos, P.: A predicate transformer for choreographies. In:
Sergey, I. (ed.) ESOP 2022. LNCS, vol. 13240. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-99336-8 19

24. Karlsson, S., Čaušević, A., Sundmark, D., Larsson, M.: Model-based automated
testing of mobile applications: an industrial case study. In: 2021 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 130–137 (2021). https://doi.org/10.1109/ICSTW52544.2021.00033

https://doi.org/10.1016/j.scico.2021.102678
https://www.sciencedirect.com/science/article/pii/S016764232100071X
https://www.sciencedirect.com/science/article/pii/S016764232100071X
https://doi.org/10.1007/b137241
https://doi.org/10.4204/EPTCS.149.8
https://dx.doi.org/10.4204/EPTCS.149.8
https://dx.doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-96142-2_7
https://doi.org/10.1007/978-3-319-72308-2_7
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-19835-9_7
https://doi.org/10.1007/978-3-030-11890-7_22
https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1109/ICSTW52544.2021.00033


The Integration of Testing and Program Verification 537

25. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2 32

26. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006)

27. Leavens, G., et al.: JML reference manual. Department of Computer Science, Iowa
State University, February 2007. https://www.jmlspecs.org

28. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996). https://doi.org/10.1109/5.533956

29. Mattsen, S., Cuoq, P., Schupp, S.: Driving a sound static software analyzer with
branch-and-bound. In: 13th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2013, Eindhoven, Netherlands, 22–23
September 2013, pp. 63–68. IEEE Computer Society (2013). https://doi.org/10.
1109/SCAM.2013.6648185

30. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

31. Oortwijn, W., Huisman, M., Joosten, S.J.C., van de Pol, J.: Automated verification
of parallel nested DFS. In: TACAS 2020. LNCS, vol. 12078, pp. 247–265. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 14

32. Pearce, D.J., Utting, M., Groves, L.: An introduction to software verification with
Whiley. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430,
pp. 1–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3 1

33. Rubbens, R., Lathouwers, S., Huisman, M.: Modular transformation of Java excep-
tions modulo errors. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021.
LNCS, vol. 12863, pp. 67–84. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85248-1 5

34. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

35. Safari, M., Oortwijn, W., Joosten, S., Huisman, M.: Formal verification of parallel
prefix sum. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM
2020. LNCS, vol. 12229, pp. 170–186. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-55754-6 10

36. şakar, Ö., Safari, M., Huisman, M., Wijs, A.: Alpinist: an annotation-aware GPU
program optimizer. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol.
13244, pp. 332–352. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99527-0 18

37. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation
using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 57

38. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-47166-2_32
https://www.jmlspecs.org
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/SCAM.2013.6648185
https://doi.org/10.1109/SCAM.2013.6648185
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-45190-5_14
https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-55754-6_10
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1


538 P. van den Bos and M. Huisman

39. Tretmans, J.: On the existence of practical testers. In: Katoen, J.-P., Langerak,
R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 87–106.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 5

40. de Vries, R.G., Tretmans, J.: Towards formal test purposes. Formal Approaches
Test. Softw. FATES 1, 61–76 (2001)

41. Zafar, M.N., Afzal, W., Enoiu, E., Stratis, A., Arrieta, A., Sagardui, G.: Model-
based testing in practice: an industrial case study using graphwalker. In: 14th
Innovations in Software Engineering Conference (Formerly Known as India Soft-
ware Engineering Conference), ISEC 2021, Bhubaneswar, Odisha, India. Associa-
tion for Computing Machinery (2021). https://doi.org/10.1145/3452383.3452388.
ISBN 9781450390460

42. Zimmerman, D.M., Nagmoti, R.: JMLUnit: the next generation. In: Beckert, B.,
Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 183–197. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18070-5 13

https://doi.org/10.1007/978-3-319-68270-9_5
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.1007/978-3-642-18070-5_13

	The Integration of Testing and Program Verification *9pt
	1 Introduction
	2 Strengths and Weaknesses of Testing and Verification
	3 Our Vision
	4 Challenges
	4.1 Challenges for Integration
	4.2 Challenges for Testing
	4.3 Challenges for Deductive Verification

	5 Conclusion
	References




