
Modelling and Simulation in Materials Science and Engineering

Modelling Simul. Mater. Sci. Eng. 28 (2020) 055012 (21pp) https://doi.org/10.1088/1361-651X/ab81a8

An improved method to model dislocation

self-climb

Fengxian Liu1 , Alan C F Cocks2 , Simon P A Gill3

and Edmund Tarleton2,1,4

1 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH,

United Kingdom
2 Department of Engineering Science, University of Oxford, Parks Road, Oxford

OX1 3PJ, United Kingdom
3 School of Engineering, University of Leicester, Leicester, LE1 7RH, United

Kingdom

E-mail: edmund.tarleton@eng.ox.ac.uk

Received 16 January 2020, revised 18 February 2020

Accepted for publication 20 March 2020

Published 4 June 2020

Abstract

Dislocations can provide short circuit diffusion paths for atoms resulting in a

dislocation climb motion referred to as self-climb. A variational principle is

presented for the analysis of problems in which fast dislocation core diffu-

sion is the dominant mechanism for material redistribution. The linear element

based self-climb model, developed in our previous work [1] Liu, Cocks and

Tarleton (2020 J. Mech. Phys. Solids 135 103783), is signi�cantly accelerated

here, by employing a new �nite element discretisation method. The speed-up

in computation enables us to use the self-climb model as an effective numerical

technique to simulate emergent dislocation behaviour involving both self-climb

and glide. The formation of prismatic loops from the break-up of different

types of edge dislocation dipoles are investigated based on this new method.

We demonstrate that edge dipoles sequentially pinch-off prismatic loops, rather

than spontaneously breaking-up into a string of loops, to rapidly decrease the

total dislocation energy.
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(Some �gures may appear in colour only in the online journal)

1. Introduction

The diffusion of atoms in crystalline materials is a thermally activated process which is dras-

tically enhanced by lattice defects [2], such as surfaces, grain boundaries [3], and dislocations

[4, 5]. The short-circuit paths provided by these defects are thought to originate from the

loose-packed and highly disordered atoms that lower the activation energy for diffusion and

enhance the atomic jump frequency. When carried by dislocations, the diffusion mechanism

is known as core diffusion or pipe diffusion, as the core of dislocations act as pipes for atoms

to diffuse down. However, while surface diffusion and grain boundary diffusion have been

studied and discussed in detail [6–12], only limited results are available for pipe diffusion

along dislocation networks [13]. It is challenging to extract core diffusivity from experimental

observations [14], since core diffusion often occurs simultaneously with lattice diffusion and

occupies far fewer atomic sites. Core diffusion is, therefore, usually neglected in most studies

[15–18] or treated phenomenologically as an enhancement to bulk diffusion [19]. However,

at lower temperatures, core diffusion plays a dominant role in mass diffusion, particularly

at high stresses. The recent direct observation of core diffusion effects [5, 20, 21] demon-

strated that the core diffusivity in aluminium can be increased by three orders of magnitude

near 600 K [5], and the difference can be up to six orders of magnitude in bcc Fe at 700 K

[4]. The rapid atomic diffusion along dislocations represents in itself an interesting physical

phenomenon and plays a signi�cant role in a wide variety of material behaviours, such as

creep [19, 22], loop or particle coarsening [4, 23–27], precipitation and phase transforma-

tions [5, 28, 29], dynamic strain ageing [30, 31], and solute segregation [32–34]. However,

the role of core diffusion on dislocation motion has received little attention and is not well

understood.

During the core diffusion process, atoms can be absorbed or emitted by the core region,

leading to climb out of the original slip plane, known as dislocation self-climb. The self-

climb of dislocation loops, as �rst proposed by [35], differs from the commonly studied

non-conservative climb [18, 36–39] in the sense that atoms can be transferred only along

the perimeter of the loop and the total area of the loop projected perpendicular to its Burg-

ers vector remains unchanged, namely, the relaxation volume of loops stay constant [40]. In

self-climb, atoms are rapidly rearranged in the dislocation core region to balance the differ-

ence of chemical potential along the dislocation line, which is more energetically favorable

than mass exchange with the surrounding lattice (bulk diffusion), particularly at low temper-

atures where bulk diffusion could be many orders of magnitude slower than core diffusion

[4]. Also, the analysis of core diffusion-controlled mechanisms tends to be more straight-

forward; for example, the three-dimensional lattice diffusion problem [15, 17, 36, 38, 39,

41] can be reduced to the consideration of one-dimensional diffusion along the dislocation

line.

Earlier attempts at analysing dislocation self-climb mainly focus on the transport of pris-

matic loops, due to the simplicity in dislocation character, and their importance in irradiated

materials. Following the pioneering theoretical studies on the dislocation self-climb of pris-

matic loops in the 1960s [35, 42, 43], Turnbull [26] constructed a model for loop motion by

self-climb, in which loops remain circular throughout the process. This theoretical analysis

is further supported by the recent experimental observation [4] that the self-climb velocity

of a circular prismatic loop is proportional to the driving force and inverse cube of the loop

size; indicating higher mobility for smaller loops as observed in post-irradiation annealing

experiments [44].
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A simple derivation for the transport of a rigid prismatic loop by self-climb was pro-

posed in our recent study, based on a variational principle [1]. The theoretical analyses of

self-climb mobility, with the rigid loop assumption, provide a description of the coarsen-

ing process of prismatic loops, it fails when loops are close or in contact. In real materials,

loops change both their positions and shapes to minimise the total dislocation energy dur-

ing the coarsening process while conserving the total enclosed area [1, 45]. More impor-

tantly, the transport of a prismatic loop on its habit plane is just a special case of self-climb

of a pure edge dislocation. For the motion of an arbitrary shaped dislocation line, a more

general self-climb model is needed to couple atomic diffusion with dislocation self-climb

motion.

Molecular dynamic (MD) simulations are well suited to study core diffusion with atomic

resolution [46]. MD has been used to calculate various core diffusion dominated behaviours

including: the core diffusivity along different dislocation types [14, 47], the annihilation of

prismatic half loops via pipe diffusion during nanoindentation [48], and the conservative climb

motion of a cluster of self-interstitial atoms towards an edge dislocation [49]. Collective dislo-

cation motion involves both climb and glide, making it far beyond the length and time scales

accessible with atomistic simulations. A solution is to develop mesoscopic coarse-grained

models that operate at intermediate length and time scales, providing a bridge between atom-

istic and macroscopic models. Geslin et al [50] proposed a multiscale approach to model

dislocation climb of jogged dislocations with consideration of both bulk and core diffusion

between jogs. The analytical climb rate was derived by assuming a periodic distribution of

jogs along the dislocation line. The climb rate was then upscaled to a phase �eld model to

simulating dislocation climb at a larger scale. Later, Niu and co-authors [45, 51] developed a

discrete dislocation dynamics (DDD)-based climb model by upscaling from a stochastic jog

dynamic model on the atomic scale. Both the pipe diffusion equation with Dirichlet boundary

conditions at the jogs and the bulk diffusion equation with Robin boundary conditions near

the dislocation were solved in [51], to derive the jog mobility. Note that, among these multi-

scale models, dislocation climb motion is represented by the dynamics of the pre-existing jogs

(neglecting nucleation), which act as perfect sinks or sources of vacancies. This is a good

assumption for bulk diffusion when the jog density is high enough to maintain an equilibrium

vacancy concentration along the dislocation core [17]. But for a low jog density, as is likely at

lower temperatures and higher stresses, the stresses tend to sweep the jogs away and push them

towards the dislocation ends. Consequently in this regime the nucleation of jog-pairs needs to

be taken into consideration [52].

In our recent work [1], a self-climb model was proposed, which employs a variational prin-

ciple for the evolution of microstructure [53, 54]. In this model, a �nite element based analysis

for the one-dimensional core diffusion process was implemented. A dislocation self-climb

model was then developed by implementing this core diffusion formulation into the nodal

based three-dimensional discrete dislocation dynamics (DDD) framework [55], to extend the

traditional DDD method to simulate self-climb and glide of any arbitrarily shaped dislocation

network.

However, the DDD method is still limited by its high computational cost [56]. Improv-

ing the computational ef�ciency [57, 58] is, therefore, a challenging but necessary task. In

a general DDD simulation [59, 60], the most time-consuming parts include: (1) the time

integration of the equation of motion, which has been effectively sped up ∼ 100× by time

subcycling [57, 58]; (2) the calculation of seg–seg interactions between different disloca-

tion segments, which is an N-body problem and increases dramatically with strain. This

problem has been accelerated by a parallelization strategy on the graphical pgrocessing unit

(GPU) [58, 61]. In the newly developed DDD-based self-climb model [1], the additional
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time-consuming part is the calculation of nodal climb velocities. In this method, disloca-

tions are discretised into a series of straight segments (1D �nite elements). The climb veloc-

ity is de�ned at each node and varies linearly along the segment, and the diffusive �ux is

de�ned across the mid-point of each segment. To enforce the �ux continuity at nodes where

two segments meet, a series of Lagrange multiplier are introduced, one for each node. A

set of linear simultaneous equations is then derived as the kinetic equations for self-climb

[1],
[

[K] [C]T

[C] [0]

] [

[Vc]

[λ]

]

=

[

[Fc]

[0]

]

(1)

where [K ] is the (N+ m)× (N+ m) global viscosity matrix for core diffusion, [C] is an

N× (N+ m) constraint matrix, [0] is the N× N null matrix, where N is the number of dis-

location nodes and m is the number of segment. [Vc] is the (N+ m)× 1 vector of unknowns,

including the nodal climb velocities and �uxes, [λ] is theN× 1 vector of Lagrangemultipliers,

[Fc] is the (N+ m)× 1 vector of generalised nodal forces and [0] is the (N+ m)× 1 zero vec-

tor. The advantage of using Lagrange Multipliers to enforce the �ux continuity at junctions is

that it allows the [K ] matrix to be narrowly banded and effectively solved with standard matrix

methods. However, in (1) the leading matrix of the equations is then not positive de�nite, due

to the introduction of Lagrange multipliers, leading to a signi�cant increase in the computa-

tional cost which becomes problematic as the number of segments increases. Consequently

the purpose of this work is to improve the computational ef�ciency of the self-climb model,

to enable the simulation of collective dislocation evolution involving both self-climb and glide

motion.

The present paper is organised as follows. In section 2, a new discretisation method is devel-

oped by the adoption of the paired-linear element based method (PLEBM), to circumvent the

usage of Lagrange Multipliers for every node. The PLEBM is validated and compared with

the linear element based method (LEBM) to show the improvement in capability and ef�-

ciency. Finally, in section 3 newphysical insight into the break-off of dislocation dipoles, where

core diffusion-controlled self-climb is the dominant mechanism, are obtained based on the

PLEBM.

2. Methodology

The variational principle for core diffusion developed in our previous work [1] is brie�y

reviewed here. We then implement this formulation with a paired-linear element to derive the

kinetic equations for self-climb.

2.1. The variational principle for core diffusion

Variational principles have been rigorously formulated for a series of mass transport mecha-

nisms, including grain-boundary diffusion [62], surface diffusion [63], grain-boundarymigra-

tion [64] and coupled grain-boundary and surface diffusion [65]. The essential idea carries

over to dislocation core diffusion. That is, among all the virtual velocities of microstructures

and virtual diffusive �uxes that satisfy matter conservation, the actual velocity and �ux �elds

minimize the functional of the system Π [65],

Π = Ψ+ Ġ (2)

whereΨ is a rate potential term involving contributions from all possible dissipative processes.

Ġ is the energy rate term, which is the origin of the generalised thermodynamic force. In (2) it
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Figure 1. A general situation considered in the present work: an in�nite three dimen-
sional domain with an arbitrarily shaped dislocation network. (a) A general consecutive
dislocation connection, every node has two connections. Segment (13) has end nodes 1
and 3 and a ‘dummy’ central node 2; (b) a triple-junction node with three connections.

is the combination of thermodynamics and kinetics that determines the actual evolution path

and the �nal state. Here, the one-dimensional core diffusion-controlled self-climb process is

investigated.

The general situation analysed in the current paper is schematically shown in �gure 1. An

arbitrarily shaped three-dimensional dislocation network, in an in�nite domain, is subjected

to long-range elastic interactions between dislocation segments. Dislocations can either glide

in their original slip plane, or relocate themselves by the diffusional transport of material

to move perpendicular to their original slip plane. As stated in the introduction, we con-

sider the situation of lower temperatures when lattice diffusion is negligible in comparison

with core diffusion; such that mass can only diffuse along the dislocation line in the core

area.

Here, we state two basics laws before developing the variational functional of the system:

The law for mass diffusion. We adopt a classical description of the diffusion process, the

volumetric �ux j(l ) driven by the gradient in the chemical potential as described by Fick’s

law,

j(l ) = −acoreDcoreΩ

kT

∂µ

∂l
= −D∂µ

∂l
(3)

where l is curvilinear coordinate along the dislocation line, Dcore is the core diffusivity, acore is

the cross sectional area of the dislocation core, k is the Boltzmann’s constant, T is the absolute

temperature and µ is the excess chemical potential; For core diffusion along dislocation lines,

µ in (3) then refers to the change in Gibbs free energy per unit volume for the diffusingmaterial

along the dislocation; it is directly proportional to the climb component of the Peach–Koehler
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force. The gradient of µ drives the diffusion of material with a unit volume.

D =
acoreDcoreΩ

kT
(4)

is the effective diffusivity. Along the dislocation line, both the local stress and concentration

of point defects contribute to the chemical potential µ.
The law for dislocation climb. As mass diffuses along the dislocation core, atoms may be

deposited or removed from the extra-atomic-plane, leading to climb motion perpendicular to

the slip plane. During this process, mass conservation requires the climb velocity is balanced

by the variation of the �ux,

d j

dl
+ vcb sin θ = 0 (5)

where dl sin θ is the edge component of the dislocation line increment dl, θ is the angle between
the Burgers vector b and dislocation line vector l. As discussed in [1], this ensures only the edge

component of a dislocation line can climb and consume the atomic �ux. We now develop the

variational functional of the system, as derived in [1],

Π = Ψ+ Ġ =

∫

L

j2(l)

2D(l)
dl−

∫

L

fc(l)vc(l)dl (6)

where fc is the Peach–Koehler force component in the climb direction, vc is the climb veloc-

ity and L is the total dislocation line length in the system. The �rst term on the right-hand

side of (6) is the rate potential due to core diffusion, and the second term is the rate of

change of Gibbs free energy during the self-climb motion. Different virtual motions give

different values of Π. Of all virtual motions, the actual motion renders Π stationary, that

is,

δΠ = 0. (7)

2.2. Implementation of the variational principle

The kinetics, which here is atomic diffusion, proceeds locally. The idea is to transcribe local

information onto the total energy landscape, to �nd the global equilibrium state. The continuum

structure is approximated by discrete elements and a viscosity matrix assigned to every point

on the total landscape. In using the variational principle, it is impractical to search for the exact

motion from all virtual motions. Rather, the solution is selected from a restricted set of virtual

motions, and the solution which minimises the variational functionalΠ approximates the exact

motion.

We have described how numerical schemes can be developed from (6) and (7) for three-

dimensional dislocation networks in our previous work [1]. We limit our attention here to

the differences in the paired-linear element discretisation compared to the previous linear ele-

ment [1]. As demonstrated in �gure 1, dislocation lines are discretised into a series of straight

segments (1D elements). Typical types of dislocation connections are shown in �gures 1(a)

and (b).

We initially restrict our attention to the majority of situations, demonstrated in �gure 1(a),

where each node connects to only two segments. We will see in the following discussion

that it proves convenient to isolate a segment, for example, segment (13) in �gure 1(a).

Along the segment, the nodal climb velocity Vc and the diffusive �ux J are de�ned at each

node. Here, we follow the convention that the nodal values are denoted in uppercase and
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numbered by subscripts, whereas segment values are indicated in lowercase and numbered

by superscripts with parentheses. For example, Vc1 is the nodal climb velocity at node 1,

and J
(12)
1 is the �ux at node 1 along segment (12). b(12), l(12) and n

(12) denote the Burgers

vector, unit line vector and unit normal vector of segment (12), respectively. In the follow-

ing discussion, the functional Π is discretised in terms of the degrees of freedom de�ned

above.

To avoid using Lagrange multipliers at every node, and avoid the non-positive coef�cient

matrix in the kinematic equation (1), a different discretisation method is used here. An addi-

tional dummy node is located at the midpoint of each segment, node 2 in �gure 1(a). To

standardise the following computation, a local coordinate s is de�ned. The origin of s is

located at the start point of a given segment, and the positive direction points from node

1→ 2. s is normalised by the segment length l(12), so that s = 0 at node 1 and s = 1 at

node 2. Assuming a linear variation of the climb velocity along both segment (12) and seg-

ment (23), so that the climb velocities along segments (12) and (23) are given respectively

as,

v(12)c (s) = β1 (1− s)Vc1 + β2sVc2 =

[

N
(12)
1 (s)N

(12)
2 (s)

]

[

Vc1

Vc2

]

(8)

v(23)c (s) = β2 (1− s)Vc2 + β3sVc3 =

[

N
(23)
2 (s)N

(23)
3 (s)

]

[

Vc2

Vc3

]

(9)

where s ∈ [0, 1], β1 = N1 · n(12), β2 = N2 · n(12) = N2 · n(23), β3 = N3 · n(23) and N1, N2, N3

are the directions of the climb velocity at nodes 1,2 and 3, respectively. These are assumed

to be the weighted average of the segment slip plane normals connected to the node, for

example,

N2 =
l(12)n(12) + l(23)n(23)

|l(12)n(12) + l(23)n(23)| . (10)

Not to be confused with N
(12)
1 (s) and N

(12)
2 (s), the isoparametric shape functions for segment

(12), N
(23)
2 (s) and N

(23)
3 (s) refer to segment (23),

N
(12)
1 (s) = β1 (1− s) , N

(12)
2 (s) = β2s (11)

N
(23)
2 (s) = β2 (1− s) , N

(23)
3 (s) = β3s. (12)

Mass conservation requires,

d j(l)

dl
+ vc(l)b sinθ = 0 (13)

and so,

d j(s) = −vc(s)bl sin θ ds, (14)

and the �ux is

j (12)(s) = J
(12)
1 − l(12)e b(12)

∫

[β1 (1− s) , β2s]ds

[

Vc1

Vc2

]

, (15)

j (23)(s) = J
(23)
2 − l(23)e b(23)

∫

[β2 (1− s) , β3s] ds

[

Vc2

Vc3

]

(16)
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where le = lsinα is the edge component of the segment length l. Note that there are now 7

degrees of freedom for segment (13),

[

v(13)
]

=

[

Vc1, J
(12)
1 ,Vc2, J

(12)
2 , J(23)2 ,Vc3, J

(23)
3

]

. (17)

Flux continuity at node 2 requires that the �ux into node 2 must �ow out, so that J
(12)
2 =

J
(23)
2 = J2. This removes one of the degrees of freedom. Flux continuity is required at

every node. Therefore, for a node connected with two segments, only one degree of free-

dom is needed for the �ux. One degree of freedom, JI, is therefore used for the �ux at

each node I. Care is required for triple or quadruple junction nodes with more than 2 seg-

ments, such as node 4 in �gure 1(b). In such cases, additional degrees of freedom are

needed for the �ux along different segments. This is discussed and evaluated further in

section 2.4.

Mass conservation at two ends of each segment requires j (12)(s = 1) = J
(12)
2 and j (23)(s = 1)

= J
(23)
3 . This again, removes two of the degrees of freedom. We choose to remove the degrees

of freedom from the dummy node (node 2), Vc2 and J2:

Vc2 =
1

β2(l(12) + l(23))

[

−β1l
(12), 2, −β3l

(23), −2
]









Vc1

J1
Vc3

J3









(18)

J2 =
1

2(l(12) + l(23))

[

−β1l
(12)l(23), 2l(23), β3l

(12)l(23), 2l(12)
]









Vc1

J1
Vc3

J3









. (19)

The dissipation potential for segment (13) is then given by

Ψ
(13)

=
1

2D(12)

∫ l(12)

0

[

j (12)(s)
]2
ds+

1

2D(23)

∫ l(23)

0

[

j (23)(s)
]2
ds (20)

=
1

2
[v(13)c ]T[k(13)][v(13)c ] (21)

where [v(13)c ] = [Vc1, J1,Vc3, J3]
T is a 4× 1 vector of unknowns including nodal velocities and

�uxes at the two ends of segment (13). [k(13)] is a symmetric viscosity matrix for core diffusion

along segment (13), which is given in A. The total rate potentialΨ is therefore,

Ψ =

n
∑

i=1

Ψ
(i)
=

n
∑

i=1

1

2
[v(i)c ]T[k(i)][v(i)c ] =

1

2
[Vc]

T[K][Vc] (22)

where n is the total segment number. [Vc] is the global column vector of unknowns including

climb velocities and �uxes at all nodes. [K ] is the global viscosity matrix assembled from all

elementary viscosity matrices [k(i)].

The rate of change of Gibbs free energy during climb motion can also be discretised as,

Ġ = −
∫

L

fc(s)vc(s)ds = −
N
∑

I=1

VcIFcI = −[Vc]
T[Fc] (23)

8
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where N is the total number of dislocation nodes, VcI and FcI are the nodal climb velocity and

nodal climb force at node I. [Fc] is an N× 1 nodal climb force vector corresponding to the

global nodal velocity vector [Vc]. As stated in our previous work [1], the nodal climb force on

node I, FcI, is

FcI = FI · NI =
(

F̃I + F
self
I + F

core
I + F

app
I

)

· NI (24)

where FI is the full nodal force at node I, with normal NI, as de�ned in (10). F̃I is the elastic

interaction between the (i) segments connected to node I with every other segment (j) 6= (i).

F
self
I refers to the elastic self force on node I, due to segments (i).Fcore

I is the core force on node

I and F
app
I accounts for an applied stress.

The variational functional Π can now be expressed in terms of the discretised degrees of

freedom by substituting (22) and (23) into (6),

Π =
1

2
[Vc]

T[K][Vc]− [Vc]
T[Fc]. (25)

Substituting (25) into (6), we obtain δΠ = δ[Vc][K ][Vc]− δ[Vc][Fc] = 0, for any small

perturbation δ[Vc]. Such that,

[K][Vc] = [Fc] (26)

are the kinematic equations for dislocation self climb motion. A set of linear simulta-

neous equations with a narrowly banded matrix [K ], which can be solved with standard

matrix methods. Once (26) is solved, the generalized coordinates can be updated for a

small time increment. The process is repeated for many increments to evolve the dislocation

con�guration.

2.3. Validation of the PLEBM

Importantly, (26) is preferable to (1), derived with the linear element based method [1], in

terms of improving the coef�cient matrix by eliminating the zero diagonal elements. We

now compare the accuracy and computational cost of the paired-linear vs linear element. A

benchmark study was performed of the annealing of an isolated elliptical prismatic dislo-

cation loop in an in�nite domain in α-iron, at T = 750 K. The initial semi-major axis is

a0 = 400 nm and the semi-minor axis is b0 = 100 nm (the initial aspect ratio a0/b0 = 4). Other

parameters of α-iron are obtained from table 2 in [1]. The loop is discretised into 30 straight

segments.

The evolution of the loop’s aspect ratio a/b over time is shown in �gure 2(a), the black

curve corresponds to the result obtained with the PLEBM, and the red curve with the LEBM.

The corresponding loop pro�les during some points in the evolution are also shown. The

loop converges to a circle with R ≃ 200 nm to conserve the enclosed loop area. The accu-

racy of the PLEBM is demonstrated by the excellent agreement between the two methods as

shown in �gure 2(a), and the consistency with the previous theoretical [42] and numerical [45]

studies.

It also worth noting that, although the kinematic equations in the LEBM (1) and the PLEBM

(25), give the same results, there is a signi�cant reduction in the computational cost achieved

with the PLEBM; as shown in �gure 2(b). The computational time required to calculate the

climb velocity increases with the segment number with both methods. However, the growth

rate of the LEBM is much higher than the PLEBM, which becomes signi�cant as the segment

number increases.

9
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Figure 2. Comparison between the linear element based method (LEBM) and the
paired-linear element based method (PLEBM) in terms of (a) accuracy, (b) ef�ciency.

2.4. Junction nodes

In the derivation of the kinematic equations for climb velocity, we have implicitly assumed

that: (1) every node only connect with two segments and (2) every segment connected to the

same node are on the same habit plane, as in �gure 1(a). However, for triple or quadruple

nodes with more than two connections, as in �gure 1(b), (25) and (26) are no longer valid.

At a junction node, the direction of the climb velocity N is unknown and (10) is no longer

applicable. In this case, a full nodal velocity with 3 componentsmust be used, which is required

for nodes connected to segments which are on different habit planes. Moreover, �ux continuity

at a junction node requires mass �owing into the junction node must �ow out. We therefore

assign more degrees of freedom for the nodal �ux, and further constrain the range of admissible

�elds by requiring that the �ux of material into a triple or quadruple junction node is zero; i.e.

at each junction node

∑

i

J
(i)
I m

(i)
= 0, (27)

where the summation is over every segments i connected to node I. m(i) = ±1 so that, m(i) = 1

when J(i) �ows away from node I, and m(i) = −1 when J(i) �ows into node I. We account for

these constraints by employing a series of Lagrange multipliers, one per junction node, so that

the functional Π in (25) can be extended to include junction nodes as,

Π =
1

2
[Vc]

T[K][Vc]− [Vc]
T[Fc]+

∑

I

(

λI
∑

i

J
(i)
I m

(i)

)

(28)

where the outer summation in the last term is performedover all triple and higher order junction

nodes, I, in the dislocation network. Taking node 4 in �gure 1(b) as an example, the inner

10
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summation can be expanded as,

λ4

∑

i

J
(i)
4 m

(i)
= λ4 [0 0 0 − 1 1 1]

















Vx
c4

V
y
c4

Vz
c4

J
(34)
4

J
(45)
4

J
(46)
4

















. (29)

So that,

∑

I

λI
∑

i

J
(i)
4 m

(i)
= [λ]T[Cs][Vc] (30)

where [λ] is a P× 1 vector of Lagrange multipliers, which are interpreted as the chem-

ical potential at junction nodes, with P indicating the total number of triple and quadru-

ple junctions and [Cs] is a complimentary matrix. We now reconstruct the functional Π

as,

Π =
1

2
[Vc]

T[K][Vc]− [Vc]
T[Fc]+ [λ]T[Cs][Vc]. (31)

Taking the stationary value of Π, for any small perturbations δ[Vc] or δ[λ],

δΠ

δ[Vc]
= 0 (32)

δΠ

δ[λ]
= 0. (33)

Thus (26) can be rewritten to derive the general kinematic equations,

[

[K] [Cs]T

[Cs] [0]

] [

[Vc]

[λ]

]

=

[

[Fc]

[0]

]

. (34)

Although the structure of (34) is similar to (1) from the LEBM, the size of the [0] matrix in

the leading coef�cient matrix is now much smaller than in (1). Because multipliers are only

introduced for the triple and quadruple junction nodes, which are a small proportion of the total

number of nodes. Once (34) is solved, we can then obtain the nodal climb velocity and update

the dislocation network for a small time increment, and remesh the topological connections

[66] based on the nodal DDD framework.

3. Applications

In this section, we describe how the variational principle presented in the previous section can

be used to simulate dislocation evolution in engineering materials. The examples described in

the following subsections are chosen to illustrate the proposedmethod, and to demonstrate that

it produces accurate results by comparison with analytical results and available experimental

observations reference [13].

11
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Figure 3. An elliptical prismatic dislocation loop in an in�nite elastic solid.

3.1. Analytical solution for self climb of elliptical prismatic loop

It is of interest to construct a simple analytical model for the evolution of an elliptical pris-

matic loop, rather than the rectangular loop derived previously [1]. Sketched in �gure 3 is an

elliptical prismatic loop in an in�nite elastic domain. The two semi-axes satisfy a0 > b0. For a

dislocation core diffusion problem, the enclosed area of the loop is conserved as the shape of

the loop changes. Assume that the loop remains an ellipse during the evolution. Let r0 be the

radius of a circle having the same volume as the elliptical loop. This process can be described

by,

x = a cosθ = r0α cosθ, (35)

y = b sinθ = r0α
−1 sinθ (36)

where α is the shape parameter, with a/r0 = r0/b = α > 1, which evolves with time; α = 1

corresponds to a circular loop and α→∞ corresponds to an edge dislocation dipole. At a

�xed time, (35) and (36) trace the entire ellipse as θ varies in the interval [0, 2π]. Let r be the
position vector of a point (x, y) on the loop, which has an outward unit vector normal n. As

atoms diffuse along the prismatic loop in the core region, the dislocation segment moves at a

velocity

vc = n · ṙ, (37)

where ṙ = dr/dt. With r = (x, y),

r = (r0α cosθ, r0α
−1 sinθ) (38)

ṙ = (r0α̇ cosθ,−r0α−2α̇ sin θ) (39)

n =

(

−dy

ds
,
dx

ds

)

= (−r0α−1 cosθ,−r0α sinθ)
dθ

ds
. (40)

So that (37) can be rewritten as,

vc(θ) = −r02α̇α−1 cos 2θ
dθ

ds
. (41)

Denote js as the volumetric �ux of atoms due to core diffusion. Mass conservation requires

that,

d js

ds
+ vcbe = 0 (42)

12
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where be is the edge component of the Burgers vector b, for a prismatic loop, be = b and

js(θ) = −
∫

vcbeds = −
∫

vc(θ)bdθ
ds

dθ
= r20bα̇α

−1 sin 2θ

2
+ C, (43)

where the integration constant C = 0 due to the symmetry condition, js(θ = 0) = 0. Then the

rate potential of the whole loop Ψ becomes,

Ψ =

∫ L

0

j2s
2Ds

ds = 4

∫ π
2

0

j2s (θ)

2Ds

dθ
ds

dθ
(44)

where L = 4aE(k) is the circumference of the ellipse, with E(k) denoting the second complete

elliptic integral with modulus k =
√
a2 − b2/a. The complete elliptic integral of the �rst and

second kind, K and E, with modulus k =
√
a2 − b2/a are,

K(k) =

∫ π
2

0

dθ
√

1− k2 sin2 θ
(45)

E(k) =

∫ π
2

0

√

1− k2 sin2 θdθ. (46)

So that,

Ψ =
r50α̇

2α−2b2

2Ds

∫ π
2

0

sin2(2θ)
√

α2 sin2 θ + α−2 cos2 θdθ. (47)

De�ne,

I1 =
r50α

−2b2

2Ds

(48)

I2 =

∫ π
2

0

sin2 2θ
√

α2 sin2 θ + α−2 cos2 θdθ (49)

= −4α
[

−2
(

α4 − 1+ α−4
)

E (k)+ (1+ α−4)K (k)
]

15(α2 − α−2)2
. (50)

So that Ψ can be expressed as,

Ψ = I1I2α̇
2 (51)

while the energy of an elliptical prismatic loop [67, 68] is given as,

Eel =
µb2 L

4π(1− ν)

[

ln
8r0

rc
− 1− α2 + α−2

2α2

K

E

]

(52)
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Figure 4. Loop pro�les during the evolution with different initial aspect ratios.

where rc is the core radius of the dislocation. The rate of change of Gibbs free energy Ġ is,

Ġ =
dEel

dt
=

dEel

dα

dα

dt
= I3α̇, (53)

where I3 = dEel/dα is given in B. The variational functional now becomes,

Π = Ψ+ Ġ = I1I2α̇
2
+ I3α̇. (54)

Taking the stationary value,

∂Π

∂α̇
= 2I1I2α̇+ I3 = 0 (55)

which gives,

α̇ = − I3

2I1I2
. (56)

With the initial value α0 =
√

a0/b0, the ODE, (56), gives the evolution of the shape parameter

α, to describe the loop pro�le. Changes in total dislocation energy tend to reduce the length and
curvature of the loop, and mass conservation maintains the area enclosed by the loop, driving

the elliptical loop into a circular pro�le.

Next, we compare the results obtained from the analytic solution in (56) with the results

from the PLEBM by conducting DDD simulations. Snapshots of an isolated elliptical loop

with different initial aspect ratios: α2
0 = a0/b0 = 4 and α2

0 = a0/b0 = 16, evolving from an

ellipse into a circle, are shown in �gure 4. It is expected that the loop will evolve into a circular

loop with radius
√
a0b0 if mass is conserved, which is found to be the case with both the

analytical and DDD results.

With a0/b0 = 4, the analytic solution agrees well with the DDD solution. However, as the

initial aspect ratio increases to a0/b0 = 16, with DDD the ellipse initially evolves into a bone-

shape to reduce the high curvature at the tips of the ellipse, and converges into a circle gradually,

which is much more energetically favorable than the process described by the analytic solu-

tion. This is because, in the deviation of the analytic solution, we implicitly assume that the

loop remain an ellipse, so that a/r0 = r0/b during the evolution. This is a good approximation

14
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Figure 5. Edge dipoles formed by (a) motion of screw dislocations with large jogs, (b)
dislocations gliding on parallel slip planes, [76].

for the loop evolution to some extent, which was also employed by Sun and co-authors [69]

and Cocks [70] to describe the growth of an ellipsoidal void controlled by surface diffusion.

However, it is too constrained to capture the evolution of an ellipse with high aspect ratio. The

additional degrees of freedom in the DDD method allows it to more accurately simulate the

physical process. This raises the question: how do loops evolve if the aspect ratio increases

further?

3.2. Formation of prismatic loops from dislocation dipoles

Dislocation dipoles and multi-poles are ubiquitous features of the dislocation debris in

deformed crystals. Edge dipoles are commonly reported [13, 71, 72] as arising from the drag-

ging out of jogs on screw dislocations, called jog dragging, as sketched in �gure 5(a), or by

trapping edge dislocations of opposite sign moving on parallel basal slip planes, called edge

trapping, as shown in �gure 5(b). Theses dipoles are sessile, they remain as prominent debris

in deformed crystals, because they cannot self-annihilate by glide. Consequently they play

a signi�cant role in strain hardening and patterning in stressed metals. At high temperature

or during annealing of deformed crystal, these dipoles can annihilate and break up into pris-

matic loops by a conservative dislocation climb mechanism, which is primarily controlled

by core diffusion along the dislocation line. In certain cases, strings of prismatic loops can

form [73]. Attempts to study the annihilation of the dipoles mainly focus on an energetic

analysis, in which the dipole �uctuation energetics are evaluated as a function of �uctuation

wavelength and amplitude with either a square wave [74] or sinusoidal wave �uctuation [71].

Detailed loop formation mechanisms, by spontaneous break-up or sequential pinch-off from

the dipole, still remain controversial [71, 74, 75]. It is therefore of interest to simulate the for-

mation of prismatic loops from the break-up of dislocation dipoles or elongated loops with

DDD.

In the following subsection, we examine two simple representative situations as schemat-

ically shown in �gure 5, with the mechanism of dipole annihilation of edge dipoles

simulated using the PLEBM. We limit our attention initially to the pure self climb

process of jog dragging dipoles shown in �gure 5(a). We then consider the break-

up of edge trapping dipoles shown in �gure 5(b), which involves both glide and

climb.

3.2.1. Formation of prismatic loops due to pinch-off from the end of a closed-end edge dipole.

A jog dragging dipole as shown in �gure 5(a) is introduced as the initial con�guration. The

typical height of dipoles observed are 10 to 100 nm. The separation distance between two

dislocations making up the dipole is therefore set at H = 20nm and the length of the dipole

is set at L = 800 nm. The Burgers vector b = 1/2[111]. The evolution of the total dislocation
energy is plotted in �gure 6(a) as a function of time, and the snapshots of loop pro�les at points
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Figure 6. Formation of prismatic loops from pinch-off at the end of a closed-end edge
dipole. (a) The energy evolution over time; (b) Dislocation pro�les during evolution
corresponding to the marked points A–D in (a); (c) Experimental observations from
Tang et.al [13].

marked A–D are demonstrated in �gure 6(b); available experimental observations from [13]

are presented in �gure 6(c); a movie of the evolution process is available in the supplementary

material S1.

Our simulation results show that loops are pinched-off sequentially from the tip of the dipole

rather than the dipole spontaneously breaking-up into a string of loops. This is consistent with

the available experimental observations [13, 73]. Initially, the diffusion distance is short, as

material �ows much faster at the tips than at the middle of the dipole due to the higher curva-

ture. The near tip region thus contracts due to mass conservation as shown in illustration B in

�gure 6(b). This leads to the �rst pinch-off from the two ends. The process repeats itself until

the aspect ratio of the remaining loop in is too small to pinch-off, which will converge to a

circle as described in �gure 4. The evolution of the dipole is a balance between the dislocation

self-energy and the elastic interaction energy. Forming loops would decrease the dislocation

line curvature which decreases the elastic interaction energy, but increase the total line length

which reduces the dislocation self-energy. It is also worth noting that each pinch-off event

is accompanied by a signi�cant decrease in energy, indicating that the pinch-off of loops is

energetically favorable.

3.2.2. Formation of prismatic loops from break-up of open-ended edge trapping dipoles.

In this subsection, we simulate the break-up of an edge trapping dipole. As shown in

�gure 5(b), two straight edge dislocations with the same Burgers vector b = 1/2[111]
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Figure 7. Snapshots of dislocation pro�les during the break-up of an open-ended edge
dipole.

and opposite line direction are introduced as the initial con�guration. Both of them are

pinned at two ends and bow-out when a shear stress is applied. The parallel disloca-

tion lines have the same length, L = 480 nm, with a vertical separation H = 10 nm and

an in-plane separation D = 100 nm. Evolution of the open-ended dipole under a shear

stress τ = Gb/L is simulated, where G is the shear modulus of the simulated material,

and Gb/L is the critical shear stress for the activation of a Frank–Read source with

length L.

It is noteworthy that the evolution of this initial con�guration, as shown in �gure 7(a),

involves both glide in the slip plane and climb perpendicular to the original slip plane.

A linear phonon-drag mobility law for bcc metals is, therefore, employed to calculate

the glide velocity. To bridge the large time scale separation between glide and climb

motion, as stated in the introduction, an adaptive time scheme [1] is adopted here.

Thus, different time scales are used, small time increments ∼ ns are used to deal with

the glide steps, whereas much larger time increments ∼ ms are used for the climb

steps.

Figure 7 shows snapshots of the dislocation evolution; a movie of the evolution process is

available in the supplementarymaterial S2. There is approximately six orders ofmagnitude dif-

ference in the time between the different stages, which signi�es the dominantmechanism (glide

or climb) at different stages. Initially, the dislocations glide towards each other on their original

slip planes at a very fast rate, until they are trapped by each other, as shown in �gure 7(b). This

mechanism of dipole formation seems to be very frequent at the beginning of plastic deforma-

tion when a large number of dislocation loops expand on parallel slip planes. This glide process

only takes 9µs and results in a stable edge dipole. Then, the attraction from the anti-parallel

edge segments facilitates self-climb normal to the original slip planes, at a much slower rate,

as shown in �gure 7(c). This climb motion gives rise to the �uctuation of the dislocation line

to conserve mass. In addition, according to (5), a mixed dislocation climbs a larger distance

when consuming the same volume of material, compared to a pure edge dislocation. There-

fore, the trapped dislocation dipole is broken at the corners where the climb rate is higher

than at the middle, turning the edge dipole into an elongated interstitial prismatic loop and

two helices, as shown in �gure 7(d). As one may expect, the elongated loop would continue

to evolve into small loops by sequential pinching off as discussed in subsection 3.2.1. This

allows further glide along the direction parallel to the Burgers vector. This mechanismof dipole

17



Modelling Simul. Mater. Sci. Eng. 28 (2020) 055012 F Liu et al

breakup is believed to play a signi�cant role in releasing the strain-hardening in the subsequent

annealing of deformed crystals [13]. The remaining helices may shrink or expand perpendic-

ular to their Burgers vector by interacting with prismatic loops or by bulk-diffusion controlled

climb [38, 77].

4. Conclusions

Dislocations can provide short circuit diffusion paths for atoms. This fast atomic trans-

port, along the dislocation core region, known as core diffusion, accelerates the diffusion by

more than three orders of magnitude compared to lattice diffusion. This allows dislocation

motions perpendicular to the original slip system, known as dislocation self-climb (conser-

vative climb) and is of particular importance in low-temperature creep and post-irradiation

annealing.

A variational principle is presented for the analysis of problems in which fast dislocation

core diffusion is the dominant mechanism for material redistribution. A new �nite element dis-

cretisation method is employed to accelerate the simulation of dislocation self-climb.We have

demonstrated here, that the paired-linear element based method has a much higher computa-

tional ef�ciency compared with the previous linear element based method [1]. This becomes

more evident as the segment number increases. The acceleration in computation enables the

simulation of collective dislocation motion, including both glide and self-climb, based on the

current method.

An analytical solution for the evolution of an isolated elliptical prismatic loop was derived

based on the variational principle, and compared with the numerical method. The analytical

solution provides a good approximation for predicting the evolution of elliptical loops with

small aspect ratios. However, as the aspect ratio increases, the high curvature at the two end

of the ellipse cause the loop to evolve into a bone-like shape initially, and gradually converge

into a circular loop, which the analytic solution fails to predict. This interesting discrepancy

leads to the study of edge dipoles or elongated prismatic loops, for which the aspect ratios

are much higher. The evolution of two representative edge dipoles, the close-ended jog drag-

ging dipole and the open-ended edge trapping dipole, were examined with the new DDD

method. Results show that a string of prismatic loops is formed by the sequential pinching-

off of the dipole, rather than spontaneous break-up, which agrees well with experimental

observations.
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Appendix A. Derivation of the viscosity matrix of segment (13) [k(13)]

The viscosity matrix of segment (13) obtained from equation (20) is,

k11 =
l

D

(β1)
2(leb)

2

96
, (A.1)

k12 = k21 = − l

D

9

160
β1leb (A.2)
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k13 = k31 = − l

D

β1β3 (leb)
2

160
(A.3)

k14 = k41 = − l

D

13

480
β1leb (A.4)

k22 =
l

D

23

60
(A.5)

k23 = k32 =
l

D

13

480
β3leb (A.6)

k24 = k42 =
l

D

7

60
(A.7)

k33 =
l

D

1

96
(β3)

2(leb)
2 (A.8)

k34 = k43 =
l

D

9

160
β3leb (A.9)

k44 =
l

D

23

60
(A.10)

where D = D(13) is the generalized diffusivity along segment (13). Since the dummy

node 2 is chosen to be located at the middle of segment (13), l(12) = l(23) = l(13)

2
.

Assuming l(13) = l, b(13) = b, l(13)sin θ(13) = le, the above matrix can be rewritten

as,

[k(13)] =
l

D





























1

96
(β1)

2(leb)
2 − 9

160
β1leb − 1

160
β1β3(leb)

2 − 13

480
β1leb

23

60

13

480
β3leb

7

60

1

96
(β3)

2(leb)
2 9

160
β3leb

sym
23

60





























. (A.11)

As illustrated in (A.11), the element viscosity matrix [k(13)] depends not only on the quantities

of segment (13), such as l(13), θ(13) andD(13), but also on how the segment is connected to other

segments, through β1 and β3, leading to connections between elements when assembling the

global viscosity matrix.

Appendix B. Expression for I3 in (53)

The explicit expression of I3 from equation (55) is,

I3 = dEel/dα =
µb2

4π(1− ν)

r0

α4(α4 − 1)
[A1K(k)+ A2E(k)] (B.1)

where
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k =
√

1− α−4 (B.2)

A1 = −2α8
+ 20α4 − 8α4ln

(

8r0

rc

)

− 2 (B.3)

A2 = α4

(

−8α4
+ 4

(

α4
+ 1
)

ln

(

8r0

rc

)

− 8

)

. (B.4)
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