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A B S T R A C T

Soil moisture content (SMC) information at field scale could have important applications in agricultural and
regional water management. This study presents an operationally applicable scheme for SMC retrieval over
meadows from synthetic aperture radar (SAR) backscatter (𝜎0) observations. We parameterized the vegetation
scattering and absorption model developed at the Tor Vergata University of Rome (TV) and the integral
equation method (IEM) surface scattering model for grass-covered soil surfaces. Leaf area index (LAI) estimates
from a Sentinel-2 product provide field-scale vegetation information, as is demonstrated by validation against
in situ measurements. The SMC retrieval scheme is applied with field-averaged Sentinel-1 𝜎0 observations
from November 2015 to November 2018 and evaluated on 21 meadows against adjacent in situ station
measurements, without (IEM) and with a vegetation correction (TV-IEM). Masking the IEM and TV-IEM SMC
retrievals for dense vegetation conditions improves their performance, but this is a trade-off with the number
of retrievals. By setting the SMC retrievals that exceed the upper retrieval limit of 0.75m3 m−3 during the wet
period to the maximum SMC, the performance metrics improve to mean Pearson correlation coefficients of 0.55
for IEM and 0.64 for TV-IEM, root mean square deviations (𝑅𝑀𝑆𝐷) of 0.14m3 m−3 for IEM and 0.13m3 m−3 for
TV-IEM, and 𝑅𝑀𝑆𝐷s relative to the range of the SMC references of 24% for both IEM and TV-IEM. The slightly
better SMC retrieval performance with TV-IEM is caused by invalid SMC retrievals under dense vegetation
conditions, and the performance metrics for IEM and TV-IEM are practically equal by considering the same
retrieval–reference pairs. The IEM and TV-IEM retrieval performances are also similar to the performances of
two other Sentinel-1 based products at field scale. They are, on average, outperformed by NASA’s Soil Moisture
Active Passive (SMAP) 9 km and 36 km products evaluated at field scale, but these products are expected to
deviate if larger regional differences are present and in field-specific situations.
1. Introduction

Microwave backscatter (𝜎0) observations by synthetic aperture
radar (SAR) instruments are known for their potential to monitor soil
moisture content (SMC). Recently, interest has grown in the Sentinel-
1 satellites because of the combination of its fine spatiotemporal
resolutions, high radiometric accuracy and the operational ambition
of the programme (Balenzano et al., 2021; Bauer-Marschallinger et al.,
2019; Hornacek et al., 2012; Pulvirenti et al., 2018). Balenzano et al.
(2021), Bauer-Marschallinger et al. (2019) and Pulvirenti et al. (2018)
developed algorithms for the retrieval of SMC from Sentinel-1 observa-
tions at resolutions of 1 km, 1 km and 500m, respectively.

Several studies noted the potential of Sentinel-1 𝜎0 observations for
monitoring SMC even at finer scales, up to agricultural field scale (e.g.
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Amazirh et al., 2018; El Hajj et al., 2017). Especially over hetero-
geneous landscapes with relatively small agricultural fields, such as
in western Europe, new applications may be anticipated with SMC
information at field scale. This includes agricultural water management
for field trafficability and irrigation (Carranza et al., 2019; Lei et al.,
2020; Vereecken et al., 2014), and regional catchment management
in dry and wet periods (Cenci et al., 2017; Mahanama et al., 2008;
Pauwels et al., 2001; Pezij et al., 2019).

For the SMC to be estimated from Sentinel-1 observations, the
relation between 𝜎0 and SMC must be separated from the effects
of surface roughness and vegetation (Kornelsen and Coulibaly, 2013;
Paloscia et al., 2013; Verhoest et al., 2008). Surface scattering models,
such as the frequently-used ‘integral equation method’ (IEM) model,
simulate the 𝜎0 from surfaces based on the surface roughness and SMC
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(via relative permittivity) given the sensing configurations regarding
frequency and incidence angle (Ulaby and Long, 2014). The surface
roughness of meadows is expected to change little because typically no
crop rotation and ploughing are applied. In addition, the absence of a
clear row structure — from ploughing or other agricultural practices
— suggests that satellite 𝜎0 observations from the ascending and de-
cending passes, despite the different directions from which fields are
iewed, may be combined. The results in Benninga et al. (2020) confirm
hat the IEM surface roughness parameters can be assumed similar
or different meadows, time-invariant and independent of the ascend-
ng/descending orbits. This is a promising finding for the retrieval of
MC over meadows across a larger region because it suggests that
sing a single set of surface roughness parameters would be allowed.
he value of such a product would be substantial as meadows cover a
ajor portion of the land in use for agriculture. However, this finding
as obtained only for two meadows. Furthermore, the meadows were

n relatively wet and sparsely vegetated (winter) conditions. Hence,
urther research is required over additional meadows and for a range
f hydrometeorological and vegetation conditions.

The development of vegetation throughout a year complicates the
etrieval of SMC. Interactions of the microwave signal with vegetation
esults in attenuation of the soil 𝜎0, direct 𝜎0 from the vegetation
nd 𝜎0 from soil–vegetation pathways (Ulaby and Long, 2014). These
ffects are enhanced by Sentinel-1’s sub-optimal specifications for SMC
etrieval, notably the C-band (wavelength 5.6 cm) observations at rel-
tively large incidence angles and in VV polarization (Fascetti et al.,
017; Pulvirenti et al., 2018). Based on the theory it is, thus, ex-
ected that correcting Sentinel-1 𝜎0 observations for vegetation effects
ontributes to more accurate SMC retrievals. The discrete electromag-
etic Tor Vergata (TV) model coupled with the IEM surface scattering
odel (Bracaglia et al., 1995; Dente et al., 2014; Wang et al., 2018)

s a physically based model. Advantages of using a physically based
odel are the application to various site conditions and sensor con-

igurations (Paloscia et al., 2013; Petropoulos et al., 2015) as well as
ropagation of uncertainty sources (Benninga et al., 2020; Satalino
t al., 2002; Van der Velde et al., 2012) and the understanding of
ackscattering processes (Baghdadi et al., 2002; Balenzano et al., 2012;
ang et al., 2018). However, deficiencies in the models, their param-

terizations and uncertainty in the input variables, such as current
egetation conditions, will influence the accuracy of SMC retrievals and
he effectiveness of a vegetation correction on improving SMC retrieval
erformance.

This study presents an operationally applicable scheme for SMC
etrieval over meadows. In this context, it extends on previous research
y (i) using physically based model simulations for field-scale SMC
etrieval from SAR 𝜎0 observations and (ii) evaluating the effectiveness
f correction for the effect of vegetation as a balance between a better
epresentation of scattering processes and the uncertainty added by
mperfect models as well as the inclusion of more parameters and
nput variables. The operationally applicable scheme is established by
he Sentinel-1 and Sentinel-2 programmes with operational ambitions,
nput data sets of land cover and soil texture that are regionally avail-
ble and have global alternatives, use of physically based models with
limited number of parameters and the parameters being available

rom other sources, and look-up tables of the model simulations for
ast inversion into SMC. We parameterized the TV and IEM models
or grass-covered soil surfaces. For representing field-scale vegetation
onditions, we utilized a leaf area index (LAI) product derived from
entinel-2 optical imagery (Paepen and Wens, 2017; VITO, 2019). The
entinel-2 LAI estimates were validated against in situ measurements
ollected on six agricultural fields in the east of the Netherlands. The
arameters required for the TV and IEM models were adopted from
revious studies, except for the vegetation water content (VWC) for
hich various time-invariant and time-varying VWC values were tested.
hen, the SMC retrieval scheme was demonstrated by retrieving the

0

2

MC from Sentinel-1 𝜎 observations for 21 meadows and validated
gainst measurements from adjacent in situ monitoring stations. To
valuate whether the vegetation correction improves the SMC esti-
ates, the retrieval results with IEM (without vegetation correction)

nd TV-IEM (with vegetation correction) were compared. Besides, we
ested whether the performance improves by incorporating information
rom SMC retrievals that exceed the upper SMC retrieval limit and by
asking SMC retrievals for dense vegetation conditions. Eventually, the

MC retrieval performances were compared with the performances of
hree other Sentinel-1 based products at field scale, three Sentinel-1
ased products at 1 km resolution and the Soil Moisture Active Passive
SMAP) 9 km and 36 km products evaluated at field scale.

. Soil moisture content retrieval scheme

Fig. 1 shows the SMC retrieval scheme, separated in the boxes A–C.

.1. A: Input data

The preparation of the input data starts with the selection of mead-
ws within a study region. In case of the Netherlands this can be
one with the crop parcel registry (‘Basisregistratie Gewaspercelen’
n Dutch; Ministry of Economic Affairs and Climate Policy, 2020).
his database contains, on an annual basis, the type of crop for each
gricultural parcel in the Netherlands. For the selected meadows the
verage soil texture, Sentinel-1 𝜎0 and incidence angle, and Sentinel-2
AI were calculated. For the soil texture we could use the soil physical
roperties map of the Netherlands (BOFEK2012; Wösten et al., 2013).
esides regional data sets, global alternatives for providing land cover
nd soil texture are the 10m resolution WorldCover map (VITO, 2022)
nd the 30′ Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-
AS/JRC, 2009). Below, the preparation steps that were applied to the
entinel-1 imagery and Sentinel-2 LAI maps are described.

.1.1. Sentinel-1 imagery
Sentinel-1 𝜎0 and local incidence angle values for study fields were

btained from Level-1 Ground Range Detected (GRD) High Resolu-
ion (HR) Interferometric Wide Swath (IW) imagery. The images were
ownloaded from the Copernicus Open Access Hub (Copernicus, 2019).
he operations (1) Apply Orbit File, (2) Thermal Noise Removal and
3) Range Doppler Terrain Correction, including radiometric normaliza-
ion to 𝜎0 (in m2 m−2) with projected local incidence angles, available
n ESA’s Sentinel Application Platform (SNAP) V6.0 (European Space
gency (ESA), 2019), were used to pre-process the Sentinel-1 images.

f the SMC retrieval scheme would be utilized on areas with significant
elief, a terrain flattening operation to 𝛾0 may be required. The study
egion here is almost flat (see Section 4.1) and these pre-processing
teps were considered appropriate.

The Level-1 GRD HR IW Sentinel-1 images have, after multi-looking,
resolution of 20m × 22m (Bourbigot et al., 2016; Torres et al.,

012). The Range Doppler Terrain Correction included projection of the
entinel-1 𝜎0 and local incidence angles on a geographic grid (WGS84)
ith a pixel spacing of 9.0E−5° (equivalent to 10m × 6.1m at the study

egion’s latitude). After the pre-processing operations the Sentinel-1 𝜎0

nd incidence angle values were averaged over study fields, excluding
he area within 20m from borders of fields and 40m from trees and
uildings to avoid possible influences from outside fields. The final
teps were to mask the Sentinel-1 𝜎0 observations of study fields for
rozen conditions, wet snow and intercepted rain with the masking
ules for weather-related surface conditions presented in Benninga et al.
2019) and to express the 𝜎0 intensity values in dB. The Sentinel-1
0 observations still contain radiometric uncertainty due to calibration

uncertainties, sensor instabilities and speckle (Benninga et al., 2019;
Pathe et al., 2009; Schmidt et al., 2018; Schwerdt et al., 2017). The
radiometric uncertainty follows approximately an inverse square root
dependency on the surface area over which 𝜎0 observations are av-

eraged (Benninga et al., 2019). Benninga et al. (2020) demonstrated
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Fig. 1. Flowchart of the SMC retrieval scheme, separated in the preparation of the input data (A), the parameterization of the TV-IEM model (B), and the retrieval of SMC from
𝜎0 observations (C).
o
(
a

R
o

that, averaged over three study fields of 0.45 ha to 2.4 ha, Sentinel-1’s
radiometric uncertainty constitutes 31% of the retrieval uncertainty at
a SMC of 0.26m3 m−3 to 67% at a SMC of 0.53m3 m−3.

The Sentinel-1 IW mode provides 𝜎0 observations in VV and VH
polarization. The 𝜎0 observations in VV polarization have a higher
expected sensitivity to SMC (e.g. Amazirh et al., 2018; El Hajj et al.,
2017; Pulvirenti et al., 2018). Therefore, only the VV polarization 𝜎0

observations were used in the presented SMC retrieval scheme. The as-
cending and descending Sentinel-1 orbits were combined, as Benninga
et al. (2020) found that 𝜎0 observations from these respective pass di-
rections can be simulated with one set of surface roughness parameters
over meadows. The Sentinel-1 constellation consists of the Sentinel-1A
and Sentinel-1B satellites, which provide imagery since October 2014
and September 2016 (Bourbigot et al., 2016; Torres et al., 2012).
Their imaging revisit time over the European landmasses, which is one
of the high priority areas in Sentinel-1’s acquisition strategy (Bauer-
Marschallinger et al., 2019; Torres et al., 2012), is approximately 3
to 8 days with Sentinel-1A and improves to 1.5 to 3 days with both
Sentinel-1A and -1B. Inconsistencies in the Sentinel-1 𝜎0 time series are
found before 25 November 2015 as a result of changes in Sentinel-1
calibrations (Benninga et al., 2019; El Hajj et al., 2016), so the SMC
retrieval scheme was started from 25 November 2015 and it was
continued until 1 November 2018.

2.1.2. Sentinel-2 leaf area index
The Sentinel-2A and -2B satellites provide imagery in 13 spectral
3

bands in the visible, near infrared and short wave infrared parts of
the electromagnetic spectrum (Drusch et al., 2012). The resolution is
10m, 20m or 60m, depending on the spectral band. The revisit time
ver the Netherlands is 12 to 6 days from 1 July 2015 to 1 July 2017
Sentinel-2A) and 5 to 2.5 days from 1 July 2017 onwards (Sentinel-2A
nd Sentinel-2B).

Using Sentinel-2 imagery, the Flemish Institute for Technological
esearch (‘Vlaamse Instelling voor Technologisch Onderzoek’ in Dutch,
r VITO) generates 10m grid maps of various vegetation indicators,

namely the fraction of absorbed photosynthetically active radiation,
fraction of green vegetation cover, LAI, normalized difference vegeta-
tion index (NDVI), chlorophyll canopy content and chlorophyll water
content (Paepen and Wens, 2017; VITO, 2019). The maps are masked
for the scene classifications cloud shadow, medium probability for
clouds and high probability for clouds. For this study, V102 vegetation
indicator maps as well as scene classification maps were downloaded
from the VITO Product Distribution Portal (VITO, 2019). Recently,
V200 replaced V102 and the distribution moved to Terrascope (Piccard
et al., 2020). The Sentinel-2 LAI maps were available for parts of Europe
(Paepen and Wens, 2017; VITO, 2019). A global alternative for LAI in-
formation, but at a coarser resolution of up to 250m, is provided by the
Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation
indicators (Justice et al., 2002; Xiao et al., 2022).

Fig. 2 illustrates that individual fields can be distinguished on the
Sentinel-2 LAI maps. Differences between the LAI values of mead-
ows exist due to different management practices: part of them is
being grazed and others are cut at several moments in the year. On
15 September 2016 (the example map in Fig. 2) part of the crop fields

had already been harvested, whereas on others the crop was still there.
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Fig. 2. Sentinel-2 LAI maps on 15 September 2016 for the fields where we collected in situ LAI measurements. The outlines of the agricultural fields originate from the crop
parcel registry 2016 (Ministry of Economic Affairs and Climate Policy, 2020).
The Sentinel-2 LAI images are not collected at the same time as
Sentinel-1 images. Furthermore, only about 40% of the LAI estimates is
available after the masking for cloud shadow, medium probability and
high probability for clouds. To provide LAI information at the time of
Sentinel-1 images we, therefore, had to interpolate the Sentinel-2 LAI
estimates. We assumed that we do not have local information available,
such as when a study field was sowed or harvested, to enable region-
wide application of the Sentinel-2 LAI information. Instead, we linearly
interpolated two subsequent Sentinel-2 LAI estimates if the time gap
between them is less than 15 days and the LAI does not decrease more
than 2m2 m−2, thereby assuming that a larger decrease associates with
the harvesting of a crop. For the winter period between 1 November
and 1 March no variation in LAI is expected and we adopted the mean
of Sentinel-2 LAI estimates over this period for a field. Furthermore,
if a Sentinel-1 observation is between two Sentinel-2 LAI estimates
for which the time gap is larger than 15 days (i.e. no interpolated
LAI estimate would be available for the Sentinel-1 observation), a
maximum time gap of 1.5 days was taken for directly associating a
Sentinel-2 LAI estimate to a Sentinel-1 observation. The interpolated
Sentinel-2 LAI estimates are validated against in situ LAI measurements
in Section 5.1.

2.2. B: Forward backscattering model

2.2.1. Surface and vegetation models
The total 𝜎0 constitutes of three contributions as follows (in m2 m−2):

𝜎0 = 𝛾2𝜎0𝑠 + 𝜎0𝑣 + 𝜎0𝑠𝑣, (1)

where 𝛾2 is the two-way transmissivity of the vegetation (= 1−two-
way attenuation), 𝜎0𝑠 is the 𝜎0 from the soil surface, 𝜎0𝑣 is the direct
vegetation 𝜎0 and 𝜎0𝑠𝑣 is the 𝜎0 from soil–vegetation pathways. The IEM
surface scattering model (Fung et al., 1992) simulates the scattering
4

in all upward directions from the soil by representing it as a rough
dielectric surface. The TV electromagnetic model, developed at the Tor
Vergata University of Rome, represents the vegetation as a medium
of discrete scatterers and simulates the 𝛾2, 𝜎0𝑣 and 𝜎0𝑠𝑣 based on ra-
diative transfer theory. Readers are referred to Bracaglia et al. (1995)
and Dente et al. (2014) for more background on the TV-IEM model.

2.2.2. Parameterization
We implemented the TV model for grass-covered surfaces using the

vegetation parameterization reported in Dente et al. (2014), excluding
the litter layer, and the IEM surface roughness parameter values that
were calibrated on sparsely vegetated meadows in Benninga et al.
(2020). The vegetation leaves’ disc radius and disc thickness were
calibrated on an alpine meadow landscape (Dente et al., 2014). The
TV vegetation and IEM surface roughness parameter values are listed in
Table 1. For the soil texture parameters, we used the average sand, silt
and clay content, and soil bulk density of the study fields (i.e. regional
averages).

The LAI determines the number of discs that represent the vege-
tation (Bracaglia et al., 1995). In Benninga et al. (2020) it has been
assumed that the sparse grass cover on meadows in winter conditions
does not affect the Sentinel-1 𝜎0 observations. To enable adopting the
surface roughness parameter values from Benninga et al. (2020), we
subtracted from the Sentinel-2 LAI estimates the LAI during winter
before they were used as input to the SMC retrieval scheme.

Regarding the VWC vegetation variable, previous studies adopted
time-invariant values of 0.8 kg kg−1 (Dente et al., 2014) and
0.59 kg kg−1 (Wang et al., 2018) for grass. These VWC values were
obtained after optimizing TV simulations with regard to passive and
active microwave observations over Tibetan alpine meadows. However,
given the water-limited conditions that can occur in our study region,
the VWC may vary over time as well. Therefore, besides searching for
one optimum VWC value, we also investigated implementation of a
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Table 1
The surface and vegetation parameters used for simulating a grass-covered soil surface with the TV-IEM model.

Module Parameter Symbol Value Source

Surface Root mean square surface height 𝑠 0.16 cm Benninga et al. (2020)
Surface Autocorrelation length 𝑐𝑙 1.31 cm Benninga et al. (2020)
Surface Soil texture: sand, silt and clay content,

and soil bulk density
- Averages for the study fields, see

Section 4.1
Vegetation Leaves’ disc radius 𝑅𝑙𝑒𝑎𝑓 1.4 cm Dente et al. (2014)
Vegetation Leaves’ disc thickness 𝐷𝑙𝑒𝑎𝑓 0.02 cm Dente et al. (2014)
Table 2
Discretization of the TV-IEM look-up tables. Regarding LAI, the simulation nodes are [0m2 m−2, 1m2 m−2, . . . , 10m2 m−2] with an additional
simulation for 0.1m2 m−2. Regarding SMC, the simulations nodes are [0.05m3 m−3, 0.1m3 m−3, . . . , 0.75m3 m−3] with an additional simulation for
0.01m3 m−3.

Variable Lower limit Upper limit Coarse simulation
increment

Fine interpolation
increment

Incidence angle [°] 29 47 2 0.25
LAI [m2 m−2] 0, 0.1 10 1.0 0.1
VWC [kg kg−1] 0.4 0.9 0.05 0.01
SMC [m3 m−3] 0.01, 0.05 0.75 0.1 0.001
w
L
a
e
i
g
a
a

s

time-varying VWC. The VWC is adapted each Sentinel-1 time step by
optimizing the VWC value on the match between the SMC retrieval and
reference of the previous time step. This is based on the assumptions
that the residual between a SMC retrieval and reference is caused by
an imperfect VWC value and that the VWC value of the previous time
step can be used for the current time step. Two methods were tested,
namely: (i) combining the Sentinel-1 observations in the ascending and
descending orbits, and (ii) separating the ascending (afternoon) and
descending (morning) orbits, i.e. using for a descending orbit Sentinel-
1 observation the optimum VWC value of the previous descending orbit
observation.

2.3. C: Retrieval of soil moisture content from backscatter observations

The retrieval of SMC from a Sentinel-1 𝜎0 observation involves
finding the SMC value for which the minimum difference between 𝜎0

simulations and the Sentinel-1 𝜎0 observation is achieved. This would
require a large number of TV-IEM simulations over a broad range of
incidence angle, LAI, VWC and SMC combinations, which is not feasible
in operational settings because of the considerable run time of single
TV-IEM simulations. Supplement 1 details the estimation of TV-IEM’s
and IEM’s run times. The models require little random access memory
(0.3 GB for TV-IEM). On an Intel Core(TM) i7-4790 CPU @ 3.60GHz
processor, the run time is 26.1 s per TV-IEM simulation.

As an alternative, we performed the TV-IEM simulations and stored
the 𝜎0 contributions (𝜎0𝑣 , 𝜎0𝑠 , 𝜎0𝑠𝑣 and 𝛾2) in look-up tables. The TV-
IEM simulations were first executed on the ranges and coarse sim-
ulation increments listed in Table 2. Second, similar to Kim et al.
(2014), the TV-IEM simulations were linearly interpolated to the finer
increments that are listed in Table 2. This two-step procedure in-
creases the number of nodes from a limited number of simulations,
i.e. from 11 880 simulations to 278 633 043 nodes. The validity of the
inear interpolations is discussed in Section 3.

To limit the number of TV-IEM simulations, we only performed
hem for a study region’s average soil texture and at discrete incidence
ngles. IEM’s short run time (0.0556ms per simulation, see Supple-
ent 1) allows to combine the TV-IEM 𝜎0𝑣 , 𝜎0𝑠𝑣 and 𝛾2 simulations,
uring the retrieval process, with IEM 𝜎0𝑠 simulations for the fine inter-
olation SMC increments and field-specific soil textures and incidence
ngles.

. TV-IEM model sensitivity to soil and vegetation variables

The 𝜎0𝑣 , 𝛾2𝜎0𝑠 and 𝜎0𝑠𝑣 relative contributions to the total 𝜎0, as
imulated with the TV-IEM model, are shown in Fig. 3. The fine grid
imulated contributions, as functions of LAI and VWC, show small
5

random deviations from the coarse grid simulations. As a function of
SMC, the coarse grid simulations align with the fine grid simulations —
for the 35° case — because the coarse grid simulations were combined

ith IEM simulations at fine increments. However, in contrast with the
AI and VWC, interpolating the simulations for the coarse incidence
ngle increments to the fine interpolation increments has a systematic
ffect on the simulations, as can be seen from the systematic deviations
n Figs. 3b, d and f. Nevertheless, the linear interpolations of the coarse
rid simulations approximately follow the lines of fine grid simulations
nd in this study we consider the linear interpolations as acceptable
pproximations for establishing the 𝜎0 contributions look-up tables.

Figs. 3a–b show that the 𝜎0 originates completely from the soil
urface for a LAI of 0m2 m−2, which is expected because the 𝜎0𝑣 and
𝜎0𝑠𝑣 will be 0m2 m−2 and 𝛾2 will be 1 when no vegetation is present.
However, the 𝛾2𝜎0𝑠 contribution already reduces significantly with a
limited grass cover. The 𝜎0𝑣 is larger than the 𝛾2𝜎0𝑠 from a LAI of
approximately 1.5m2 m−2 and onwards (for a VWC of 0.6 kg kg−1).
Figs. 3c–d show that the 𝛾2𝜎0𝑠 contribution also reduces with increasing
VWC. Hence, both an increasing LAI and VWC cause a diminishing 𝜎0

to SMC sensitivity. Figs. 3e–f show that the relative 𝛾2𝜎0𝑠 contribution
is larger for higher SMC. This is because 𝜎0𝑠 increases with increasing
SMC. The 𝜎0 to SMC sensitivity diminishes with increasing SMC (Altese
et al., 1996; Benninga et al., 2019), as is illustrated in Fig. 4. Fig. 4 also
reflects the reduced 𝜎0 to SMC sensitivity under a vegetation cover: the
higher the LAI and VWC are, the more the 𝜎0 to SMC sensitivity reduces
because the 𝜎0𝑠 is increasingly more attenuated and the 𝜎0𝑣 relative
contribution to the total 𝜎0 increases. The 𝛾2𝜎0𝑠 relative contribution
is slightly smaller for the 44° incidence angle than for the 35° incidence
angle. This is explained by the longer path through the vegetation for
larger incidence angles. For example, for a LAI of 2m2 m−2 and a VWC
of 0.6 kg kg−1 the 𝛾2 values are 0.49 and 0.48 for incidence angles of 35°
and 44°, respectively, and for a LAI of 4m2 m−2 they are 0.23 and 0.22.

The 𝜎0𝑠𝑣 relative contribution is small for all grass cover and SMC
conditions. The mean 𝜎0𝑠𝑣 values are 5.5% of the total 𝜎0 for the 35°
incidence angle (Figs. 3a, c and e) and 3.6% for the 44° incidence angle
(Figs. 3b, d and f). In contrast to the 𝛾2𝜎0𝑠 , the 𝜎0𝑠𝑣 relative contribution
is fairly independent of the LAI and VWC, and under dense grass
conditions its contribution is similar to that of the 𝛾2𝜎0𝑠 . Whereas in
the frequently-used water cloud model (WCM), which was introduced
by Attema and Ulaby (1978) and used in e.g. El Hajj et al. (2017), Palos-
cia et al. (2013) and Pulvirenti et al. (2018) for SMC mapping from
Sentinel-1 imagery, multiple scattering interactions between the soil
surface and the vegetation are neglected, these results suggest that 𝜎0𝑠𝑣
should be included because of its significant contribution to the total
𝜎0 for grass-covered soil surfaces. Furthermore, 𝜎0𝑠𝑣 may still contribute
to 𝜎0 to SMC sensitivity under dense vegetation conditions (Chiu and

Sarabandi, 2000; Joseph et al., 2010; Stiles et al., 2000).
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Fig. 3. The 𝜎0
𝑣 , 𝛾2𝜎0

𝑠 and 𝜎0
𝑠𝑣 relative contributions for varied LAI, VWC and SMC conditions, and incidence angles of 35° and 44°. The solid lines represent TV-IEM simulations

with fine increments of 0.1m2 m−2 (a–b), 0.01 kg kg−1 (c–d) and 0.01m3 m−3 (e–f), and the dashed lines represent simulations with the coarse increments listed in Table 2.
Fig. 4. The sensitivity of 𝜎0 to SMC. The simulations in this figure are for a 35° incidence angle.
4. Validation references and method

4.1. Study region and period

The study region is located in the eastern part of the Netherlands
(Fig. 5a). For an extensive description of the study region’s landscape,
soils and climate, we refer to Van der Velde et al. (submitted for pub-
lication). The region is flat with some elevated glacial ridges (Fig. 5b).
From mid-November to mid-March (winter period) the SMC is generally
at a high level and from mid-May to mid-October (summer period) at a
low level mainly due to a higher evaporative demand (Benninga et al.,
2019; Van der Velde et al., 2021). Moreover, the general SMC cycle
6

contains dynamics on shorter time-scales in response to meteorological
events. In the study period of 25 November 2015 to 1 November 2018,
the 2018 summer was exceptionally dry due to high evaporative de-
mands and low rainfall (Bakke et al., 2020; Buitink et al., 2020; Buras
et al., 2020). The grass growing season is approximately from 1 March
to 1 November (Pellikaan, 2017; Veeneman et al., 2017). Outside the
growing season, grass covers are virtually static and sparse. Within the
growing season meadows are being grazed or cut at several moments,
which is why the LAI can be very different between adjacent meadows
(see Fig. 2).
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Fig. 5. (a) Location of the study region in the Netherlands. (b) The locations of the study fields, adjacent to stations of the SMC monitoring network Twente (Dente et al., 2012,
2011; Van der Velde et al., submitted for publication; Van der Velde and Benninga, 2022). Background is the digital terrain model AHN2 (Actueel Hoogtebestand Nederland,
2012).
Table 3
Specifications of the Sentinel-1 orbits that cover the study region. CET stands for Central European Time. The number of Sentinel-1 images is for
the study period from 25 November 2015 to 1 November 2018 and before masking the 𝜎0 observations for weather-related surface conditions.

Relative orbit
number

Pass Acquisition time
(CET)

Number of
Sentinel-1 images

Projected local
incidence angle over
the study fields

15 Ascending 18:16 145 32.3° to 36.3°
37 Descending 6:49 148 34.0° to 37.8°
88 Ascending 18:24 143 40.8° to 44.4°
139 Descending 6:41 146 42.2° to 45.6°
The imaging revisit time of the Sentinel-1 satellites over a region
is controlled by a region’s latitude and Sentinel-1’s acquisition strat-
egy (Bauer-Marschallinger et al., 2019; Torres et al., 2012). Sentinel-1
images are collected relatively intensively over our study region be-
cause this region is covered by two ascending and two descending
orbits. The characteristics of these orbits are listed in Table 3. Sentinel-
1’s imaging revisit time over the study region with these four orbits
combined and both Sentinel-1A and -1B is 1.5 days. The Sentinel-2
LAI maps were available for specific time periods and specific parts of
Europe (Paepen and Wens, 2017; VITO, 2019): for the northern part
of our study region throughout the study period, but for the southern
part the period from 1 January 2017 to 1 July 2018 was not available
and for the most eastern part only half of the Sentinel-2 images were
processed. This gives temporal resolutions of 4 days for the western and
middle part and 8 days for the eastern part of the study region.

4.1.1. In situ soil moisture content
The study region is equipped with a network of twenty SMC mon-

itoring stations, known as the Twente network (Dente et al., 2012,
2011; Van der Velde et al., submitted for publication; Van der Velde
and Benninga, 2022) and shown in Fig. 5b. The retrieval scheme
was applied to estimate SMC for the meadows adjacent to monitoring
stations. Multiple meadows can be adjacent to a single SMC station,
as can also be seen in Fig. 2. Table S2 (in supplementary material)
lists the study fields with their surface areas and number of Sentinel-
1 pixels. The study fields’ surface areas (number of pixels) range
from 0.16 ha (24 pixels) to 6.3 ha (1026 pixels). Sentinel-1’s radiometric
7

uncertainty reduces with the surface area over which 𝜎0 observations
are averaged (Benninga et al., 2019), so it can be expected that the
respective SMC retrieval performance depends on the surface area of
a study field. Investigating the effect of a field’s surface area on SMC
retrieval performance is, however, outside the scope of this paper.

Table S2 also lists the soil characteristics of the study fields. Sandy
to loamy sandy soils dominate the surface layer in the study region,
with some remnants of loamy soils and organic soils (Van der Velde
et al., submitted for publication; Wösten et al., 2013). This study
was limited to the meadows with sandy to loamy sandy surface lay-
ers. We generated TV look-up tables for the study fields’ average
soil texture of 80% sand, 15% silt and 5% clay, with a bulk density
of 1.33 g cm−3, derived from BOFEK2012 (Wösten et al., 2013). As
explained in Section 2.3, IEM was run for the field-specific soil textures.

The monitoring stations measure SMC with 5TM probes (METER
Group, 2019) at nominal depths of 5 cm, 10 cm, 20 cm, 40 cm and 80 cm
and store the readings every 15min. The 5TM probes have an influ-
ence zone of approximately up to 4 cm above and below the sensor’s
middle prong (Benninga et al., 2018). We used the 5 cm depth SMC
measurements, being representative for a soil depth of 1 cm to 9 cm,
that are collected at Sentinel-1 overpass times as the in situ references.
The in situ SMC measurements that were impacted by frozen soil
conditions (Van der Velde et al., 2021) were discarded as references.
Furthermore, Benninga et al. (2020) reported that the SMC time series
from Twente monitoring stations capture the temporal dynamics but
the absolute values exceed realistic ranges for SMC. To validate the
temporal dynamics, we applied the bias correction procedure that is
explained in Section 4.2.
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Two uncertainties of the references are the sensors’ measurement
uncertainty (Cosh et al., 2005) and a spatial mismatch uncertainty
(Cosh et al., 2006; Western et al., 2002). Van der Velde et al. (submitted
for publication) describes the calibration of the 5TM probes on the
Twente region’s soils. The measurement uncertainty, quantified against
gravimetrically determined volumetric SMC with the root mean square
deviation (𝑅𝑀𝑆𝐷), is 0.028m3 m−3. Horizontal and vertical mismatch
ncertainties exist between the SMC references and Sentinel-1 observed
MC (Benninga et al., 2020; Benninga, 2022). For the horizontal and
ertical mismatch uncertainties together, i.e. the spatial mismatch un-
ertainty, a common estimate of 0.051m3 m−3 was found. Benninga

et al. (2020) demonstrated that the references’ sensor uncertainty and
spatial mismatch uncertainty constitute, respectively, 13% and 46% of
the retrieval uncertainty at a SMC of 0.26m3 m−3 to 4% and 15% at a
SMC of 0.53m3 m−3; i.e., these are major uncertainty contributions in
the evaluation of satellite SMC retrievals.

4.1.2. In situ leaf area index
The interpolated Sentinel-2 LAI estimates were validated against

in situ references. During the growing seasons of 2016 and 2017, we
measured the LAI on two meadows (fields I and III) on a two-weekly
basis. In order to increase the number of available LAI references and
evaluate the general performance of the Sentinel-2 LAI estimates, we
also validated them with in situ LAI measurements that were collected
on four maize fields (fields A–D). In situ LAI measurements were also
collected on a fifth maize field (field E), but no concurrent Sentinel-2
LAI estimates are available here.

Fig. 5b shows the locations of fields I, III and A–E, and Fig. 2
shows the locations of the LAI measurements within these fields. The
LAI measurements were collected at three to six locations, about 50m
to 100m apart, within a field. The optical instrument LI-COR LAI-
2000 (LI-COR, 1992) was used for the measurements. This instrument
estimates the LAI based on the ratio between light intensity readings
above and below the canopy. We operated the instrument with a
sensor opening of 90° to remove the operator and the sun from the
sensor’s view (LI-COR, 1992). On the meadows we acquired one above-
canopy reading and four below-canopy readings about 0.5m apart to
reduce the measurement uncertainty. On the maize fields we acquired,
at each measurement location, four below-canopy readings with the
sensor opening along the rows and four below-canopy readings with
the sensor opening facing a maize row, each set accompanied with
an above-canopy reading. Of the four measurements below a maize
canopy, the first was in/adjacent to the maize row, the second was
at 1/4 between rows, the third was halfway, and the fourth was at
3/4 between rows, following the LAI-2000 manual (LI-COR, 1992). The
LAI-2000 File Viewer (FV2000) application (LI-COR, 2004), using the
default horizontal uniform canopy model, converted the light intensity
readings to LAI.

The Sentinel-2 LAI estimates and the in situ references are shown
in Fig. 6. Following the conditions for the interpolation of Sentinel-2
LAI estimates as defined in Section 2.1.2, during harvesting periods
the Sentinel-2 LAI estimates are indeed not interpolated. As a result,
however, no validation pair is established for the in situ LAI references
that were acquired just before or after a harvesting period. These in
situ LAI references typically represent the most extreme LAI conditions.
As the LAI will not vary much in the week before and the week after
harvesting, we relaxed the maximum time gap of 1.5 days to maximum
one week for these LAI references and included them as pairs with the
Sentinel-2 LAI estimate just before or after.

4.2. CDF matching

Discrepancies between retrievals and references are present due to
errors in both data sets, as well as due to spatial scale and depth mis-
matches (Kornelsen and Coulibaly, 2015; Drusch et al., 2005; Draper
8

et al., 2009; Wagner et al., 2007). Such discrepancies appear as biases
in the mean, variability, dynamic range and more (Drusch et al.,
2005; Reichle and Koster, 2004), and hinder meaningful validation of
absolute values (Draper et al., 2009; Wagner et al., 2007; Kornelsen
and Coulibaly, 2015; Brocca et al., 2011). Examples are those SMC
values from Twente monitoring stations exceeding realistic ranges as
noted in Section 4.1.1. Besides, assimilating a satellite SMC product
into a land surface model or combining multiple satellite SMC products
would require that their statistical moments match (Drusch et al., 2005;
Reichle and Koster, 2004). Kornelsen and Coulibaly (2015) and Draper
et al. (2009) stated that the main use of SMC retrievals from satellite
observations is to represent the temporal dynamics, and bias correction
is an important step in isolating and validating this.

Cumulative distribution function (CDF) matching effectively sup-
presses systematic biases in the mean, variability and dynamic range of
estimates — e.g. the Sentinel-1 SMC retrievals — with their respective
references (Boé et al., 2007; Brocca et al., 2011; Drusch et al., 2005;
Kornelsen and Coulibaly, 2015; Reichle and Koster, 2004). CDF match-
ing was implemented by fitting a polynomial (correction function) to
ranked retrievals against the residuals between the ranked retrievals
and ranked references (Brocca et al., 2011; Drusch et al., 2005; Kor-
nelsen and Coulibaly, 2015). The correction function is generated on
retrieval–reference pairs. We obtained the model coefficients of the
correction function with the ‘Trust-Region’ algorithm in Matlab’s Curve
Fitting toolbox, by fitting, similar to Brocca et al. (2011), a fifth-order
polynomial.

After generation of the correction function, the Sentinel-1 SMC
retrievals were subjected to the correction function so that their CDF
should match the in situ SMC references’ CDF. The Kolmogorov–
Smirnov test with a significance level of 5% (Kornelsen and Coulibaly,
2015; Massey, 1951) was used to verify whether the correction function
successfully aligned the CDFs. If this is confirmed, the correction
function was also applied to the retrievals for which no concurrent
reference is available and beyond the range for which it was developed.
Following Boé et al. (2007), the correction factor of the correction
function’s boundary was applied to retrievals that exceed the ranges
on which the correction function was established.

4.3. Performance metrics

The Sentinel-2 LAI estimates and Sentinel-1 SMC retrievals were
evaluated against their in situ references with the Pearson correlation
coefficient (𝑟𝑃 ), the root mean square deviation (𝑅𝑀𝑆𝐷) and the
unbiased 𝑅𝑀𝑆𝐷 (𝑢𝑅𝑀𝑆𝐷), which are defined as follows:

𝑟𝑃 =

∑𝑁
𝑡=1

(

𝑌𝑒(𝑡) − 𝑌𝑒
)(

𝑌𝑟(𝑡) − 𝑌𝑟
)

√

∑𝑁
𝑡=1

(

𝑌𝑒(𝑡) − 𝑌𝑒
)2

√

∑𝑁
𝑡=1

(

𝑌𝑟(𝑡) − 𝑌𝑟
)2

, (2)

𝑅𝑀𝑆𝐷 =

√

∑𝑁
𝑡=1

(

𝑌𝑒(𝑡) − 𝑌𝑟(𝑡)
)2

𝑁
, (3)

and

𝑢𝑅𝑀𝑆𝐷 =

√

√

√

√

√

∑𝑁
𝑡=1

(

𝑌𝑒(𝑡) +
(

𝑌𝑟 − 𝑌𝑒
)

− 𝑌𝑟(𝑡)
)2

𝑁
, (4)

where 𝑁 stands for the number of pairs, 𝑌𝑒 and 𝑌𝑟 for the estimates
and the references, respectively, 𝑡 for the observation number and the
bars for the means of 𝑌𝑒 and 𝑌𝑟. The 𝑢𝑅𝑀𝑆𝐷 was not reported for
the SMC retrievals because CDF matching removes systematic biases
between the means of SMC retrievals and references, resulting in equal

𝑅𝑀𝑆𝐷 and 𝑢𝑅𝑀𝑆𝐷. The 𝑢𝑅𝑀𝑆𝐷, or 𝑅𝑀𝑆𝐷 for the SMC retrievals,
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Fig. 6. Sentinel-2 LAI estimates and in situ LAI references.
is the standard deviation of the differences between estimates and
references (Kerr et al., 2016), and can, as such, be considered as a
measure of uncertainty.

The 𝑟𝑃 and the relative 𝑅𝑀𝑆𝐷 (𝑅𝑅𝑀𝑆𝐷) were used for compar-
ison of the SMC retrieval performance among fields and against the
performance of other SMC products. The 𝑅𝑅𝑀𝑆𝐷 is defined as follows:

𝑅𝑅𝑀𝑆𝐷 = 𝑅𝑀𝑆𝐷
max(𝑌𝑟) − min(𝑌𝑟)

, (5)

here max(𝑌𝑟) and min(𝑌𝑟) stand for the maximum and minimum 𝑌𝑟.
The 𝑅𝑅𝑀𝑆𝐷 evaluates the retrieval uncertainty relative to the range
of the SMC references. In contrast to the 𝑅𝑀𝑆𝐷, of which the value
depends on the range of SMC values that occur, the 𝑅𝑅𝑀𝑆𝐷 may
be compared among fields, conditions or studies with different SMC
ranges. We calculated the 𝑅𝑅𝑀𝑆𝐷 of other studies using the reported
nbiased 𝑅𝑀𝑆𝐷 values and SMC ranges or, if available, the original
MC retrievals and references.
9

5. Results and discussion

5.1. Sentinel-2 leaf area index

5.1.1. Validation
The time series of the Sentinel-2 LAI estimates and the in situ

LAI references in Fig. 6 show the same dynamics. The Sentinel-2 LAI
product, thus, provides information of vegetation conditions at field
scale. Table 4 lists the performance metrics between the linearly inter-
polated Sentinel-2 LAI estimates and the in situ references. However,
the Sentinel-2 LAI estimates that were acquired when snow was present
seem disturbed. Therefore, in addition to the default masking for cloud
shadow, medium probability for clouds and high probability for clouds,
we also masked the Sentinel-2 LAI maps when the scene classification
of snow applies to a pixel. For the maize fields no in situ references
are available in winter, but for the meadows the performance metrics
(see Table 4) indeed slightly improve. The match between the final
Sentinel-2 LAI estimates and the in situ references is presented in Fig. 7.
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Table 4
Performance metrics of two Sentinel-2 LAI products against the in situ references
collected on the meadows and maize fields.

Study fields LAI product Number of pairs 𝑟𝑃 𝑅𝑀𝑆𝐷 𝑢𝑅𝑀𝑆𝐷
[–] [m2 m−2] [m2 m−2]

Meadows Original 21 0.93 1.15 0.84
Masked for snow 21 0.93 1.11 0.82

Maize Original 23 0.63 0.83 0.82
Masked for snow 23 0.63 0.83 0.82

Fig. 7. The Sentinel-2 LAI estimates, after masking for snow, against the in situ LAI
references collected on the meadows and maize fields.

The uncertainty of the linearly interpolated Sentinel-2 LAI estimates for
the meadows is estimated at 0.82m2 m−2.

.1.2. Propagation of Sentinel-2 leaf area index uncertainty
The uncertainty of the Sentinel-2 LAI estimates propagates through

he TV-IEM SMC retrieval scheme and affects SMC retrievals. We
nvestigated this effect by retrieving the SMC from a 𝜎0 value for a
iven LAI value as well as for this LAI value perturbed upwards and
ownwards with the Sentinel-2 LAI uncertainty of 0.82m2 m−2. This
ropagation principle can be deduced from Fig. 4b and is illustrated
n more detail in Supplement 3.

Fig. 8 shows the effect of the Sentinel-2 LAI uncertainty on the
MC retrievals. The 𝜎0 to SMC relation is more sensitive to the LAI
n the lower LAI range, e.g. a LAI of 2m2 m−2, as is reflected in Fig. 4b.
his causes in many cases even invalid SMC retrievals above or below
he retrieval limit. In the upper range of LAI values the 𝜎0 to SMC
ensitivity diminishes, causing that a same deviation in 𝜎0 results in
larger deviation in SMC.

.2. Calibration of the vegetation water content

Fig. 9 shows the performance of SMC retrievals for a range of time-
nvariant VWC values and the time-varying methods, as explained in
ection 2.2.2. Both the 𝑟𝑃 and 𝑅𝑀𝑆𝐷 are hardly affected by the used
WC. This suggests that other uncertainties, such as the Sentinel-1
adiometric uncertainty (see Section 2.1.1), surface roughness param-
ter uncertainty (Benninga et al., 2020), SMC references’ uncertainties
see Section 4.1.1) and Sentinel-2 LAI uncertainty (Section 5.1.2),
ominate the retrieval uncertainty. Moreover, temporal variation in the
10

egetation status is included via the LAI time series: when the VWC is g
ow, the LAI will also tend to be lower. This is illustrated in Fig. 6a–b for
xample for the very dry 2018 summer and this reduces the sensitivity
f the model performance to VWC.

The highest 𝑟𝑃 and lowest 𝑅𝑀𝑆𝐷 are obtained for a VWC of
.90 kg kg−1. This value also outperforms the two time-varying VWC
ethods. In addition, the time-varying VWC methods have the disad-

antage of requiring a SMC reference for the previous Sentinel-1 time
tep, which will generally not be available in operational applications.
herefore, the VWC value of 0.90 kg kg−1 was selected as input to the
MC retrieval scheme.

.3. Soil moisture content retrievals

Fig. 10 shows time series and CDFs of SMC retrievals and references
or field XVIII, XIV and II, respectively the fields with the best, worst
nd a medium 𝑅𝑅𝑀𝑆𝐷 performance. The CDF matching is success-
ul in aligning the SMC retrievals’ CDFs to the references’ CDFs. All
ields pass the Kolmogorov–Smirnov test with a significance level of
% (Kornelsen and Coulibaly, 2015; Massey, 1951). The time series in

he left panels demonstrate that the retrievals match the SMC references
retty well, although the retrievals also exhibit a significant spread,
.e. uncertainty, and there are periods with systematic deviations from
he references.

As a result of the successful CDF matching, over the complete period
o systematic differences between the IEM and TV-IEM SMC retrievals
re present. Nevertheless, their retrievals are different due to the differ-
nt pairs that were used in the CDF matching and due to the vegetation
orrection. The vegetation correction (without considering the CDF
atching) causes that the majority of the vegetation-corrected TV-IEM

etrievals is lower than the IEM retrievals. For most combinations of
AI, VWC and SMC, the vegetation contributes more to the 𝜎0𝑣 and 𝜎0𝑠𝑣
han that it attenuates the 𝜎0𝑠 . This is shown in Fig. 4b by the higher
MC-𝜎0 lines with vegetation present.

.3.1. The performance of IEM and TV-IEM retrievals
Fig. 11 shows the performance metrics of the SMC retrievals. More

MC retrievals are possible if no vegetation correction is applied be-
ause not for every Sentinel-1 𝜎0 observation a Sentinel-2 LAI estimate
s available and because TV-IEM results in more invalid SMC retrievals
bove or below the retrieval limit. Averaged over the study fields,
here are 164.9 and 322.9 SMC retrievals possible for the total period
nd 103.4 and 261.4 for the growing seasons with TV-IEM and IEM
espectively. The performance metrics of the IEM retrievals for the same
etrieval–reference pairs as TV-IEM are also shown in Fig. 11.

The performance metrics of the SMC retrievals with TV-IEM are
lightly better than the performance metrics of ‘IEM all retrievals’,
specially regarding 𝑟𝑃 . Comparison with the performance metrics
f IEM shows, however, that this effect is caused by the different
etrieval–references pairs. The invalid TV-IEM retrievals occur mainly
nder denser vegetation conditions because the range of 𝜎0 values for
hich a SMC retrieval is possible becomes limited, as can be seen in
ig. 4b. When a Sentinel-1 𝜎0 observation is outside this range, the SMC
etrieval will be invalid. Under denser vegetation cover, i.e. increasing
AI, the 𝜎0 to SMC sensitivity reduces (see Section 3). IEM does not
ccount for the effect of vegetation, as a result of which the Sentinel-
𝜎0 observations that led to the invalid SMC retrievals by TV-IEM

ield less accurate SMC retrievals by IEM under the denser vegetation
onditions and negatively impact the performance metrics.

Although it could be expected that correcting 𝜎0 observations for
egetation effects contributes to better SMC retrieval performances, the
imilar performance metrics for TV-IEM and IEM may be explained by
wo factors. Firstly, Section 5.1.2 demonstrates the substantial effect
f the Sentinel-2 LAI uncertainty on SMC retrievals. It is likely that
he correction required for grass is dominated by the uncertainty that
s introduced by the Sentinel-2 LAI estimates. Secondly, the effect of
rass on the Sentinel-1 𝜎0 may be not as large as simulated with the
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Fig. 8. The propagation of the Sentinel-2 LAI uncertainty (0.82m2 m−2) into TV-IEM SMC retrievals. The SMC retrievals limits are 0.01m3 m−3 and 0.75m3 m−3. Exceedances of these
imits after perturbation of the LAI are shown as crosses. These figures are for a VWC of 0.90 kg kg−1, which followed from its calibration (Section 5.2).
Fig. 9. Performance metrics between SMC retrievals and references for a range of time-invariant VWC values and the time-varying VWC methods (i) and (ii).
TV model, which would cause incorrect corrections for the vegetation
effects. This is supported by the results in Benninga et al. (2020),
11
in which it was found that the uncertainty of SMC retrievals can be
explained even when the vegetation effects are not considered. The
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Fig. 10. SMC retrievals and references for field XVIII (best retrieval performance), field XIV (worst performance) and field II (medium performance). The CDFs (right panels) are
only shown for the IEM retrievals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
LAIs of the meadows in that study were 1.1m2 m−2 and 1.3m2 m−2,
and their results suggest that the vegetation effects could be neglected
under these sparse vegetation conditions. Similar results were found
by Van der Velde et al. (2012) and Van der Velde and Su (2009).
In contrast, the vegetation effects as simulated by the TV model are
significant at LAI values of 1.1m2 m−2 and 1.3m2 m−2, with, for a 35°
incidence angle, 𝛾2 values of 0.50 and 0.45 and 𝜎0𝑣 values of −14.0 dB and
−13.6 dB respectively. Considering the vegetation parameters, which
in this paper were adopted from a calibration on an alpine meadow
landscape, may be a way for improving the vegetation correction model
and the TV-IEM SMC retrievals.

5.3.2. Exceedance of retrieval limits
One result we want to highlight is obtained for field XXI (Fig. 12):

hardly any Sentinel-1 𝜎0 observation resulted in a valid SMC retrieval
between 25 November 2015 and 26 March 2017. The crop parcel
registry (Ministry of Economic Affairs and Climate Policy, 2020) lists
that this field was used to grow maize in 2015 and 2016, and only
since 2017 it has been in use as meadow. Fig. 12 shows that this
has a large effect on the SMC retrievals and results in many invalid
retrievals, i.e. the Sentinel-1 𝜎0 observation does not correspond to a
SMC between 0.01m3 m−3 and 0.75m3 m−3 according to the modelled 𝜎0

to SMC relation. This can be explained by the surface roughness that is
different for maize fields than for meadows (Benninga et al., 2020). In
all performance results, therefore, only the period after 26 March 2017
was evaluated for field XXI. For the other fields, valid SMC retrievals
12

are found throughout the study period. The used surface roughness
parameters, thus, provide a reasonable representation of the surface
roughness for the meadows.

SMC retrievals for the other fields exceed the upper retrieval limit
of 0.75m3 m−3 mainly in wet periods, and this may, as such, provide
information about the SMC. To test this, we set the retrievals that
exceed 0.75m3 m−3 to the maximum SMC. For example, for field II
these retrievals (red data points in Fig. 10c) were set to 0.63m3 m−3.
This was applied to all the SMC retrievals exceeding the upper limit
(variant 1) and only to those retrievals in the period from 15 November
to 15 March (variant 2), which is the expected wet period in the
study region. As shown in Figs. S4–S5 and summarized in Table 5,
both variants improve the 𝑟𝑃 in particular. Variant 2 results in the
best SMC retrieval performance for both IEM and TV-IEM. The 𝜎0 to
SMC sensitivity simulated with IEM diminishes with increasing SMC.
However, the 𝜎0 signal does not completely saturate until 0.75m3 m−3

(see Fig. 4). This result — of setting the SMC retrievals that exceed the
upper retrieval limit to the maximum SMC improving the SMC retrieval
performances — confirms that the 𝜎0 signal, under very wet conditions,
can still provide information. Setting retrievals that exceed the lower
limit of 0.01m3 m−3 to the minimum SMC was also tested, but this does
not improve the IEM and TV-IEM retrieval performances.

5.3.3. Masking for dense vegetation
The SMC retrievals will be less accurate under denser vegetation

conditions. El Hajj et al. (2017) acknowledged this limitation of C-
0 0
band SAR 𝜎 observations by masking the 𝜎 observations acquired
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Fig. 11. Performance metrics of the IEM and TV-IEM SMC retrievals against the SMC references. ‘IEM for TV-IEM pairs’ contains the same retrieval–reference pairs as ‘TV-IEM’
(i.e. a Sentinel-2 LAI estimate is available and TV-IEM resulted in a valid SMC retrieval), whereas ‘IEM all retrievals’ contains all the retrieval–reference pairs possible (i.e. from
all the Sentinel-1 𝜎0 observations).
Table 5
Performance metric means of the study fields for two variants of incorporating information from SMC retrievals that exceed the upper retrieval
limit of 0.75m3 m−3. Variant 1 sets all the IEM retrievals that exceed 0.75m3 m−3 and variant 2 sets only the IEM retrievals that exceed 0.75m3 m−3

in the expected wet period (15 November to 15 March) to the maximum SMC. The performance metrics per study field are shown in Figs. S4–S5.
SMC product Variant Number of pairs 𝑟𝑃 [–] 𝑅𝑀𝑆𝐷 [m3 m−3] 𝑅𝑅𝑀𝑆𝐷 [–]

IEM all retrievals
Original 322.9 0.46 0.14 0.25
1 352.2 0.54 0.15 0.25
2 339.5 0.55 0.14 0.24

TV-IEM
Original 164.9 0.56 0.13 0.25
1 186.2 0.61 0.14 0.25
2 179.0 0.64 0.13 0.24

IEM for TV-IEM pairs
Original 164.0 0.54 0.13 0.25
1 186.2 0.59 0.14 0.25
2 178.2 0.62 0.13 0.24
13
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Fig. 12. SMC retrievals and references for field XXI. Only since 2017 this field has been in use as meadow, resulting in many invalid retrievals in the period before due to a
different surface roughness.
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under vegetation conditions with a NDVI higher than 0.75. Applying
the relation reported in Knyazikhin et al. (1999) and Tesemma et al.
(2014), a NDVI of 0.75 converts into a LAI of 5.63m2 m−2. This might
even be a too high LAI threshold, as the 𝜎0 to SMC sensitivity, according
o the TV model (Fig. 4), is already significantly reduced at a LAI of
m2 m−2.

The performance of the IEM SMC retrievals was analysed for a range
f LAI thresholds used to mask the SMC retrievals. For example, for a
AI threshold of 4m2 m−2 we masked all SMC retrievals from Sentinel-1
0 observations that were acquired when the Sentinel-2 LAI estimate
as higher than 4m2 m−2. Fig. 13 shows that the performance metrics

mprove with the LAI threshold. However, the number of pairs also
educes with application of a (lower) LAI threshold. Applying a certain
AI threshold for masking SMC retrievals is, thus, a trade-off between
ccuracy and number of retrievals.

.4. Retrieval performance compared with other studies

The SMC retrieval performances were compared with the perfor-
ances of two other Sentinel-1 based products at field scale (El Hajj

t al., 2017; Carranza et al., 2019), one Sentinel-1 and a priori SMC
nformation based product at field scale (El Hajj et al., 2017), three
entinel-1 based products at 1 km resolution (Bazzi et al., 2019; Bauer-
arschallinger et al., 2019; Balenzano et al., 2021), and the SMAP
km (Pezij et al., 2020; Chan et al., 2018) and 36 km products (Van der

Velde et al., 2021; Chan et al., 2016) evaluated against single stations.
The comparison between performances of products from different stud-
ies is obscured by different study region characteristics and qualities of
references. An example are the land covers: For the SMAP 9 km and
36 km products we selected the SMC monitoring stations in meadow
landscapes, as for the retrieval scheme presented in this paper. The
products of El Hajj et al. (2017) and Bazzi et al. (2019), Carranza et al.
(2019), and Balenzano et al. (2021) were evaluated on study areas used
for cultivating approximately half grassland and half wheat, a variety of
crops, and mainly wheat, respectively, which have different scattering
processes. Nevertheless, the comparison helps valuing the obtained
retrieval performances. The product characteristics and performance
metrics are listed in Table 6, and discussed in the sections below.

5.4.1. Comparison with Sentinel-1 based products
The performance metrics of the two Sentinel-1 based products

at field-scale — the first product in El Hajj et al. (2017) and the
product in Carranza et al. (2019) — are similar to the performances
we obtained. Note that the SMC retrievals in El Hajj et al. (2017)
are compared to references based on 25 to 30 measurements within
a study field. The references’ sensor measurement uncertainty and
14

spatial mismatch uncertainty are major uncertainty contributions in a
the evaluation of satellite SMC retrievals (see Section 4.1.1). These un-
certainty contributions are reduced by averaging spatially distributed
measurements (Balenzano et al., 2021; Singh et al., 2020; Vinnikov
et al., 1999), as in El Hajj et al. (2017). As such, the actual 𝑅𝑅𝑀𝑆𝐷,
which excludes the references’ uncertainties, of the SMC products in
this study are expected to be lower than that of the product in El
Hajj et al. (2017). The second product in El Hajj et al. (2017) has a
better SMC retrieval performance than the algorithm presented in this
paper, which is explained by the use of a priori information on the SMC
condition. The products in Bazzi et al. (2019) and in Balenzano et al.
(2021) also show better performance metrics. This can be explained
by the lower references’ uncertainties and the lower radiometric un-
certainty (Benninga et al., 2019) at the 1 km or 1.6 km scale than at the
field scale of 0.16 ha to 6.3 ha that is studied here.

.4.2. Comparison with SMAP products
The SMAP 36 km and 9 km products perform better at field scale

han the Sentinel-1-based SMC products in this study and the other
tudies listed in Table 6. The SMAP imagery — in L-band — are less
bstructed by vegetation and more sensitive to SMC as well as have
sampling depth closer to the references at 5 cm depth than the C-

and Sentinel-1 observations (El Hajj et al., 2019; Entekhabi et al.,
010a). Furthermore, Gruber et al. (2020) points out that coarse scale
roducts often better match local SMC dynamics than downscaled
finer) products. The result here does, however, not necessarily apply
o other regions. The study region is rather flat and homogeneous
egarding soil characteristics and meteorological conditions, so large
egional differences in SMC dynamics are not expected. Moreover,
nformation at field scale is still required in specific situations, such as
fter irrigation practices or in the presence of local drainage systems.

The SMAP retrievals are available for (part of) the SMC monitoring
tations that provided the references for validating the Sentinel-1 IEM
nd TV-IEM SMC retrievals. One period in which the Sentinel-1 SMC
etrievals significantly deviate from the references is the end of the
018 summer, which is shown in more detail with the examples in
igs. 14 and 15. Whereas the SMC references remain low, the retrievals
how an increased SMC level especially from mid-August. The same
s visible in the SMAP retrievals (Chan et al., 2018, 2016; Van der
elde et al., 2021). At the end of July and in August 2018 a number of
ainfall events occurred, but the 2018 summer was exceptionally dry
n the months before and these rainfall events are not or only minorly
eflected in the SMC references. The SMC references originate from
easurements at 5 cm depth and due to the extreme dryness of the soil

nd high evaporative demand (Van der Velde et al., 2021), we expect
hat (most of) the rainfall did not fully infiltrate the sensor’s influence
one of 1 cm to 9 cm soil depth. Field V is located in a slightly wetter

rea than field II and the level of the SMC references increased from
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Fig. 13. Performance metric means of the study fields, after first applying variant 2 from Section 5.3.2, for a range of LAI thresholds used to mask the SMC retrievals. Only the
MC retrievals for which a Sentinel-2 LAI estimate was available are included.
he end of August. Still, in this period the SMC retrievals show more
ynamics in response to the rainfall than the references.

Rainfall does not explain all of the increased SMC retrievals, as
an be seen in July, beginning of August, mid-September and mid-
ctober in Figs. 14 and 15. Also the SMAP retrievals remain low in

hese periods, which indicates an issue in the Sentinel-1 SMC retrievals.
he increased SMC retrievals originate from Sentinel-1 𝜎0 observations

acquired in orbits 88 & 139 (see Supplement 5). The 𝜎0 observations
acquired in orbits 88 & 139 have an incidence angle of 40.8° to 45.6°,
whereas the 𝜎0 observations from orbits 15 & 37 have an incidence
angle of 32.3° to 37.8° ( Table 3). For larger incidence angles, the mi-
crowaves have a longer path through the vegetation to and from the soil
surface and, consequently, experience more effect of vegetation and a
lower sensitivity to SMC (e.g. Crow et al., 2010; Palmisano et al., 2018;
Ulaby et al., 1979). This is also seen in the TV simulations, discussed in
Section 3. The higher 𝜎0 to SMC sensitivity for lower incidence angles
is reflected in better SMC retrieval performance metrics for orbits 15
& 37 than for orbits 88 & 139, shown in Fig. S14 and summarized in
Table 7.

5.4.3. Note on the use of multiple products
SMC retrievals are generally evaluated against in situ references to

quantify their performance. From the comparison of the IEM and TV-
IEM SMC retrievals against SMAP 9 km retrievals, it was inferred that
15
rainfall did not fully infiltrate the influence zone of the in situ sensors
at 5 cm depth in the months after the exceptionally dry 2018 summer.
The satellite retrievals and the in situ sensors provide information for
different soil layers, as was also found for e.g. SMOS (Rondinelli et al.,
2015; Escorihuela et al., 2010) and SMAP retrievals (Van der Velde
et al., 2021; Shellito et al., 2016). Besides, the comparison pointed to
increased SMC retrievals from two Sentinel-1 orbits.

Furthermore, the two scheme implementations (without and with
the vegetation correction) and the SMC products to which their perfor-
mances were compared are based on imagery from different satellites or
on different algorithms. As a consequence, the individual retrievals of
these products are different. However, the performance metrics indicate
that all these SMC products provide information about SMC at field
scale. It would, therefore, be interesting to research the representation
of field-scale SMC as an ensemble of SMC products. Ensemble rep-
resentations provide multiple predictions of a quantity for the same
time and location, based on multiple models, initial condition, forcing
and/or parameter uncertainties. These are common practice in other
fields, such as for meteorological forecasts (e.g. Buizza et al., 2005;
Bougeault et al., 2010) and river discharge forecasts (e.g. Cloke and
Pappenberger, 2009; Fleming et al., 2015; He et al., 2009). SMC
retrievals have in common with meteorological and river discharge
forecasts that they are uncertain. Ensembles of SMC retrievals could

reveal the uncertainties and provide information on the possibility of a
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Table 6
The performance of other SMC products from satellite imagery.

Study Product 𝑟𝑃 [–] 𝑅𝑅𝑀𝑆𝐷 [–] Evaluation

El Hajj et al. (2017) Sentinel-1 VV, IEM combined
with the WCM for incorporating
vegetation effects. Field-scale
product.

not reported 0.25 The averages of 25 to 30 measurements within
a study field were used as references. The
reported 𝑅𝑀𝑆𝐷 values were unbiased, using
Eq. (3) in Entekhabi et al. (2010b), with the
also reported mean bias. The 𝑅𝑅𝑀𝑆𝐷 was
calculated from this and reported SMC ranges.

The first product and a priori
information on SMC (wet/dry).

not reported 0.18

Carranza et al. (2019) Sentinel-1 VV, change detection
method for a field-scale product.
We subjected the retrievals to
CDF matching.

0.44 0.25 Evaluated against the measurements from
single stations.

Bazzi et al. (2019) First product of El Hajj et al.
(2017), at 1 km resolution. We
subjected the retrievals to CDF
matching.

0.78 0.15 The references from El Hajj et al. (2017) were
used, averaged for the fields within 1 km by
1 km grid cells.

The 1 km resolution Copernicus
Surface Soil Moisture product,
developed by
Bauer-Marschallinger et al.
(2019). We subjected the
retrievals to CDF matching.

0.43 0.23

Balenzano et al. (2021) Sentinel-1, short term change
detection approach for a 1 km
resolution product. We subjected
the retrievals to CDF matching.

0.70 0.14 The 1 km resolution product was evaluated at
1.6 km × 1.6 km by averaging the SMC retrievals
and references from 11 stations that cover this
area.

Pezij et al. (2020) SMAP 9 km product (SCA-V
morning overpasses). We
subjected the retrievals to CDF
matching.

0.77 0.16 The SMAP product (Chan et al., 2018) was
extracted for the study region. Evaluated
against the measurements from single stations
(i.e. at field scale): stations 2, 3, 4, 5, 11, 13,
14, 15, 16, 17, 18 and 19.

Van der Velde et al. (2021) SMAP 36 km product (SCA-V). We
subjected the retrievals to CDF
matching.

0.78 0.15 The SMAP product (Chan et al., 2016) was
extracted for the study region, specifically
SMAP reference pixel 3606. Evaluated against
the measurements from single stations (i.e.
field scale) in SMAP reference pixel 3606:
stations 2, 3, 5, 11, 15, 16, 17.
Fig. 14. SMC retrievals and references for field V during the 2018 summer. Field V has the best 𝑅𝑅𝑀𝑆𝐷 retrieval performance after fields XVIII and XVII, for which no references
are available in this period. The SMAP 9 km retrievals for the pixel in which field V is located are shown. Both the Sentinel-1 and SMAP SMC retrievals were CDF-matched against
the references over the complete time period (25 November 2015 to 1 November 2018). The rainfall data originate from the weather station Twenthe, which is operated by the
Royal Netherlands Meteorological Institute (‘Koninklijk Nederlands Meteorologisch Instituut’ in Dutch, or KNMI; KNMI, 2019).
16
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Fig. 15. Same as Fig. 14, but for field II. The rainfall data originate from the weather station Twenthe (KNMI, 2019) and from a local rain gauge adjacent to field II.
Table 7
Performance metrics means of the study fields, for the SMC retrievals from Sentinel-1 𝜎0 observations acquired in orbits 15 & 37 and in orbits
88 & 139. The performance metrics per study field are shown in Fig. S14.

SMC product Orbits Number of pairs 𝑟𝑃 [–] 𝑅𝑀𝑆𝐷 [m3 m−3] 𝑅𝑅𝑀𝑆𝐷 [–]

IEM all retrievals
All 322.9 0.46 0.14 0.25
15 & 37 162.4 0.52 0.13 0.24
88 & 139 160.4 0.41 0.15 0.29

TV-IEM
All 164.9 0.56 0.13 0.25
15 & 37 82.3 0.63 0.12 0.23
88 & 139 82.5 0.47 0.14 0.29
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certain (e.g. extreme) SMC condition to occur. SMC products that could
be validated are the 500m product from Sentinel-1 imagery retrieved

ith a multi-temporal algorithm (Pulvirenti et al., 2018), the 1 km
Copernicus Surface Soil Moisture product from Sentinel-1 imagery with
a change detection algorithm (Bauer-Marschallinger et al., 2019), the
1 km product from Sentinel-1 imagery with the short term change de-
tection algorithm (Balenzano et al., 2021), the 1 km and 3 km products
from a combination of SMAP and Sentinel-1 imagery (Das et al., 2019),
and several more, and potentially be included in an ensemble of SMC
products.

The comparison of the IEM and TV-IEM SMC retrievals against other
SMC products illustrated that the SMC estimates from satellites and
from in situ sensors provide information for different soil layers and,
in an optimum setting, complement each other. Besides, it was demon-
strated that such an analysis of multiple SMC products in conjunction
may provide further insights into these products. Lastly, ensembles of
SMC retrievals could reveal the uncertainties and show the probability
of SMC conditions.

6. Conclusions

An operationally applicable scheme is presented for field-scale SMC
retrieval over meadows from SAR 𝜎0 observations, and this scheme is
evaluated without (IEM) and with vegetation correction (TV-IEM). The
TV vegetation scattering and absorption model and the IEM surface
scattering model were parameterized for grass-covered soil surfaces
using input data sets that are regionally available — with global al-
ternatives — and parameters available from other sources. To facilitate
fast inversion of 𝜎0 observations to SMC, look-up tables of the TV-IEM-
modelled direct vegetation 𝜎0 (𝜎0𝑣), 𝜎0 from soil–vegetation pathways
𝜎0 ), soil surface 𝜎0 (𝜎0) and the vegetation two-way transmissivity
17

𝑠𝑣 𝑠
(𝛾2) were generated on fine grids. The axes of these look-up tables are
incidence angle, LAI, VWC and SMC. We used the look-up tables to
invert field-averaged Sentinel-1 𝜎0 observations into SMC for meadows.
Field-scale LAI information was derived from a Sentinel-2 vegetation
product.

The Sentinel-2 LAI estimates were validated against in situ mea-
surements collected on two meadows and four maize fields. The 𝑟𝑃 s
are 0.93 and 0.63 for the meadows and the maize fields, respectively,
the 𝑅𝑀𝑆𝐷s are 1.11m2 m−2 and 0.83m2 m−2, and both 𝑢𝑅𝑀𝑆𝐷s are
.82m2 m−2. The results demonstrate that the Sentinel-2 LAI product
rovides field-scale information. However, despite the rather good
erformance, the Sentinel-2 LAI uncertainty of 0.82m2 m−2 results in the
ower LAI range in many invalid SMC retrievals because the modelled
0 to SMC relation is very sensitive to LAI and in the upper LAI range it
ropagates into large SMC retrieval deviations because the 𝜎0 to SMC
ensitivity diminishes.

The SMC retrieval scheme was demonstrated by retrieving the SMC
or 21 meadows and validating the results against references from
djacent in situ monitoring stations. By setting the SMC retrievals that
xceed the upper retrieval limit of 0.75m3 m−3 during the wet period
o the maximum SMC, the performance metrics improve to mean 𝑟𝑃 s
f 0.55 for IEM and 0.64 for TV-IEM, 𝑅𝑀𝑆𝐷s of 0.14m3 m−3 for IEM
nd 0.13m3 m−3 for TV-IEM, and 𝑅𝑀𝑆𝐷s relative to the range of the
MC references (𝑅𝑅𝑀𝑆𝐷) of 0.24 for both IEM and TV-IEM. Masking
he SMC retrievals for dense vegetation also improves the performance
etrics, but this is a trade-off with the number of retrievals. Because
ot for every Sentinel-1 𝜎0 observation a Sentinel-2 LAI estimate is
vailable and TV-IEM results in more invalid SMC retrievals under
ense vegetation conditions, more SMC retrievals are possible without
he vegetation correction. By considering the same retrieval–reference
airs as for TV-IEM, the performance metrics of the SMC retrievals that
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are obtained with IEM are practically equal to the performance metrics
of the SMC retrievals with TV-IEM.

The assumed vegetation and surface roughness parameters probably
degrade the performance of the SMC retrieval scheme. Regarding the
vegetation parameters, values calibrated on an alpine meadow land-
scape were adopted from Dente et al. (2014). Results indicate that the
vegetation correction may benefit from a calibration of the vegetation
parameters. Regarding the surface roughness parameters, the results
in Benninga et al. (2020) suggest that using a single set of surface
roughness parameters is permitted for meadows across a larger region
and multiple seasons. This finding was obtained for two meadows over
two winter seasons. The results in this paper indicate that the used
parameters provide a reasonable (initial) representation of meadows’
surface roughness. The paper focuses on establishing a scheme for
operational SMC retrieval and investigates whether, with the described
implementation, the vegetation correction improves the SMC retrievals.
Interesting further research questions are if SMC retrieval performance
would improve with (i) a region-specific calibration of vegetation pa-
rameters, (ii) field-specific vegetation and roughness parameters, and
(iii) how either can be established in a SMC retrieval scheme that is
operationally applicable.

The IEM and TV-IEM retrieval performances are practically equal as
well as are similar to the performances of two other Sentinel-1 based
products at field scale, of which one was obtained with a data-driven
(change detection) method and one with a semi-empirical vegetation
model (WCM) combined with IEM. The SMAP 36 km and 9 km products
erform better at the field scale, with mean 𝑅𝑅𝑀𝑆𝐷s of 0.15 and 0.16

respectively, but they may be unsuitable if larger regional differences
are present and in field-specific situations such as after irrigation
practices or with local drainage systems. From the comparison against
other SMC products followed that analysing multiple SMC products
in conjunction may provide further insights into these products, and
ensembles of SMC retrievals could reveal the uncertainties and show
the probability of SMC conditions.
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Data availability

Tables of processed Sentinel-1 𝜎0 observations, masks for weather-
related surface conditions, processed Sentinel-2 LAI estimates, SMC
references, and the IEM and TV-IEM retrievals, as well as supple-
mentary time series figures for the 21 study fields are available at
https://doi.org/10.17026/dans-xcy-gza5 (Benninga et al., 2022). The
Sentinel-1 images were downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu/; Copernicus, 2019), the KNMI me-
teorological measurements were obtained from http://www.knmi.nl/
nederland-nu/klimatologie-metingen-en-waarnemingen (KNMI, 2019),
and V102 vegetation indicator maps and scene classifications were
downloaded from the VITO Product Distribution Portal (VITO, 2019).
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The SMC references were collected by the Twente network, which is
operated by the Faculty of Geo-Information Science and Earth Obser-
vation (ITC) - University of Twente (Van der Velde et al., submitted
for publication; Van der Velde and Benninga, 2022). The LAI mea-
surements collected inside two meadows and five maize fields and the
Sentinel-2 LAI estimates for these fields are available at https://doi.
org/10.17026/dans-xxv-sdez (Benninga et al., 2021). The datasets at
Benninga et al. (2021) and Benninga et al. (2022) contain modified
Copernicus Sentinel data [2015–2019].
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