
Steef Kurstjens*, Thomas de Bel, Armando van der Horst, Ron Kusters, Johannes Krabbe
and Jasmijn van Balveren

Automated prediction of low ferritin
concentrations using a machine learning
algorithm
https://doi.org/10.1515/cclm-2021-1194
Received November 11, 2021; accepted February 22, 2022;
published online March 8, 2022

Abstract

Objectives: Computational algorithms for the interpreta-
tion of laboratory test results can support physicians and
specialists in laboratory medicine. The aim of this study
was to develop, implement and evaluate a machine
learning algorithm that automatically assesses the risk of
low body iron storage, reflected by low ferritin plasma
levels, in anemic primary care patients using aminimal set
of basic laboratory tests, namely complete blood count and
C-reactive protein (CRP).
Methods: Laboratory measurements of anemic primary
care patients were used to develop and validate a machine
learning algorithm. The performance of the algorithm was
compared to twelve specialists in laboratorymedicine from
three large teaching hospitals, who predicted if patients
with anemia have low ferritin levels based on laboratory

test reports (complete blood count and CRP). In a second
round of assessments the algorithm outcomewas provided
to the specialists in laboratory medicine as a decision
support tool.
Results: Two separate algorithms to predict low ferritin
concentrations were developed based on two different
chemistry analyzers, with an area under the curve of the
ROC of 0.92 (Siemens) and 0.90 (Roche). The specialists in
laboratory medicine were less accurate in predicting low
ferritin concentrations compared to the algorithms, even
when knowing the output of the algorithms as support tool.
Implementation of the algorithm in the laboratory system
resulted in one new iron deficiency diagnosis on average
per day.
Conclusions: Low ferritin levels in anemic patients can be
accurately predicted using a machine learning algorithm
based on routine laboratory test results. Moreover, imple-
mentation of the algorithm in the laboratory system reduces
the number of otherwise unrecognized iron deficiencies.

Keywords: artificial intelligence; case-finding; diagnostics;
iron deficiency; laboratory information system; reflective
testing.

Introduction

Iron-deficiency is the most common cause of anemia, with
over one billion cases worldwide in 2016 [1]. Unfortunately,
iron deficiency still remains underdiagnosed [2]. Bone
marrow iron staining (Perl’s stain) is considered the gold
standard in diagnosis of iron-deficient anemia, but is
invasive, expensive and time-consuming [3]. In practice,
the plasma ferritin concentration reflects the body’s iron
status, and is therefore most frequently used to diagnose
iron deficiency [4]. However, there is no consensus on the
optimal reference limit for ferritin, resulting in many
different lower reference limits [5]. Moreover, the ferritin
assay is poorly harmonized, and considerable inter-
analyzer differences have to be taken into account when
setting reference intervals and interpreting concentra-
tions [6].
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In a state of iron depletion erythropoiesis is disrupted,
and newly produced red blood cells are usually microcytic
(resulting in a mean corpuscular volume (MCV) <80 fL) and
hypochromic (a mean corpuscular hemoglobin (MCH) of
<1.7 fmol). Importantly, the information contained in these
changing patterns of laboratory parameters is used to
identify possible iron deficiencies. However, subtle changes
in patterns across a multitude of laboratory results can be
overlooked by physicians. In many anemic primary care
patients ferritin is not included in the laboratory order,
resulting in underdiagnosis of iron deficiency. Importantly,
specialists in laboratory medicine can provide assistance to
physicians in diagnostics of anemia in the form of a ‘labo-
ratory anemia workup’ or ‘reflective testing’ [7]. Computa-
tional assistance in the interpretation of laboratory results
can provide a key automated diagnostic support tool for
physicians as well as specialists in laboratory medicine,
reducing the number of overlooked and/or undiagnosed
iron deficiencies.

The number of machine learning diagnostic tools is
rapidly increasing, mainly in the fields of radiology and
pathology. The diagnostic performance of such tools is
impressive, and they often outperform trained specialists
[8, 9]. Recently, during the COVID-19 pandemic, machine
learning algorithms to predict COVID-19 disease based on
clinical chemistry parameters have been developed and
widely used, showing the importance and potential of this
development [10–12]. However, broad implementation of
machine learning tools in clinical practice is still limited
[13]. In this article we aimed to develop and implement a
machine learning algorithm that automatically assesses
the risk of low ferritin levels using a minimal set of basic
laboratory tests, namely complete blood count and
C-reactive protein (CRP). Moreover, we set out to inves-
tigate the benefits of implementing this tool in our
laboratories.

Materials and methods

Data collection

Laboratory reports requested by general practitioners for anemic adult
patients (Hb <7.5 mmol/L for females and <8.5 mmol/L formales) were
selected based on a complete blood count, CRP and ferritin concen-
tration. Data were received from three hospital laboratories (Jeroen
Bosch Hospital, ‘s-Hertogenbosch (n=3,797), Medlon BV Enschede
(n=8,021) and St Jansdal Hospital, Harderwijk (n=191)). Exclusion
criteria were missing data (invalid measurement of blood count or
CRP, <1% of cases), duplicate patients and age under 18 years. At the
Jeroen Bosch Hospital, vitamin B12 and folic acid concentrations were
included when available.

Measurements

At the Jeroen Bosch Hospital, CRP was measured on the Advia
Chemistry XPT (Siemens Healthineers, Erlangen, Germany), ferritin
and vitamin B12 were measured on the Advia Centaur XPT (Siemens
Healthineers), folic acid was measured on the Immulite 2000 XPi
(Siemens Healthineers), and hematological parameters were
measured on the Advia 2120i (Siemens Healthineers). At the St
Jansdal Hospital, CRP and ferritin were measured on the Atellica
Analyzer (Siemens Healthineers), and hematological parameters
were measured on the Sysmex XN-9000 (Sysmex Corporation,
Hyogo, Japan). At Medlon BV, CRP and ferritin were measured with
the C702 and e801 module (COBAS 8000 routine chemistry analyzer,
Roche Diagnostics, Mannheim, Germany) respectively, and hema-
tological parameters were measured on the XN-9000 hematology
analyzer (Sysmex Corporation).

Machine learning algorithm

Laboratory measurements of 2,657 patients (70% of the dataset),
referred for blood analyses by their primary care physicians, were
used to develop and test the machine learning algorithm of the Jer-
oen Bosch Hospital (using a Siemens clinical chemistry analyzer),
referred to as the JBH-S algorithm. The model was validated on a
separate dataset of 1,140 measurements (Table 1, 30% of the data-
set). The JBH-S model was additionally validated using a dataset
from the St Jansdal Hospital (191 patients, Table 1), using identical
clinical chemistry platform but Sysmex for hematology. To develop
themodel for Medlon BV (using a Roche clinical chemistry analyzer),
referred to as the Medlon-R model, 6,417 patients (80% of the
dataset) were used to develop and test the model and 1,604 patients
(20% of the dataset) were used for validation (Table 1).

A random forest classifier model was used to fit the data. We
chose the random forest because it canhandle combinations of binary,
categorical and numerical features. Furthermore, random forest
models require little hyperparameter tuning and can deal well with
imbalanced datasets. The model was trained using the standard pa-
rameters of the scikit-learn package, using 100 trees. To account for
the imbalance between positive and negative cases, balanced sub-
sampling was used, which adjusts the weights inversely proportional
to the frequencies of the input classes for each tree. Analyses were
carried out using Python 3.6; with the packages NumPy (1.16.2),
pandas (0.24.2), scikit-learn (0.20.3). The machine learning algorithm
was trained to maximize the AUC of the ROC, using a lower reference
limit for the ferritin concentration of <10 μg/L for women and <22 μg/L
for men (Siemens), and <13 μg/L for women and <30 μg/L for men
(Roche). The machine learning algorithms for vitamin B12 and folic
acid were trained using a lower reference limit of <156 pmol/L for
vitamin B12 and <6 nmol/L for folic acid.

Folic acid measurements >54 nmol/L were assigned the value
55 nmol/L, vitamin B12 values >1,476 pmol/L were assigned the value
1,477, and CRP values <3 mg/L were assigned the value 2 mg/L.

Comparison of the performance of machine learning
algorithm vs. specialists in laboratory medicine

A dataset of 336 independent laboratory reports (n=145 Jeroen Bosch
Hospital and n=191 from St Jansdal (from Table 1) was divided into six
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batches of 56. Four specialists in laboratory medicine from Jeroen
Bosch Hospital and two from St Jansdal were each asked to judge a
unique batch of 56 patient’s laboratory reports providing their sex,
age, complete blood count and CRP, and estimate whether a ferritin
would be ‘low’, ‘not low’ or ‘unsure’. In a second round of assess-
ments, each specialist in laboratory medicine was given a different
batch of 56 reports which included the result from the machine
learning algorithm, which could be used to aid their decision making
(as decision support tool). Similarly, six specialists in laboratory
medicine at Medlon BV were given the same task of judging 360 in-
dependent laboratory reports (in batches of 60 reports), and thereafter
a different batch of 60 reports that included the result of the machine
learning algorithm.

Implementation and case-finding

The Python script for the machine learning algorithm was directly
implemented in our laboratory information system (LIS) using the
middleware Gaston Lab®. For the entire month of October 2021 all
orders from primary care adult anemic patients at the Jeroen Bosch
Hospital were extracted (Figure 2). All values of ≥0.5 were considered
predictive of ‘low ferritin’. Four samples were no longer available,
and no ferritin measurement could be performed.

Statistical analyses

Data were analyzed using Excel 2010 (Microsoft Corporation, USA)
and SPSS statistics v25 (IBM, USA). Linear regression analyses were
used to assess correlation, with ferritin as dependent variable. Cate-
gorical variables were compared by a chi-square test. Logistic
regression analyses were used to assess significance between normal
vs. low ferritin groups. A p-value <0.05 was considered statistically
significant.

Results

Machine learning algorithms were developed to detect de-
ficiencies in iron (ferritin), vitamin B12 and folic acid in
anemic primary care patients, based on age, sex, a routine
blood count and CRP concentration. We focused on identi-
fying low ferritin values, as the diagnostic performance for
folic acid and vitamin B12 deficiencies was limited, with an
AUC of the ROC for the validation population of 0.52 for
vitamin B12 and 0.57 for folic acid (Supplementary
Figure 1A, B). Table 1 shows the demographics of the vali-
dationpopulations. Patientswith low ferritin concentrations
compared to patients with normal ferritin levels were
significantly more often female, younger, and had signifi-
cantly lower hemoglobin (Hb), MCV, MCH, leukocyte count,
CRP, and significantly higher thrombocyte and erythrocyte
counts, in the populations of the Jeroen Bosch Hospital and
Medlon BV (Table 2).

Using these parameters two separatemachine learning
algorithms were developed; one based on data from the
Jeroen Bosch Hospital (using Siemens, referred to as the
JBH-S algorithm) and the other based on data fromMedlon
BV (using Roche, referred to as theMedlon-R algorithm), to
account for poor harmonization and different reference
intervals for ferritin. For the JBH-S algorithm an arbitrary
algorithm value between 0.5 and 1.0 was considered pre-
dictive of low-ferritin, whereas 0.1 and lower was consid-
ered predictive for non-low ferritin. Similarly, for the
Medlon-R algorithm a value between 0.4 and 1.0 was pre-
dictive of a low ferritin and 0.05 and belowwas considered

Table : Patient characteristics of the validation populations.

Jeroen Bosch Hospital
(n=,)

Medlon BV
(n=,)

St. Jansdal Hospital
(n=)

Variable Median Mean Median Mean Median Mean

Sex, %male, %female %m, %f %m, %f %m, %f
Age, years      

Hemoglobin, mmol/L . . . . . .
MCV, fL      

MCH, fmol . . . . . .
Thrombocyte count, ×

     

Erythrocyte count, ×
. . . . . .

Leukocyte count, ×
. . . . . .

CRP, mg/L      

Ferritin, μg/L      

Vitamin B, pmol/La  

Folic acid, nmol/La  

an= for vitamin B, n= for folic acid. CRP, C-reactive protein; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume.
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predictive for non-low ferritin. However, based on local
preferences, different cut-off values can be chosen based
on the preferred sensitivity and specificity as presented in
Supplementary Table 1.

The validation dataset of the JBH-S algorithm (n=1,140,
Jeroen Bosch Hospital) reached an AUC of the ROC of 0.92
(Figure 1A). The twomost important parameters predicting
a ferritin value under the reference limit were MCH and
MCV (Figure 1B). The JBH-S algorithm was also validated
by an external dataset of 191 patients of the St Jansdal
Hospital (Siemens equipment for chemistry but Sysmex for
hematology) reaching an AUC of the ROC of 0.92
(Figure 1C). The validation population (n=1,604) of the
Medlon-R algorithm reached an AUC of the ROC of 0.90
(Figure 1D), with MCH and MCV as the two most important
predictive parameters (Figure 1E). Precision-recall curves
are presented in Supplementary Figures 1C, D.

Performance of the ML algorithm vs.
specialists in laboratory medicine

Twelve specialists in laboratory medicine assessed inde-
pendent batches of 56–60 laboratory results (age, sex,
blood count and CRP) of anemic primary care patients and
predicted whether they would have a low or ferritin or not.
Laboratory specialists could also choose the option ‘un-
sure’, if they felt a good prediction was not possible based
on the test results. The specialists of the Jeroen Bosch
Hospital and St Jansdal (Siemens analyzers) reached a
sensitivity of 83% and a specificity of 92%, and made a
judgement (low or non-low) in 79% of the patients
(Table 3). The JBH-S algorithmoutperformed the specialists
with a sensitivity of 93% and specificity of 92% (Table 3).
When the specialists were requested to assess a different
batch of 56 anemic patients, but with the output of the
JBH-S algorithm visible (as support tool), the specialists

Table : Laboratory parameters of patients from the validation
population with normal plasma ferritin concentrations compared to
patients with low plasma ferritin concentrations.

Jeroen Bosch Hospital (n=,)

Variable Normal ferritin
(%)
mean ± SD

Low ferritin
(%)
mean ± SD

Significance

Sex, % % male,
% female

% male,
% female

.

Age, years  ±   ±  <.
Hemoglobin, mmol/L . ± . . ± . <.
MCV, fL  ±   ±  <.
MCH, fmol . ± . . ± . <.
Thrombocyte count,
× cells

 ±   ±  .

Erythrocyte count,
× cells

. ± . . ± . <.

Leukocyte count,
× cells

. ± . . ± . <.

CRP, mg/L  ±   ±  <.
Ferritin, μg/L  ±   ±  <.

Medlon BV (n=,)

Variable Normal ferritin
(%)
mean ± SD

Low ferritin
(%)
mean ± SD

Significance

Sex, % % male,
% female

% male,
% female

<.

Age, years  ±   ±  <.
Hemoglobin, mmol/L . ± . . ± . <.
MCV, fL . ± . . ± . <.
MCH, fmol . ± . . ± . <.
Thrombocyte count,
× cells

 ±   ±  <.

Erythrocyte count,
× cells

. ± . . ± . <.

Leukocyte count,
× cells

. ± . . ± . <.

CRP, mg/L  ±   ±  <.
Ferritin, μg/L  ±   ±  <.

St Jansdal hospital (n=)

Variable Normal ferritin
(%)
mean ± SD

Low ferritin
(%)
mean ± SD

Significance

Sex, % % male,
% female

% male,
% female

.

Age, years  ±   ±  <.
Hemoglobin, mmol/L . ± . . ± . .
MCV, fL . ± .  ±  <.
MCH, fmol . ± . . ± . <.
Thrombocyte count,
× cells

 ±   ±  .

Erythrocyte count,
× cells

. ± . . ± . .

Table : (continued)

St Jansdal hospital (n=)

Variable Normal ferritin
(%)
mean ± SD

Low ferritin
(%)
mean ± SD

Significance

Leukocyte count,
× cells

. ± . . ± . .

CRP, mg/L  ±   ±  .
Ferritin, μg/L  ±   ±  <.

CRP, C-reactive protein; MCH, mean corpuscular hemoglobin; MCV,
mean corpuscular volume.
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still performed slightly poorer than the algorithm itself,
with 87% sensitivity and 90% specificity. However,
compared to judgement without algorithm they made a
decision more often and required less time per patient
(Table 3). Six specialists from Medlon BV (Roche), each
assessing a batch of 60 anemic patients, reached a sensi-
tivity of 88% and specificity of 91%, whereas the Medlon-R
algorithm reached a sensitivity of 98% and specificity of
92% (Table 3). When using the Medlon-R algorithm output
as a support tool, the specialists fromMedlon BV reached a
sensitivity of 84% and a specificity of 93%.

As patients with an iron deficiency can still have
a ferritin concentration marginally above the lower

reference limit, we took a closer look at the false posi-
tives (e.g. patient assessed as having low ferritin, but not
having a low ferritin concentration whenmeasured). The
median difference from the lower limit of normal (LLN)
of the specialists was 19 μg/L vs. 5 μg/L for the JBH-S
algorithm, and 23 μg/L for the specialists vs. 11 μg/L for
the Medlon-R algorithm (Table 3). Moreover, for the
JBH-S algorithm, 50% of the false positives were within
5 μg/L of LLN vs. 28% of the specialists’ false positives
(Table 3). These data indicate that the magnitude of the
errors of the false positives is much smaller for the
ML-algorithms compared to the incorrect assessments
made by the specialists.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(A)

1 - Specificity

Se
ns

iti
vi

ty

Siemens internal validation

(D) (E)

(B)

MCH
MCV

CRP
Age

Tro
mbo

cy
tes

Eryt
hro

cy
tes

Hem
og

lob
in

Le
uk

oc
yte

s
Sex

C
on

tri
bu

tio
n 

of
 fe

at
ur

e 
to

 m
od

el
 (%

)

25

20

15

10

5

0

30

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Se
ns

iti
vi

ty

Roche internal validation

C
on

tri
bu

tio
n 

of
 fe

at
ur

e 
to

 m
od

el
 (%

)

25

20

15

10

5

0

40

35

30

MCH
MCV

CRP
Age

Tro
mbo

cy
tes

Eryt
hro

cy
tes

Hem
og

lob
in

Le
uk

oc
yte

s
Sex

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Se
ns

iti
vi

ty

Siemens external validation(C)

Figure 1: Performance of two machine learning algorithms trained to predict low ferritin concentrations.
(A) ROC plot for the prediction of low ferrin values (<10 μg/L in females and <22 μg/L in males) in the validation population of the Jeroen Bosch
Hospital (Siemens, the JBH-Smodel), with an area under the curve (AUC) of 0.92. (B) Contribution of each individual parameter to themachine
learning algorithm of Figure A, plotted as mean ± SD (C) ROC plot of the external validation of the JBH-S model, using data from the St Jansdal
Hospital, reaching an AUC of the ROC 0.92. (D) ROC plot for the prediction of low ferritin values (<13 μg/L in females and <30 μg/L in males) in
the validation population ofMedlon BV (Roche, theMedlon-Rmodel), with an AUC of 0.90. (E) Contribution of each individual parameter to the
machine learning algorithm of Figure D, plotted as mean ± SD
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Implementation and case-finding

The JBH-S algorithmwas directly implemented in the LIS of
the Jeroen Bosch Hospital. In October 2021 all laboratory
orders of anemic adult primary care patients were pro-
spectively analyzed. Ferritin was measured in all adult
anemic primary care patients with a machine learning
value of ≥0.5 (Figure 2). Using this automated machine
learning algorithm 18 new iron deficiencies were identified
in 21 work days. Four samples were no longer available for
measurement.

Discussion

Iron-deficient anemia is one of the most common diseases
worldwide, but still remains underdiagnosed. In this study,
test results from a blood count and CRP in anemic patients
from primary care were used to develop machine learning
algorithms which could accurately predict low ferritin
concentrations. It was not possible to predict deficiencies
in folic acid or vitamin B12 based on these parameters. Both
algorithms outperformed the specialists in laboratory
medicine in predicting low ferritin levels. Implementation
of the algorithm in our LIS resulted in one new iron defi-
ciency diagnosis on average per day.

In a time with more structured healthcare data in an
electronic patient record, possibilities formachine learning

Table : Diagnostic performance of specialists vs. the machine
learning algorithm.

Jeroen Bosch Hospital/St Jansdal (n=)

Specialists JBH-S
algorithm

Specialists with
ML as support tool

Sensitivity, %   

Specificity, %   

Decision, %   

Low ferritins identi-
fied, %

  

Average time required
per patient, seconds

 < 

Median error of false
positives, μg/L

  

False positives within
 μg/L of the LLN,%

  

Medlon BV (n=)

Specialists Medlon-R
algorithm

Specialists with
ML as support

tool

Sensitivity, %   

Specificity, %   

Decision, %   

Low ferritins identi-
fied, %

  

Average time
required per patient,
seconds

 < 

Median error of false
positives, μg/L

  

False positives within
 μg/L of the LLN, %

  

JBH-S, Jeroen Bosch Hospital Siemens model; Medlon-R, Medlon BV
Roche model; ML, machine learning; LLN, lower limit of normal.
‘Specialists’ are specialists in laboratory medicine. ‘Low ferritins
identified’ indicates the percentages of patients with a low ferritin
level that were correctly identified as having a low plasma ferritin
concentration (true positives).

All complete laboratory 
orders of October 2021  

(21 work days) 
n = 8430

Non adult, non anemic or 
non primary care patient 

n = 7999

Adult anemic primary care 
patient 
n = 403

Unique patient 
n = 391

Duplicate patient 
n = 12

Machine learning score 0.5 
n = 65

Ferritin not in initial 
laboratory order 

n = 24

Ferritin requested in initial 
laboratory order 

n = 41

New iron deficiencies 
identified 

n = 18

Ferritin concentration not low 
n = 2 

Sample not available 
n = 4

Machine learning 
score <0.5 

n = 326

Figure 2: Prospective case-finding.
After implementation of the algorithm in the laboratory information
system of the Jeroen Bosch Hospital prospective analysis was
performed for all laboratory orders containing a complete blood
count and CRP during the month of October 2021. Ferritin was
measured in all adult anemic primary care patients with a machine
learning value of ≥0.5. In total 18 new iron deficiencies were
identified in 21 workdays. Four samples were no longer available for
measurement.
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and decision support tools are expanding. Especially in the
diagnostic field, algorithms to support medical decision
making are rapidly growing, as they are fast, accurate and
cheap. Decision support tools provide a welcome oppor-
tunity to lower the work pressure of physicians in an aging
population with multimorbidity [14, 15].

In several regions of the Netherlands, general practi-
tioners are supported by specialists in laboratory medicine
with a service called ‘reflective testing’ [7, 16, 17]. This
service provides diagnostic guidance by the addition of
interpretative comments, and moreover additional tests
can be added by the specialist in laboratory medicine to
complete the diagnostic workup. This saves time and pre-
vents additional phlebotomy for the patient, and has been
proven to be highly appreciated by general practitioners
[7]. As the evaluation of changes in patterns across
numerous laboratory parameters can be complex or subtle
the algorithm developed in this study can assist laboratory
specialists to predict iron deficiency more accurately.
Furthermore, assessment of test reports by specialists in
laboratory medicine of patients suffering from anemia is
faster when using the algorithm as a support tool. The tool
developed in this study may be used as a decision support
tool and as a case-finding tool. Moreover, when the algo-
rithm evaluates the risk of a patient having a low ferritin
level to be either extremely low or extremely high, the
measurement of the ferritin concentration might be
omitted, thereby saving time and costs.

However, several limitations have to be taken into
consideration. Firstly, the algorithms may only be used for
the specific population (e.g. anemic primary care adult
patients) for which it has been validated. Therefore, before
implementation a validation with local data is essential.
Secondly, when implementing a machine learning algo-
rithm the new European ‘In Vitro Diagnostics Regulation’
(IVDR) should be taken into consideration, as this regula-
tion can also apply to certain software tools. Lastly, ferritin
measurements are poorly harmonized and different lower
reference limits are used per laboratory. In this study, the
models were trained using the reference limits provided by
the product insert leaflet of the providers (Siemens and
Roche). Therefore, the performance of the algorithms could
be diminished when using different analyzers or different
lower reference limits.

On the other hand, this studyhas several key strengths.
Themachine learning algorithmwas developed using large
amounts of data, representing laboratory results from
thousands of patients. Therefore, laboratory data of dis-
eases that have similarities with iron deficiencies (chronic
disease, hemoglobinopathy and thalassemia) are included
in the training and validation set. Secondly, the JBH-S

algorithm was validated using an internal validation and
an external validation set, from a laboratory using different
hematology analyzers (Siemens vs. Sysmex). Moreover,
separate algorithms were developed for Siemens and
Roche chemistry analyzers. Lastly, using Supplementary
Table 1 it is possible to adapt the cut-off value of the al-
gorithm in order to choose the optimal sensitivity and
specificity based on local requirements and preferences.

Multiple studies have used machine learning on
laboratory parameters to predict disease or the outcome
of other laboratory parameters [18–20]. However, many of
the algorithms developed in recent studies appear to
find limited application in clinical practice. In this study
we have focused on extensive validation of our models
(internal and external), comparing the performance of the
algorithm to experts, implementing the algorithm directly
in our LIS and, finally, analyzing the benefit of imple-
mentation for patient care. Moreover, we have used a
minimal amount of laboratory parameters (complete
blood count + CRP), while retaining a high diagnostic
value, to maximize the clinical applicability.

For the implementation of a machine learning algo-
rithm in daily clinical care, software is needed. So called
clinical decision support systems are commercially avail-
able, but need to be filled with content (algorithms or
‘clinical rules’) and need to be connected to clinical data
from the electronic health record and other data systems,
such as the laboratory information system [21]. Once a
decision support system is implementedwith clinical rules,
it brings many opportunities to improve test result inter-
pretation and the efficiencywithwhich diagnostic data can
be converted into useful information [22]. In this study we
have shown that the integration of a machine learning
algorithm to predict low ferritin levels in primary care pa-
tients is a valuable diagnostic tool which can support
physicians and specialists in laboratory medicine, and can
automatically identify unrecognized iron deficiencies.
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