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Summary  

While electricity has been identified as a sustainable solution for future mobility, 

biodiesel still has an important role to reduce the greenhouse gas emission in the European 

transport sector, at least, until 2050. The consumption of biofuel in Europe has increased 

nearly 10 times from 2004 to 2020. In 2020, the share of biodiesel is three quarters of total 

renewable energy consumption in transportation. However, the demand for fossil fuels is still 

high due to their low prices. To achieve the environmental targets and replace the fossil fuels, 

the costs of biodiesel production have to be reduced. 

Biodiesel is a type of renewable fuel derived from green sources through chemical 

reactions. The conventional biodiesels produced from vegetable oils such as rapeseed oil and 

palm oil are designated as the first generation. Due to debates on food-or-fuel and 

deforestation by palm-oil farmers, the first generation biodiesel is gradually replaced by the 

second generation which is produced from waste and residual feedstocks such as used 

cooking oil and animal fats. With recent advances in biotechnology, the third generation of 

biodiesel from bioengineering feedstocks such as algae is under development. Overall, the 

feedstock greatly affects the biodiesel production process and contributes about 80% of the 

total production cost. 

The most common biodiesel is the mixture of fatty acid methyl esters (FAME) which 

is conventionally produced from vegetable oils and methanol. The biodiesel production is in 

either batch- or continuous type which includes reaction and purification processes. 

Depending on the level of free fatty acid content in the feedstock, the reaction is 

transesterification or esterification with base or acid catalysts, respectively. Innovative 

production technologies such as membrane reactor, reactive distillation, supercritical reactor, 

etc. are important for improving the biodiesel production in terms of costs, energy 

requirement and environmental impact. 

The membrane reactor is a process intensification technology which has appeared in 

many studies to improve the biodiesel production. The advantages of the membrane reactor 

include higher conversion rate and purity of the biodiesel product. However, membrane 

fouling severely affects the performance of the reactor. Process systems engineering tools 

such as mathematical programming can be used to reduce the impact of membrane fouling 

in term of operating costs. Chapter 2 presents two novel mathematical models for biodiesel 

production, a membrane reactor model with dynamic functions of reversible and irreversible 

fouling, and a dynamic membrane cleaning model. The results of solving the models show 

that the fouling severely reduces the performance of the membrane reactor and an optimal 

operating cycle can be identified in the balance of cleaning costs and production capacity. 
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Chapter 3 brings the optimization of biodiesel production from equipment level to 

process level with superstructure optimization. The superstructure is a network of different 

alternative options which can be used to form possible processing routes. In this work, the 

superstructure model serves as a bridge between three generation feedstocks and innovative 

biodiesel production technologies. The optimal route to produce biodiesel from tallow with 

reactive distillation and heterogenous acid catalyst is found by solving the superstructure 

optimization problem.  

In chapter 4, the superstructure model is used to analyse the impacts of different 

uncertainties such as the prices of feedstock and products, and the production capacity on the 

total profit of a biodiesel refinery. By assessing different scenarios, the reactive distillation 

is identified as a potential technology for biodiesel production in terms of production costs 

and flexibility. From the technical assessment, the process intensification technologies such 

as reactive distillation are important to biodiesel production in particular and process 

industries in general.  

Chapter 5 discusses about the potential of process intensification and digital twin 

applications in the energy transition through their applications in the process industries. 

While process intensification and digital twin represent the advances of technology in 

physical and digital forms, their deployments in process industries are not always smoothly. 

There are barriers such as conservative management, high investment costs and lack of 

capability with exist plants. The chapter presents the idea of combining the two concepts to 

improve individual strong points and overcome the barriers. The digital twin offers high 

quality and dynamic models which can be used to develop, test and improve not only the 

process intensification designs but also their operating conditions. Therefore, the 

combination reduces the investments for prototypes and pilot plants as well as the costs of 

adjusting the physical equipment. 
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Samenvatting 

Hoewel elektriciteit is geïdentificeerd als een duurzame oplossing voor toekomstige 

mobiliteit, speelt biodiesel nog steeds een belangrijke rol bij het verminderen van de uitstoot 

van broeikasgassen in de Europese transportsector, in ieder geval tot 2050. Het verbruik van 

biobrandstof in Europa is sinds 2004 tot 2020 bijna tien keer zo groot geworden. In 2020 is 

het aandeel biodiesel driekwart van het totale verbruik van hernieuwbare energie in het 

transport. De vraag naar fossiele brandstoffen is echter nog steeds groot vanwege de lage 

prijzen. Om de milieudoelstellingen te halen en de fossiele brandstoffen te vervangen, moeten 

de kosten van de productie van biodiesel omlaag. 

Biodiesel is een soort hernieuwbare brandstof die via chemische reacties uit groene 

bronnen wordt gewonnen. De conventionele biodiesels geproduceerd uit plantaardige oliën 

zoals koolzaadolie en palmolie worden aangeduid als de eerste generatie. Door discussies 

over voedsel of brandstof en ontbossing door palmolieboeren, wordt de eerste generatie 

biodiesel geleidelijk vervangen door de tweede generatie die wordt geproduceerd uit afval en 

restgrondstoffen zoals gebruikt frituurvet en dierlijke vetten. Met de recente vooruitgang in 

de biotechnologie is de derde generatie biodiesel uit bio-engineeringgrondstoffen zoals algen 

in ontwikkeling. Over het algemeen heeft de grondstof een grote invloed op het 

productieproces van biodiesel en draagt het ongeveer voor 80% bij aan de totale 

productiekosten. 

De meest voorkomende biodiesel is een mengsel van vetzuurmethylesters (FAME) 

dat conventioneel wordt geproduceerd uit plantaardige oliën en methanol. De productie van 

biodiesel is batch-gewijs of continu, inclusief reactie- en zuiveringsprocessen. Afhankelijk 

van het gehalte aan vrije vetzuren in de voeding, vind er een omestering of verestering met 

respectievelijk base- of zure katalysatoren plaats. Innovatieve productietechnologieën zoals 

membraanreactoren, reactieve destillatie en superkritische reactoren zijn belangrijk voor het 

verbeteren van de biodieselproductie in termen van kosten, energiebehoefte en milieu-

impact. 

De membraanreactor is een proces intensificatie technologie die in veel onderzoeken 

is genoemd als technologie om de productie van biodiesel te verbeteren. Voordelen van de 

membraanreactor zijn onder meer een hogere conversie en zuiverheid van het 

biodieselproduct. Membraanvervuiling heeft echter een ernstige invloed op de prestaties van 

de reactor. Gereedschappen voor process systems engineering, zoals mathematisch 

programmeren, kunnen worden gebruikt om de impact van membraanvervuiling in termen 

van investerings- en operationele kosten te verminderen. In hoofdstuk 2 worden twee nieuwe 

wiskundige modellen voor de productie van biodiesel, een membraanreactormodel met 

dynamische functies van omkeerbare en onomkeerbare vervuiling, en een dynamisch 

membraanreinigingsmodel geïntroduceerd. De resultaten laten zien dat de vervuiling de 
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prestaties van de membraanreactor ernstig vermindert en dat een optimale operationele 

cyclus kan worden geïdentificeerd die de reinigingskosten en productiecapaciteit balanceert. 

In hoofdstuk 3 wordt de optimalisatie van de productie van biodiesel van apparaat 

niveau naar procesniveau met optimalisatie via superstructuren besproken. De superstructuur 

is een netwerk van verschillende opties waarmee mogelijke verwerkingsroutes kunnen 

worden gevormd. In dit hoofdstuk dient het superstructuur model als een brug tussen drie 

verschillende grondstoffen (verschillende generaties biomassa) en innovatieve 

biodieselproductietechnologieën. De optimale route om biodiesel te produceren uit talg met 

reactieve destillatie en een heterogene zuurkatalysator wordt gevonden door het probleem 

van de optimalisatie van de superstructuur op te lossen. 

In hoofdstuk 4 wordt het superstructuur model gebruikt om de effecten te analyseren 

van verschillende onzekerheden, zoals de prijzen van grondstoffen en producten, en de 

productiecapaciteit op de totale winst van een biodieselraffinaderij. Door verschillende 

scenario's te evalueren, wordt de reactieve distillatie geïdentificeerd als een potentiële 

technologie voor de productie van biodiesel in termen van productiekosten en flexibiliteit. 

Uit de technische evaluatie blijkt dat de proces intensificatie technologieën zoals reactieve 

distillatie belangrijk zijn voor de productie van biodiesel in het bijzonder en de 

procesindustrie in het algemeen. 

Hoofdstuk 5 bespreekt het potentieel van proces intensificatie en digital twin 

toepassingen in de energietransitie via hun toepassingen in de procesindustrie. Hoewel 

procesintensivering en digital twin de technologische vooruitgang in fysieke en digitale 

vormen vertegenwoordigen, verloopt hun implementatie in de procesindustrie niet altijd 

soepel. Er zijn belemmeringen zoals conservatief management, hoge investeringskosten en 

gebrek aan capaciteit binnen bestaande fabrieken. Die kunnen worden gebruikt voor 

procesregeling en optimalisatie. Dit hoofdstuk introduceert het idee om de twee concepten te 

combineren om zo individuele sterke punten te verbeteren en de barrières te overwinnen. De 

digital twin biedt hoogwaardige en dynamische modellen die kunnen worden gebruikt om 

niet alleen de ontwerpen voor proces intensificatie, maar ook hun operationele condities te 

ontwikkelen, testen en verbeteren. En daarmee worden de investeringen voor prototypes en 

proeffabrieken, evenals de kosten voor het aanpassen van de fysieke apparatuur sterk 

gereduceerd. 
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“A pessimist sees the difficulty in every opportunity, an optimist sees the opportunity in every 

difficulty.” - Winston Churchill 
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Abstract  

This chapter presents a brief overview of the strategy to reduce greenhouse gas 

emission and biofuel production in Europe. Biodiesel which is the most consumed biofuel in 

transportation is considered a cornerstone in the strategy to reduce greenhouse gas emission 

in the transport sector. However, the price of biodiesel is still higher than fossil fuels, thus 

posing challenges for cost reduction in biodiesel production. This research brings solutions 

for the cost optimization problem with process intensification technology and process 

systems engineering tools such as membrane reactor modelling and superstructure 

optimization. 

1.1. Background 

Greenhouse gas (GHG) emissions are the main culprit behind many environmental 

problems which the world has faced in the last few decades such as rising global temperature, 

increasing sea level, air pollution and hostile weather patterns [1]. It is identified that more 

than 16% of the global GHG emission comes from the transport sector [2]. Thus, reduction 

of transportation GHG emissions is one of the targets of the European Commission (EC) 

renewable energies directive (2018/2001/EU) known as “RED II” [3]. RED II has defined 

that the renewable energy share in the transport sector need to be at least 14% in 2030 [3]. 

Nearly 75% of total GHG emissions are carbon dioxide emissions which stem largely from 

fossil fuels [1]. Therefore, studies to find renewable and cleaner fuels have gained more 

attention from governments, industries and researchers. Electricity from renewable sources 

such as wind, solar and hydrogen fuel cell technology are potential candidates to replace 

traditional fossil fuels. However, electric mobility requires heavy investments in 

infrastructure which is not readily available in many countries. Passenger transport apart, 

applications of electric vehicles in other areas such as farming, goods transport, construction, 

etc. are still immature. Ergo, the contribution of biofuels is still important to reach the target 

of RED II at least until 2030. 

Biofuels, which are mostly produced from plant-based sources, are considered CO2 

neutral due to the CO2 circulation [4]. CO2 released from combustion engines returns to the 

atmosphere and is absorbed by plants which, in turn, become feedstocks for biofuel 

production, thus making the whole process into a CO2 cycle [4]. The biofuel consumption in 

the European Union (EU) transport sector increased significantly from 1,847 kilo tonnes oil 

equivalent (ktoe) in 2004 to 11,924 ktoe in 2010 as shown in Figure 1.1 [3]. The biofuel 

consumption has increased slowly between 2010 and 2020. Aside from the exceptional 

situation in 2020 (i.e. the COVID crisis), the reasons of this trend include, but are not limited 

to; the shifting focus to electric mobility, the demand of changing feedstocks, the low oil 

price and the high production cost of biofuels. 
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Figure 1.1: Biofuel consumption in the EU transport sector [3] 

Biodiesel which shared 74% of the total renewable energy used in the EU transport 

sector in 2020 is still considered a cornerstone in the EU strategy to reduce the use of fossil 

fuels in transportation. Besides the energy contents, RED II also specified the target of 

feedstock for biofuels which requires a gradual replacement of edible- with non-edible 

feedstocks. Therefore, alternative feedstocks and innovative production processes become 

realistic and attractive for biofuel producers and researchers. 

 

Figure 1.2: The shares of renewable energy used in EU transport sector in 2020 [3] 

1.2. Biodiesel 

The first reference of vegetable oils being used as fuels for diesel engines can be found 

in the book, “Die Entstehung des Dieselmotors”, by Rudolf Diesel, the famous inventor of 

the  engine that shared his name [5]. The book described a diesel engine, which was built at 

the request of French government by the French Otto Company, powered by peanut oil in the 
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Paris trade fair 1900 [5]. However, it was discovered that the direct use of vegetable oils 

caused operational problems such as engine deposit because of the high kinetic viscosity of 

the oils [5]. Many researches were conducted to raise the performance of vegetable oils as 

fuels, thus leading to the first development of modern-day biodiesel in 1937 by C.G. 

Chavanne (University of Brussels) [5]. 

Biodiesel is basically a mixture of fatty esters and can be industrially produced 

through chemical reactions of biobased feedstocks with alcohol in the presence of a catalyst 

[6]. The renewable nature of biodiesel comes from its wide range of green feedstocks such 

as vegetable oils, animal fats, waste cooking oil, and algae oil. Methanol is usually used in 

the biodiesel production due to its availability and low price, thus, making the mixture of 

fatty acid methyl esters (FAME) the most common biodiesel [7]. The production of FAME 

in EU reached 11,374 million litters in 2020 [3].  

FAME is usually synthesized through a transesterification process of triglycerides 

(TG) and methanol (MeOH) with alkaline catalysts or an esterification process of free fatty 

acids (FFA) and MeOH with acid catalysts [6]. The biodiesel transesterification is a series of 

three reversible reactions which creates diglycerides (DG) and monoglycerides (MG) as 

intermediate products besides the main product, FAME and the by-product, glycerol (GL) 

[6]. The transesterification can be presented as a summarized reaction as follows [6]: 

𝑇𝐺 + 3 𝑀𝑒𝑂𝐻 ↔ 3 𝐹𝐴𝑀𝐸 + 𝐺𝐿    (1.1) 

The biodiesel esterification is considered simpler than the transesterification but requires 

higher reaction temperature and higher costs of equipment and acid catalyst. The 

esterification of FFA with MeOH and acid catalyst to produce FAME and water is presented 

as in Equation 1.2 [6]. 

𝐹𝐹𝐴 + 𝑀𝑒𝑂𝐻 ↔ 𝐹𝐴𝑀𝐸 + 𝐻2𝑂    (1.2) 

In addition to be a renewable fuel, biodiesel has several advantages over the fossil 

fuels. While its properties are similar to traditional diesel, biodiesel has no sulphur, higher 

flash point and better lubricity [7]. These characters make biodiesel non-toxic, safe for 

storage and well compatible with unmodified engines [7]. However, the price of biodiesel is 

still higher than fossil fuels, thus making a serious challenge for increasing the share of the 

renewable fuel in the transport sector. 

Biodiesel produced from different feedstocks can be classified into three generations. 

The first generation biodiesel is produced directly from plant oils such as rapeseed oil and 

palm oil. The second generation biodiesel is produced from residual and waste sources such 

as waste cooking oil and animal fat. The third generation biodiesel is produced from 

microalgae [8]. Besides defining the type of biodiesel, the feedstock also contributes 
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approximately 80% of the total cost of biodiesel production [9]. Therefore, the selection of 

feedstock is crucial to the process design and the economic feasibility of biodiesel production. 

Depending on feedstock and production scale, biodiesel production is typically done 

batch wise or continuously with a reaction step and several purification processes. The 

reaction process is decided by the presence of FFA and water in the feedstock [10]. 

Additional treatments, different reactant ratios, high reacting temperature and/or acid catalyst 

are usually applied for the biodiesel production with high FFA feedstock such as waste 

cooking oil [10]. The crude biodiesel product of the reaction process is going through a 

purification process to achieve the quality as defined in the standard EN 14214 of the 

European Committee for Standardization. The purification process which comprises different 

separation, neutralization and washing steps accounts for 60 to 80% of the total biodiesel 

processing cost [11]. 

1.3. Challenges of biodiesel production 

High vegetable oil price, food-fuel debates and targets for “advanced biofuels” of 

RED II are challenges and motivations for finding alternative biodiesel feedstock [3]. Waste 

cooking oil and residual animal fat from food production have been used increasingly in the 

biodiesel production [12]. While the waste materials are inexpensive, environmentally 

friendly and not food competitive, they contain a high amount of FFA and impurities. 

Accordingly, their usage for biodiesel production requires additional chemical treatments and 

washing steps, thus posing challenges of production costs and environmental impacts.   

Microalgae have attracted a lot of attention as the future feedstock for biodiesel 

production. These microorganisms can transform CO2 in the atmosphere and sunlight into 

energy with their photosynthetic pigments [13]. The advantages of microalgae are their high 

growth rate and adaptability which allows them to thrive in almost any aquatic and terrestrial 

environment including the wastewater [13]. However, the production cost is still high as 

compared to conventional fuels and it becomes a challenge to industrialize algae biodiesel 

[14]. 

The major challenges for biodiesel are its high selling price as compared to fossil fuels 

and the requirement for advanced and economic feedstocks. These challenges have attracted 

researchers from different fields such as biology, chemistry and economy. There are many 

publications to address these challenges for example, the studies on feedstocks such as the 

microalgae [15] and non-edible oils [16] and the techno-economic assessments of biodiesel 

production [17]. However, the publications focus mostly on individual aspects of the 

biodiesel production while a combined strategy has not received sufficient attention. The 

main reason is that researchers report mainly on their fields of expertise and made little 

connections with other fields. For example, the researches on the biodiesel feedstocks are 
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about characters of the raw material and product and mention the production process as 

simple reaction and separation steps. Another example is the technological and economic 

analysis of the biodiesel production which assesses different technologies and processes but 

with only one or two types of feedstock. The combination of feedstock selection and 

production optimization for biodiesel are rarely mentioned and becomes a knowledge gap in 

the literature. Therefore, this thesis fills the gap of knowledge by systematically combining 

the selection of appropriate feedstocks including three generations of feedstocks and 

innovative technologies such as membrane reactor into a superstructure model for biodiesel 

production optimization.  
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1.4. Scope of the thesis 

 

Figure 1.3: The scope of the thesis 
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The research presented in this thesis addresses the challenge of reducing the biodiesel 

production cost with process systems engineering methods, process intensification 

technologies and computational tools. At the equipment level, mathematical modelling and 

optimization are applied to improve the performance of the membrane reactor which is a 

process intensified technology for biodiesel production. At the process level, superstructure 

optimization is applied to identify the most efficient production route for biodiesel in terms 

of total profit, raw material consumption and energy requirement. 

The membrane reactor has several advantages over traditional reactors that ensures a 

promising route to produce biodiesel. However, the operating cost of the membrane reactor 

are still high due to the fouling and costly cleaning processes. Although there are many 

researches related to membrane fouling and reactor in biodiesel production, the connection 

between the membrane fouling and reactor model is not evident. Therefore, this research 

develops a novel membrane reactor model with dynamic fouling functions and a membrane 

cleaning model for backwashing and chemical cleaning. The developed models can be used 

to evaluate the effect of design and operating conditions on biodiesel production. Based on 

the models, a tool for simulating the cyclic operation of the biodiesel membrane reactor is 

coded in MATLAB®.  

The superstructure contains different feedstock from three biodiesel generations and 

various reaction- and separation technologies including membrane reactor, reactive 

distillation and different type of catalysts. The heat integration is an innovative function of 

the superstructure model which calculates the heat recovery and reduces the utility 

requirement. The superstructure optimization is a Mixed-Integer Nonlinear Programming 

(MINLP) which is solved with the Branch-And-Reduce Optimization Navigator (BARON) 

in the Advanced Interactive Multidimensional Modeling System (AIMMS). The results are 

an optimal design of a biodiesel production process and a new tool for optimizing process 

design under different economic and technical conditions. 

This thesis answers the following questions. 

- Can the cyclic operation of the membrane reactor be captured with mathematical 

modelling and improved with dynamic cleaning models? 

- Can the superstructure model become a bridge for the biodiesel feedstock 

selection and process optimization in term of profit and energy requirement? 

- What are the roles of process intensification and digital tools such as digital twin 

in the energy transition of process industries? 

- Can process intensification change the future of biodiesel? 
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1.5. Thesis outline 

Chapter two presents two new mathematical models for the membrane reactor in 

biodiesel production. The first is a membrane reactor model which combines a filtration 

model with dynamic fouling functions, component balances and reaction kinetics. The results 

of the model show the decline in membrane flow rate over time and the requirement of an 

optimized cleaning schedule to reduce the fouling, thus leading to the development of the 

second model, a new dynamic cleaning model for biodiesel membrane reactor. The cleaning 

model is used to evaluate effects of backwashing and chemical cleanings on the cleaning 

costs which include chemical consumption, energy requirement and production lost. An 

optimized operation strategy is derived from the results of the membrane reactor model and 

the cleaning model. Chapter three brings the optimization of biodiesel production to the 

process level with a new superstructure model. The superstructure includes various 

feedstocks from three biodiesel generations and different reaction and separation 

technologies from traditional to process intensification equipment. The addition of the heat 

integration function is an innovative feature which reduces the requirement of heating and 

cooling utilities by matching hot and cold streams in the process. Chapter four addresses the 

uncertainty of biodiesel production in term of the availability of feedstocks and technologies, 

the prices of raw materials, biodiesel and glycerol. A sensitivity analysis is performed to 

evaluate the influence of different parameters on the objective function and decision 

variables. Then, the optimization problem is solved with different scenarios to identify 

optimal process design for biodiesel production in compliance with conditions such as the 

availability of feedstock and technology. The influence of technology can be evaluated by 

doing the technological assessment. In chapter five, an overview of process intensification 

(PI) and digital twin (DT) in process industries is presented. In addition to individual 

applications, the combination of PI and DT brings potential improvements for both concepts 

and process industries, including biofuel production. Finally, chapter six brings the 

conclusion of the research and the suggestion for future works. 
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2. Membrane reactor and cleaning models 

for cyclic operation of biodiesel production 
 

 

 

 

 

 

 

 

 

“We cannot solve our problems with the same thinking we used when we created them.” - 

Albert Einstein 

This chapter was published in: 

Huynh, T.A. and Zondervan, E., 2021, "Dynamic modeling of fouling over multiple 

biofuel production cycles in a membrane reactor", Chemical Product and Process Modeling, 

pp. 20200093, https://doi.org/10.1515/cppm-2020-0093 

Huynh T.A., Raeisi M., Franke M.B. and Zondervan E., 2021, “Novel Dynamic 

Cleaning Model for Cyclic Operation of Biodiesel Membrane Reactors”, Chemical 

Engineering Transactions, 88, 883-888, https://doi.org/10.3303/CET2188147 
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Abstract  

A membrane reactor produces high-quality biodiesel by combining both reaction and 

separation in a single unit. However, the reactor has disadvantages such as high operating 

expense and reduced efficiency over time due to membrane fouling. To solve this issue, 

frequent cleaning with physical and chemical methods is required. Membrane cleaning 

contributes to the reactor’s operating cost to a large extent, including energy, chemicals and 

even production loss. Although there have been studies undertaken focusing on improving 

membrane cleaning, optimizing the performance of the membrane reactor in biodiesel 

production has received limited attention. 

This chapter presents novel mathematical models for an intensified separation-

reaction process and membrane cleaning operations of the membrane reactor in biodiesel 

production. The membrane reactor model is a combination of a membrane filtration model, 

component balances and reaction kinetics models. A unique feature is that the proposed 

model can capture the dynamics of membrane fouling as function of both reversible and 

irreversible fouling, which leads to cyclic behaviour. With an appropriate membrane cleaning 

model, the operational strategy can be optimized from evaluating the effects of backwashing 

and chemical cleaning on the membrane reactor. 

In the case study of biodiesel production, the developed model was validated with 

experimental data. The model was in good agreement with the data, where R-squared values 

are 0.96 for the permeate flux and 0.95 for the biodiesel yield. From a further analysis, the 

period between two backwashes, or an operating cycle is a crucial factor to improve the 

productivity of the reactor and reduce the cleaning cost.  

The result shows that the total operating time rose 2 to 3 times when the operating 

cycle reduced from 70 min to 15 min. The biodiesel yield increased significantly due to the 

extended operation. However, longer operating time led to an accumulation of more 

irreversible fouling, which could not be removed by backwashing. The cost of chemical 

cleaning rose as the irreversible fouling level increased. Regarding the cost-to-yield ratio of 

the biodiesel reactor, the best operating conditions were found at the operating cycle of 25 

minutes between 2 backwashes. Overall, the models allow the prediction of fouling effects 

and reduction of the cleaning expense of the membrane reactor, thus increasing its potential 

as a biodiesel production technology significantly. 
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2.1. Introduction 

Since its introduction in 1930s, biodiesel (basically a mixture of fatty esters) has 

become one of the most prominent renewable fuels with several advantages over petroleum 

diesel [5]. It is safe, renewable, non-toxic, biodegradable and a better lubricant. The 

renewable nature of biodiesel is indicated by its production from green sources such as 

vegetable oils, animal fat or even used cooking oil from the food industry.  

The most challenging issue of biofuel is much higher costs of production and 

feedstock when comparing to mineral fuels. The price of biodiesel follows the price of edible 

vegetable oils closely which comprises approximately 80% of feedstock for biodiesel 

production in the world. The feedstock price is influenced by the type of vegetable oil, the 

production volumes and processes and government supportive policies. Utilizing non-edible 

feedstock sources is a viable way to reduce the price of biodiesel [18]. The production cost, 

which include the costs of equipment, operation and energy requirement, are affected by 

production method. 

Process systems engineering tools can be used to design innovative processes for 

renewable fuel production while reducing costs and improving sustainability. The use of 

process intensification such as reactive separation can drastically decrease energy costs, both 

the size and number of process units and increase the yield of downstream processes. 

However, the investment and operating costs of intensified processes are still remarkably 

high and would need to be reduced before they can be applied in actual production [19]. 

Membrane technology has gone through significant developments in the past decades. 

It has the potential to improve biofuel production with the ability to combine both reaction 

and separation in a single unit. Dubé et al. (2007) [20] reported that a membrane reactor can 

be successfully used for the transesterification of canola oil into biodiesel. The reaction 

products (biodiesel and glycerol in methanol) are separated from the original canola oil feed 

because the oil droplet size is larger than the membrane pore size. A two-phase state is 

reported as a requirement for the operation of the membrane reactor. 

Cao et al. (2009) [21] constructed a mathematical model of reaction kinetics and 

demonstrated that the rate of transesterification is enhanced by using a membrane reactor. 

The work of Cheng et al. (2010) [22] showed the effects of temperature, methanol-to-oil 

molar ratio and catalyst concentration on canola oil methanolysis and obtained reaction 

kinetics data of the membrane reactor. Chong et al. (2013) [23] developed and analyzed a 

model of a membrane reactor with the integration of a chemical phase equilibrium (CPE). In 

addition to homogeneous catalysis, Gao et al. (2017) [24], and Hapońska et al. (2019) [25] 

reported the effects of heterogeneous catalyzed transesterification in membrane reactors. 
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Overall, the membrane reactor produces higher quality biodiesel than traditional 

reactors due to its high conversion rate and selectivity of the desirable product [26]. Biodiesel 

production using a membrane reactor requires fewer downstream processing stages than 

conventional processes [17]. The application of membrane technology has economic and 

environmental benefits in reducing energy consumption, material for equipment, wastewater 

and the chemicals used in biodiesel production. 

However, an important drawback of membrane technology is the fouling problem 

which affects its performance. Membrane fouling occurs when filtrated materials in the feed 

stream deposit and accumulate on membrane surface and/or within membrane pores. The 

consequences of membrane fouling are the decline of filtration flux, increased 

transmembrane pressure, and/or changed membrane selectivity. Although there are authors 

such as Cheng et al. (2012) [27], Xu et al. (2014) [28], and Abdurakhman et al. (2018) [17] 

who published on the operating conditions of membrane reactor, the research on the 

mathematical model development that describes membrane fouling for biodiesel production 

is rather limited. Due to the complexity of the fouling phenomena, the development of 

membrane fouling models is usually in the form of empirical relationships. Such empirical 

models have a limited predictive capability. In addition, the empirical models do not 

incorporate degrees-of-freedom such as the operating cycle and permeate flux that limits the 

productivity of membrane reactors. Degrees-of-freedom are needed to optimize the 

operational strategy of the membrane reactor. 

Membrane fouling can be categorized into reversible and irreversible fouling. 

Reversible fouling is normally the formation of cake or gel layer on the membrane surface 

and can be removed by means of hydraulic cleanings such as backwashing. Irreversible 

fouling is caused by filtrated materials that penetrates the membrane pores and becomes 

lodged in the membrane pores and adsorbed onto the pore walls. Chemical cleaning agents 

are required to restore the flux in case of irreversible fouling [29].  

Therefore, membrane cleaning is critical [30]. Although the cleaning cost is driving 

the operational cost of the membrane reactor (chemical cost, lost productivity, etc.), physical 

and chemical cleaning procedures are mainly determined from experience without precise 

prediction of results [31]. Prediction and optimization of membrane reactor cleaning are 

challenging tasks due to the complex relationship between membrane properties, membrane 

fouling, and operating conditions [32]. Research into fouling control and membrane cleaning 

optimization is urgently needed. 

The membrane cleaning process has been studied by several researchers such as 

Zondervan et al. [33], and Madaeni et al. [34] in the field of water filtration and Popovic et 

al. [35] in dairy industry. However, the relationship between membrane fouling and cleaning 

in membrane reactors, especially for biofuel production has not been studied. In this 
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contribution, this gap is filled by setting up and connecting a novel membrane fouling- and 

backwashing model that can be used to simulate and optimize cyclic processes. In turn, these 

models can also be used to optimize decisions regarding the strategy for the long term 

performance of the membrane reactor which depend on the chemical cleaning policy. 

In this chapter a novel dynamic mathematical model of the membrane reactor and 

membrane cleaning process is proposed. To provide an accurate simulation of the separation-

reaction process with limited experimental data, the dynamic fouling model of membrane 

fouling is coupled to a reactor model. The model parameters are determined by a genetic 

algorithm using experimental data. After construction of the model, the transesterification 

process is simulated to investigate the effects of membrane fouling and process conditions in 

the reactor. Next, the model is used to identify the irreversible and reversible types of fouling 

from experimental data that could not be achieved with other membrane reactor models. 

Subsequently, the calculated fouling resistances are inputs of the membrane cleaning model. 

The cleaning model of a membrane reactor can capture the dynamic states of 

membrane fouling during the physical and chemical cleaning processes. The cleaning cost, 

i.e., the cost of energy, chemicals, and production loss, is calculated from the relationship 

between the fouling level, the cleaning duration, and the utility consumption for cleaning. 

Consequently, the optimal cleaning conditions can improve membrane reactor efficiency in 

terms of operating cost and productivity. 

2.2. Theory 

2.2.1. Kinetic model of transesterification 

The high viscosity of oil extracted directly from the seeds prevents them being used 

in engines as a fuel. There are different processes which can be used to produce biodiesel 

from various feedstocks, such as pyrolysis, micro-emulsification, dilution, and 

transesterification. The transesterification of triglycerides with alcohols, which is catalyzed 

by acid or base, is the most used method in biodiesel production. In commercial production, 

the most commonly used alcohols are methanol and ethanol because of their availability and 

low cost [36]. The large branched triglycerides (TG) reacts with the methanol to produce 

smaller, straight-chain molecules of methyl esters and the by-product of glycerol (GL). The 

transesterification process includes three reversible reactions with intermediate formation of 

diglycerides (DG) and monoglycerides (MG) resulting in the production of 3 mol of fatty 

acid methyl esters (FAME) and 1 mol of GL [37]. The stepwise reactions are as shown in 

equation (2.1), (2.2) and (2.3). 
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𝑇𝐺 + 𝑀𝑒𝑂𝐻

𝑘1
′

→

𝑘2
′

←
𝐷𝐺 + 𝐹𝐴𝑀𝐸  (2.1) 

𝐷𝐺 + 𝑀𝑒𝑂𝐻

𝑘3
′

→

𝑘4
′

←
𝑀𝐺 + 𝐹𝐴𝑀𝐸 (2.2) 

𝑀𝐺 + 𝑀𝑒𝑂𝐻

𝑘5
′

→

𝑘6
′

←
𝐺𝐿 + 𝐹𝐴𝑀𝐸 (2.3) 

The reversible nature of the transesterification process creates at least two problems; 

the reaction time is relatively long, and the product has to be purified due to the presence of 

leftover oil and saponified by-products. With the aim of improving conversion rate and 

efficiency, the relationship of different process conditions, especially in the case of 

membrane reactor, and reaction kinetics has been studied by several researchers. The work 

of Rashid and Anwar (2008) [38] shows that alkaline-catalyzed transesterification is usually 

preferred to acid-catalyzed due to the higher activity and the lower process temperatures 

required. Most industrial biodiesel production processes are using homogeneous basic 

catalysts such as KOH and NaOH because of economic reasons. The ideal temperature for 

alkaline alcoholysis of vegetable oils is at 65 oC which is near the boiling point of methanol. 

A higher temperature should be avoided because it leans to accelerate the saponification of 

glycerides with the base catalyst [38]. Cao et al. (2009) [21] studied the effects of process 

conditions on the rate of transesterification of canola oil in a membrane reactor. The results 

show that reaction kinetics are not affected by the residence time while the increase of catalyst 

loading raises the reaction rate constants. Chong et al. (2013) [23] reported the importance 

of MeOH:oil at the feed side so that methanol becomes the continuous phase and the failure 

of membrane operation in the event of phase inversion if TG becomes the continuous phase. 

The critical point of phase inversion is expressed in terms of volume fraction of methanol 

(MeOH), ФMeOH to TG, ФTG ratio [23]:  

Ф𝑀𝑒𝑂𝐻

Ф𝑇𝐺
= 1.22 (

𝜂𝑀𝑒𝑂𝐻
𝑜

𝜂𝑇𝐺
𝑜 )

0,29

 (2.4) 

The volume fraction ratio of MeOH to TG is calculated as 0.44 if the values for the 

viscosities of pure MeOH, ηMeOH
o and TG, ηTG

o at 333 K are substituted into equation (2.4). 

Thus, the most important process limitation to the membrane reactor is the MeOH to TG ratio 

which should be maintained at ФMeOH/ФTG > 0.44 to prevent phase inversion. With excessive 

amount, methanol is regarded as solvent and other components are regarded as solute [23]. 

Cheng et al. (2010) [22] investigated the effects of the methanol to oil molar ratio and catalyst 

concentration on the reaction kinetics. The work demonstrated that a high conversion can be 

obtained with a molar ratio of MeOH to oil of 24:1 and the ultralow NaOH concentration of 

0.05 wt.%. With the experimental results, Cheng et al. [22] developed a mathematical model 
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for the relationship between reaction rate constants and the catalyst concentration as shown 

in the equation (2.5). 

𝑘′𝑖 = 𝑘𝑖  𝐶 (2.5) 

where the effective reaction constants k’i with i = 1, 2, … 6 is a product of the catalyst 

concentration C and the reaction constants ki. The effect of temperature on the reaction 

constants is expressed by the Arrhenius equations for ki [22]. 

𝑘𝑖 = 𝐴𝑖𝑒
−𝐸𝑎𝑖/𝑅𝑇 (2.6) 

where Ai, Eai, and R are the pre-exponential factor, the activation energy of the reaction and 

the gas constant, respectively. The values of Ai and Eai are as shown in Table 2.1. 

Table 2.1: Activation energies and pre-exponential factors of the NaOH-catalyzed 

transesterification of canola oil [22] 

 TG → DG DG → TG DG → MG MG → DG MG → FAME FAME → MG 

(Ea) 

(J/mol) 

65431.2 58403.2 105093.0 102958.6 92540.5 67587.6 

A 2.0e + 10 0.9e + 10 5.0e + 17 1.7e + 17 2.2e + 15 3.4e + 9 

 

The kinetic model of transesterification in terms of reaction rate for each component 

are presented in equations (2.7) – (2.12) [27]. 

𝑟𝑇𝐺 =
𝑑𝐶𝑇𝐺

𝑑𝑡
= −𝑘1𝐶𝑇𝐺𝐶𝑀𝑒𝑂𝐻 + 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴𝑀𝐸  (2.7)

  

𝑟𝑀𝑒𝑂𝐻 =
𝑑𝐶𝑀𝑒𝑂𝐻

𝑑𝑡
= −𝑘1𝐶𝑇𝐺𝐶𝑀𝑒𝑂𝐻 + 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴𝑀𝐸 − 𝑘3𝐶𝐷𝐺𝐶𝑀𝑒𝑂𝐻 + 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴𝑀𝐸…  

                            … − 𝑘5𝐶𝑀𝐺𝐶𝑀𝑒𝑂𝐻 + 𝑘6𝐶𝐺𝐿𝐶𝐹𝐴𝑀𝐸  (2.8) 

𝑟𝐹𝐴𝑀𝐸 =
𝑑𝐶𝐹𝐴𝑀𝐸

𝑑𝑡
= 𝑘1𝐶𝑇𝐺𝐶𝑀𝑒𝑂𝐻 − 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴𝑀𝐸 + 𝑘3𝐶𝐷𝐺𝐶𝑀𝑒𝑂𝐻 − 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴𝑀𝐸 …  

                            … + 𝑘5𝐶𝑀𝐺𝐶𝑀𝑒𝑂𝐻 − 𝑘6𝐶𝐺𝐿𝐶𝐹𝐴𝑀𝐸   (2.9) 

𝑟𝐷𝐺 =
𝑑𝐶𝐷𝐺

𝑑𝑡
= 𝑘1𝐶𝑇𝐺𝐶𝑀𝑒𝑂𝐻 − 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴𝑀𝐸 − 𝑘3𝐶𝐷𝐺𝐶𝑀𝑒𝑂𝐻 + 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴𝑀𝐸  

 (2.10) 

𝑟𝑀𝐺 =
𝑑𝐶𝑀𝐺

𝑑𝑡
= 𝑘3𝐶𝐷𝐺𝐶𝑀𝑒𝑂𝐻 − 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴𝑀𝐸 − 𝑘5𝐶𝑀𝐺𝐶𝑀𝑒𝑂𝐻 + 𝑘6𝐶𝐺𝐿𝐶𝐹𝐴𝑀𝐸

 (2.11) 

𝑟𝐺𝐿 =
𝑑𝐶𝐺𝐿

𝑑𝑡
= 𝑘5𝐶𝑀𝐺𝐶𝑀𝑒𝑂𝐻 − 𝑘6𝐶𝐺𝐿𝐶𝐹𝐴𝑀𝐸  (2.12) 

where Ci is the concentration and ri is the rate of reaction for component i (namely, TG, 

MeOH, FAME, DG, MG and GL). 
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2.2.2. Filtration model 

The applications of membrane technology in biofuel production are either membrane 

reactors or membrane filtration units as final means of separation and purification. There are 

studies investigating the efficiency of production by membrane separation-reaction systems 

(Dubé et al. (2007) [20], Cheng et al. (2012) [27], and Hapońska et al. (2019) [25]) and the 

reduction of costs of refining and purifying the final product by using membrane separation 

systems (Gomes et al. (2010) [39], Alves et al. (2013) [40], and Noriega et al. (2018) [41]). 

In biodiesel production, the ceramic membrane is commonly applied due to its chemical and 

mechanical resistance to the components involved in the transesterification reaction [42]. 

Ultrafiltration and microfiltration are two most used methods in biodiesel separation [43]. 

Choi et al. (2005) [44] reported that membrane fouling occurs more often in microfiltration 

processes than ultrafiltration processes due to the effect of membrane pore size . If the 

particles have the same or smaller size comparing with the membrane pore size, those 

particles could easily reach and deposit on membrane surface and inside the pores. In 

contrast, the particles could roll off the membrane surface under the shearing force of cross-

flow velocity rather than getting stuck in the pores if the pores are much smaller than the 

particles [44]. Therefore, development and application of membrane technology in biodiesel 

production focuses on ultrafiltration which is environmentally friendly and economically 

attractive [43].   

The equation that describes the ultrafiltration flux is given by the Darcy equation [45]: 

𝐽 =
∆𝑃

𝜇 𝑅𝑡𝑜𝑡𝑎𝑙
 (2.13) 

where J is the filtration permeate flux, µ is the viscosity of the fluid and Rtotal is the total 

resistance of the membrane. Due to the complexity of the fouling phenomenon, the fouling 

resistance is often presented by an empirical or experimental parameter in membrane reactor 

modelling. 

The goal of this chapter is to develop a dynamic model for the membrane reactor with 

fouling resistances that allow an accurate simulation and optimization of the separation-

reaction process. Historically, membrane fouling has been divided into four different patterns 

usually known as blocking filtration laws: (1) pore blocking, (2) standard pore fouling, (3) 

intermediate blocking and (4) cake filtration [46]. Figure 2.1 shows the schematic view of 

four fouling mechanisms.  
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Figure 2.1: Four fouling patterns: (A) pore blocking, (B) standard pore fouling, (C) 

intermediate blocking, and (D) cake filtration [46] 

There are a number of studies into the fouling mechanisms of membrane filtration of 

oil-water systems (Ghaffour (2004) [47], Das et al. (2017) [48], Salama (2019) [49]) and 

vegetable oil (Ariono et al. (2018) [50]). These studies indicate that most of the oil droplets 

accumulate on the membrane surface and contribute to membrane fouling. With the increase 

in the accumulation of droplets at the surface of the membrane, the fouling develops because: 

1) the incoming flux of oil droplets combing with those already at the surface forms a larger 

oil layer, which contribute to the formation of cake layer, and 2) the pinning of droplets onto 

pore openings and the breaking up of droplets inside the pore contribute to pore blocking. 

Therefore, two dominant fouling mechanisms can be identified:  1) pore blocking and 2) cake 

formation which can be used to represent the total resistance. These two fouling phenomena 

occur simultaneously and reduce the area available for the filtration. 

To simplify the model, the pore blocking fouling is considered irreversible fouling 

and cake filtration is reversible fouling. The total resistance, Rtotal, can be expressed as the 

sum of reversible and irreversible fouling. 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑚 + 𝑅𝑐 (2.14) 
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where Rm is the irreversible membrane resistance and considered the sum of intrinsic and 

pore blocking resistance. Rc is the reversible fouling and attributes solely to cake filtration. 

To account for these kinds of fouling, Daniel et al. (2011) [51] developed cake and 

pore fouling models for cross-flow filtration from Hermia’s common characteristic equation 

of flux decay. The assumption is that the irreversible fouling is leads to pore blocking and 

that reversible fouling is cake filtration effect in respect of back-pulsing. The following 

differential equation captures the flux decay for all four fouling mechanisms [51]. 

𝑑2𝑡

𝑑𝑉2 = 𝑘 (
𝑑𝑡

𝑑𝑉
)

𝑛

 𝑜𝑟 
𝑑𝐽

𝑑𝑡
= −𝑘𝐽(𝐴𝐹𝐽)2−𝑛  (2.15) 

where V, t, AF are the permeate volume, time and the filtration area, respectively. k is a 

constant and n is the blocking index, which takes the value of 0 for cake filtration, 1 for 

intermediate blocking, 1.5 for standard blocking and 2 for complete blocking [51]. 

For membrane filtration under pore blocking conditions (n = 2, as used by Daniel et 

al. (2011) [51]), equation (2.15) becomes 

𝑑𝐽

𝑑𝑡
= −𝑘𝑏𝐽 (2.16) 

where kb is a pore blocking associated constant. Daniel et al. (2011) [51] assumed that pore 

blocking (Rm) is the sole fouling mechanism (i.e., Rc = 0) and combined equation (2.16) with 

equation (2.13) and (2.14) to yield 

∆𝑃

𝜇

𝑑(1 𝑅𝑚⁄ )

𝑑𝑡
= −𝑘𝑏𝐽 (2.17) 

Equation (2.17) be further simplified to 

−
1

𝑅𝑚
2

𝑑𝑅𝑚

𝑑𝑡
= −𝑘𝑚𝐽  𝑜𝑟  

𝑑𝑅𝑚

𝑑𝑡
= 𝑘𝑚𝐽𝑅𝑚

2  (2.18) 

where km is the effective capture-rate constant which incorporates permeate viscosity and 

transmembrane pressure. The rate of increase in pore blocking resistance is proportional to 

the filter flux term, J. 

Daniel et al. (2011) [51] proposed that the membrane resistance of cake formation in 

cross-flow filtration was proportional to the flux (kc1J) and the rate of material removal from 

the filter (kc2) due to cross-flow shearing forces. This gives: 

𝑑𝑅𝑐

𝑑𝑡
= 𝑘𝑐1𝐽 − 𝑘𝑐2 (2.19) 

Because two fouling mechanisms occur simultaneously in the membrane reactor, 

equation (2.18) and (2.19) need to be solved together to predict the permeate flux, J. To find 
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a solution, it is assumed that there is an initial flux, J0 associated with initial membrane 

resistance Rm,0. With the assumption that cake fouling does not occur on the membrane 

surface at the start of filtration process, Rc = 0 at t = 0, Rm,0 can be presented as 

𝑅𝑚,0 =
∆𝑃

𝜇 𝐽0
 (2.20) 

To be suitable for simulation and optimization of a separation-reaction process, a 

membrane reactor model should meet the following requirements: (a) capture the dynamics 

of both transesterification and filtration, (b) incorporate variables that can be used to 

control/optimize the process, for example, diameter and length of the reactor, in-feed flow 

rate, pressure, temperature, reaction time and permeate flux limit (c) have only few 

parameters that need to be estimated. 

2.3. Modeling the membrane reactor for biodiesel production 

The membrane reactor model is presented by a process model of a plug flow tubular 

reactor with additional terms of product removal by the effect of membrane filtration. The 

dynamic filtration model plays an important role in the calculation and evaluation of fouling 

effects on the biodiesel production.  

2.3.1 Process model 

Tubular membrane reactors as shown in Figure 2.2 often give a higher conversion 

than conventional batch reactors for the same reaction conditions because the products are 

continuously removed from the reaction. Therefore, they yield a high quantity and purity of 

biodiesel by shifting the reaction equilibrium. 

 

Figure 2.2: A sketch of a membrane reactor for biodiesel production by transesterification 
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The following assumptions are made to limit the complexity of the model. 

a. From the researches of Cheng et al. (2010) [22], Portha et al. (2012) [52] and 

Chong et al. (2013) [23],  the transesterification reactions are only slightly 

exothermic or almost athermic. Therefore, the separation-reaction process is 

assumed to be isothermal. No heat transfer in relation with time was calculated. 

b. The transesterification is a pseudo-homogenous second ordered reversible 

reaction. 

c. The diffusivity and viscosity do not depend on the concentration of the 

components in the fluids. 

d. The fluid is incompressible in nature. 

e. Pore fouling is completely irreversible and cake fouling is completely reversible. 

f. The concentration of the gel layer represents the deposition of a solute which 

becomes both pore and cake fouling. 

g. The fouling resistance and the permeate flux are evenly distributed throughout 

the length of the reactor. 

h. Only the FAME-rich methanol phase can be permeated through the membrane. 

There is no oil in the permeate. 

The model of the membrane reactor presented here is based on the component balance 

over the reaction period, Δt, for six components within the reactor. The general balance 

equation can be written as.  

[

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖

𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡
] = [

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛
𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡

] − [
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑢𝑡

𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡
] ± [

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡

] (2.21) 

The component balance for TG can be written in mathematical terms as 

𝐴𝑐∆𝑧[𝐶𝑇𝐺,(𝑡+∆𝑡) − 𝐶𝑇𝐺,𝑡] = 𝑣𝑧𝐴𝑐𝐶𝑇𝐺,𝑧∆𝑡 − 𝑣𝑧+∆𝑧𝐴𝑐𝐶𝑇𝐺,𝑧+∆𝑧∆𝑡 + 𝑟𝑇𝐺𝐴𝑐∆𝑧∆𝑡 …  

                                         … + 𝐷𝑇𝐺
𝜕𝐶𝑇𝐺

𝜕𝑧
𝐴𝑐∆𝑡 − 𝐶𝑇𝐺,𝑔𝑒𝑙 𝐽𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒∆𝑡 (2.22) 

where J is the permeate flux which can be determined by filtration model, CTG is the 

concentration of TG in the reactor, v is the axial velocity of the medium, Ac is the cross 

sectional area of the membrane, DTG is the axial diffusion coefficient of TG in MeOH and 

CTG,gel is concentration of TG in the gel layer. 
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The gel layer concentration can be calculated by using the film theory, which is a 

simple and commonly used theory for modeling flux in pressure independent, mass transfer-

controlled systems. The relation between the concentration of TG in the bulk media and gel 

layer is presented by equation (2.23) [45]. 

𝐶𝑇𝐺,𝑔𝑒𝑙 = 𝐶𝑇𝐺 𝑒𝑥𝑝 (
𝐽

𝐾
) (2.23) 

where K is the mass transfer coefficient which is determined by the flow regime of the media 

in the reactor. For turbulent flow, when Re > 4000, K can be calculated by equation (2.24) 

and for laminar flow by equation (2.25) [45]. 

𝐾 = 0.023 (
𝐷0.67𝑣0.8𝜌0.47

𝑑ℎ
0.2𝜇0.47 ) (2.24) 

𝐾 = 1.86 (
𝐷0.67𝑣0.33

𝑑ℎ
0.33𝐿0.33) (2.25) 

where D is the diffusion coefficient, v is cross flow velocity, ρ is the density, dh is the 

hydraulic diameter (membrane internal diameter in this case) and L is the length of the 

reactor. It is the basic assumption in the film theory that the mass transfer coefficient is 

constant as the bulk concentration increases [45]. 

The balance equation of component i (i = MeOH, FAME, DG, MG, GL) which 

permeates through the membrane can be described by the expression 

𝐴𝑐∆𝑧[𝐶𝑖,(𝑡+∆𝑡) − 𝐶𝑖,𝑡] = 𝑣𝑧𝐴𝑐𝐶𝑖,𝑧∆𝑡 − 𝑣𝑧+∆𝑧𝐴𝑐𝐶𝑖,𝑧+∆𝑧∆𝑡 + 𝑟𝑖𝐴𝑐∆𝑧∆𝑡 …  

                                   … + 𝐷𝑖
𝜕𝐶𝑖

𝜕𝑧
𝐴𝑐∆𝑡 − 𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒  𝐽∆𝑡 (2.26) 

where Ci,permeate is the concentration of component i in the permeate stream. 

Using the boundary layer film model by assuming that a thin layer of unmixed fluid 

with thickness δ separates the region of higher concentration near the membrane surface and 

the uniform concentration bulk solution, the mass balance equation between solutions in the 

bulk and the permeate can be written as [53] 

𝐶𝑖,𝑜−𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑖,𝑏𝑢𝑙𝑘−𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒
= 𝑒𝑥𝑝 (

𝐽𝛿

𝐷𝑖
) (2.27) 

where Ci,bulk and Ci,o are the concentrations of solute in the bulk solution and at the membrane 

surface, respectively. 
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The enrichment factor, E, and the intrinsic enrichment of the membrane without the 

boundary layer, Eo, can be defined as following 

𝐸 =
𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑖,𝑏𝑢𝑙𝑘
 (2.28) 

𝐸𝑜 =
𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑖𝑜
 (2.29) 

And Equation (2.27) can be written as 

𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑖,𝑏𝑢𝑙𝑘
=

𝐸𝑜𝑒𝑥𝑝(
𝐽𝛿

𝐷𝑖
)

1+(𝑒𝑥𝑝(
𝐽𝛿

𝐷𝑖
)−1)𝐸𝑜

 (2.30) 

In the equation (2.30), the diffusion coefficient of a component i in a solvent, Di, is 

calculated in the Appendix A-2.1 

The flow rate balance of membrane reactor’s section is presented as 

𝐹𝑧 = 𝐹𝑧+∆𝑧 + 𝐹𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒   (2.31) 

where Fz and Fz+Δz are the flow rate of medium at the input and output of the section. Fpermeate 

is the flow rate of the permeate stream through membrane section with length Δz. 

Equation (2.31) can be written is term of fluid velocity as 

𝑣𝑧𝐴𝑐 = 𝑣𝑧+∆𝑧𝐴𝑐 + 𝐽𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 (2.32) 

Or 

𝑣𝑧+∆𝑧 = 𝑣𝑧 −
2

𝑅
∙ 𝐽 ∙ ∆𝑧 (2.33) 

where R is the membrane internal radius and Amembrane is the area of membrane and defined 

by equation (2.34) 

𝐴𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 = 2𝜋𝑅∆𝑧 (2.34) 

2.3.2.  Solution method 

The MATLAB® Genetic Algorithm (GA) is a solver for smooth or non-smooth 

optimization problems with any types of constraints, including integer constraints [54]. This 

algorithm inspired by Charles Darwin’s theory of natural evolution which includes the 

principles of survival of fittest. GA simulates the natural evolutionary process by modifying 

a population of individual solutions. Over successive generations, the population evolves 

toward an optimal solution. Therefore, GA represents an intelligent exploitation of a random 

search within a defined search space to solve a problem [55]. 
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The filtration model (equations 2.13, 2.14, 2.18, 2.19 and 2.20) contains three 

unknown rate constants km, which represents the rate of pore blockage or irreversible fouling, 

kc1, and kc2, that represent the rate of formation and removal of cake layer or reversible 

fouling. Estimation of these constants from experimental data is conducted with the use of 

Matlab® genetic algorithm function (ga). In this case, the Matlab® GA solver determines the 

values of km, kc1, and kc2 that minimize the fitness function, which is the sum of squared errors 

(SSE) defined by equation 2.35 [56]. 

∑ (𝑑𝑖)
2

𝑖 = ∑ (𝐽𝑖 − 𝐽𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡,𝑖)
2

𝑖    (2.35) 

where di is the absolute error, sometimes called the residual, Ji is the measured data of 

permeate flux and Jexperiment,i is the predicted result of the model. 

The values of Rm and Rc are numerically calculated by using Matlab® tool ode45. 

The permeate flux, J, is then predicted as a function of time by the Matlab® curve fitting 

toolbox. At the end of a production cycle which is evaluated in this study, the backwashing 

process is performed and the value of Rc is reset to zero. The value of Rm at the end of current 

cycle becomes the new Rm,0 of the next cycle. 

The production process of the membrane reactor includes many production cycles. 

When the value of J reaches a pre-determined flux limit which marks the end of a production 

process, the reactor needs to be stopped for chemical cleaning to restore its productivity. 

By rearrangement and combination with equations (2.22), (2.29) and (2.33), the 

component balance equations (2.21) and (2.25) of TG and five other components (MeOH, 

FAME, DG, MG and GL) can be written in terms of a system of partial differential equations 

(PDEs). 

𝜕𝐶𝑇𝐺

𝜕𝑡
= −𝑣𝑧+∆𝑧

𝜕𝐶𝑇𝐺

𝜕𝑧
+ 𝐷𝑇𝐺

𝜕2𝐶𝑇𝐺

𝜕𝑧2 + 𝑟𝑇𝐺 −
2

𝑅
𝐽 (𝑒𝑥𝑝 (

𝐽

𝐾
) 𝐶𝑇𝐺 − 𝐶𝑇𝐺,𝑧) (2.36) 

𝜕𝐶𝑖

𝜕𝑡
= −𝑣𝑧+∆𝑧

𝜕𝐶𝑖

𝜕𝑧
+ 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑧2 + 𝑟𝑖 −
2

𝑅
𝐽 (

𝐸𝑜𝑒𝑥𝑝(
𝐽 𝛿

𝐷𝑖
)

1+𝐸𝑜[𝑒𝑥𝑝(
𝐽 𝛿

𝐷𝑖
)−1]

𝐶𝑖 − 𝐶𝑖,𝑧) (2.37) 

The intrinsic enrichment factor, Eo, is estimated by using Matlab® GA solver with the 

fitness function being SSE of the calculated and experimental total permeate productivity. 

The membrane reactor PDEs can be solved with Matlab® PDE solver, which is called pdepe, 

with the Danckwerts boundary conditions at the reactor inlet and outlet [57]. The total 

permeate productivity, mpermeate, of the membrane reactor can be calculated according to 

𝑚𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒 = ∑ 𝐶𝑖,𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒𝑀𝑖𝐹𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒𝑖    (2.38)  

where Ci,permeate is the concentration of component i (i = MeOH, FAME, DG, MG, GL) in the 

permeate stream which are from the results of equations 2.29, 2.36 and 2.37; Mi is the 
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molecular weight of component i and Fpermeate is the flow rate of the permeate stream through 

the total membrane area. 

2.4. Membrane cleaning model 

The membrane cleaning model can predict the state of cleaning chemical, reversible 

and irreversible fouling as functions of time, washing flow and chemical inlet concentration. 

The cleaning model is capable of characterizing the effects of backwashing and chemical 

cleaning by combining with a membrane reactor model. 

2.4.1. Model development 

The membrane cleaning model is developed basing on the relationship of the fouling 

resistances, the cleaning flow and the reaction between a cleaning chemical and the 

irreversible fouling material [33]. The fouling state of the membrane xf(t) is related to the 

fouling resistance according to: 

𝑥𝑓(𝑡) =
𝑅𝑓(𝑡)

𝑅𝑓
′   (2.39) 

where Rf(t) is the fouling resistance during cleaning at a specified pressure and R’f is the 

fouling resistance at the beginning of the cleaning. 

Backwashing is commonly used to enhance the permeate flux by periodically 

removing the reversible fouling. The outlet of the permeate channel is closed, and the 

permeate is pumped back to the feed channel of the membrane module, thus, lifting the 

fouling off the membrane surface [29]. The decay of the reversible fouling state, xf,r, is 

described by: 

𝑑𝑥𝑓,𝑟

𝑑𝑡
= −𝑘𝑟 ∙ 𝐹𝑟 ∙ 𝑥𝑓,𝑟 (2.40) 

where kr is the correlation constant between the removal of fouling layer and fouling 

resistance and Fr is the dimensionless reversal permeate flow: 

𝐹𝑟 =
𝐹𝑟,𝑖𝑛

𝐹𝑟,𝑟𝑒𝑓
 (2.41) 

where Fr,in and Fr,ref are the pumped flow at the inlet of the permeate channel and the reference 

flow based on the pump capacity. 

Chemical cleaning is applied when the irreversible fouling that the backwashing 

cannot remove reaches a critical level. A typical chemical cleaning process includes physical 

washing with high-temperature solvent or water and dissolving the foulant with a chemical 
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reaction. The change of irreversible fouling state, xf,ir, during the chemical cleaning is 

represented as [33]: 

𝑑𝑥𝑓,𝑖𝑟

𝑑𝑡
= −𝑘𝑖𝑟 ∙ 𝐹𝑖𝑟 ∙ (𝑥𝑓,𝑖𝑟 − 𝑥𝑓,∞) − 𝑟𝑐  (2.42) 

Where xf,∞ is the fouling state of the membrane at infinite cleaning time, kir is the physical 

washing constant and Fir is the dimensionless washing flow calculated from the inlet flow of 

the chemical cleaning stream Fir,in and the reference flow Fir,ref: 

𝐹𝑖𝑟 =
𝐹𝑖𝑟,𝑖𝑛

𝐹𝑖𝑟,𝑟𝑒𝑓
 (2.43) 

The reaction between the irreversible fouling and cleaning chemical is assumed to be 

first order. The reaction rate, rc, is calculated by: 

𝑟𝑐 = 𝑘′1 ∙ 𝑥𝑐 ∙ (𝑥𝑓,𝑖𝑟 − 𝑥𝑓,∞) (2.44) 

where k’1 is the reaction rate constant and xc is the state of the cleaning chemical which is 

dimensionless and defined by the concentration of cleaning chemical at the start, Cchemical,0 

and during the cleaning, Cchemical(t). 

𝑥𝑐(𝑡) =
𝐶𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙(𝑡)

𝐶𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙,0
 (2.45) 

The state of the chemical agent during the cleaning process is defined as [33]: 

𝑑𝑥𝑐

𝑑𝑡
= 𝑘𝑖𝑟 ∙ 𝐹𝑖𝑟 ∙ (𝑥𝑐,𝑖𝑛 − 𝑥𝑐) − 𝑛𝑐 ∙ 𝑟𝑐  (2.46) 

where xc,in is the state of chemical cleaning at the inlet of membrane module and nc is a 

pseudo-stoichiometric constant for the fouling decomposition. 

2.4.2. The cleaning cost 

The cost of cleaning can be determined from production loss, energy and chemicals 

consumption. The cost relating to biodiesel loss during the cleaning time, CostBD, is 

calculated as: 

𝐶𝑜𝑠𝑡𝐵𝐷 = 𝑚𝑓,𝑎𝑣 ∙ 𝑡𝑐 ∙ 𝑊𝐵𝐷 (2.47) 

where mf,av is the average mass flow of biodiesel produced from the membrane reactor, tc is 

the cleaning duration, and WBD is the price of biodiesel. The energy consumption includes 

the pumping and heating of cleaning fluid. The cost of energy, CE, is a function of the washing 

stream, Fir,in, specific pumping energy consumption, EP, and specific heating energy 

consumption, EH. The energy cost is presented as: 
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𝐶𝑜𝑠𝑡𝐸 = 𝐹𝑖𝑟,𝑖𝑛 ∙ 𝑡𝑐 ∙ 𝑊𝐸 ∙ (𝐸𝑃 + 𝐸𝐻) (2.48) 

where WE is the price of energy. The cost of cleaning chemicals, CostC, is defined as: 

𝐶𝑜𝑠𝑡𝐶 = 𝐹𝑖𝑟,𝑖𝑛 ∙ 𝑡𝑐 ∙ 𝑊𝐶 ∙ 𝐶𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙,𝑖𝑛 (2.49) 

where WC is the price of chemical and Cchemical,in is the concentration of cleaning chemical at 

the inlet. 

2.4.3.  Model solution 

The filtration model above can be used to predict the value of reversible and 

irreversible fouling resistances over time and at the end of a filtration cycle, that will be the 

initial values of the cleaning model. The cleaning model parameters kr, kir, k’1 and nc can be 

estimated from experiments and simulation data. 

The model is solved with the ODE45 solver of Matlab®. The results of the cleaning 

model are used to estimate the cleaning time and chemical consumption that contribute to the 

cleaning cost. The states of fouling after cleaning are the initial condition for a new operation 

cycle of the membrane reactor. This data can be used to calculate the biodiesel production 

per cycle by using the membrane reactor model as proposed in section 2.3. The results are 

useful to evaluate long term effects of backwashing and the operating cycle on the membrane 

reactor’s productivity and irreversible fouling accumulation.   

2.5. Case study 

2.5.1. System definition 

First, the membrane reactor model is fitted by adjusting the values of the parameters 

to the experimental data. Subsequently, to test the predictive capabilities of the model, 

simulations are carried out to check the membrane reactor performance in terms of the 

permeated biodiesel flux at experimental conditions. 

The developed model is applied to simulate an experimental membrane reactor in 

biodiesel production from the work of Cheng et al. (2012) [27]. The transesterification 

experiment was conducted in a system of a membrane reactor integrated with a pre-reactor. 

The experimental feedstocks including canola oil and its biodiesel come from Taiwan NJC 

Corporation. The operating conditions of the membrane reactor were controlled at methanol 

to oil molar ratio in the feed of 24:1, the catalyst (NaOH) concentration to the oil of 0.05wt% 

at 65 oC. The data of the tube ceramic membrane reactor are as shown in Table 2.2 [27]. 

Table 2.2: The parameters of the tubular membrane reactor [27]. 
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The membrane reactor Range 

Feed flow rate (Ffeed, L/min) 0.2 

Number of tubes (N) 1 

Inner radius of the membrane tube (R, mm) 4.2 

Length of membrane tube (L, m) 0.6 

Transmembrane pressure (ΔP, kPa) 12.67 

 

The results of the experiment carried out by Cheng et al. (2012) are shown in Figures 

2.3 and 2.4 [27]. The experimental data shows that the permeate is free of TG and the FAME 

concentration increases while the MeOH concentration decreases with the increase of the 

operating time [27]. The permeate compositions and total productivity of the membrane tube 

length 0.6 m are used to estimate the parameters of the membrane reactor in this work. 

 

Figure 2.3: The permeate composition of TG, FAME and MeOH over the operating time of 

the membrane reactor with the tube length 0.6 m [27] 
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Figure 2.4: The total permeate productivity over the operating time of the membrane 

reactor with different tube lengths [27] 

2.5.2. Results  

To determine three adjustable parameters: km, kc1, and kc2, the combined-fouling flux 

model was fitted against the actual measured flux data by using genetic algorithm function 

of Matlab® as shown in Figure 2.5. The values of these parameters are 1.48 x 10–12, 4.5 x 1014 

(m−2) and 1.03 x 107 (m−1 s−1) for km, kc1, and kc2, respectively. 
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Figure 2.5: Comparison between the experimental data and calculated results by using the 

filtration model 

The ANOVA table for the residual analysis is provided in Table 2.4 [56]. The R-

squared (R2) value between the calculated values and experimental data in Table 2.3 indicates 

that there is a good agreement between data and model. 

Table 2.3: ANOVA table for the filtration model 

Source  Degrees of freedom Sum of squares F-value R2 

Regression  3 SSR = 1.34 x 10–12  15.7 0.9575 

Residual  2 SSE = 5.71 x 10–14   

Total  5 SST = 1.17 x 10–12   

 

From the experimental data of membrane reactor productivity, the membrane intrinsic 

enrichment constant, Eo, is estimated a value of 1.09. Figure 2.6 shows the comparison 

between the model prediction generated by using Eo to the experimental values of reactor 
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productivity. The statistical analysis data reported in Table 2.5 shows that the proposed model 

was capable to model the experimental data over the entire process of separation-reaction. 

 

Figure 2.6: Comparison of experimental data of the total permeate productivity of the 

membrane reactor to the results of the model using estimated Eo 

Table 2.4: ANOVA table for the membrane reactor model 

Source  Degrees of freedom Sum of squares F-value R2 

Regression  1 SSR = 0.04469  86.12 0.9535 

Residual  4 SSE = 0.002   

Total  5 SST = 0.0387   

 

Figures 2.5 and 2.6 show the serious effect of membrane fouling on the reactor’s 

performance. The permeate flux and productivity reduce by a factor 2, during the 50 minutes 

of operation. To restore the original flux, the membrane reactor needs to be cleaned by 

backwashing and chemical cleaning i.e., to remove reversible fouling and irreversible 

fouling. The results of the reversible fouling resistance, Rc, and the irreversible fouling 

resistance, Rm, are calculated from the model and allow to simulate the cleaning effects on 



32 

 

the membrane reactor operation. The backwashing process is simulated by assuming that Rc 

= 0 after backwashing and that Rm = Rm,0 for the next production cycle. The final value of the 

irreversible fouling resistance can be used in a follow-up study to simulate and evaluate the 

chemical cleaning process. 

One of the intended uses of the model developed in this chapter is to assess optimal 

backwashing conditions. To achieve this, the effect of reaction time was evaluated. A 

permeate flux limit of the membrane reactor of 2.39 x 10–6 m3/m2s and a back washing 

duration of 1 minute are assumed [58]. The relationship between membrane fouling, 

permeate flux and FAME yield from membrane reactor for experimental conditions is shown 

in the Figure 2.7. It is found that the FAME production decreases with an increase of the 

membrane fouling. The simulated results show the effect of backwashing on the restoration 

of the flux. However, the FAME yield of each production cycle is less than the previous one 

because of increasing of irreversible membrane fouling. 
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Figure 2.7: Simulation of biodiesel production process with a production cycle of 50 

minutes: A) The permeate flux, B) the fouling resistance and C) the FAME yield of each 

cycle 
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Table 2.5 shows the effect of changing the duration of an operating cycle where the 

FAME productivity and the irreversible fouling for each test case from 15 to 70 minutes per 

cycle with a step of 5 minutes is shown. As can be seen, the FAME productivity increases 

when the duration of operating cycle is reduced or the backwashing frequency is increased. 

The total FAME production from the reactor increases from 164.05 g at low frequency (< 0.5 

backwashing per hour) to 415.74 g at high frequency (> 3.5 per hour). However, the operating 

time is longer with a higher backwashing frequency leading to a higher irreversible fouling 

resistance at the end of the membrane operation. 

Table 2.5: Simulation results for the membrane reactor model 

Operating 

cycle (min) 

Operating 

time (min) 

Total FAME 

production (g) 

Number of 

backwashing 

FAME production 

rate (g/min) 

Irreversible fouling 

resistance (1/m) 

70 141 164.05 1 1.172 6.59 x 1012 

65 197 226.42 2 1.161 7.38 x 1012 

60 182 214.04 2 1.189 7.21 x 1012 

55 223 260.53 3 1.184 7.91 x 1012 

50 254 295.88 4 1.183 8.53 x 1012 

45 275 320.88 5 1.188 9.04 x 1012 

40 286 336.16 6 1.200 9.39 x 1012 

35 323 375 8 1.190 10.38 x 1012 

30 309 367.42 9 1.225 10.19 x 1012 

25 337 396.91 12 1.221 11.06 x 1012 

20 335 399.48 15 1.248 11.16 x 1012 

15 351 415.74 21 1.260 11.73 x 1012 

 

The correlation between the FAME production rate, irreversible fouling resistance 

and the operating cycle is shown in Figure 2.8. The results proof that the production rate 

decreases with the irreversible fouling resistance. This irreversible fouling is only recovered 

by cleaning the membrane reactor with a suitable chemical agent. To identify the optimized 

operating conditions for the reactor, the productivity needs to be considered together with 

maintenance costs such as power and lost production during backwashing and chemical 

cleaning. The simulation and analysis were performed with the data from the bench-scale 

system. However, the system parameters for the full-scale system may be measurably 

different. 
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Figure 2.8: Effect of the backwashing frequency on the FAME productivity and membrane 

irreversible fouling resistance 

The filtration model was validated with the experimental data of biodiesel production 

in a membrane reactor from [27]. The constants of the chemical cleaning model were 

estimated from a cleaning simulation based on an experimental cleaning curve of an 

ultrafiltration membrane [33]. The cleaning model parameters are shown in Table 2.6. 

Table 2.6: Parameters of the cleaning model 

Parameter kr kir k’1 nc 

Cleaning model 0.0055 (s−1) 1.026 x 10-4 (s−1) 0.1415 (s−1) 0.4566 (s−1) 

To determine the chemical cleaning duration, it is assumed that the chemical cleaning 

will reduce 100 % of irreversible fouling resistance. The inlet flowrate of cleaning fluid is 2 

times the normal flowrate of filtration to ensure the removal of foulant, Fir,in = 0.4 L/min. The 

cleaning chemical is sodium hydroxide 1 % Wt. and the cleaning temperature is 70 oC. 

The relationship between the number of backwashes per hour with the irreversible 

fouling and chemical cleaning duration is shown in the Figure 2.9(a). The graphs show that 

more irreversible fouling accumulates with shorter operating cycle or higher number of 

backwashes per hour, demanding longer chemical cleaning times. However, Figure 2.9(b) 

shows that the estimated cleaning cost per tonne of biodiesel is increasing with the increase 

of operating cycle. The reason is that the biodiesel production rate and the total production 

time rise with more backwashing occurred during the operation. 
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a)  

b)  

Figure 2.9: The relation between the backwashing frequency and (a) the irreversible 

fouling and the chemical cleaning time; (b) the cleaning cost per ton of FAME produced 

The results show that the cleaning cost per t of biodiesel is reduced from 745 to 482 

EUR/t by reducing the operating cycle from 70 min to 25 min. However, the cleaning cost of 

the membrane reactor cannot be reduced further when the operating cycle reduces from 25 

min to 15 min or the number of backwashes increases from 2 to 4h. The biodiesel production 

rate only slightly increases as compared to the accumulation rate of fouling. This can be 

explained by the fact that the membrane reactor nearly reaches its capacity limit, which can 
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be risen by increasing the filtration area or using different membrane materials. The 

prolonged chemical cleaning time will reduce the membrane lifetime. 

2.6. Conclusions 

A novel model of the membrane reactor with dynamic membrane fouling and a 

dynamic cleaning model which defines the cleaning and fouling states as functions of time, 

cleaning flow, reversible and irreversible fouling resistances is developed for 

transesterification in biodiesel production. Experimental data from literature shows good 

agreement with the model outcomes. The cleaning model is proven that it is an important 

tool in combination with the membrane reactor model to improve the potential of membrane 

reactor in biodiesel production by reducing operating cost. 

The models provide insights in the effects of membrane fouling and cleaning on the 

membrane reactor, which can be used to improve the productivity of biodiesel. Based on the 

results of different operating cycles, several conclusions can be drawn from this work: 

The model of reversible and irreversible fouling can be effectively applied to evaluate 

the productivity of the membrane reactor in the short term (reversible fouling) and long term 

(irreversible fouling). The reactor productivity and operating time increase with decreasing 

operating cycle duration, from 1.17 g per minute and 141 minutes at a 70-minute operating 

cycle (or 1 backwashing per 2 hours) to 1.26 g per minute and 351 minutes at a 15-minute 

operating cycle (or 3 backwashing per hour). 

The membrane fouling has a profound effect on the reactor productivity as irreversible 

fouling accumulates during operating time even with backwashing and forces the production 

to stop for chemical cleaning. An operating cycle which balances between cleaning cost and 

time, and productivity can be determined as 25 min. The cleaning cost per weight of biodiesel 

produced was reduced 35 % when the operating cycle decreased from 70 min to 25 min. 

At the level of a single equipment, the membrane reactor has several advantages over 

traditional reactors. However, the reactors need to be place in the context of an entire 

production process or process level to evaluate precisely their technical and economic effects. 

The next chapter presents the membrane reactor and other reactors in a biodiesel production 

superstructure which is a process systems engineering tool for optimization at process level. 

2.7. Nomenclature  

A  pre-exponential factor 

Ac  membrane cross sectional area (m2) 

AF  membrane filtration area (m2) 
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Amembrane  membrane surface area (m2) 

C  concentration (mol m–3) 

Cchemical,in  chemical inlet concentration (mol m–3) 

CostBD/E/C cost of biodiesel loss/energy/chemical (EUR) 

D  diffusion coefficient (m2 s−1) 

dh  hydraulic diameter (m) 

E  enrichment factor 

Ea  reaction activation energy (J) 

EH  specific heating energy (kW m–3) 

Eo  membrane intrinsic enrichment constant 

EP   specific pumping energy (kW m–3) 

F  flow rate of medium (m3 s−1) 

Fir   chemical cleaning flow (m3 s−1) 

Fr   backwashing inlet flow (m3 s−1) 

J  permeate flux (m s−1) 

J0  initial flux (m s−1) 

K  mass transfer coefficient (m s−1) 

k  reaction rate constant (m3 mol−1 s−1) 

kc1  effective cake-deposition constant for fouling model (m−2) 

kc2  effective cake-erosion constant for fouling model (m−1 s−1) 

km  effective pore-blocking constant for fouling model 

L  length of membrane (m) 

M  molecular weight (g mol–1) 

mf,av  biodiesel average mass flow (kg s–1) 

mpermeate  total permeate productivity (kg h–1) 
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ΔP  transmembrane pressure (kPa) 

r  reaction rate (mol s–1) 

R  universal gas constant (= 8.314, J K−1 mol−1) 

Rc  reversible fouling resistance (m−1) 

Rm  irreversible fouling resistance (m−1) 

Rm,0  initial membrane resistance (m−1) 

Rtotal  total membrane resistance (m−1) 

t  time (s) 

tc   cleaning duration (s) 

T  temperature (K) 

v  fluid velocity (m s−1) 

V  solute molar volume at normal boiling point (m3 kmol−1) 

WBD/C  price of biodiesel/chemical (EUR kg–1) 

WE  price of energy (EUR kg–1) 

xc   cleaning chemical state, - 

xf   membrane fouling state, - 

δ  concentration polarization layer thickness (m) 

η  kinematic viscosity (m2 s–1) 

µ  dynamic viscosity (Pa.s) 

ρ  fluid density (kg/m3) 

ϕ  association constant for solvent 

Ф  volume fraction 
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3. Promising future for biodiesel: 

Superstructure optimization from feed to 

fuel 
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Abstract  

A superstructure is a collection of numerous alternative feedstock and equipment 

options that combine to form various possible process flowsheets. The superstructure can be 

formulated as a mathematical model by using variables, equations and constraints to describe 

its options and flowsheets. The best flowsheet for predefined criteria and constraints can be 

identified by solving the model with optimization software tools [59]. 

This chapter presents a superstructure model which encompasses a wide range of 

feedstock (e.g., waste cooking oil, tallow, rapeseed oil and algae), conventional reaction and 

separation equipment (e.g., continuous stirred tank reactor, decanter and vacuum distillation) 

and intensified operation units such as membrane reactor and reactive distillation column. 

The superstructure model is used for the optimization of the biodiesel production in terms of 

total profit, production cost, energy requirement and value of by-product glycerol. The heat 

integration of the superstructure model is a novel feature which allows further reduction of 

utility costs and energy requirement of the biodiesel production. 

The superstructure model is implemented in Advanced Interactive Multidimensional 

Modeling (AIMMS) as Mixed-Integer Nonlinear Programming (MINLP). Three case studies 

are tested to verify the superstructure model, identify the optimal production route from 

feedstock to biodiesel and test the economic feasibility of the membrane reactor.  

The results present an optimal design of a biodiesel production process from waste 

cooking oil and tallow with a heterogeneous acid catalyst, a reactive distillation column and 

additional purification steps for producing pure glycerol which is 40% higher in price than 

technical glycerol. The total annual profit of the biodiesel production from waste cooking oil 

is 2,619,038  USD and from tallow is 3,539,025 USD. The membrane reactor is a potential 

technology. However, it has negative annual profit, -2,007,646.1 USD, thus requiring more 

improvement in term of biodiesel yield. 

From the results, the combination of feedstock selection and implementation of 

advanced processing technologies to improve biodiesel production can be achieved with the 

superstructure optimization method. 
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3.1. Introduction  

The feedstocks are critical to the economic feasibility of biodiesel production because 

approximately 80% of biodiesel production cost comes from raw material costs [9]. The first 

generation feedstocks such as vegetable oils are generally expensive and lead to food concern 

[8]. Thus, the research of economic feedstocks for second- and third-generation biodiesel has 

become more important. 

Besides the feedstocks, taking advantages of process intensification technologies in 

production can reduce the biodiesel cost. For instance, intensified reactor designs which 

combine reaction and separation into one operation unit have been developed to improve 

biodiesel conversion and purity. Catalytic reactive distillation process has many benefits for 

biodiesel production such as lower equipment and operating cost, high productivity and 

reduced waste [60]. Membrane reactor is a process intensification option which integrates a 

membrane separation into a cross-flow reactor to produce higher quality biodiesel than 

conventional reactors [26]. Supercritical methods present alternative biodiesel production 

routes without using a catalyst. Supercritical methanol as a reactant is a popular method 

which requires few equipment and can use both clean and used oil as feedstock [61].  

In addition to the reaction, the purification process plays an important role in biodiesel 

production as it accounts for 60-80% of the total processing cost [11]. Therefore, the 

optimization of a biodiesel purification process has become an important research topic. For 

example, several biodiesel purification scenarios have been simulated and analysed to 

identify the optimal biodiesel production process from soybean oil [62]. 

To design an optimal biodiesel production process, two methods are commonly used: 

the heuristic approach and the superstructure-based approach. The heuristic approach is based 

on rules derived from experience and understanding of unit operations while the 

superstructure approach is based on optimization algorithms and mathematical models to 

identify the optimal process from all possible alternatives [59]. A disadvantage of the 

heuristic approach is that the interaction between different process stages and levels of detail 

is difficult to capture. The superstructure approach solves design problems simultaneously as 

a mathematical programming problem and therefore does not have this disadvantage [63]. 

Superstructure optimization has become more popular in recent researches of 

biochemical process design. AlNouss et al. (2019) used superstructure optimization to 

develop an economic and environmentally friendly gasification process, which produces 

fuels, fertilizers, and power from multiple biomass sources [64]. Galanopoulos et al. (2019) 

developed a superstructure framework for optimizing the design of an integrated algae 

biorefinery which can reduce the cost of biodiesel production up to 80% [14]. Kenkel et al. 

(2021) presented an open-source generic superstructure optimization for modelling and 
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optimizing of production process which is applied to design a cost optimal plant which 

produced methanol from captured CO2 [65]. However, superstructures for biodiesel 

production are usually generalized with a minimum numbers of operating units and a 

simplified glycerol purification process. 

Most of published studies focused mainly on one aspect between finding inexpensive 

feedstock and developing optimal processes for biodiesel production. A combined strategy 

of economic feedstock and innovative processes for biodiesel production has not been 

addressed adequately. 

Therefore, in this chapter a superstructure model which connects appropriate 

feedstock selection with process synthesis is developed. In addition to the biodiesel 

production, the superstructure model comprises glycerol treatment options to increase the 

value of the by-product. Also, novel heat integration functions for further energy savings are 

setup and tested. With this superstructure model, an optimization is conducted for a 

production process from feedstock to biodiesel and glycerol. The results of this work will be 

compared to different biodiesel production processes from the literature [66]. 

3.2. Superstructure development 

3.2.1. Problem statement 

Given : 

The different options for feedstock and reactants with their initial flowrates and 

compositions, the reaction- and separation equipment with their technical and economic 

specifications for producing and purifying biodiesel and glycerol.  

Under conditions that: 

1) Each option is assigned a binary logical decision variable which takes the value of 

1 if the option is chosen and 0 if not chosen. 

2) The options are connected to form possible processing routes by logical constraints. 

3) The input and output flowrates of each option are calculated by mass balance 

constraints. 

4) The utility requirement can be estimated from the heating, cooling and electricity 

requirement of each option which are calculated based on its flowrates and technical 

specifications. 

5) The economics of an option including capital investment and operating costs is 

calculated from flowrate and utility consumption.  
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6) A heat integration function which is capable of matching hot and cold streams is 

integrated for further reduction of heating and cooling requirements.  

Decide: 

The superstructure optimization problem decides the optimal biodiesel feedstock and 

processing route while complying with logical, mass and energy constraints, and European 

Union (EU) standards of biodiesel product, EN 14214.  

Objective: 

To maximize the total profit of the biodiesel refinery and minimize environmental 

impacts in terms of utility consumptions and by-product improvement. 

3.2.2. Superstructure topology 

The superstructure has total 68 technical options which are related to 68 binary 

decision variables. The superstructure is presented by two parts: The first part has 54 possible 

options for the biodiesel production and the second part has 14 options for glycerol treatment. 

Figure 3.1 presents the first superstructure part for the biodiesel production from three 

generations of feedstocks such as rapeseed oil and canola oil (first generation), waste cooking 

oil, tallow and linseed oil (second generation), and algae oil (third generation). For reaction, 

continuous stirred tank reactor (CSTR), reactive distillation (RD) column and membrane 

reactor (MR) with different catalysts and supercritical operating conditions are included. For 

separation, options are vacuum distillations, decanters, acid and base neutralization reactors, 

water washing columns and hydrocyclones. After purification, the product stream has 96.5 

wt.% FAME.  
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Figure 3.1: The superstructure for biodiesel production 

In Figure 3.2, the second part of the superstructure for glycerol can be used to decide 

the treatment process depending on the quality of glycerol input and desired output. 

Depending on its initial purity, the glycerol separated from the biodiesel production can be 

disposed as a waste or purified further to sell as crude glycerol (~80 - 98 wt.%), technical 

glycerol (~98 - 99.5 wt.%) and pure glycerol (> 99.5 wt.%) [67]. 

A complete description of superstructure options with reference capacity, chemical 

engineering index and equipment size exponent can be found in Appendix A-3.1.  
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Figure 3.2: The superstructure for glycerol treatment 

3.2.3. Mathematical model 

Each option j of the superstructure has an infeed stream, F, and a reactant stream, R, 

which come in, and a product stream, P, and a waste stream, W, which come out, as shown 

in Figure 3.3. The product stream of an option will be the feed stream of the next option on 

the same process route. 

 

Figure 3.3: The illustration of streams which come in and out of a unit in the superstructure 
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The mathematical model includes mass balances of component k in each option j as 

shown in equations 3.1 and 3.2. 

𝑚𝑗,𝑘
𝑃 = (𝑚𝑗,𝑘

𝐹 + 𝑚𝑗,𝑘
𝑅 + 𝑀𝑘 ∙ 𝐸𝑅 ∙ 𝛼𝑘) ∙ 𝑆𝐹𝑗,𝑘 ∙ 𝑦𝑗  (3.1) 

𝑚𝑗,𝑘
𝑊 = (𝑚𝑗,𝑘

𝐹 + 𝑚𝑗,𝑘
𝑅 + 𝑀𝑘 ∙ 𝐸𝑅 ∙ 𝛼𝑘) ∙ (1 − 𝑆𝐹𝑗,𝑘) ∙ 𝑦𝑗 (3.2) 

where k is a component of the streams (e.g., FAME, MeOH, glycerol, etc.), mF
j,k, mR

j,k, mP
j,k 

and mW
j,k are mass flow rates (kg/h) of component k in feed, reactant, product and waste 

streams, respectively. yj is the logical decision variable which takes the value of 1 or 0 if the 

option is selected or not. SFj,k is the split factor of component k based on how much k in the 

feed stream split into product stream. ERj is the extent of reaction (kmol/h) calculated from 

the conversion of the main component of the feed stream into the main product of the product 

stream (e.g., from oil into biodiesel) as shown in equation 3.3. 

 𝐸𝑅𝑗 =
𝜃𝐴∙(𝑚𝑗,𝐴

𝐹 +𝑚𝑗,𝐴
𝑅 )

(𝑀𝐴∙𝛼𝐴)
 (3.3) 

where θA is the percent of component A being converted into product and αA is the reaction 

stoichiometric number of A. From the extent of reaction, the conversion of another 

component can be calculated with the molar weight (kg/kmol), Mk, and the reaction 

stoichiometric number, αk, of that component. 

The equipment cost (USD), ECj, of an option is estimated based on the order of 

magnitude as presented in equation 3.4 [68]. 

𝐸𝐶𝑗 = 𝐸𝐶𝑗
𝑅𝑒𝑓,𝑦𝑒𝑎𝑟

∙ (
𝑚𝑗

𝐹

𝑚
𝑗
𝐹,𝑅𝑒𝑓)

𝐸𝑠

∙ (
𝐶𝐸2020

𝐶𝐸𝑦𝑒𝑎𝑟) ∙ 𝑦𝑗 (3.4) 

where Es is the size exponent, ECRef,year
j is the equipment reference cost (USD), mF,Ref is the 

reference capacity (kg/h), CEyear and CE2020 are the Chemical Engineering Index of the 

reference year and 2020, respectively.  

The total capital investment (USD), TCI, is calculated based on the overall factor 

method of Lang as shown in equation 3.5 [68]. 

𝑇𝐶𝐼 = 1.05 ∙ 𝑓𝐿,𝑇𝐶𝐼 ∙ ∑ (𝐸𝐶𝑗)𝑗  (3.5) 

where fL,TCI is the Lang factor for fluid processing plant being 5.93 and 1.05 is to account for 

the delivery cost of equipment being 5% of total equipment cost [68]. The total annualized 

capital investment (USD), TACI, is calculated from the TCI with total project lifetime, LT, 

being 20 years and interest rate, IR, being 0.1 as described in equation 3.6 

𝑇𝐴𝐶𝐼 = 𝑇𝐶𝐼 ∙
𝐼𝑅∙(𝐼𝑅+1)𝐿𝑇

(𝐼𝑅+1)𝐿𝑇−1
 (3.6) 
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The annual utility consumption (kg steam or kg cooling water or kW/year), Eu
j, of an 

option is calculated as equation 3.7. 

𝐸𝑗
𝑢 = (𝑚𝑗

𝐹 + 𝑚𝑗
𝑅) ∙ 𝜏𝑗

𝑢 ∙ 𝐻 ∙ 𝑦𝑗 (3.7) 

where u is a type of utility such as heating with low- and high-pressure steams, cooling water 

and electricity, τu
j is the specific utility requirement (kg steam or kg cooling water or kW 

electricity per kg infeed stream) of the equipment, H is the total operating hours per year (h). 

The utility prices, priceu, are taken from literature with an average inflation rate of 

USD being 2.26 % per year. The value of low-pressure steam is 10.2 USD/tonne [9]. The 

price of high-pressure steam is 15 USD/tonne [9]. The price of electricity being 0.09424 

USD/kWh [9]. The price of cooling water is 2.23 USD/tonne [65]. The total annual utility 

cost (USD), TAU, is calculated as follows. 

𝑇𝐴𝑈 = ∑ ∑ 𝐸𝑗
𝑢 ∙ 𝑝𝑟𝑖𝑐𝑒𝑢

𝑢𝑗  (3.8) 

The heat integration of the superstructure optimization model is a function based on 

Pinch Technology that minimizes the heating and cooling requirements of the biodiesel 

production. Each product or waste stream out of an option has a defined temperature with an 

assumption that the stream can only be heated or cooled with heat exchangers using other 

streams or heating and cooling utilities. 

First, a series of heat intervals defined from the temperature differences of the product 

streams which are designated as hot streams or cold streams depending on their heating or 

cooling requirements. The stream heat load (kW), ΔHl, of each interval l can be calculated 

from the heat capacity flow rates (kW/oC) of hot stream, CPHot,j, and cold stream, CPCold,j, as 

in equation 3.9.  

∆𝐻𝑙 = (∑ 𝐶𝑃𝐻𝑜𝑡,𝑗𝑗 − ∑ 𝐶𝑃𝐶𝑜𝑙𝑑,𝑗𝑗 ) ∙ ∆𝑇𝑙  (3.9) 

Second, the function is used to select hot and cold streams based on the decision 

variable in each product stream. Then, the hot and cold streams are matched with each other 

according to their temperature to calculate the total heat load of heat intervals and set up the 

heat cascade.  

Finally, the minimum hot and cold utility requirements can be predicted by balancing 

the negative heat interval of the infeasible heat cascade. The heat integration feature of the 

superstructure is to evaluate the possible energy recovery with heat exchanger network. The 

heat exchanger network and investment costs are at this stage not considered in the heat 

integration function. 
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The maintenance cost (USD), MC, can be considered as 2% of the total annualized 

capital investment [14]. The operating cost (USD), OC, can be calculated from the average 

hourly salary of an operator in 2020 which is 15 USD/h and 1 operator for 1 automatic 

continuous operation of fluid processing plant with capacity below 1000 tonnes of product 

per day [69]. The operating and maintenance cost (USD), OMC, is presented as follows: 

𝑂𝑀𝐶 = 𝑀𝐶 + 𝑂𝐶  (3.10) 

The total annual operating cost (USD), TAOP, includes feedstock and reactant costs, 

operating and maintenance cost and total utility cost. The costs (USD) of feedstock, FC, and 

reactant, RC, are calculated by multiplying mass flow rate with cost per kg and operating 

hours per year. The operating and maintenance cost (USD), OMC, is calculated as equation 

3.10. The total utility cost (USD), TAU, is calculated as equation 3.8. The calculation of 

TAOP is presented in equation 3.11. 

𝑇𝐴𝑂𝑃 = 𝐹𝐶 + 𝑅𝐶 + 𝑂𝑀𝐶 + 𝑇𝐴𝑈  (3.11) 

To include the effect of recycling methanol in the mathematical model, the pure 

methanol coming out of distillation options is considered a by-product which can be sold to 

reduce the cost of fresh methanol. The annual methanol sales (USD), MES, is calculated from 

the methanol stream that is separated from the biodiesel stream as in equation 3.12 with j = 

15, 17, 20, 23, 26, 27, 28, 29, 33, 35, 40, 41 and 43.  

𝑀𝐸𝑆 = 𝑚𝑗
𝑊 ∙ 𝑝𝑟𝑖𝑐𝑒𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ∙ 𝐻 ∙ 𝑦𝑗  (3.12) 

Maximizing the total annualized profit (USD), TAP, is the objective function of the 

superstructure optimization as presented in equation 3.13. 

max 𝑇𝐴𝑃 = 𝐵𝐷𝑆 + 𝐺𝐿𝑆 + 𝑀𝐸𝑆 − 𝑇𝐴𝐶𝐼 − 𝑇𝐴𝑂𝑃  (3.13) 

where the annual biodiesel sales (USD), BDS, is defined from the biodiesel price and the flow 

rate of product stream out of options: 45, 46, and 49-53. The annual glycerol sales (USD), 

GLS is defined from the glycerol grade and the mass flow rate of the glycerol treatment. All 

the sales are calculated with the product market prices and the total operating hours of the 

refinery in a year 

The superstructure optimization problem is formulated as a mixed-integer nonlinear 

programming (MINLP) problem. It is solved with the Branch-And-Reduce Optimization 

Navigator (BARON) which is a computational program designed to find the global solution 

of non-convex optimization problems [70].  

The mathematical model includes 5,978 constraints and 6,007 variables with 68 

binary variables is implemented in the software AIMMS, version 4.84.3.4 64-bit. The 
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optimization problem is solved in an average of 55 s with a CPU Intel(R) Core(TM) i5-8265U 

CPU @ 1.80 GHz and 8.00 RAM. 

3.3. Results and discussion 

The superstructure model is applied in three case studies:  

1) In the first case, the feedstock is only waste cooking oil to verify the superstructure 

model by comparing with the results from literature.  

2) In the second case, the feedstocks are from different generations of biodiesel to 

select the most cost-effective feedstock and processing route. 

3) In the third case, the membrane reactor is chosen to test the economic feasibility of 

the potential process intensification technology for biodiesel production [17]. 

The biorefinery has feedstock flow rate of 1000 kg/h, 8000 operating hours per year 

and biodiesel output quality complied with the EU standard, EN 14214. All the prices of 

biodiesel and glycerol, costs of feedstocks, chemicals, utilities and equipment are calculated 

in the year 2020.  

In the case studies, the flowrate of the feedstock is chosen based on the case study in 

the literature which, in turn, is based the regional availability of waste cooking oil in the 

United States and the same capacity as the existing continuous biodiesel plant described by 

Connemann and Fischer (1998) [71]. Due to the pilot scale of the biodiesel plant, the capital 

investment is calculated by using economies of scale on bigger equipment. It is recommended 

that more detailed calculations are required to identify the exact sizes and costs of the 

equipment resulted from this case study. 

3.3.1. First case study: Waste cooking oil as the only feedstock 

In the first case study, the optimal processing route is presented by the yellow blocks 

and orange arrow lines. In Figure 3.4, the biodiesel is produced from the transesterification 

of the waste cooking oil (option 7) by using reactive distillation with heterogeneous acid-

based catalyst (option 20) [72]. The products of the reactive distillation process are recycling 

methanol and a biodiesel-rich stream which is passing through a decanter (option 31) to 

separate the glycerol. After separating the glycerol, the biodiesel product is purified to 

achieve purity standards by using a vacuum distillation column (option 49). In Figure 3.5, 

the separated glycerol from the decanter (option 31) is going through a vacuum distillation 

(option 60) to become pure glycerol. The total annual profit of the biodiesel production in 

this case is 2,619,038 USD per year. 
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The selected sequence of process makes sense as it is based on the composition of 

biodiesel product stream which usually contains a large amount of methanol, biodiesel, 

glycerol, catalyst, water and unreacted oil. Methanol has the lowest boiling point, at 65 oC, 

in the mixture and can be separated easily by distillation. Its separation at the beginning of 

the process increases methanol recycle and decreases the flowrate of processing streams for 

downstream equipment, thus, reducing the costs of fresh methanol, utility and capital 

investment. The removal of catalyst out of biodiesel product requires neutralization and 

washing steps which consume chemicals such as sulfuric acid and calcium oxide, utility and 

water. By applying the reactive distillation column which is a process intensification 

technology and the heterogeneous catalyst, several equipment along with their utility and 

chemical consumptions can be removed from the production process [72]. 

1 kg of by-product glycerol is produced for every 10 kg of biodiesel. In conventional 

production processes, the glycerol stream can contain methanol, catalyst and water. The 

crude- and technical-grade glycerol are not high price products, while the expensive pure-

grade glycerol requires additional energy intensive equipment such as distillation column and 

neutralization reactor to produce. The low return of investment becomes discouragements to 

producers from upgrading the glycerol. In the optimal process from superstructure, the 

separated glycerol has higher purity than conventional processes because of the early removal 

of methanol and no catalyst in product stream. Therefore, it is more economic to upgrading 

glycerol to pure quality. 
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Figure 3.4: The optimal production route for biodiesel from waste cooking oil 
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Figure 3.5: The optimal treatment routes for the glycerol separated from biodiesel 

production process 

When comparing with the different production processes of biodiesel from waste 

cooking oil [66], the superstructure optimal process has higher total annual profit, as 

presented in Figure 3.6. There are three reasons: Firstly, the application of the heterogenous 

acid reactive distillation process which can be used for feedstocks with high content of free 

fatty acids such as waste cooking oil and tallow. This process intensified technology reduces 

the costs of production by removing separation steps for methanol and catalysts. Secondly, 

the glycerol is purified and sold as pure glycerol with higher price than in other processes. 

Finally, the heating and cooling costs are reduced with the heat integration. It should be noted 

that the cost of heat exchangers has not been included in the analysis. 
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Figure 3.6: The total annual profit comparison of different biodiesel production process 

from waste cooking oil 

Besides the total annual profit, the environmental impacts of the production process 

are optimized in terms of utility consumptions. With the process intensification and heat 

integration, the utilities required for heating and cooling can be reduced greatly. In Figure 

3.7, the heating and cooling costs of the superstructure optimized processes with and without 

heat integration are compared with other biodiesel production processes [66]. The results 

show a significant decrease in heating requirement by using the heterogeneous reactive 

distillation process. The process with heat integration function has the total annual costs of 

heating and cooling 30% lower than the process without heat integration. 

 

Figure 3.7: The annual heating and cooling costs of different biodiesel production process 

from waste cooking oil 
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The heat integration results in Figure 3.6 and 3.7 show that there is a difference in the 

production cost and utility consumption. In the case study of biodiesel produced from waste 

cooking oil, the heat integration does not have a profound effect on the results. The reason is 

that the optimal process for this case uses a reactive distillation with a heterogeneous acid 

catalyst which requires less equipment and utilities than other processes. This optimal process 

has less streams and heat waste than other processes, thus, reducing the need for heat 

integration. From the result, the heat integration function has worked and can be incorporated 

in the future work. 

3.3.2. Second case study: different feedstocks from three generations 

In the second case study, different feedstocks such as rapeseed oil, canola oil (first 

generation), linseed oil, waste cooking oil, tallow (second generation) and algae oil (third 

generation) are used for biodiesel production. The optimal result is the biodiesel produced 

from tallow (option 8) with the same processing route as the waste cooking oil. The annual 

profit this process is 3,539,025 USD per year which is higher than the first case because the 

price of tallow is lower than waste cooking oil. With the total capital investment being 

1,800,834 USD, the payback time of the biodiesel plant is less than one year. 

A breakdown of the annual production costs is presented in Figure 3.8. To evaluate 

the weight of feedstock such as tallow on biodiesel production cost, the chemicals such as 

methanol, neutralization acid/base, catalysts, etc. are separated from the raw material cost. 

The utility includes heating, cooling and electricity costs. The cost of feedstock is the decisive 

factor for the economic feasibility of biodiesel production which agrees with the literature 

[66].  
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Figure 3.8: The annual cost breakdown of biodiesel production from tallow 

3.3.3. Third case study: membrane reactor 

In the third case study, the membrane reactor with heterogeneous acid catalyst is 

chosen by assigning the value 1 to the logical constraint of the equipment. With tallow (option 

8) is the chosen feedstock, the product stream out of the membrane reactor (option 23) is 

going through the decanter (option 34) to separate the glycerol and the methanol removal 

(option 43) [17]. Finally, the biodiesel stream is purified by a distillation column (option 51) 

[17]. The glycerol stream separated from the decanter is purified by a distillation column 

(option 63) to become pure glycerol. Although the membrane reactor has high conversion 

rate and purer product stream than other reactors, it has a low product yield due to nature of 

membrane separation process. The biodiesel yield of the membrane reactor is only 42.6% of 

the reactive distillation. Therefore, the biodiesel production process with membrane reactor 

has negative total annual profit, -2,007,646 USD. 

3.4.  Conclusion  

A superstructure model for biodiesel production which encompasses different 

generation feedstocks, conventional and process intensification technologies has been 

developed. The superstructure bridges the gap between feedstock selection and production 

process optimization in the literature. Another novelty of the superstructure model is the heat 

integration function which can be used to reduce the energy requirement of biodiesel 

production process.  
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The results show that the combination of waste cooking oil and tallow with reactive 

distillation and heterogenous acid catalyst can open a promising future for biodiesel. The 

membrane reactor requires more improvement in term of biodiesel yield to be economic 

efficiency. The feedstock has an important role in the optimization problem as it accounts for 

more than 80% of the total production cost. The superstructure optimization is proven as a 

powerful tool of process systems engineering for biorefinery design by systematically and 

simultaneously solving multi-constraint problems.  

However, the superstructure approach relies on simplified process parameters (such 

as extent of reaction and split factor) and estimate calculations (such as economies of scale 

and Lang’s factor). Therefore, the accuracy of economic results is typically between 30% 

and 35%. More detailed calculations are required to apply the optimal production route from 

the superstructure optimization. 

3.5.  Nomenclature  

BDS  the annual biodiesel sales (USD) 

CEyear  Chemical Engineering Index of the reference year 

CE2020  Chemical Engineering Index of 2020 

CPCold,j  the heat capacity flow rates of cold stream (kW/oC) 

CPHot,j  the heat capacity flow rates of hot stream (kW/oC) 

Eu
j  the annual utility consumption of an option j (kg or kW/year) 

ECj   the equipment cost (USD) 

ECRef,year
j the equipment reference cost of the reference year (USD) 

ER  the extent of reaction (kmol/h) 

Es  the size exponent 

fL,TCI   the Lang’s factor 

FC  the annual cost of feedstock (USD) 

GLS  the annual glycerol sales (USD) 

H  the total operating hours per year (h) 

IR  annual interest rate  

LT  the total project lifetime (year) 
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mF
j,k  the mass flowrate of component k in feed stream (kg/h)  

mP
j,k  the mass flowrate of component k in product stream (kg/h) 

mR
j,k   the mass flowrate of component k in reactant stream (kg/h)  

mW
j,k  the mass flowrate of component k in waste stream (kg/h) 

Mk   the molar weight of component k (kg/kmol) 

MES   the annual methanol sales (USD) 

OMC  the operating and maintenance cost (USD) 

priceu  the utility price (USD/kg or USD/kWh) 

RC  the annual cost of feedstock (USD) 

SFj,k  the split factor of component k  

TACI  the total annualized capital investment (USD) 

TAOP  the total annual operating cost (USD) 

TAU  the total annual utility cost (USD) 

TCI  the total capital investment (USD) 

αk  the reaction stoichiometric number of component k 

ΔHl  the stream heat load of interval l (kW) 

ΔTl  the temperature difference of interval l (oC) 

θA  the percent of component A being converted 

τu
j  the specific utility requirement of the equipment (kg or kW per kg infeed) 
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4. Technological impact assessment and 

sensitivity analysis 
 

 

 

 

 

 

 

 

 

 

 

“As far as the laws of mathematics refer to reality, they are not certain; and as far as they are 

certain, they do not refer to reality.” - Albert Einstein 

This chapter was published in: 

Thien An Huynh, Meik B. Franke, Edwin Zondervan, 2022, “Steps towards the 

winning formula for biodiesel: Superstructure, process intensification and heat integration” 

– Is going to submit to the journal Computers & Chemical Engineering.  



60 

 

Abstract  

In chapter 3 the superstructure optimization problem has been solved to identify the 

most profitable way to produce biodiesel. The result shows that the biodiesel production route 

from tallow with the reactive distillation technology and heterogeneous acid catalyst has the 

highest total annual profit. The cost of feedstock which contributes more than 85% of the 

total annual cost has a significant impact on the economic feasibility of biodiesel production. 

The fluctuation in market prices of feedstocks and products as well as the availability of 

technology are important uncertainties which should be addressed in the design a biodiesel 

production process. 

This chapter firstly evaluates the effects of different parameters on the optimized 

design by performing a sensitivity analysis. The superstructure is used to generate various 

biodiesel production processes according to the different scenarios. The results show that the 

price of biodiesel, feedstock and the production capacity are most influencing parameters on 

the total annual profit. By exploring six different scenarios, the reactive distillation process 

is the most economic choice for biodiesel production from different feedstocks.  
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4.1. Introduction  

The design of a biodiesel production process is mainly decided by the feedstock, 

technology and market prices of products. The cost of feedstock is the decisive factor in the 

economic calculation of a biodiesel production as it contributes more than 80% of the total 

production cost [9]. As presented in Figure 4.1, the prices of feedstock and biodiesel are 

seasonal parameters, thus reducing the accuracy of the optimized results based solely on fixed 

values.  

 

Figure 4.1: The prices of biodiesel and feedstocks in 2021 [73], [74], [75] 

The difference between market prices of feedstock and biodiesel is the main 

motivation for optimizing the production to reduce processing costs with advanced 

technologies. However, process intensified and innovative technologies such as reactive 

distillation and supercritical reaction which have been proven in the literature and industrial 

applications are not always available. Therefore, the availability of technology is another 

important factor that affects the design of biodiesel production process. 

Process design and optimization under uncertainty are in general very challenging 

problems in the field of process systems engineering [76]. The challenge is ensuring that the 

process design is feasible and optimal over a range of changing parameter values [76]. 

Notable efforts have been made by the process systems engineering community to develop 

methods for solving the problems under uncertainty [77]. One method is to analyse and 

maximize the flexibility of the process design in the trade-offs with costs to cope with a range 

of uncertainty parameters [77]. Clay and Grossmann proposed a sensitive-based successive 

disaggregation algorithm to solve a two-stage linear stochastic production planning problem 

including cost and supply/demand uncertainties [78]. The sensitivity of the uncertain 

parameters and the process flexibility are important factors for solving the optimization 
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problem under uncertainty. Therefore, this chapter has two objectives: Firstly, it is to evaluate 

the impact of important parameters on the optimization result through a sensitivity analysis. 

Secondly, different scenarios according to the availability of technology are generated to test 

the feasibility of the superstructure model.  

4.2. Sensitivity analysis 

To design and optimize models under uncertainty, sensitivity analysis is performed to 

evaluate the impact of changing parameters on the model outcome. From the result of cost 

breakdown in the chapter 3, three most influencing parameters are costs of feedstock, 

chemical and equipment. The cost of chemical can be calculated based on the price of 

methanol which is the major reactant in biodiesel production. From the literature, the prices 

of biodiesel and glycerol, and the production capacity i.e. the feedstock flowrate per hour  are 

also considered important parameters [9]. The sensitivity factor, S, which is used to measure 

and compare the impact of selected parameters on the objective function is calculated as in 

equation 4.1. 

𝑆 =
|∆%𝑝𝑟𝑜𝑓𝑖𝑡|

|∆%𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟|
 (4.1) 

where |Δ%profit| is the absolute value of profit difference according to the changing parameters 

in percentage |Δ%parameter|, including the prices of biodiesel, glycerol, feedstock, methanol 

and equipment, and the production capacity [9]. 

Each of these six parameters is evaluated within 20% range of their values which is 

used in chapter 3. Figure 4.2 shows the sensitivities of selected parameters on the total annual 

profit of the biodiesel production. The result shows that the price of biodiesel has the greatest 

effect on the total annual profit compared to other evaluated parameters. The second and third 

influencing parameters are the price of feedstock and the production capacity. The prices of 

glycerol, methanol and equipment have less impacts on the superstructure model outcome. 
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Figure 4.2: Result of the sensitivity analysis for six parameters 

4.3. Technological impact assessment 

The innovative production technologies have an important role in the production 

processes. In this section, six scenarios have been used to assess the impact of reaction 

technologies and catalysts on the biodiesel production. The most profitable and flexible 

production technology can be identified from the assessment. The optimal process as 

proposed in chapter 3 producing biodiesel from tallow via reactive distillation with a 

heterogeneous acid catalyst is chosen to be the base case in the assessment. For scenarios 1 

to 4, the availability of technology is simulated by using different reaction technologies and 

catalysts such as supercritical reactor, multi-phase reactor, continuous stirred tank reactor, 

and homogeneous and heterogeneous catalysts. For example, scenario 1 uses the multi-phase 

reactor instead of the reactive distillation which is the optimal choice of the base case from 

the superstructure. Figures 4.3 and 4.4 present the results of superstructure optimization for 

scenarios 1, 2, 3 and 4. 

For scenarios 5 and 6, the simulations are performed to evaluate the effect of 

technology in the situation that different feedstocks are used to produce biodiesel instead of  

waste cooking oil and tallow. Figures 4.5 and 4.6 show the results of scenarios 5 and 6. 

4.3.1. Scenario 1 

The first scenario uses the continuous stirred tank reactor (CSTR), multi-phase 

reactor, supercritical reactor and membrane reactor with the catalysts of acid, base and 

enzyme to compare with the reactive distillation in the base case. With the tallow as a 

feedstock with high content of free fatty acid (FFA), the heterogeneous acid catalyst is still 
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the best choice. The optimal process route is using the multi-phase reactor (option 19) then 

separating the catalyst with a hydrocyclones (option 30) [66]. After catalyst removal, the 

methanol is separated from the biodiesel production stream with a distillation column (option 

40) and recycled to the reactor [66]. The glycerol is separated into a glycerol-rich stream by 

a decanter (option 48) and goes through a distillation (option 63) to remove water and 

methanol. The total annual profit is 3,134,732 USD. 

4.3.2. Scenario 2 

In the second scenario, the multi-phase reactor is excluded from the list of reactor in 

scenario 1. This scenario is to identify the next potential reactor after reactive distillation and 

multi-phase reactor. The chosen reaction technology is a supercritical reactor (option 21) with 

high temperature (350 oC)  and large amount of methanol (methanol to oil molar ratio: 42:1) 

[66]. The supercritical alcohol process does not require catalysts and can tolerate high-FAA 

feedstocks [66]. After reaction, the biodiesel production stream goes through a methanol 

distillation column (option 33), then glycerol gravity separation (option 42) and finally 

biodiesel purification column (option 50) [66]. The separated glycerol stream contains mostly 

methanol and no catalyst. Therefore, it is suitable for further distillation (option 63) and sold 

as pure glycerol. The total annual profit of the second scenario is 2,973,252 USD. 

4.3.3. Scenario 3 

For the third scenario it is assumed that the reactive distillation, multi-phase reactor 

and supercritical reaction are not in the list of reactor of scenario 1. The next choice for 

producing biodiesel from tallow is the conventional continuous stirred tank reactor (CSTR) 

(option 18) with a homogenous acid catalyst, H2SO4 [66]. The product stream of the reactor 

is going through a distillation column (option 29) to recycle the methanol, then a 

neutralization process (option 39) to remove the acid catalyst and a decanter (option 47) to 

separate the glycerol, finally, a vacuum distillation (option 53) to purify the biodiesel. This 

process is sensible because the removal of alcohol at first separation stage will maximize the 

amount of recycling methanol and reduce the costs of downstream equipment [62]. The 

glycerol is further purified to be pure glycerol with distillation (option 61). In this scenario, 

the total annual profit is 2,295,976 USD. 

4.3.4. Scenario 4 

In the base case and previous scenarios, the homogeneous and heterogeneous acid 

catalysts are used directly at the reaction step. Scenario 4 explores the pre-treatment process 

which is actually used in the biodiesel industry for feedstocks with high content of FFA [6]. 

While scenario 4a is the conventional process of using the CSTR and homogeneous base 

catalyst, NaOH, (option 14) after pre-treatment process (option 13), scenario 4b uses the 
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process intensification technology of reactive distillation (option 15). The results show the 

difference in processing routes of scenarios 4a and 4b as in Figures 4.3 and 4.4. The process 

intensification route has higher total annual profit (2,691,672 USD) than the conventional 

production route (2,006,746 USD). 

 

Figure 4.3: Optimization biodiesel production route of scenario 1, 2, 3 and 4 
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Figure 4.4: Optimization glycerol treatment route of scenario 1, 2, 3 and 4 

4.3.5. Scenario 5 

A feedstock such waste cooking oil and/or tallow have low costs and require the acid 

catalyst to deal with the high content of FFA, thus affecting the technological choice. The 

fifth scenario is to evaluate the feasibility of superstructure model under condition of no waste 

feedstock. The chosen feedstock is the canola oil (option 5) which is the cheapest one in the 

current model. Without FFA, the base catalyst is more economic than the acid one because 

NaOH is generally cheaper than H2SO4. The optimal production route is the reactive 

distillation (option 17), then the decanter to separate the glycerol (option 31) and finally, the 

distillation column for biodiesel purification (option 49). The glycerol treatment is a 

distillation column (option 60) to remove impurity. The final glycerol is sold as pure glycerol. 

The annual profit of the scenario 5 is 1,033,042  USD. 

4.3.6. Scenario 6 

The sixth scenario is used to evaluate the impact of process intensification on the 

model result by comparing the conventional CSTR with the reactive distillation. With the 

same feedstock, the scenario 6 uses more equipment, thus having lower annual profit 
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(333,870 USD) than scenario 5. The processing routes of scenarios 5 and 6 are presented in 

Figures 4.5 and 4.6. 

 

Figure 4.5: Optimization biodiesel production route of scenario 5 and 6 

 

Figure 4.6: Optimization glycerol treatment route of scenario 5 and 6 
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4.3.7. Scenario comparison and discussion 

The annual profit comparison of all scenarios is shown in Figure 4.7. The total annual 

profit of the base case and the sixth scenario are the highest and lowest among the assessed 

scenarios, respectively. The reason is the difference in feedstock and production costs. The 

scenarios 4a and 4b have an additional step of pre-treatment which makes them have higher 

production costs than other scenarios using tallow as feedstock. Scenarios 5 and 6 have lower 

annual profits than the rest because the price of canola oil is 52% higher than tallow. Between 

scenarios with the same feedstock, the ones using reactive distillation such as the base case, 

scenarios 4b and 5 have higher profit than others. 

 

Figure 4.7: The total annual profit of biodiesel production of different scenarios 

Figure 4.8 presents the breakdown of production costs without feedstock from 

different scenarios. Due to the high content of FFA, the conventional ways of producing 

biodiesel from the waste feedstocks require additional production costs as shown in the 

scenarios 3, 4a and 4b. The reactive distillation process reduces the equipment cost 

significantly but it is not always the least utility consumption process. The scenarios 4a and 

6 which use conventional CSTR and the heat integration to match hot and cold streams have 

the lowest utility consumption. Scenario 5 has the lowest production cost because of the 

reactive distillation and canola oil as low FFA feedstock. However, the profit of scenario 5 

is still much lower than previous scenarios due to the high price of feedstock. 
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Figure 4.8: The breakdown of production costs from the scenarios 

4.4. Conclusion 

This chapter performs a sensitivity analysis and identifies most influencing 

parameters of the model. The biodiesel price, feedstock price, and the production capacity 

are considered important parameters due to the high sensitivity factors being 2.36, 1.41 and 

1.06, respectively. Although the equipment price has lowest sensitivity factor with only 

0.061, the choice of technology has great impacts on the result of the superstructure 

optimization. Besides testing the feasibility of the superstructure model, the technological 

assessment shows the importance of the process intensification with the reactive distillation 

being the most economic process for different kinds of feedstock. The production costs 

including the costs of equipment, chemicals, utility, and operating and maintenance of the 

base case and scenario 5 which uses the reactive distillation technology are lower than other 

scenarios, being 823,944 USD and 803,526 USD, respectively. 

 For scenarios of biodiesel produced from tallow, the annual profit of base case which 

uses reactive distillation with heterogeneous acid catalyst in the chapter 3 is the highest with 

3,539,025 USD per year. The second best scenario with the annual profit of 3,134,732 USD 

is the scenario 1 which uses the multi-phase reactor and heterogeneous acid catalyst. For the 

scenarios of biodiesel produced from canola oil, the scenario 5 with reactive distillation and 

homogenous NaOH catalyst has the highest annual profit of 1,033,042 USD.  

However, this is an estimate study which does not consider the real obstacles in 

applying new technologies in production. The next chapter explores the applications and 

barriers of process intensification in process industries and presents an innovative idea of 

combining process intensification and digital twin. 
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5. Process intensification and digital twin – 

The potential for the energy transition in 

process industries 
 

 

 

 

 

 

 

 

 

 

 

“Innovation is the ability to see change as an opportunity, not a threat.” – Steve Jobs 

This chapter was published in: 

Huynh, T.A. and Zondervan, E., 2022, " Process intensification and digital twin – The 

potential for the energy transition in process industries", Physical Sciences Reviews, doi: 

https://doi.org/10.1515/psr-2022-0058  
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Abstract  

In previous chapter, the results of the superstructure optimization show that process 

intensification technology (PI) such a reactive distillation can change the production of 

biodiesel drastically. However, the application of process intensified equipment in real 

situation is not always easy. The barriers are not just the technology but also the human aspect 

of the project such as conservative management and not enough skilled operators. 

This chapter defines and discusses process intensification and digital twin (DT) as 

potential tools to accelerate the energy transition through their applications in the process 

industries including biofuel production. The  PI technologies take advantage of innovative 

principles in equipment design and control to improve the physical process, while the DT 

offers the virtual model of the plant as an environment for production optimization. The 

effects of both tools on the energy transition are evaluated not only from the point of 

applications but also from the possibility of implementation and barriers in process industries. 

Although they are beneficial, the deployment of PI and DT requires not only infrastructure 

and capital investment but the knowledge and cooperation of different levels of plant 

personnel. Besides review of individual implementation, this work explores the concept of 

combining PI and DT which can make them the enabler of each other and bring a 

breakthrough in optimization of process design and control. 
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5.1. Introduction 

Over the course of the last years, the world has been facing many challenges at an 

unprecedented scale, from rapidly spreading diseases to devastating natural disasters which 

are tied to the global pollution and climate change. Significant transformations to cope with 

the new situation have happened in all aspects of society from working routine to energy 

usage and production methods. Therefore, sustainability and renewables are the target of the 

energy transition in terms of production, distribution and application. Process industries 

which are among the most intensive energy users require drastic changes to increase energy 

efficiency and reduce environmental impacts. Process systems engineering in combination 

with the digital transformation, known as Industry 4.0, brings the required tools such as 

process intensification (PI) and digital twin (DT) to transform the process industries. 

Even though there have been intensified processes since several decades, one of the 

earliest mentions of intensified processes was published in a research of Wightman et al. in 

the Research Laboratory of Eastman Kodak in 1925 [79]. While the initial concept was the 

reduction in equipment- and plant size, it was proven that the scope of PI has been expanded 

far beyond the miniaturization hallmark [80]. The benefits of PI for energy production are 

not just smaller equipment and lower investment costs but also higher reaction rate, better 

product quality, reduced waste generation, improved process safety and reduced 

environmental burdens [81]. The advantages of PI can be found in different examples. The 

application of membrane reactors for biodiesel production improved the reaction rate and the 

purity of both biodiesel and glycerol by simultaneously removing the unreacted oil during 

the reaction. Without the oil impurity, the equipment and energy requirement for biodiesel 

purification were reduced, thus, lowering investment costs and environmental impacts [82]. 

In coating industry, acrylic and methacrylic monomers are widely used chemicals [83]. An 

economic analysis by Kiss (2018) showed that the cost of acrylate can be reduced by 43.5%, 

from 1350 EUR/t to 762 EUR/t, by using continuous processes with reactive distillation 

instead of batch processes [83]. With the development of new technologies, the potential 

energy saving of PI is increasing over the years. The report of Kim (2017) presents the data 

of energy saving by applying PI in the chemical and petrochemical industries for different 

countries and the world as in the Figure 5.1 [84]. 
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Figure 5.1: Annual energy saving of PI in the chemical and petrochemical industries (unit: 

EJ; 1 EJ = 1018 J) [84] 

Digital twin is a fairly new concept compared to process intensification. It was 

introduced in a presentation of product lifecycle management by Michael Grieves at the 

University of Michigan in 2002 [85]. The DT was originally defined as a system including a 

physical object, a virtual replicant of that object and a link of data and information between 

physical and digital objects [85]. Since its introduction, the concept of DT has evolved rapidly 

and found its way into new applications and industries, for instance, supply chain 

management [86], shop floor management, prognostics, and health management of airplanes, 

monitoring and optimizing complex production processes [87]. Over the last ten years, the 

literature reported 46 DT definitions which combine the original concept with specific 

characterizations based on the applications [88]. Due to its ability to exchange data between 

the virtual models and physical objects, DT offers many benefits for a production process 

from real-time monitoring and analysis to intelligent update and management that can be 

applied in process design, maintenance and optimization [89]. Figure 5.2 illustrates the 

concept of DT for a production plant. 
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Figure 5.2: The data exchange between virtual model, physical plant and users in a DT 

system 

Even though PI and DT have different approaches, they have the similar objective of 

making production process more efficient and can be combined for mutual improvement. 

The innovative designs of PI can be further optimized by integration with more precise and 

up-to-date data and information from the DT. Safdarnejad (2019) proposed a novel dynamic 

approach for PI application which utilized the data-driven modelling of the entire production 

plant [90]. The data-driven approach gave similar results while having advantages of less 

complexity and lower costs compared to traditional gradient-based methods [90]. The 

improved systems of PI can bring new challenges for the data management and digital 

simulation of DT, thus, leading to improvement of sensory systems, new data processing 

methods and simulation programs. A combination of PI and DT will bring greater benefits in 

terms of production capacity, investment and operation costs, and environmental impacts for 

process industries which require more economic and sustainable production methods. This 

contribution provides a literature review of PI and DT applications and the state-of-art trends 

of combined concepts for the energy transition in the process industries. After the 

introduction in section 1, more details and examples of technologies and applications relating 

to PI and DT in process industries are presented in section 2 and 3. Section 4 discusses the 

benefits of combining PI and DT. Finally, section 5 provides take-away messages of  

important topics and developments for future works. 

5.2. Applications and effects of process intensification on energy transition. 

The European Roadmap for Process Intensification presents the potential of PI which 

can improve the energy efficiency in several industries as in Table 5.1 [91]. The long-term 

potentials of PI have attracted a lot of research interest with many reviews of recent 
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developments and more than 12 books published since 2003 [92]. The applications of PI can 

be categorized as separation , reaction and separation-reaction-combined technologies. 

Table 5.1: The energy efficiency increases (by percentage) over time by applying PI in 

different process industries [91]  

 5 – 20 years 30 – 40 yeas 

Petrochemicals 5 % 20 % 

Pharmaceuticals 20 % 50 % 

Food ingredients 25 % 75 % 

Consumer foods 10 – 15 % 30 – 40 % 

 

5.2.1. Separation technologies. 

Distillation is the most used and energy intensive separation technology in process 

industries. The distillation is the main separation process used in oil industry and consumes 

globally 230 gigawatts (2.3 x 108 kilowatts) [93]. Therefore, it is considered one of the best 

candidates for process intensification. The dividing wall column (DWC) is one of the most 

preferred PI technologies in commercial application [94]. Another potential PI technology 

based on distillation is the cyclic distillation which has been applied in industry since 2000 

[95]. Other potential separation technologies are the pressure swing adsorption (PSA) and 

simulated moving bed (SMB) which can be intensified for process industries [94]. The 

potentials of PI separation technologies do not only reduce the costs, energy requirements 

and environmental impacts but also present very effective ways to improve product quality 

[94]. 

Since its first industrial application in 1985, the dividing wall column which is the 

integration of two conventional distillation columns into one shell, has more than 100 

applications and will become a standard distillation tool in the near future [96]. When 

changing from traditional distillation columns to DWC, it offers smaller installation footprint 

and lower investment costs due to the reduced number of equipment units. The saving of 

operating costs and energy of DWC can be up to 50% as compared to conventional units 

[96]. Kiss et al. presented a reactive dividing-wall column design (Figure 5.3) in an industrial 

case study of AkzoNobel that provided up to 35% savings of investment costs and 15% 

savings of energy costs [97]. 
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Figure 5.3: The illustration of the proposed reactive DWC [97] 

Besides DWC, the cyclic distillation is a potential intensified distillation process 

which was proposed by Cannon et al. [98]. The operation of cyclic distillation column can 

be described as a cycle of a vapor period (when the vapor flows upwards and the liquid is 

stationary) followed by a liquid period (the liquid flows down the column while the vapor is 

stopped) [98]. The implementation of cyclic distillation for ethanol production has been 

evaluated  in Eastern Europe food industry with significant results [95]. The cyclic distillation 

columns requires 20 – 30 % less energy and 1.5 – 2 times lower height than the traditional 

columns, thus greatly reducing the utility consumption and greenhouse gas emission [95].  

The pressure swing adsorption is a gas separation technique based on the different 

adsorption forces between an adsorbent material and different components of a gas mixture 

[99]. It is a cyclic process of physical adsorption and desorption depending only on the gas 

pressure and the operating temperature [99]. PSA was mentioned in a patent in 1942 and 

developed widely in industry at the end of the 1960s and the beginning of the 1970s [100]. 
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Main applications of PSA are in gas drying and purification, particularly in hydrogen 

production with several advantages such as high purity (up to 99.9 % in case of hydrogen 

purification), less capital investment as well as lower energy requirement and operating costs 

compared to conventional technologies [101]. The twin-or multiple-bed pressure swing 

adsorption is popular PI choice to improve the capacity and energy-savings of gas production 

[102]. Marcinek et al. (2021) presented a PI study of the twin-bed PSA plant for nitrogen 

production with different operating strategies which can increase the productivity up to 

23.9% [102]. 

In chromatography, the components of a mixture are separated by their adsorption and 

desorption at the surface of the adsorbents such as silica and alumina. One of the popular 

chromatographic separations in process industries is the simulated moving bed technology 

which was developed in 1961 by Broughton, Gerhold, and Carson [103]. While the true 

moving bed technology requires the solid adsorbent to actually move in the opposite direction 

of the liquid, the operating principle of the SMB is the periodical shift in the position of inlet 

and out ports to create a similar effect of the counter-current flows as presented in Figure 5.4 

[103]. The simulated moving bed reactor (SMBR) is a promising PI technology which found 

many applications in bio- and petrochemical industries [104]. For example, Shi et al. (2020) 

proposed a novel SMBR which used a homogeneous combination of catalyst and adsorbent 

to increase the yield of p-xylene about 25% and reduce the energy requirement by 19% [105]. 
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Figure 5.4: The illustration of a simulated moving bed [106] 

5.2.2. Reaction technologies. 

The PI reaction technologies are usually called “green” chemical reactors because 

they bring green benefits for industrial processes such as reduced size by combination of 

several reactions, continuous process, improved safety and reaction rate, decrease of waste 

formation, etc. [107]. The industrial applications of PI reaction technologies are including 

spinning disc reactors (SDR), static mixer reactors (SMR), monolithic reactors and 

microreactors [107]. 

The principles of the spinning disc reactor have been developed in the 1920s and seen 

more application since the 1960s [108]. By generating a very thin film of liquid on the 

rotating surface with the centrifugal force, the SDR creates excellent heat-, mass- and 

momentum transfers between liquid and gas phases, and between the liquid and the disc 

surface [109]. Thus, the SDR is the ideal continuous reactor for fast reactions required gas-

liquid contact and an intensive mixing environment [109]. In the processing industry, the 

SDR is a very high performance reactor which can improve the efficiency and economics of 

production processes [109]. For example, compared with traditional methods, the application 
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of the SDR in pharmaceutical production can reduce the reaction time up to 99.97 %, plant 

volume up to 99.21 %, impurity level up to 93.33 % and reaction temperature up to 6.83% 

[110]. An example of a large scale SDR which can be used for production up to 10 tons per 

day is shown in Figure 5.5 [111]. 

 

Figure 5.5: A cross section presentation of a spinning disc reactor by SPINID [111] 

Although the forerunner of the static mixer reactor, a single element motionless gas 

mixer, was described in a patent in 1874, the reactor was not widely applied in the process 

industries until 100 years later [112]. The SMR has several advantages such as easily changed 

product types, continuous operation, smaller footprint, shorter residence time, lower 

equipment cost and energy requirement compared to the conventional continuous stirred tank 

reactor (CSTR) [112]. In a quantitative example presented by Bayer and Himmler (2005), a 

homogeneous mixture can be achieved with a SMR requiring only 1 kW power and 0.25 s 

residence time while a CSTR requires 10 kW and 1 h [113]. The continuous SMR process is 

commonly applied in fine chemical and  polymerization plants with a 20 % - 25 % better 

yield than the conventional batch type process [113]. 

The monolithic reactor was commonly applied for automotive exhaust gas treatment 

since the  1970s [114]. With a simple and robust design, the monolithic reactor is considered 

a potential PI replacement for the conventional packed bed reactor in catalytic gas–solid 

reactions [115]. The monolithic catalyst is a construction of multiple narrow straight parallel 

channels manufactured from ceramics or metallic components which create an ease passage 

for the reactant flow [116]. This design reduces the pressure drop and increases the specific 

surface area of the reactor, thus, improving the conversion rate per unit volume and heat and 

mass transfer efficiency [116]. Therefore, the monolithic reactor has smaller size and requires 

less energy than the conventional reactor with same capacity [116]. 



80 

 

The research and applications of microstructure devices such as microreactors, micro-

heat exchangers and micromixers became more popular since the beginning of the 1990s 

[117]. The first industrial application of a microreactor was in 1935 in form of the falling-

film microreactor for a gas-liquid reaction [94]. The potential of upscaling a microreactor has 

been demonstrated in a study relating the effect of oxygen addition on water-gas shift reaction 

by Neuberg et al. [118]. The results showed that the pilot scale microreactor retained the 

performance and efficiency of the laboratory scale reactor [118]. With advantages such as 

excellent heat and mass transfer, a continuous process with high conversion rate, easy control 

and compact size, the microreactor is a potential process intensification which saves a great 

amount of investment and energy for chemical and pharmaceutical industries that usually 

apply energy intensive reactions [119]. 

5.2.3. Reactive separation technologies. 

Reactive separation technology has several definitions from different authors [120]. 

One of the general concepts was presented in 1967 by Balashov [120]. The concept considers 

that the reactive separation technology is a development of several separation and reaction 

processes at the same time with the target of mutual intensification, efficiency improvement 

and reduction of process flow sheet [120]. A notable example of the reactive separation 

technologies is the reactive distillation column as shown in Figure 5.6. Various strategies are 

applied to incorporate different separative functions into the reactor, which guarantee 

improvement of reaction rate and selectivity, and reduction in waste processing, equipment 

and energy cost [121]. A list of common reactive separation processes is given in Table 5.2. 
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Figure 5.6: A schematic diagram of a reactive distillation column [122] 

Table 5.2: Examples of reactive separation processes 

Process  Key features Applications  

Reactive distillation Combination of separation and chemical 

reaction within a distillation apparatus 

where the production and removal of 

products are carried out simultaneously. 

Advantages: enhancing productivity and 

selectivity, consuming less energy and 

solvents while also keeping high 

efficiency of  the reaction system. 

Disadvantages: limited application by 

operating constrains of both distillation 

and reaction, and more difficult control 

[123]. 

 

Synthesis of methyl 

acetate [121], 

biodiesel production 

[81], production of 

formic acid [124] 
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Reactive absorption An equipment in which a selective 

absorption of gaseous species by liquid 

solutions is combined with simultaneous 

chemical reactions 

Advantages: improving the reaction 

conversion and the separation efficiency 

of absorption, capability to process gas 

mixtures, low thermal degradation of 

products. 

Disadvantage: higher capital investment 

and utility cost due to  absorbent recovery 

units [120]. 

 

Production of nitric 

or sulfuric acid, 

treatment of 

industrial gases and 

elimination of CO2, 

H2S, ozone, and 

NOx [120] 

Reactive extraction A single operating unit comprises liquid-

liquid extraction and chemical reaction by 

adding a selective solvent to reaction 

zone. 

Advantages: higher yield and selectivity 

of reaction and liquid separation, lower 

waste generation, allowing extraction of 

difficult-to-separate products [120]. 

Disadvantages: loss of reactants because 

of emulsification, mixing and phase 

separation, technical and economic 

difficulties in the recovery of low 

concentration solutes, unsuitable for high 

viscous solutions [125]. 

 

Separation of 

carboxylic acids 

[126], production of 

renewable fuels 

[127] 

Membrane reactors Integration of a membrane separation into 

a reactor to  overcome equilibrium 

limitations by continuously removal of 

reactants or products. 

Advantages: increasing reactor efficiency 

in term of productivity and purity of 

products, decreasing number of 

downstream processing units. 

Disadvantages: decline of production due 

to membrane fouling, lack of experience 

on equipment designing [128]. 

Production of 

biofuels, hydrogen 

and other basic 

chemical [129] 
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The reactive distillation process to produce methyl acetate by Eastman Kodak is a 

well-known example of successful industrial reactive separation [107]. Methyl acetate is 

produced through the catalyzed esterification of acetic acid with methanol [107]. Due to the 

reversible nature of the reaction and its azeotrope products, the conventional methyl acetate 

production requires large amounts of reactants for high conversion rate and an energy 

intensive purification process to separate the products [107]. The Eastman process uses 80% 

less energy and only 20% investment cost of the conventional process by replacing an entire 

plant of reactors, distillation columns and liquid-liquid extraction with a RD column and two 

separation columns [107]. 

In conclusion, the application of PI technologies in industry is one of the key 

components in the EU energy transition strategy. Besides significant cost reductions, PI 

technologies offer great energy savings and environmental benefits for many industries, 

especially energy intensive ones such as chemical, oil and gas industries [107]. Dividing wall 

column, static mixer reactor, reactive distillation and reverse osmosis filtration are examples 

from many successes of PI technologies at industrial scale [107]. However, the application 

of PI technologies is not always going smoothly. When scaling up from laboratory to 

industrial level, there are several technical and non-technical problems such as increasing 

fouling in membrane filtration, losing thermodynamics efficiency, new technologies being 

incompatible with existing infrastructure and the conservative of industrial management 

[107]. New PI technologies are usually compared with existing conventional chemical plants 

which are used as benchmarks for capital investment and operating costs [130]. Even though 

newer technologies have advantages of equipment size and costs, the operating costs can 

increase significantly in some cases [130]. Finding a balance of capital investment and 

operating costs is a considerable challenge for PI to replace the existing technologies [130]. 

5.3. The effects of digital twin on the energy transition of the process industries. 

Digital twin has seen a wide range of researches and applications in many sectors, 

including but not limited to production, construction, aviation, education, automotive and 

meteorology with various scales from a single product to factories, cities and countries [131]. 

In the 2018 Tutzing Symposium of ProcessNet in Germany, DT was considered the 

foundation of digitalization and cooperation in process industries that can reduce production 

time, increase versatility and process efficiency [132]. Depending on its applications, the DT 

has different aspects and definitions [133]. The definition of DT for the applications in 

process industries is a set of virtual models which have a real-time connection with the 

physical production process and an ability of constant adaptation and update itself by getting 

real-time data from the physical process during its life cycle [133]. From this definition, the 

DT provides not just a digital replica but also abilities of control, prediction and optimization 

of the production process [133]. 
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With the features as constantly updating and directly linking between the virtual 

model and the entire production line, one of notable DT applications in the process industries 

is production control. Novák et al. proposed a new production planning tool for production 

control by integrating a DT of a physical process into an automated planning system [134]. 

The real-time information of DT such as equipment states (ready, running, maintenance or 

failure), operating conditions (temperature, pressure), etc., enhances the speed, the flexibility 

and the adaptation of the production planning system [134]. The new planning tool is able to 

quickly reformulate a new plan in case of product change or technical failure, providing a 

global overview of the entire production line for further operating optimization [134]. 

Safety and risk management in process industries such as oil, gas and chemicals are 

usually considered of utmost importance [135]. The integration of DT into existing empirical 

process safety models can improve the process operation and safety [135]. Lee et al. proposed 

a concept of a “mega digital twin” model which linked different types of models with real-

time data of a production process. The “mega digital twin” model was used to improve the 

performance of a process plant and give a depth safety and risk analysis through its entire life 

cycle, from design and construction to operation, maintenance, optimization and 

modifications, personnel development and environmental impact control [135]. 

Since 2018, the number of publications relating to applications of DT has increased, 

particularly in maintenance applications [136]. Because industrial process plants are usually 

enormous, complex and operating in high risk conditions, the maintenance is a crucial and 

costly operation to keep the plants running efficiently. The time-based or preventive 

maintenance which is generally based on operating experience or recommendation of 

equipment producers has been slowly replaced with condition-based or predictive 

maintenance [137]. The concept of predictive maintenance was introduced in 1975 to reduce 

maintenance costs by making decisions based on real-time assessments of the production 

process [138]. The DT is considered one of key enablers to achieve the transition from 

preventive to predictive maintenance by making the virtual models of equipment and 

production process more realistic [139]. With the constant updated models, the predictive 

maintenance becomes more accurate and adaptive through the life cycle of industrial process 

plants [139]. The integration of DT into the predictive maintenance model allows evaluation 

and prediction of the current- and after-maintenance states of the production process [136]. 

Optimized maintenance plans can reduce the operating costs, energy consumption and 

environmental impacts [139]. 

Process industries are highly susceptible to product market prices which fluctuate 

according to various factors including but not limited to seasonal changes, environmental 

policies, consumer demands and political issues. The integration of the DT into process 

models make them more adaptable to changes in the market due to the timely communication 

between the real process and the virtual model. The benefits of production optimization with 
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the DT have been presented in several studies. The study of Min et al. presents an approach 

and a frame work for applying the DT in optimization of the production process in 

petrochemical industry which is a typical process industry[140]. This study presents the DT 

based optimization experiment of MAYA, a Chinese refinery with capacity of multi-million 

tons (diesel, gasoline, LPG, propane, propylene, petroleum coke, oil slurry, naphtha, and 

sulphate MTBE) per year [140]. The case study results show an increase in the light oil daily 

yield of the refinery by 0.2 - 0.5% [140]. Shen et al. proposed a DT based optimization model 

in oil and gas industry [141]. The DT model provided an virtual environment which 

continuously connected the oil and gas supply capacity of oil wells with the working 

conditions and capacity of equipment [141]. The real time connection of different 

components in the production process allowed more precise prediction and control of the 

production capacity and energy requirements of refinery [141]. The proposed DT control 

model was applied to 35 oil wells which showed a reduction of daily average power 

consumption by 48.12 kWh and an increase of system efficiency from 11.02% to 16.43% 

[141]. 

Figure 5.7 presents search results from the website Scopus for keywords of “digital 

twin”, “process intensification”, combinations of “digital twin” or “process intensification” 

with “process industry” from 2012 to 2021. The number of publications relating to DT have 

increased significantly with 5860 papers . However, the applications of the DT in the process 

industries are still scarce and immature compared to other sectors [131]. There are several 

barriers for extensively applying the DT in process industries [131]. One of the main barriers 

can be identified as the high difficulty in application of the DT to the complexity of physical 

and chemical processes which are commonly used in process industries [131]. Another main 

barrier is the compatibility of existing industrial process plants which can be several decades 

old with new digital information and control systems [142]. With the exception of modern 

plants which are built with digital-ready designs, the investment costs for the DT in an 

existing plant can easily discourage most of the plant management [142]. Therefore, the 

deployment methodologies of DT are required to be innovative and adaptive with the 

situation of each process plant. After applied in the plant, the maintenance of DT model is 

quite a challenge in term of plant personnel who have the required know-how knowledge and 

experience. 
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Figure 5.7: The number of publications relating to DT and PI over last 10 years 

The DT approach for process industries is equally important as its applications. The 

method of DT application greatly depends on the size and state of the existing plant, the 

investment budget, the skills of operators and the available digital tools and data. Sierla et al. 

proposed a methodology of “semi-automatic generation of digital twins” for several decade 

old process plants or “brownfield process plants” where a large part of data was not available 

in digital format [142]. The method included nine steps to combine machine and human 

efforts in input and correction of data for setting up a DT model with reasonable investments 

[142]. Örs et al. presented a operational digital twin (ODT) focused on the optimization of 

plant operation and its generic development framework in chemical process industry [143]. 

The ODT was combined with artificial intelligence (AI) support to optimize the process 

model, schedule and control [143]. From the research, the application of AI-based ODT can 

improve the production flexibility and reduce the CO2 emissions of chemical process plants 

[143]. Perno et al. systematically analysed the enablers and barriers and proposed a model 

for application of the DT in process industries [131]. The model connected the enabler with 

the right barrier to create a proper guidance of the DT deployment for process industry 

practitioners [131]. 

As its potential has been proven, the DT can play an important role in the energy 

transition of process industries. With the abilities of precise simulation and prediction, the 

DT can improve the design, control and maintenance plan from single equipment to entire 

processes. The application of DT through the lifecycle of industrial process plants increases 

production efficiency and reduces unnecessary costs and energy requirement.  
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5.4. The combination of PI and DT in process industries, a winning formula? 

The barriers of PI applications in process industries can be overcome by connecting it 

to DT. The DT creates a virtual environment of the process plant where the PI strategies can 

be simulated, predicted and optimized with real-time data [144]. The effects of PI can be 

evaluated in the research and development phases, thus, saving the costs of prototypes and 

adjustments after physical implementation [144]. The analysis of a high quality DT model 

helps understand the chemical and physical limitations of the production process and improve 

PI designs [144]. With the knowledge from the DT, the need of many testing and pilot steps 

can be reduced during the scale-up while still ensuring the performance of PI equipment 

[144].  

Due to the integration of two or more processes into a single equipment, operation 

and control are challenging issues of intensified processes [145]. With a real-time exchange 

between virtual model and real operating plant data, the DT is an advanced tool for control, 

simulation and optimization of the operating conditions of intensified equipment and 

production systems [145]. The high accurate simulation using the DT model allows process 

industry practitioners to optimize the operation and control of a PI system at the conceptual 

design stage [145].  

López-Guajardo et al. have presented the concept of Process Intensification 4.0 which 

is the integration between PI, Industry 4.0 and Circular Chemistry [146]. The real-time data 

based simulation and prediction of the DT are identified as important tools to achieve the 

next generation of PI [146]. The PI 4.0 takes advantages of Industry 4.0 data-driven tools and 

algorithms to develop, improve and deploy innovative technologies and circular processes, 

thus, improving the viability of sustainable transitions in process industries [146]. 

The advances in PI allow the development of more sophisticated equipment and 

process designs, thus creating more complex physical and chemical systems. The challenges 

of understanding and describing high complex systems become the drive for developing 

advanced sensors, accurate and reliable simulation tools and updated modelling methods. 

These then lead to improve the depth, reliability and accuracy of the DT.  

Figure 5.7 shows an upward trend in the number of PI and DT researches in process 

industries recently, leading to more attentions on the concept of integrating advanced 

computational and data-centric tools into process design, control and maintenance. Although 

the combination of PI and DT has been vaguely mentioned in a few publications, it is proven 

that process intensification can be evolved by integrating Industry 4.0 toolboxes, especially 

the digital twin model. Advances in process and equipment designs, intelligent technologies 

and big data management are applied to develop more flexible, environmentally friendly and 

efficient production processes. 
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5.5. Conclusion  

The process intensification and the digital twin are potential tools to reduce the 

environmental impact of process industries. Besides economic benefits, they can increase the 

energy saving, enhance process safety and reduce unnecessary material consumption in 

production and equipment manufacturing. The concept of combining the PI and the DT can 

further improve their capabilities. The data based model and real-time data interaction of the 

DT and the physical process play important roles in the development of the next generation 

PI, which in turn has an impact on the sensory system, data management and simulation 

software. However, the applications of the PI and DT in process industries are not without 

difficulties such as lack of capital investment, insufficient skilled workforce, legacy 

equipment, conservative plant management, etc. Nonetheless, the deployment of PI, DT and 

their combination can accelerate the energy transition in process industries and the barriers 

can be overcome by identifying and communicating the solutions, combining different 

approaches and technologies, publishing new development in PI and DT openly and 

increasing public awareness of the impact of energy transition in process industries. 

To conclude, there are important topics and future perspectives requiring our attention: 

1) The human-machine interface which gives access, details and explanation of DT 

knowledge to different level of industrial practitioners, from operator to supply chain 

manager, is a key to bring out all the knowledge of the DT. Finding a simple and effective 

communication method between user and virtual environment can be an important topic 

for DT developers.  

2) While various patented DT platforms have been developed by large companies such as 

IBM, Microsoft, General Electrics and Siemens [133], open-source software is a more 

economic option for implementing DT in small and medium size plants. A notable 

examples of open source DT framework is the project Eclipse Ditto™ which is sponsored 

mainly by Robert Bosch GmbH [147]. Another platform is iTwin.js of Bentley Systems 

for setting up and managing the DTs of infrastructures such as buildings, airports, bridges, 

industrial and power plants and railroad [148]. 

3) The development of more effective methods to collect, process and communicate data are 

urgently needed because data availability is one of the key enablers for the 

implementation of PI and DT in process industries.  

4) In addition to DT, the combination of PI and different tools of Industrial 4.0 such as 

machine learning and data-driven simulation and modelling is crucial for developing 

more effective processes and a direction for the future chemical engineering. 

5) The energy transition in process industries requires a joint effort of different disciplines 

and management levels. A worldwide digital platform for sharing data and knowledge of 

PI and DT can reduce costs and time of their development and application. 
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6) Beyond the traditional process industries, the PI and DT can transform the production 

paradigm of other sectors such as renewable energy (solar, wind, biofuels, etc.), 

agriculture, and high-value biochemicals from microalgae. Therefore, studies to widen 

the applications of PI and DT are important in the long term strategy of energy transition. 
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6. Conclusion and outlook 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The end is just the beginning” – Thomas Stearns Eliot  
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6.1. Conclusions  

This study addresses the challenges of biodiesel production such as high costs, food-

or-fuel debates and environment impacts with process intensification technology such as 

membrane reactor and reactive distillation. Three new models for applying process 

intensification in the biodiesel production have been developed: 

The first model is a novel mathematical model for the membrane reactor which 

integrate the dynamic fouling states. The model has been used to describe the cyclic operation 

of membrane reactor in biodiesel production.  

Secondly, from the membrane cleaning model of Zondervan et al. [33], a new cleaning 

model for the membrane reactor has been developed for biodiesel reaction and fouling. The 

cleaning duration and costs of cleaning including production lost, chemical and energy costs 

can be determined from the model. 

The superstructure model for the biodiesel production is the third model. The first new 

feature of this model is the wide range of feedstocks from three biodiesel generations and 

innovative technologies such membrane reactor, reactive distillation and supercritical 

reaction. The second novel feature is the heat integration which allows the model to match 

the hot and cold product streams to reduce the heating and cooling requirements. 

The membrane reactor for biodiesel production is not a new study in the literature 

[23]. Although the fouling is an intrinsic problem of the membrane operation, the effects of 

fouling on the membrane reactor in biodiesel production has not received adequate attentions. 

After a certain period called operating cycle, the membrane has to be physical cleaning to 

remove the reversible fouling [29]. The accumulation of irreversible fouling requires a 

complete stop of the reactor operation to do a chemical cleaning [29]. In chapter 2, the 

membrane reactor model in combination with the membrane cleaning model is used to 

simulate the reactor operating under effects of fouling with different operating cycles. Then, 

the cleaning costs which contribute greatly to the operating cost are calculated. From the 

results, an optimal operating cycle is identified to minimize the operating cost per weight of 

biodiesel produced. 

Even though the reaction is important to produce biodiesel, the feedstock and 

purification process contribute more than 80% of the total production cost [9]. With a 

network of different feedstock and process technologies, the superstructure model set up in 

chapter 3 has been used effectively to optimize the biodiesel production. The tallow is the 

chosen feedstock due to its low cost and non-edible status. The optimal process of producing 

biodiesel from tallow is using reactive distillation which is a process intensification 

technology. The heat integration and glycerol treatment process reduce the cost and 

environmental impacts of biodiesel production further. 
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The membrane reactor has the advantage of high reaction rate and product purity. 

However, its biodiesel yield is lower than other reactors such as continuous stirred tank or 

reactive distillation, thus making it not cost effective for biodiesel production. 

The production of biodiesel has been affected by many uncertainties. Based on the 

production cost breakdown in chapter 3, chapter 4 identifies that the market prices of 

biodiesel and feedstock, and production capacity are most influencing uncertainties. The 

assessment of different technology and feedstocks shows that process intensification such as 

reactive distillation greatly improves the biodiesel production in term of costs and flexibility.  

The application of process intensification technologies in the process industries 

including biodiesel production is very difficult as management is conservative (business as 

usual) or the new technology is incompatible with old production lines. One potential solution 

to overcome those difficulties is the combination of process intensification with digital twin 

as presented in chapter 5. By creating a virtual environment, the DT helps evaluate the effects 

of PI technology in the early stages of the project such as research and development. 

Therefore, the DT model can be used to prove the advantages of PI design and analysing the 

compatibility with the existing plant without spending additional costs for protypes or 

adjustments after physical deployment of the new technology. 

6.2. Outlook  

Validation with experiments in pilot scale with different membrane materials and 

operating conditions is the next step to improve the membrane reactor model. The current 

model has been proven that it can reliably simulate the biodiesel reaction in combination with 

fouling activities. However, it is fitted with only one set of experimental data which provides 

essential data such as the permeate flux and the biodiesel yield over time [27]. This 

experiment does not reflect the advances in membrane material and technology [27]. While 

there are new membrane technologies for different fields such as water treatment, medical 

and food applications, the reports in biodiesel production are scarce. The model can be 

improved greatly in terms of accuracy, biodiesel yield and selectivity with sufficient data of 

new membrane technologies, especially the data in the pilot scale. 

Improving the accuracy of the superstructure model with more detailed cost 

calculation, heat exchanger network design, and accounting the uncertainty in the product 

and raw material prices, the availability of technologies. The current accuracy is limited to 

30% to 35%. The first reason is the Lang’s factor method to calculate the capital investment 

which is a study estimate [68]. The second reason is the heat integration feature which does 

not calculate heat exchanger costs, thus reducing the accuracy in the equipment cost result. 

The third reason is the uncertainty  which is still an issue and requires to be integrate into the 

superstructure model. From the initial optimization result, more accurate and detailed 
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biodiesel production can be designed by using more detailed methods such as preliminary 

estimate and definitive estimate for capital investment and cost spread sheet for annual costs 

[69]. The heat integration results can be used to design a heat exchanging network and 

calculate the heat exchanger costs. The recommended calculations can be done after the 

initial estimate study. Optimization under uncertainty has been received more attentions in 

the field of process systems engineering [149]. The sensitivity analysis and technological 

assessment in chapter 4 are important preconditions for solving the superstructure model 

under uncertainty. 

Supply chain optimization integrating the developed superstructure is an interesting 

work to improve the production costs of biodiesel. The models developed in this study are 

useful for initial estimate studies of the biodiesel production design and optimization. They 

can answer the questions relating to the direction of biodiesel production. The limitations of 

those models can be overcome with more data and improvement in modelling and calculation 

methods which cannot be address in the finite time of this study. It is interesting to note that 

the superstructure is modelled in AIMMS which is a powerful tool for supply chain 

optimization, thus opening opportunities to integrate the superstructure in future biodiesel 

supply chains and making an enterprise level optimization. 
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Appendixes  

Appendix A-2.1 

The diffusion coefficient of a component in a solvent is more difficult to determine or 

estimate than viscosity and density by experimental methods. The Wilke-Chang equation can 

be used as a semi-theoretical to estimate diffusivity [52]. 

𝐷𝐴𝐵 =
(117.3×10−18)(∅𝑀𝐵)0.5𝑇

𝜇𝑉𝐴
0.6   

Where DAB is diffusivity of component A in solvent B, MB is molecular weight of solvent, T 

is temperature, µ is solution viscosity, VA is solute molar volume at normal boiling point and 

ϕ is association constant for solvent. 

There are 6 components including TG, MeOH, FAME, DG, MG and GL in the 

membrane reactor. Methanol which is used with excessive amount becomes the continuous 

phase. In this case, MeOH is regarded as solvent and other components are regarded as 

solutes [23]. 

The research on kinetics of transesterification of Portha et al. (2012) [52] gives the 

values ΦMeOH = 1.9 and MMeOH = 32 g/mol for methanol. The molar volumes at normal boiling 

point of other components are shown in Table A-1. 

Table A-1: The molar volume of component at its normal boiling temperature (m3/kmol) 

[52]: 

Component TG  MeOH DG  MG  GL FAME  

V 1.2118 0.048 0.826 0.4578 0.096 0.4077 
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Appendix A-3.1 

The description of superstructure options includes name, cost, reference capacity and 

equipment size exponent. 

Option Name Cost 

(USD) 

Reference 

capacity 

(kg/h) 

Chemical 

Engineering 

Index 

Equipment 

Size Exponent 

Reference 

1 Waste cooking oil 740 

(USD/t) 

   Price in 

2020 

2 Tallow 625 

(USD/t) 

   Price in 

2020 

3 Linseed oil 1127 

(USD/t) 

   Price in 

2020 

4 Rapeseed oil 1050 

(USD/t) 

   Price in 

2020 

5 Canola oil 950 

(USD/t) 

   Price in 

2020 

6 Algae oil 1500 

(USD/t) 

   Price in 

2020 

7 Waste cooking oil 740 

(USD/t) 

   Price in 

2020 

8 Tallow 625 

(USD/t) 

   Price in 

2020 

9 Linseed oil 1127 

(USD/t) 

   Price in 

2020 

10 Rapeseed oil 1050 

(USD/t) 

   Price in 

2020 

11 Canola oil 950 

(USD/t) 

   Price in 

2020 

12 Algae oil 1,500 

(USD/t) 

   Price in 

2020 

13 Esterification / 

Pretreatment 

677,000 1,268 401.7 0.6 [71] 

14 Transesterification 

CSTR 

Homogeneous 

alkali-catalyzed 

292,000 1,175.71 401.7 0.53 [66] 

15 Reactive 

distillation column 

Homogeneous 

alkali-catalyzed 

232,000 4,892.95 556.8 0.78 [150] 

16 Transesterification 

CSTR 

Homogeneous 

alkali-catalyzed 

292,000 1,175.71 401.7 0.53 [66] 

17 Reactive 

distillation column 

232,000 4,892.95 556.8 0.78 [150] 
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Homogeneous 

alkali-catalyzed 

18 Transesterification 

CSTR 

Homogeneous 

acid-catalyzed 

680,000 2,819 401.7 0.53 [66] 

19 Transesterification 

multiphase reactor 

Heterogeneous 

acid-catalyzed 

75,000 1,168.84 401.7 0.53 [66] 

20 Reactive 

distillation column 

Heterogeneous 

acid-catalyzed 

236,400 4,456.89 556.8 0.78 [72] 

21 CSTR 

Supercritical 

MeOH 

639,000 2,572 401.7 0.53 [66] 

22 Heterogeneous 

enzyme 

CSTR 

328,320 2,054.4 521.9 0.53 [151] 

23 Membrane reactor 

Heterogeneous 

acid-catalyzed 

336,000 1,971 596.2 0.68 [17] 

24 Neutralization 

reactor + Decanter 

H2SO4 

150,000 2,811.17 576.1 0.53 [152] 

25 Neutralization 

reactor + Decanter 

CaO 

150,000 2,811.17 576.1 0.53 [152] 

26 Distillation column 

MeOH recovery 

Homogeneous 

alkali-catalyzed 

38,000 1,227 401.7 0.78 [66] 

27 Distillation column 

MeOH recovery 

Homogeneous 

acid-catalyzed 

152,000 2,819 401.7 0.78 [66] 

28 Distillation column 

MeOH recovery 

Homogeneous 

alkali-catalyzed 

38,000 1,227 401.7 0.78 [66] 

29 Distillation column 

MeOH recovery 

Homogeneous 

acid-catalyzed 

152,000 2,819 401.7 0.78 [66] 

30 Hydrocyclone 15,000 1,172.88 401.7 0.6 [66] 

31 Decanter 

glycerol separation 

113,200 4,457 556.8 0.72 [150] 
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reactive distillation 

process 

32 Decanter 

glycerol separation 

Enzymatic process 

32,850 1,160 521.9 0.72 [151] 

33 Distillation column 

MeOH recovery 

Supercritical 

process 

167,000 2,529 401.7 0.78 [66] 

34 Decanter 

glycerol separation 

113,200 4,457 556.8 0.72 [150] 

35 Distillation 

MeOH purification 

homogeneous acid 

catalyzed 

380,000 2,811 576.1 0.78 [152] 

36 L-L extraction 

column 

Water washing 

Homogeneous 

alkali-catalyzed 

84,000 1,120 401.7 0.78 [66] 

37 Decanter 

glycerol separation 

113,200 4,457 556.8 0.72 [150] 

38 Neutralization 

reactor + Decanter 

H2SO4 

150,000 2,811.17 576.1 0.53 [152] 

39 Neutralization 

reactor + Decanter 

CaO 

150,000 2,811.17 576.1 0.53 [152] 

40 Distillation 

MeOH recovery 

Heterogeneous 

acid-catalyzed 

28,000 1,163 401.7 0.78 [66] 

41 Distillation 

MeOH removal 

140,000 1,288.4 401.7 0.78 [71] 

42 Decanter 

Glycerol 

separation 

Supercritical 

alcohol process 

58,000 1,170.33 401.7 0.72 [66] 

43 Distillation 

MeOH separation 

Catalytic 

membrane reactor 

38,000 1,227 401.7 0.78 [17] 

44 Decanter 

Glycerol 

homogeneous acid 

catalyzed 

30,000 1,107.67 576.1 0.72 [152] 
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45 Distillation 

FAME purification 

Pre-treated alkali-

catalyzed 

102,000 1,059.14 401.7 0.78 [66] 

46 Distillation 

FAME purification 

homogeneous acid 

catalyzed 

Including hexane 

distillation 

256,000 1,153.5 401.7 0.78 [71] 

47 L-L extraction 

column 

Water washing 

homogeneous 

acid-catalyzed 

113,000 1,313.95 401.7 0.78 [66] 

48 Decanter 

glycerol separation 

Heterogeneous 

acid-catalyzed 

57,000 1,149.8 401.7 0.72 [66] 

49 Distillation 

FAME purification 

Heterogeneous 

acid-catalyzed 

95,000 1,049.4 401.7 0.78 [66] 

50 Distillation 

FAME purification  

Supercritical 

process 

146,000 1,060.23 401.7 0.78 [66] 

51 Distillation 

FAME purification 

(Without oil) 

Catalytic 

membrane reactor 

324,000 2,990.37 401.7 0.78 [17] 

52 Distillation 

FAME purification  

homogeneous 

acid-catalyzed 

560,000 1,016 576.1 0.78 [152] 

53 Distillation 

FAME purification  

heterogeneous 

acid-catalyzed 

95,000 1,049.4 401.7 0.78 [66] 

54 Biodiesel sales 1,060 

(USD/t) 

   Price in 

2020 

55 Waste glycerol 

disposal 

15 

(USD/t) 

  
 

[153] 

56 Neutralization 

reactor 

Glycerol 

21,000 128 401.7 0.53 [71] 

57 Crude glycerol 

sales 

170 

(USD/t) 

   [154] 
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58 Neutralization 

reactor 

Glycerol 

21,000 128 401.7 0.53 [71] 

59 Crude glycerol 

sales 

170 

(USD/t) 

   [154] 

60 Distillation 

Glycerol 

purification 

MeOH, water 

removal 

140,000 1,288.4 401.7 0.78 [71] 

61 Distillation 

Glycerol 

purification 

MeOH, water 

removal 

140,000 1,288.4 401.7 0.78 [71] 

62 Technical glycerol 

sales 

895 

(USD/t) 

   [154] 

63 Distillation 

Glycerol 

purification 

MeOH, water 

removal 

140,000 1,288.4 401.7 0.78 [71] 

64 Distillation 

Glycerol 

purification 

MeOH, water 

removal 

140,000 1,288.4 401.7 0.78 [71] 

65 Distillation 

Glycerol 

purification 

MeOH, water 

removal 

140,000 1,288.4 401.7 0.78 [71] 

66 Technical glycerol 

sales 

895 

(USD/t) 

   [154] 

67 Distillation 

Glycerol 

purification 

MeOH, water 

removal 

140,000 1,288.4 401.7 0.78 [71] 

68 Pure glycerol sales 1,275 

(USD/t) 

   [154] 
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Appendix A-3.2 

The split factor, SFj,k, of each component k in option j. 

 

 

 

 

 

 

k \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

FAME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 1 0.99 1 1 1 1 1 0.51 1 

MeOH 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0.35 1 0.35 1 1 0.18 1 1 0.46 1 

Oil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.85 1 0.85 1 1 0.98 1 1 0 1 

Glycerol 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.38 1 

H2SO4 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1  

Water 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Hexane 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

NaOH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

SnO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

CaO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

C2H6MgO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

WOx/Al2O3  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Enzymes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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k \ j 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

FAME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

MeOH 1 0.06 0.01 0.06 0.01 1 0.47 0.51 0.01 1 0 0.46 0 1 1  0.06 0.45 

Oil 1 1 1 1 1 1 0.98 0.99 1 1 1 1 1 1 1 1 1 1 

Glycerol 1 1 1 1 1 1 0.03 0 1 0 1 0 0 1 1 1 1 0.01 

H2SO4 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 

Water 1 1 1 1 1 1 1 1 1 1 0.89 1 0.12 1 1 1 1 1 

Hexane 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

NaOH 1 1 1 1 1 1 0.06 0.06 1 0.06 1 1 1 0 1 1 1 1 

SnO 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

CaO 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

C2H6MgO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

WOx/Al2O3  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Enzymes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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k \ j 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

FAME 1 1 1 0.975 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

MeOH 0.01 0.57 0.03 0 1 0.34 1 1  1 1 1 1 1 1 1 1 0 

Oil 0 1 0 0 1 0.99 0 0 0 0 0 1 1 1 1 1 1 0 

Glycerol 0 0.1 0 0 0 0.01 1 1 0 1 1 1 1 1 1 1 1 1 

H2SO4 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 

Water 0 0.94 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 

Hexane 1 1 1 0.035 1 1 1 1 1 1 1 1 1 0 1 0 1 0 

NaOH 1 0.06 0 1  0.06 1 1 1 0 1 1 1 0 1 0 1 0 

SnO 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 

CaO 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 

C2H6MgO2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 

WOx/Al2O3  1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 

Enzymes 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 
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k \ j 61 62 63 64 65 66 67 68 

FAME 0 1 0 1 0 1 0 1 

MeOH 0 0 0 0.04 0 1 0 1 

Oil 0 1 0 0 0 1 0 1 

Glycerol 1 1 1 1 1 1 1 1 

H2SO4 0 1 0 0 0 1 0 1 

Water 0 1 0 0.06 0.03 1 0.03 1 

Hexane 0 1 0 0 0 1 0 1 

NaOH 0 1 0 0 0 1 0 1 

SnO 0 1 0 0 0 1 0 1 

CaO 0 1 0 0 0 1 0 1 

C2H6MgO2 0 1 0 0 0 1 0 1 

WOx/Al2O3  0 1 0 0 0 1 0 1 

Enzymes 0 1 0 0 0 1 0 1 
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Appendix A-4.1 

Table A-4.1: Sensitivity factors according to the parameters of the superstructure model 

Parameter  S 

Biodiesel price 2.36 

Glycerol price 0.28 

Feedstock price 1.41 

Equipment price 0.061 

Production capacity (infeed) 1.06 
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Appendix A-4.2 

Table A-4.2: The total annual profit and production costs of the base case and scenarios 

 Total annual profit 

(USD) 

Equipment cost 

(USD) 

Chemical cost 

(USD) 

Utility cost 

(USD) 

Operating and maintenance cost 

(USD) 

Base case  3,539,026 211,525 297,302 190,886 124,231 

1 3,134,732 301,589 255,353 185,617 126,032 

2 2,973,252 837,099 244,897 248,385 136,742 

3 2,295,976 909,503 756,482 336,741 138,190 

4a 2,006,746 1,274,505 607,250 124,806 145,490 

4b 2,691,673 847,137 574,504 186,276 136,943 

5 1,033,043 209,843 288,822 180,665 124,197 

6 333,871 637,211 321,567 133,440 132,744 
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