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ABSTRACT 
 
Roof shape information is essential for creating 3D building 
models. However, the automated extracting of roof structures 
from Earth observation data is a difficult task involving 
significant uncertainties caused by scene complexity and 
limited multi-source data coverage. This paper introduces the 
integrally-attracted wireframe parsing (IAWP) framework to 
reconstruct building rooflines as a planar graph from 
remotely sensed images with a single forward pass. We add 
global geometric line priors through the Hough transform into 
deep networks to better extract the linear geometric features. 
We perform experiments on the vectorizing world building 
(VWB) dataset. The investigated method improves the F-
score metrics of corner points/edges by 0.1%/7.7% and 
0.6%/1.1%, respectively. Visual comparison results also 
indicate that the HT-IHT block gives consistent 
improvements in terms of geometric regularity. 
 

Index Terms— Building roofline extraction, End-to-end 
learning, integrated attraction field, Hough-Transformation 
 

 
1. INTRODUCTION 

 
Automatic building reconstruction is an essential aspect of 
capturing and updating spatial data for urban applications, for 
instance, in urban planning, 3D navigation, and emergency 
response [1]. The roof structure is essential for creating 3D 
building models at different levels of detail (LoD). 
Automated building roof line extraction has remained a 
challenging task, mainly due to the varying building roof 
configurations, shadows, geometric distorsions, and 
overhanging vegetation in the images. 

Many research efforts have been conducted to extract 
rooflines using various Earth observation data, including 
point cloud data, optical images and Geographic Information 
System (GIS) vector data, taking advantage of the synergy 
among all data sources. Fernandes et al. proposed to extract 
groups of straight lines representing roof boundary sides and 
roof ridgelines from high-resolution aerial images using 
corresponding airborne laser scanner (ALS) roof polyhedrons 

as initial approximations [2]. Alidoost et al. proposed to 
utilize convolutional neural networks (CNNs) to extract the 
inherent and latent features from a single image and interpret 
these as 3D information for building roofline extraction and 
reconstruction [3]. Due to scene complexity and limited 
multi-source data coverage, those methods usually involve 
complex multiple-steps processing pipelines involving 
feature extraction, fusion, and morphological operations 
(illustrated in Figure 1). Thus, they are limited to areas with 
few buildings and cannot scale up to large urban areas. 
 

 
 
Fig. 1 Traditional hybrid workflow for the extraction of 
rooflines from Earth observation data (revised from [1]).  
 
In recent years, advances in optical image sensor technology 
and deep learning algorithms have offered new opportunities 
to accelerate roof structure extraction and 3D building 
modeling research. Nauata et al. present an algorithm that 
uses CNNs to detect geometric primitives and infer their 
relationships, where integer programming (IP) fuses all the 
information into a planar graph through holistic geometric 
reasoning. It first transforms the 2D roof architecture 
vectorization problem to infer a planar graph from a single 
RGB image [4]. Jointly detecting meaningful and salient line 
segments and junctions is challenging as it requires inferring 
a graph structure with an arbitrary topology. Thus, it is a high-
level reconstruction task akin to the floorplan vectorization 
and wireframe parsing [6], in contrast to low-level 
reconstruction tasks such as point and line detection. The 
inference of graph topology of buildings in satellite images is 
more challenging due to the foreshortening effects through 
perspective projection. Zhang et al. proposed to apply 
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convolutional message-passing network (Conv-MPN) 
architecture for roofline structure reconstruction. This 
method relies highly on preliminary processing (corner 
detection), and the framework is computationally expensive 
and inefficient in training and inference [5]. 

Motivated by the success of recent works in wireframe 
parsing [6,7], we turn the roofline extraction task into a high-
level graph structure reconstruction problem. We aim to 
directly predict vectorized building roof structure in an end-
to-end learnable way. The input is a satellite RGB image. The 
output is a planar graph depicting both the internal and 
external roof architecture feature lines.  

This paper makes the following contributions: 1) we 
investigate the applicability of the integrally-attracted 
wireframe parsing (IAWP) framework in the context of 
outdoor building roofline structure reconstruction; 2) we 
integrate geometric line priors into deep networks for 
enhanced geometric feature extraction and improved data 
efficiency by relying on the Hough transform block. Such 
blocks performs in the Hough domain over the space of all 
possible image-line parameterizations, which provides the 
gloal prior knowledge of line features. The IAWP was 
originally applied for indoor scene wireframe parsing. It is 
also termed the holistically-attracted wireframe pasing 
(HAWP).  
 

3. METHODOLOGY 
 
 
3.1. Integrally-Attracted Wireframe Parser 
The IAWP is an end-to-end trainable and fast parsimonious 
parsing method that can detect a vectorize wireframe in an 
input image. As illustrated in Fig. 2, the IAWP consists of 
three components: (i) line segment and junction proposal 
generation, (ii) line segment and junction matching, and (iii) 
line segment and junction verification.  

 
Fig. 2 Architecture of the adopted method (Modified from 
[7]).   
 

i) Proposal initialization: line segment detection and 
junction detection. The input image is processed first by the 
backbone, i.e., the stacked Hourglass network [10], to extract 
shared deep features. After that, there are two parallel 
branches to detect junctions and line segments, respectively. 
For junction detection, the junction mask map and junction 
offset map are calculated. During training, the binary cross-
entropy and the l1 loss total loss is used. In the inference, the 
standard non-max-suppression (NMS) is applied to select the 

top-K junctions as initial junction proposals. For computing 
line segment proposals, we refer to the original work of 
HAWP, which derives a 4-D vector field map for line 
segments. Such a scheme is proved to be more accurate and 
efficient in reparameterizing the line segments. In addition, 
to predict the attraction field map (AFM) from the feature 
map, the network also computes a distance residual map, 
which is leveraged as an auxiliary supervised signal for 
learning the position of line segments.  

ii) Proposal refinement: line segment and junction 
matching. The role of this step is to find meaningful 
alignment between line segment initial proposals and 
junction proposals. A line segment proposal from the initial 
set is kept if and only if its two endpoints can be matched with 
two junction proposals based on Euclidean distance with a 
threshold. A junction proposal is removed if it does not match 
any survived line segment proposal after refinement. 

iii) Proposal verification: line segment and junction 
classification. The verification process is to classify  the line 
segments and junctions from the previous refinementstage. 
Line-of-Interest (LOI) pooling operation is utilized to 
compute features for a line segment [6]. Geometrically, the 
proposed wireframe parser is enabled by the holistic 4-
dimensional AFM and the "basins" of the attraction field 
revealed by junctions. 
 
3.2. Hough transform block for global line priors 
Recent works add prior knowledge into deep networks that 
aim to enhance built-in geometric information and reduce the 
dependency on labeled data [8, 9]. Motivated by those, we 
add line priors through a trainable Hough transform block 
into the backbone feature extraction network to better retrieve 
the building roofs' line features. 

Typically, the Hough transform parameterizes lines in 
polar coordinates as an offset ρ and an angle ө. These two 
parameters are discretized in bins. Each pixel in the image 
votes in all line-parameter bins to which that pixel can belong. 
The binned parameter space is denoted the Hough space, and 
its local extrema correspond to lines in the image. 

We integrate a Hough transform and inverse Hough 
transform (HT-IHT block) to combine locally learned image 
features with global line priors. We allow the network to 
combine information by defining the Hough transform on a 
separate residual branch.  

The HT layer inside the HT-IHT block maps input 
features to the Hough domain and produce transformed 
features. This is followed by a set of local convolutions in the 
Hough domain which are equivalent to global operations in 
the image domain. The result is then inverted back to the 
image domain using the IHT layer, and it is subsequently 
concatenated with the convolutional branch. 
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Fig. 3 HT-IHT block. 

 
As shown in Fig. 3, the input feature map, coming from 

the previous convolutional layer, learns local edge 
information and is combined on a residual branch with line 
candidates, detected in global Hough space. The input feature 
map is transformed channel-wise to the Hough domain 
through the HT layer into multiple HT maps. The result is  
then filtered with 1D channel-wise convolutions. Two 
subsequent 1D convolutions are added for merging and 
reducing the channels. The output is converted back to the 
image domain by the IHT layer. The deep hough transform, 
which applied to all unique lines in an image, is order-
agnostic in both the feature space and the parametric space, 
making it highly parallelizable. Upon implementation, we 
replace the hourglass blocks with the HT-IHT block, and the 
parameters of the HT-IHT block are much less than hourglass 
block. The Hough transform provides the prior knowledge 
about global line parameterizations, while the convolutional 
layers learn the local gradient-like line features. 

 
3.3. Loss function 

The overall workflow is trained end-to-end with the 
following loss function, 

𝐿𝐿 =  𝐿𝐿𝐿𝐿𝐿𝐿 +  𝐿𝐿𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 + 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 
where 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿𝐽𝐽𝐽𝐽𝐽𝐽 and 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 are the losses for the line segments, 
junctions, and vertices, respectively. The channel-wise ℓ1 

norm is used for computing line segments loss. The 𝐿𝐿𝐽𝐽𝐽𝐽𝐽𝐽 
calculates the weighted sum of losses from the junction mask 
map and the junction offset map. We use binary cross-entropy 
loss in the verification module. Denote by and 𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 the loss 
computed on the sampled LoIs. A more detailed descriptions 
of the loss functions can be found in [7]. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Datasets and Evaluation Metrics 
4.1.1. Datasets.  
We perform experiments on the vector world building (VWB) 
[4] dataset to validate our method. The images are part of the 
SpaceNet Public Dataset, and they cover the cities of Atlanta, 
Paris, and Las Vegas. The images have a spatial resolution of 
30 cm. The interior and exterior building edges are annotated 
as 2D planar graphs. The building instances in images are 
cropped and resized to the size of a 256 × 256 image patch. 
The entire dataset includes 1601 training and 400 testing 
samples. 

 
4.1.2. Evaluation Metrics.  
For a fair comparison, we follow the accuracy evaluation 
settings used in other wireframe parsing and roofline 
extraction works [5, 6]. Instead of directly using the 
vectorized representation of line segments, heatmaps are 
used, which are generated by rasterizing line segments for 
both parsing results and the ground truth. We reported the 
measures heatmap based precision (P), recall (R), and F-score 
(F) for junctions and line segments (edges), respectively.  
 
4.2. Implementation Details 
Our method is trained using the Adam optimizer with a total 
of 100 epochs on a single GeForce RTX 2080 Ti GPU device. 
The learning rate, weight decay rate, and batch size are set to 
4 × 10−4, 1 × 10−4 and 6, respectively. The learning rate is 
divided by 10 at the 25-th epoch. We kept other hyper-
parameter settings the same as with original IAWP. 
 
4.3 Results and Discussion 
We conducted the experiments using IAWP and IAWP-HT, 
respectively and compared them with Conv-MPN. 
 
4.3.1. Quantitative results 

Table 1 summarizes the results and comparisons in terms 
of the evaluation metric stated in Section 4.1.2. The IAWP 
and IAWP-HT achieved better performances on most metrics. 
Specifically, compared with Conv-MPN, IAWP improves the 
F-score metrics of corner points and edges by 0.1% and 7.7%, 
respectively. Moreover, the Hough transformation further 
improves this result by 0.6% and 1.1%, respectively, 
indicating that the HT-IHT block enhances the geometric 
feature detection. Conv-MPN shows a slightly higher value 
in precision metric for junctions since it uses Faster R-CNN 
[11] to pre-extract the corner points, while our method does 
not require a pre-processing step. In terms of efficiency, both 
methods run roughly two times faster than Conv-MPN which 
applies convolutional message passing for graph feature 
volumes update, and only using 1/4 GPU memory. This 
proves its increase in effectiveness in inferring the planar 
graphs of building roofline structure. 
 
Tab. 1 Extraction results on the VWB dataset 

 Conv-MPN IAWP IAWP-HT 
Juction P 77.9 76.4 77.2 

R 80.2 82.1 82.3 
F 79.0 79.1 79.7 

Edge P 56.9 60.8 61.5 
R 60.7 73.2 74.7 
F 58.7 66.4 67.5 

 
4.3.2. Visual comparison 
Figure 4 shows the planar graph reconstruction results by the 
IAWP based methods. Both IAWP and IAWP-HT are able to 
extract complex building roof structure with both interior and 
exterior edges without relying on any hand-crafted 
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constraints or preliminary vertices detection. The corner 
points and connection relationships between corner and line 
segments can be well reconstructed for complex roof 
structures. Adding the HT block allows the network to be 
more sensitive to the roof's linear details by combining local 
and global image information. 

We further notice several failure cases during the 
experiment due to missing detection and incorrect graph 
relation inference. Future research will aim to further 
improve the approach by training on other datasets and 
adding multiple data sources (e.g., a digital surface model). 
 

 
          (a)                    (b)                     (c)                    (d) 
Fig. 4. Example results from different methods. (a) Ground 
truth (b) IAWP (c) IAWP-HT  
 

5. CONCLUSIONS 
 
This paper introduces a integrally-attracted wireframe parser 
framework for end-to-end building roofline extraction from 
very-high-resolution remote sensing images. We exploit 
geometric priors based upon the Hough transform for 
improving line feature detection. The results on VWB 
datasets show that IAWP-based methods perform better than 
competing models (i.e., Conv-MPN) in quantitative 
evaluations. The HT-IHT block gives consistent 

improvements in terms of precision and geometric regularity 
on visual comparison. Both methods further indicate a 
considerable improvement in computational resource-saving 
and training efficiency. The wireframe would enable richer 
architectural modeling and analysis for broad applications in 
urban visualization and planning. 
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