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Abstract In this work, we explore internal reso-
nances in a levitation force microelectromechanical
system-based actuator assuming flexible cantilever and
clamped–clamped microbeam configurations. The lev-
itation force is generated through a special arrange-
ment of two-side stationary charged substrates and a
central grounded stationary strip. The design assumes
as well an upper flexible microbeam strip. The DC
part of the excitation voltage pushes up the mov-
ing microbeam away from its lower stationary elec-
trode. A superimposed harmonic AC voltage lets the
flexible strip vibrate around its equilibrium position.
Energy exchange among the computed lower vibra-
tion frequencies and their respective frequency and
force response curves are explored for possibilities of
principal parametric and internal resonances interac-
tions. The generated responses are computed using the
bifurcation toolbox MatCont. The effect of Von Kar-
man nonlinearity to power the energy exchange within
vibration modes is explored and dominant factors in
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the MEMS design for resonances are found from a
two-parameter bifurcation analysis. Our results allow
optimizing the micro-actuator device performance for
future applications.
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1 Introduction

Micro-electromechanical devices (MEMS) are used to
sense and actuate on small scales in many applications.
The typical capacitive MEMS structure with attractive
parallel plates suffers from permanent stiction known
as pull-in instability [1–4]. In contrast, the MEMS lev-
itation force generates a repulsive force away from the
substrate underneath. Together with a higher travelling
range [5] and bouncing back rather than stiction (in
case of probable contact) [6], the generated levitation
force offers double-side tunability [7], pairability with
an attractive force for liberating a stuckmoving element
[8] and parametric excitation to enhance the sensing
and actuating features [7,9].

Recently, this new arrangement to generate levita-
tion has been applied in various fields. For example,
Pallay et al. [10] reported that the structure could act as
a filter by actuating the moving beam’s different modes
connected with a spring. Independently, Zamanzadeh
et al. [9] and Pallay et al. [11,12] elaborated on the
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capability of this microstructure for pressure sensing.
Numerical bifurcation analysis revealed three distinc-
tive regions for this system bounded by different bifur-
cation curves [13], eachwith unique and intriguing fea-
tures for actuation and sensing applications. In most
literature on the levitation force, the reduced-order
model (ROM) has been derived assuming one mode.
This assumption simplifies the behavior and analysis
but comes at the cost of missing higher-order system
characteristics that can profoundly affect the captured
dynamic behavior and lead towrongmodel predictions.

Energy transfer between vibration modes is known
as internal resonance. Over the last two decades, this
phenomenon has gained interest due to its promis-
ing functional improvement of MEMS resonators and
sensors [14,15]. Younis et al. [16] explored the pre-
requisites for modal interaction in the typical straight
parallel plate arrangement using the method of mul-
tiple scales. Antonio et al. [17] considered stabiliz-
ing through the coupling of two modes. Ghayesh et
al. [18] studied how the nonlinear modal interaction
depends on the scale and curvature. Zhang et al. [19]
considered internal resonances in a clamped–clamped
micro-resonator in open- and closed-loop setups. They
observed an alternation in internal resonance band-
width in their experiments and then numerically val-
idated this. Moreover, the internal resonance improved
short-term frequency stabilization. Kumar et al. [20]
characterized all possible internal resonances within
a clamped–clamped micro-resonator by changing the
external force, geometrical and material properties.
They concluded that an increased excitation ampli-
tude widens the frequency bandwidth. More recently,
Ruzziconi et al. [21] experimentally and numerically
analyzed the internal resonance in a MEMS CL-CL
microbeam includinghigher-order vibrationmodes and
found more complex dynamic behavior such as the
coexistence of different attractors and a phase shift
through the resonant branch.

Various researchers investigated modal interactions
of arch-shaped moving units rather than of the straight
moving microbeam. For example, Hajjaj et al. [22]
demonstrated veering by closely tuning the first and
third resonance frequencies to eachother. In subsequent
work [23], they demonstrated chaotic behavior of the
activated internal resonance. Ouakad et al. [24] studied
the effect of the initial rise and mid-plane stretching on
triggering the modal energy exchange. Wang et al. [25]
combined AC and DC voltages and showed hysteresis

and quasi-periodic solutions arising from the three to
one internal resonance.

When the ratio between the natural frequencies of
two modes is close to a commensurate ratio, some of
the system’s nonlinearities (quadratic, cubic, or higher)
become effective in coupling the respective oscilla-
tions. These then synchronize, and an internal reso-
nance occurs [26]. Internal resonance has recently been
proposed as a mechanism to neutralize the amplitude-
frequency interdependence in micromechanical oscil-
lators as that effect hinders their possible applica-
tion as pacemakers in the design of time-keeping
miniaturized devices. It has been applied to improve
the frequency stabilization of self-sustained micro-
resonators and compensate for energy losses [17].
Therefore, our study of internal resonances, in the end,
is crucial for the successful implementation of these
devices. In all of the above studies, the dynamical
analyses employed higher-order modes, multiple time
scales, Poincaré sections or the fast Fourier transfor-
mation (FFT) to identify the different dynamical fea-
tures of the examined MEMS structure. These stud-
ies included investigating the effect of modal inter-
actions on the dynamics of classical parallel-plates
electrostatic-based design of MEMS structures. How-
ever, such investigations remain unexplored for sev-
eral designs, such as the fringing-fields electrostatic-
based MEMS levitation force design. Therefore, this
study aims to demonstrate the possibilities of internal
resonance activations among higher-order modes and
characterize the dynamic behavior for MEMS levita-
tion force-based designs. As a substitute for the typ-
ical numerical methods discussed above in the litera-
ture review, we propose using a numerical bifurcation
analysis tool implemented in the MATLAB toolbox
MatCont to obtain the system’s periodic solutions with
their respective stability status and therefore detect all
possible bifurcations. The main advantage of this tool,
compared to other methods, is that it deals directly with
the system’s equations of motion without extra approx-
imations.

Thus, the outline of this paper is as: In Sect. 2, we
specify the model and formulating the system with the
nonlinear ordinary differential equations and describe
how MatCont is used for our analysis. The results are
presented in Sect. 3 for both the cantilever (CL) and
clamped–clamped (CC) microbeams which then are
compared from the stability perspective. We conclude
in Sect. 4 with a summary of the necessary conditions
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for the occurrence of internal resonance inMEMSwith
levitation force.

2 Modeling of the levitation force actuator and
problem formulation

The design of the proposed repulsive force actua-
tor consists of a suspended cantilever or clamped–
clamped moving electrode, a fixed middle electrode
placed directly underneath the moving one, and two
side electrodes, as shown in Fig. 1.

Unlike the classical parallel plate arrangement in
which the attractive force generates by applying a volt-
age to the moving electrode while the beneath station-
ary substrate is grounded, the design we explore here
generates a levitation force by having the middle elec-
trodes grounded and simultaneously charge the side
electrodes, as displayed in Fig. 2a. As a result (see
Fig. 2b), there is an average net upward force over the
boundaries of the moving electrode, which pushes it
away from the substrate underneath.

We treat the movable electrode-based actuator
shown in Fig. 1 within the framework of Euler–
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Fig. 1 3D view of the levitation force MEMS actuator in case of a cantilever, b clamped–clamped arrangements

(a) (b)

Fig. 2 a 2D schematic front view of the arrangement displaying
the electrical and geometrical characteristics in which the side
electrodes are charged and the middle ones are grounded, b 2D

finite element simulation for electric force distribution around
the boundaries of moving electrode. The upward and downward
arrows represent the repulsive and attractive force, respectively
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Table 1 Geometrical and material properties of the repulsive
force actuator

Parameter Symbol value

Middle beam length
(Clamped-Clamped)
(μm)

L 1000

Middle beam length
(Cantilever) (μm)

L 503,1000

Middle beam width (μm) b 17.5

Grounded middle electrode
width (μm)

b1 30

Grounded side electrode
width (μm)

b2 288

Upper electrode thickness
(μm)

h 2

Lower electrode thickness
(μm)

h1 0.5

Middle beam electrode gap
(μm)

g0 2

Side electrode gap (μm) g1 2

Lateral distance (μm) w 20.5

Elastic modulus (Gpa) E 150

Density (kg/m3) ρ 2320

Poisson’s ratio ν 0.22

Air permitivity (pF/m) ε0 8.854

Characteristic height (μm) z̄ 2

Bernoulli beam theory. The actuator can freely deflect
in the out-of-plane (z) direction, while its in-plane
(y) deflection is negligible because of the high width-
to-thickness ratio. Including the stretching effect, the
corresponding normalized equation for the out-of-
plane motion of the repulsive force actuator, in non-
dimensionalized form, can be written as [5]:

∂2w

∂t2
+ C∗ ∂w

∂t
+ ∂4w

∂x4
− r1

[ ∫ 1

0

(
∂w

∂x

)2

dx

]

∂2w

∂x2
+ r2V

2 fe(w) = 0, (1)

where the geometrical and normalizing parameters in
the above equation are listed in Tables 1 and 2. For the
cantilever beam the stretching effect is negligible, i.e.,
we set r1 = 0, while for the clamped–clamped beam,
we set r1 = 6.

Table 2 Normalizing parameters as in [5]

Parameter Substitution

Nondimensional length position x = x̂/L

Non-dimensional deflection w = ŵ/z̄

Non-dimensional time t = t̂/T

Non-dimensional damping C∗ = α2/Q
Area cross section(m2) A = bh

Moment of inertia(m4) I = bh3/12

Time constant(s) T = √
ρAL4/E I

Mid-plane stretching constant r1 = 6

(
g0
h

)2

Force constant(m/N ) r2 = L4/E I z̄

1stmode natural frequency α

Quality factor Q

2.1 Reduced-order modeling

We perform a Galerkin-based reduced-order modeling
(ROM) [27–29] on Eq. (1) in order to approximate
the moving electrode resultant static/dynamic deflec-
tion (response) as:

w(x, t) =
N∑
i=1

Ui (t)ϕi (x) (2)

The ROM process results in a system of coupled
nonlinear and coupled ordinary differential equations
in which Ui represents the generalized coordinates
depending on time. The basis functions, ϕi (x), have
the following form:

ϕi (x) = sin(βnx) − sinh(βnx)

− σn
[
cos(βnx) − cosh(βnx)

] (3)

in which βn denotes the square roots of the non-
dimensionalized natural frequencies, and σn are con-
stants determined from the boundary conditions and
mode to be considered (see Table 4).

To proceed, we need the distributed electrostatic
force and the generated levitation force per unit length
( fe(w)). These data have been derived from 2D finite
element simulations and then fitting the electrostatic
profile to a fifth-order polynomial as done in [5], which
also includes an experimental validation. We list the
coefficients in Table 3. Now, the resulting system of
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Table 3 Force constants defining the electrostatic force profile
from [6]

Symbol Unit value

A0 N/m −1.1703 × 10−7

A1 N/m2 −3.8677 × 10−4

A2 N/m3 3.5574 × 102

A3 N/m4 −1.2595 × 107

A4 N/m5 1.7347 × 1011

A5 N/m5 −8.5695 × 1014

Table 4 Mode shape natural frequencies and constants [5]

Mode β2
n (CL) σn(CL) β2

n (CC) σn(CC)

1 3.516 0.7341 22.3733 0.9825

2 22.035 1.01185 61.6728 1.00078

3 61.697 0.9992 120.903 0.9999

ODEs can be written as [30]:

N∑
i=1

Mi j Üi (t) +
N∑
i=1

Ci j U̇i (t) +
N∑
i=1

Ki jUi (t)

−
N∑
i=1

Si jU 3
i (t) + Fj = 0, (4)

whereM, C, K and S are mass, damping, mechanical
stiffness and stretching matrices, respectively, and F
stands for the forcing vector. They are defined by:

Mi j =
∫ 1

0
ϕiϕ j dx

Ci j = C∗Mi j

Ki j =
∫ 1

0

d2ϕi
dx2

d2ϕ j

dx2
dx

Si j = r1

[ ∫ 1

0

(
dϕi

dx

)2

dx

] ∫ 1

0
ϕ j

d2ϕi
dx2

dx

Fj = r2V
2
∫ 1

0

5∑
k=0

Ak x̄
k

(
N∑
i=1

Uiϕi

)k

ϕ j dx (5)

2.2 Dynamic response evaluation using numerical
continuation

Here we outline our numerical approach to obtain
the dynamic response of the repulsive electric micro-

actuator. The objective is to obtain the frequency-
response as the beam is deflected by a DC voltage
and vibrates by an AC harmonic load with a frequency
near the intrinsic frequency. One can use time integra-
tion, but this method suffers from slow convergence to
an attractor, convergence problems near bifurcations,
and one cannot identify unstable solutions. In addition,
methods such as shooting are highly sensitive to the
initial conditions to find the response, especially near
bifurcations.

These considerations motivate us to use numerical
continuation with MatCont [31,32] to compute one-
parameter families (branches) of periodic orbits. Mat-
Cont computes a limit cycle (isolated periodic orbit)
using a boundary-value problem. The time interval is
rescaled to [0,1] and discretized into short intervals.
The period is then included in the unknown quanti-
ties. The orbit is approximated by a polynomial sat-
isfying the nonlinear system on each short time inter-
val. The final and initial state variables of two subse-
quent intervals should be the same, and for periodicity,
the final and initial points of the whole mesh are also
required to be the same. A phase condition guarantees
the uniqueness of the resulting nonlinear system,which
are solved with Newton iterations. Adding a pseudo-
arclength condition, we can use numerical continuation
to explore the parameter dependence of the periodic
orbit.

This approach also provides the Floquet multipli-
ers to determine the stability of the periodic orbit as a
function of the parameter, e.g., the forcing frequency.
When the stability changes, we find codimension-one
bifurcations. Freeing onemore parameter, we can com-
pute bifurcation curves in the parameter plane. Mat-
Cont assumes an autonomous first-order system. To
this end, we first reformulate the system of second-
order ODEs (5) as a first-order system. To arrive at an
autonomous system, we augment the system with two
ODEs for the periodic forcing.{
X ′ = −ωY + X (1 − X2 − Y 2),

Y ′ = ωX + Y (1 − X2 − Y 2).
(6)

These equations come from the normal form for the
Hopf bifurcation. It is easy to see that X and Y evolve
on the unit circle. We can now replace any term such
as cos(ωt) by X . Next, we initialize the system with
X = 0 and Y = 1 andUi = U ′

i = 0 and perform time-
integration until transients have faded and the state con-
verged to the steady-state response.We then pick up the
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(a) (b)

Fig. 3 Comparison of the numerical (solid line) and experimental (dots) results for a first natural frequency (experimental results
obtained from (data adapted from [5]) and b dynamical response (experimental results obtained from (data adapted from [30])

final point of this simulation and performonemore time
integration for one forcing period. This last simulation
is used as initial data for the numerical continuation.
For the continuation, we select the forcing frequency
� and the period as free parameters. The continuation
produces a sequence of points with an approximation
of the periodic response for each parameter value. We
plot themaximal amplitude of the variableU1 as a func-
tion of the forcing frequency�. For terminology about
bifurcations, we refer to [32].

3 Results and discussion

3.1 Initial exploration for internal resonance

The essential condition for internal resonance is that
one natural frequency is an integer multiple of another.
One can obtain the natural frequencies from the eigen-
values of the Jacobian matrix of Eq. 4 by excluding
the damping term and evaluating at the fixed point, i.e.,
the static equilibrium [33]. Before starting the analysis,
one needs to validate the governing equation of motion
with some available experimental results. In Fig. 3, we
show the first natural frequency as a function of the
applied DC voltages as determined experimentally in
[5] and as reported for the dynamical response in [30].
We observe close agreement in Fig.3a in which the fre-
quency exhibits a falling-rising patternwith aminimum
as theDCvoltage increases. Thisminimumcomes from
the repulsive force and is critical for tuning the sys-
tem. Moreover, Pallay et al. [5] attributed the observed

slight difference to the dimples placed in the tested
system to prevent the stiction. The dynamic response
in Fig.3b has a slightly larger discrepancy. This dis-
crepancy is already addressed and well justified by Dr.
Towighian and her research team during their evalua-
tions. It is mainly attributed to the additional Squeeze
Film Damping which adds extra stiffness beneath the
resonant micro-beam, which, specifically in the reso-
nant region, acts as a damper adding rigidity to the
system. During the experiment they observed that, the
movingmicro-beam cannot freely vibrate, and an addi-
tional damping term should be added to account for the
damping properly [6,11]. However, here we focus on
the possibility of the internal resonance in the studied
MEMS device rather than pinpointing the exact loca-
tion of the resonant beam.

The numerical and experimental data fit the first
natural frequency well. Therefore, we assume that the
numerical approach can also predict higher-order nat-
ural frequencies with similar accuracy although the
dynamic response does not hold such precision. Some
modes contribute little due to the geometry of the sys-
tem and boundary conditions of the moving element.
Therefore, we include the second mode for the CL case
and up to the third mode for the CC case.

The length of the moving micro-beam is a crucial
parameter dominating the systems’ response. Along
with the alternation in moving stroke of the system,
the length affects the natural frequencies, the commen-
surate threshold of the applied DC voltage and con-
sequently the ratio of the frequencies. For the latter,
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(a) (b)

Fig. 4 Exploring ratios of the natural frequencies for first and second mode for the cantilever microbeam with a L = 503μm and b
L = 1000μm

we plot integer multiples of the natural frequencies for
the cantilever microbeam with L = 503 and L = 1000
microns to observe crossings, as in Fig. 4. These graphs
suggest that increasing the beam length lowers the ratio
of the frequencies and also the activation threshold
of the applied DC voltage. However, this initial sign
of internal energy exchange must still be validated by
assessing the nonlinear dynamical response.

Similarly, in Fig. 5 we show the corresponding dia-
gram for the CC microbeam. We observe that the first
and third natural frequencies exhibit a three to one inter-
nal resonance. As this ratio is of lower order in com-
parison with the cantilever case (Fig. 4), this CC case
is more likely to enable energy exchange between the
vibration modes.

The approach, as shown in Figs.4 and 5, highlights
how shapes and boundary conditions lead to the quan-
titative and qualitative alternation in natural frequen-
cies. Similarly, we can also explore how the von Kar-
man nonlinearity, standing as the stretching term in the
clamped–clamped micro-beam, influences the possi-
bilities of internal resonance. We recompute the first
and third mode frequencies for the CC micro-beam,
where we now neglect the stretching term by setting
r1 = 0, see Fig. 6. We observe that the frequencies are
of a different order and commensurate by a much big-
ger integer. The higher proportional integer between
the mode frequencies minimizes the power of energy
exchange between modes. Comparing with Fig. 5,
where we included the stretching term, we conclude
that the von Karman nonlinearity rather than the repul-

sive force is the pivotal term for energy exchange across
modes, albeit the repulsive force undergoes changes to
the interacted modal system via the stretching term.

Having determined the natural frequencies, we can
now fix the applied DC voltage in the range where the
static analysis foretells internal resonances. Next, we
investigate the effect of the excitation voltage ( VAC )
and frequency (�) on the frequency response and pos-
sible energy exchange. Here we note that in order to
prevent the moving element from hitting the substrate,
the applied AC voltage is tuned so that the applied bias
DC voltage is much higher than applied AC voltage
(VDC � VAC ). Hence, in the theoretical evaluation,

Fig. 5 Integer multiples of the first and third natural frequencies
as a function of the applied DC voltage for the CC microbeam
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Fig. 6 Integer multiples of the first and third natural frequencies
as a function of the applied DC voltage for the CC microbeam
in case of excluding the stretching term

we can ignore the term related to the higher order of
applied AC voltage.

3.2 Dynamic response

We determine the frequency response curves for both
the CL and CC cases separately. We aim to trace the
footprint of internal energy exchange. The periodic
forcing leads to a periodic response by the system. In
that sense, the solutions are periodic over time. The
bifurcations of the periodic solutions (also referred to
as limit cycles) that may occur are limit point of cycles
(saddle-node), period-doubling and Neimark-Sacker.
The first involves the (dis)-appearance of periodic solu-

tions, the second leads to doubling and the third may
involve multi-frequency oscillations. For more details,
we refer to [34].

3.2.1 Primary internal resonance with cantilever
(CL) microbeam

Guided by Fig. 4a, we first apply a DC voltage slightly
higher than the predicted threshold of 115 V and fix the
applied AC voltage. Next, we compute the frequency
response shown for VDC = 120 V and VAC = 0.5 V ,
see Fig. 7. The solid and dashed lines indicate stable
and unstable periodic response solutions, respectively,
also in the following figures. We detect no internal
resonance, although the system undergoes softening
tendency, which is attributed to the existence of the
quadratic and negative cubic nonlinearity in the forc-
ing term [30]. In this case, due to the negligible ampli-
tude of the second mode, the dominant amplitude is the
first mode, and the system does not exhibit any internal
resonance.

To explore the effect of applied DC and AC volt-
age to activate the internal resonance in our case, we
increase VDC from 120 to 130 V and VAC from 0.5
to 1.5V . As shown in Fig. 8, despite the increase
in applied voltages, the system experiences no inter-
nal resonance, but it injects energy causing additional
peaks to the response of the second mode. Quanti-
tatively, we see the amplitude increases due to the
increase in DC voltage, and the peak in the amplitude
response shiftswith amorepronounced softening effect
on the response. Moreover, it causes more prolonged

(a) (b)

Fig. 7 Frequency response at VDC = 120 V, VAC = 0.5 V for the a first and b second modes for the CL case
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(a) (b)

Fig. 8 Frequency response at VDC = 130 V, VAC = 1.5 V for the a first and b second modes for the CL case

transients, i.e., the response takes longer to reach the
periodic response.

We also determined the fast Fourier transforma-
tion (FFT) for each mode, see Fig. 9. Comparing the
respective power, we see that the second mode hardly
contributes. This is additional numerical evidence that
energy exchange does not happen and that the first
mode is the dominant mode of the system. This jus-
tifies the assumption to describe the dynamic behavior
of the system with just one mode.

Although the analysis above rejects the possibility
of internal resonance for the case of the CLmicrobeam
with L = 503 micron, it does not remove the pos-
sibility of energy exchange between the modes com-
pletely. One key parameter here is the dimension of
the moving microbeam that changes the characteris-
tics of our system like the natural frequency, and it
also decreases the stiffness of our system. Based on
Fig. 4(b) for L = 1000 micron, we now set the DC
voltage a bit beyond VDC = 60 V , where we expect the
occurrence of the five to one resonance. We computed
the frequency response curve to check for internal reso-
nances for this setting, see Fig. 10. There is a small sign
of an internal resonance with as the inset shows. Here
the amplitude of U1 drops, while that of U2 increases.
The latter is smaller but still alters the behavior of the
system. Below, to see the interplay of the applied volt-
ages and forcing frequency, we will determine how the
saddle-node bifurcation point Mp varies in two param-
eters, but first, we look at other parameter variations.

As before, we plot the corresponding time series and
FFT diagram in Fig. 11. Similar to Fig. 10, the FFT

results indicate again that the magnitude of the second
mode is lower compared to the first mode. Still, it is
large enough to alter the system’s response at excitation
frequencies approaching the primary resonance.

The applied AC voltage is a key parameter of the
applied force affecting the system’s overall response.
The dependence of the amplitude on the applied AC
voltage for several values of the applied frequency is
illustrated in Fig. 12.

Having found the saddle-node bifurcation point Mp

in Fig. 10, we now determine how this point varies in
the two-dimensional parameter space (�, VAC). Mat-
Cont allows computing such a branch of saddle-node
bifurcation curve. Here we keep VDC fixed and vary �

and VAC. We compute these curves for both the model
with just one mode and the model including higher
modes indicated by dashed and solid lines, respectively,
in Fig. 13a. We observe that the result for more modes
differs quite a bit compared to the single-mode case.
Figure 13b illustrates that for increasing values of the
voltages VDC and VAC, the Neimark-Sacker bifurcation
curve leads to multi-frequency oscillations. This bifur-
cation curve yields a complex region near the internal
resonance due to the presence of several codimension
two bifurcations.

The results in Fig. 13 predict that we should have
more interesting behaviorwhenwe increase the applied
AC voltage. Setting VAC = 0.8 V , through frequency
responseswefind out that the energy exchange between
modes is larger, see Fig. 14. In addition, the resonance
bends to lower frequencies with an additional drop in
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(a) (b)

(c) (d)

Fig. 9 a, cAmplitude response of the first and second modes for� = 3 ,close to the primary resonance, b, d fast Fourier transformation
(FFT) of the first and second modes, respectively, at VDC = 120 V, VAC = 1.5V

(a) (b)

Fig. 10 Frequency response at VDC = 75 V, VAC = 0.6 V for the a first and b second modes
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(a) (b)

(c) (d)

Fig. 11 a,cTime response for the amplitude of first and second modes at � = 3, b,d fast Fourier transformation (FFT) of first and
second modes, respectively, at VDC = 75V, VAC = 0.6 V

amplitude. More of such drops in amplitude appear by
increasing VAC.

3.2.2 Primary internal resonance with
clamped–clamped (CC) micro-beam

Here we consider the possibility of energy exchange
between first and third modes through three-in-one
internal resonance. Based on Fig. 6, we should explore
the constant DC voltage beyond 180V . To start, we
present the frequency response atVDC = 185 V, VAC =
0.1 V in Fig. 15, with a close-up for the first and third
vibration modes. The figure shows how an internal
resonance is springing out, even if it is small here.
The amplitude of the second mode is so low that it
is excluded from the analysis.

The effect of increasing the applied DC voltage
while fixing the applied AC voltage is demonstrated in
Fig. 16. It is intriguing to observe that forVDC = 195 V ,
the double-tangled resonance vanishes as the domi-
nant peak shrinks, and the resonance comes purely
from the modal interaction. To achieve the maximal
amplitude for a resonator application, the optimized
range of applied DC voltage in the context of applied
VAC = 0.1 V is near VDC = 192 V .

To illustrate the effect of the amplitude of the
alternating voltage VAC, we computed the frequency
response of the system for fixed VDC = 195 V and two
different values of VAC in Fig. 17. The diagram indi-
cates the threshold for activation of the internal res-
onance for a fixed DC voltage. At an AC voltage of
0.1 V , the system’s behavior has a hardening behavior.
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(a) (b)

(c) (d)

Fig. 12 Variation of force response at VDC = 75 V for the a), c first and b, d second modes

(a) (b)

Fig. 13 Combined evaluation of the dynamic characteristic for point Mp in Fig. 10 for a Fixed VDC = 75 V with one mode and two
mode in dashed and solid line, respectively, and (b) Saddle-node bifurcation in the (VAC, VDC)-plane for fixed � = 4.4141
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(a) (b)

Fig. 14 Frequency response at VDC = 90 V, VAC = 0.8 V for the first mode a for general � and b a close-up of region A in Fig. 14a

(a) (b)

(c) (d)

Fig. 15 a, c Frequency response of the first and third vibration modes at VDC = 185 V and VAC = 0.1 V . b, d the zoomed-in region
for frequency response of first and third modes
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(a) (b)

Fig. 16 a Comparison of the frequency response for different applied DC voltages and fixed VAC = 0.1 V . b Magnification of region
A near the internal resonance region in Fig. 16a

(a) (b)

Fig. 17 Comparison of the frequency response for different applied AC voltages and fixed VDC = 195 for the a first and b third mode

Increasing the AC voltage triggers the internal reso-
nance and leads to an additional softening behavior in
the vicinity of the core hardening tendency.

To investigate the effect of increasing the applied
DC andAC voltages on the nature and strength of inter-
nal resonance, we determined the frequency response
for the first three modes (see Fig. 18). Comparing the
results, depicted in Fig. 15, implies an expanding effect
of both the AC andDC voltage.Moreover, compared to
the previous figure, increasing the applied AC voltage
reveals the branches switched position before exhibit-
ing the highest response. The sub-Figs. 18b, c and d
show more details of the response and indicate some
crucial points. Here LPC stands for saddle-node of
periodic orbits while NS represents Neimark-Sacker of

periodic orbits leading to a torus with multi-frequency
responses. To study the behavior near the Neimark-
Sacker bifurcation, we pick a bifurcation point NS and
label it as Mp for monitoring and further evaluation.

To cast light on the effect of stretching term and its
importance in the energy exchange within the vibra-
tion modes, Fig. 19 illustrates the frequency response
for systems parameters similar to Fig. 18. Comparing
the latter diagrams shows how neglecting the stretch-
ing term leads to a rise in the amplitude but ruins the
possibility of modal interaction. Furthermore, similar
to Fig. 6, it illustrates that the higher value of the pro-
portionate integermakes the energy exchange tooweak
to affect the dynamical response.
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(a) (b)

(c) (d)

Fig. 18 a Frequency response of the first vibration mode at VDC = 195 V and VAC = 0.2 V , b zoom-in region A, c zoom-in region B,
d zoom-in region C

(a) (b)

Fig. 19 Frequency response of CC micro-beam by removing the stretching term at VDC = 195 V and VAC = 0.2 V for the a first and
b third mode
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To cast light on the effect of stretching term and its
importance in the energy exchange within the vibra-
tion modes, Fig. 19 illustrates the frequency response
under systems parameters similar to Fig. 18. Compar-
ing the latter diagrams implies that how neglecting the
stretching term brings about a rise in the amplitude
but ruins the possibility of modal interaction. Further-
more, it further validates the deduced implication com-
ing from Fig. 6 in which the much higher value of pro-
portional integer makes the energy exchange too week
to affect the dynamical response.

Following the Neimark-Sacker bifurcation in two
parameters, we find several codimension two bifurca-
tions as shown in Fig. 20. We first vary the applied
DC voltage and the applied frequency keeping the
applied AC voltage fixed in Fig. 20a, and next, we
vary the applied AC voltage and the applied fre-
quency while keeping the applied DC voltage con-
stant in Fig. 20b. Here many fascinating points arise,
wherein dots stand for primary resonance, stars rep-
resent Chenciner (degenerate NS) bifurcation, and
squares indicates double Neimark-sacker.

To detect the effect of AC voltage on the higher
applied DC voltages, Fig. 21 illuminates the frequency
response for VDC = 200 V and various AC voltages.
Compared to the previous figure (see Fig. 17), we
see that the increasing VAC no longer provides the
highest branching, albeit results in a tiny rising/falling
response. The dots in the sub-Figs. 21c and d stand for
limit point cycle.

In Fig. 21, we observe two separate regions with
higher response amplitude. To provide a better under-
standing, we show the response in the vicinity of
region A in Fig. 21a against increased applied AC
voltage in Fig. 22. In the figures, dots and start indi-
cate limit-point-of-cycles and Neimark-Sacker bifur-
cations, respectively.

Similar to the later figure, Fig. 23 depicts the force
response for themain region with highest response rep-
resented in Fig. 21a by defining the critical points in
dots and starts as well as stable and unstable responses
in solid and dashed lines, respectively.

3.2.3 Principle parametric internal resonance

The feasibility of combined internal resonance in the
presence of principal parametric resonance has been
already investigated for an axially moving beam with
simple support [35,36] and a hinged-clamped uniform
prismatic beam [37]. For the levitation force MEMS
device, only the principal parametric resonance was
derived and validated experimentally [6,38]. However,
here we explore the modal interaction and dynami-
cal effect of the resonance at the principal parametric
response for the first time within this repulsive con-
figuration by modulating the excitation frequency in
the vicinity of twice the primary resonance. We bene-
fit from usingMatCont as period-doubling bifurcations
are readily detected and can be used to start branches
with twice the period [31].

(a) (b)

Fig. 20 Continuation of the Neimark-sacker bifurcation in two
parameters starting from Mp in Fig. 18c with a fixed AC voltage
and b fixed DC voltage wherein dots,stars and squares represent

primary resonance, Chenciner (degenerate NS) bifurcation, and
double Neimark-sacker, respectively
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(a) (b)

(c) (d)

Fig. 21 A comparison of the frequency response for different applied AC voltages and fixed VDC = 200 a for the first mode ,b for the
third mode,c closed view of region A in Fig. 21a for VAC = 0.3 V , d closed view of region A in Fig. 21a for VAC = 0.4 V

(a) (b)

Fig. 22 Force response in the vicinity of region A in Figure 21a for the a first vibration mode,b third vibration mode
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(a) (b)

Fig. 23 Force response in the vicinity of region A in Fig. 21a for the a first and b third vibration mode

(a) (b)

Fig. 24 Force response in the vicinity of principle parametric resonance at VDC = 195 V and VAC = 0.1 V for the a first vibration
mode, b third vibration mode

For the microstructure with CC moving element,
to compare the results with those in the vicinity of
the primary resonance, we start our exploration of
the frequency response by setting VDC = 195 V and
VAC = 0.1 V . The results are shown in Fig. 24.

Comparing the latter figure with the corresponding
plot of the primary resonance (see Fig. 17a) shows that
the system can produce higher stroke in the case of
principal parametric resonance thanks to the energy
exchange between the vibration modes. This is a cru-
cial feature due to the higher-order mode, which sig-
nificantly improves the structure’s performance by an
additional rising response with the magnitude of a third
of the primary response. Furthermore, the branching
happens around � = 130. The effect of a higher

applied AC voltage is illuminated in Fig. 25, where,
in comparison with Fig. 18, the system generates a
lower maximum amplitude albeit with additional ris-
ing response compared to Fig. 24. This provides an
enhancement for functional application of the element
in sensing/actuating purposes. In the sub-figures, we
present a magnification near the bifurcation points by
highlighting the important points where limit point
cycles are indicated by dots and stars stand for period-
doubling bifurcations.

To observe the effect of increasing the applied AC
voltage, we plot the force response within some impor-
tant applied frequency next to the branching region
in Fig. 26. Here stars stand for period-doubling, dots
represent limit point cycles, and squares mark the
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(a) (b)

(c) (d)

Fig. 25 Frequency response of the system at VDC = 195 V and VAC = 0.2 V for a first vibration mode , b closed view of the branching
area of Fig. 25a, c Third vibration mode and d its correspondent closed view of the branching region in Fig. 25c

Neimark-Sacker points. The plots highlight that for
applied sweeping frequency higher than � = 129.5,
the system tends to have limit point cycles at low
applied AC voltage and lower period-doubling (torus)
bifurcation thresholds.

To close this section, Fig. 27 displays the fre-
quency response for VDC = 200 V and VAC = 0.2 V .
Compared to Fig. 20, we see that the system pro-
duces a higher response in the case of parametric
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(a) (b)

(c) (d)

Fig. 26 Variation of force response at VDC = 195 for the a first and c third vibration mode, close-up of the branching area of Fig. 25a
for b U1 and d U3

resonance. Along with the main response, the sys-
tem exhibits an additional rising with half the mag-
nitude of the main response. Again, this result can
be applied to improve the system’s performance for
sensing/actuating applications. Moreover, the corre-

sponding sub-figures depict the complicated nature of
the system and branching regions with different bifur-
cation locus.
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(a) (b)

(c) (d)

(e) (f)

Fig. 27 Frequency response of the system at VDC = 200 and VAC = 0.2 V for a first vibration mode, b third vibration mode, and
close-ups of c area A, d area B, e area C and f area D
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4 Conclusion

In this paper, we have studied possibilities for the emer-
gence of internal resonances in levitation force MEMS
actuator in the case of CL and CC moving beams.
First, we obtained the natural frequencies of modes up
to third-order obtained by constructing the Jacobian
matrix and then determined the ratio of these frequen-
cies while varying the applied DC voltage.

In the case of the CLmicrobeam, the analysis shows
that the prospect of internal resonance is low as the
ratio of the frequencies is high. Lowering this ratio by
increasing the length of the moving element led to a
5:1 internal resonance of the first and second modes.
For higher values of the applied DC voltage, increasing
the applied AC voltage can then magnify the results.
The other important finding is related to the evalua-
tion of the dominant factors of the system, including
the applied AC and DC voltages that affect the thresh-
olds for internal resonances to occur. Using simulations
and bifurcation analysis, we efficiently computed the
response curves, including turning points. We find a
resonance tongue with bistability, while a single peri-
odic response exists outside this region. The values for
the applied DC voltage are in agreement with the linear
analysis.

In the case of the CC microbeam as the moving
element, our study revealed two regions: one in the
vicinity of the primary resonance and one around the
principal parametric resonance. Near the primary res-
onance, our study shows that increasing the applied
DC voltage can intensify the energy exchange up to
VDC = 195 V in which the applied AC voltage com-
pensates for the reverse effect of the applied DC volt-
age. Beyond that value, the system loses the primary
stroke response and shrinks to the second one, which
increases for increasing applied AC voltage but never
retrieves the main position. The force response deci-
phers the hidden features of the system by highlighting
the bifurcation points in the vicinity of two applied fre-
quency responses. The results show that in the applied
frequency responses near activated internal resonance,
the system displays multiple stable solution branches
that is particularly effective for a resonant sensor.

For the principal parametric resonance, the system
consisted of CC moving microbeam, exhibited more
complex and rich dynamical behaviors showing strong
possibilities of internal modes interactions. The gener-
ated frequency and force responses suggested an inter-

esting system’s capability to produce higher dynamic
stroke as compared to its primary resonance. This out-
come provides a platform for designing andmodulating
a micro-actuator with higher displacements and opti-
mized dynamic performance. Furthermore, the analy-
sis identified the period-doubling bifurcations.Wehave
explored a MEMS layout with the capability of realiz-
ing a high travelling range through a repulsive force.
As energy exchange among vibrational modes can
enhance the frequency stabilization of self-sustained
micro-resonators and compensate energy losses, this
study can be instrumental for designing robust and effi-
cientMEMS sensors and actuators, allowing to tune the
system performances to accomplish the highest possi-
ble capabilities.

Moreover, by comparing the natural frequencies
with and without the Von Karman nonlinearity for the
CC microbeam, we found that the stretching term, by
making the vibration modes approached to each other,
is the origin of the internal resonances in our study
rather than the repulsive force, which is then responsi-
ble for altering the response of the pre-interacted vibra-
tion modes.
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