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Summary 

In the context of the Paris Agreement, Sustainable Development Goals, and circular economy 

agendas, whoever is responsible for the resource extractions and pollution releases of final goods 

and services has been debated. The virtual displacement of environmental pressures (EPs) from 

final consumers to production sites is the prominent issue in these debates. To solve the virtual 

displacement (or outsourcing) issue of environmental pressures, the consumption-based 

accounting that relies on the environmental-extended multi-regional input-output (MRIO) model 

has been widely used to quantify supply chain-wide EPs of consumed goods and services. However, 

key limitations lie in the conventional MRIO model: 1) the aggregation of products with different 

environmental properties into homogeneous sectors in the discipline of macroeconomics, and 2) the neglect of temporal 

dynamic feature of manufactured capital as primary production factors in economic activities.  

The goal of this thesis is to develop improved modelling techniques to better capture 

spatiotemporal virtual displacement of EPs along the entire supply and use chain of products. This 

thesis proposes two improved models based on the conventional environmentally extended MRIO 

model to address aforementioned limitations: the hybrid MRIO model and the capital-endogenized 

MRIO model. The two improved models are applied to answer four research questions, of which 

the former two are related to the spatial virtual displacement of EPs embodied in trade and the 

latter two are related to the temporal virtual displacement embodied in capital. 

A hybrid multi-regional input-output model of China: integrating the physical agricultural 

biomass and food system into the monetary supply chain. This chapter develops a symmetric 

MRIO model that hybridizes the physical food and agricultural biomass system with the monetary 

supply chain of China. First, the inter-provincial supply, use, and input-output tables in physical 

units of 84 agriculture, food and forestry products are constructed. These physical 

supply/use/MRIO tables systematically capture agri-food product flows, at an unprecedented level 

of product detail, along domestic supply chains within China. Then the physical MRIO table of 

agri-food products are integrated into the monetary all-sector MRIO table to construct a symmetric 

hybrid MRIO table of China. The application of our hybrid MRIO model to the case of provincial 

blue water footprint assessments reveals that the hybrid model enhances both the monetary MRIO 

table-based approach and the process-based approach from different aspects. For instance, the 

hybrid MRIO model can reduce the uncertainty of monetary MRIO modelling due to the 

aggregation of products with different environmental properties into homogeneous sectors. Lastly, 

uncertainty analysis is implemented to quantify the main sources of uncertainties, and understand 

the reliability of our new hybrid MRIO model for future sustainable development design. 
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Effects of production fragmentation and inter-provincial trade on spatial blue water 

consumption and scarcity patterns in China. This chapter formulates a comprehensive trade 

disaggregation approach to elaborate the virtual water networks of three trade patterns (i.e., direct 

final goods trade, intermediate goods trade for the last step of production, and value chain-related 

trade) within China, and further analyzes the impacts of trade on provincial blue water scarcity by 

comparing the actual water scarcity with that under a “no-trade” scenario (NTS). In 2012, there 

was 128 km3 blue water virtually transferred across provinces because of inter-provincial trade. 

Direct final goods trade contributed the most to the virtual water trade (accounting for 47% of the 

total), whereas value chain-related trade induced the least (17%). Compared with the results under 

the NTS, current trade alleviated the water scarcity in provinces under extreme water scarcity, but 

worsened the water scarcity of this nation from a broader scope. It suggests policy makers fully 

considering specific trade patterns and their impacts on provincial or national water consumption 

to cope with water scarcity in China. 

Linking the environmental pressures of China’s capital development to global final 

consumption of the past decades and into the future. This chapter developed a new global 

model for assessing capital formation and use along the global supply chain. It is used to quantify 

the linkages between capital use and human need production and consumption over the past two 

decades between six EPs caused by China’s capital formation and domestic as well as foreign 

consumption. Result show that only 35% of the assets acquired by China from 1995 to 2015, 

representing 32%-39% of the associated EPs (e.g., water consumption, GHG emissions, and metal 

ore extractions), have been depreciated, whilst the majority rest will serve future production and 

consumption. The outsourcing of capital services and the associated EPs are considerable, ranging 

from 14-25% of depending on the EP indicators. Without accounting for the capital-final 

consumption linkages across time and space, one would miscalculate China’s environmental 

footprints related to the six EPs by big margins, from -61% to +114%. 

Re-allocating CO2 emissions of capital investment along capital’s full lifespan. This chapter 

quantifies the temporal displacement of capital and associated carbon emissions within China for 

the period from 1995−2017. The results show that considering the temporal CO2-emission 

displacement relieves the emission responsibilities of capital assets for the year of formation, with 

25‒46% declinations from conventional accounting methods. To understand this temporal 

displacement from the past to the future, three capital investment scenarios until 2030, based on 

different purposes of capital investments (e.g., for further economic growth or for low-carbon 

development), have been designed. Overall, the existing capital in 2017 will still contribute 

approximately 10% of China’s carbon emissions in 2030, and account for more than 40% for 
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capital-intensive service sectors like real estate or transportation services. The virtual temporal 

displacement of carbon emissions associated with capital feeds into a discussion on the equity 

across generations due to historical and future ‘commitments’ of emissions. 

Conclusion. The hybrid MRIO model and the capital-endogenized MRIO model developed and 

presented in this thesis solved key limitations in conventional IO modelling for environmental 

pressure assessments. In detail, the hybrid MRIO model combines advantages of both process- 

and IO table-based approaches, thus enabling to quantify the supply chain-wide environmental 

pressures of a specific agri-food product. The capital-endogenized MRIO model endogenizes 

capital investment and consumption into economic production over time, thus enabling to allocate 

environmental responsibilities of capital activities among different capital activities along capital’s 

full lifespan. This thesis also has contributions related to datasets, such as a national dataset of inter-

provincial trade-linked supply, use and input-output tables, and a capital investment dataset at the 

provincial level during the period of 1995-2017. Both of models can be used to better assign the 

environmental responsibilities of our production and consumption in space and time, and provide 

key information for policy makers, producers, and consumers to rethink their roles in global 

sustainable development and make their own contributions to deliver a sustainable future. 
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Samenvatting 

In de context van de Overeenkomst van Parijs, de doelstellingen voor duurzame ontwikkeling en 

de agenda's voor de circulaire economie is er discussie geweest over wie verantwoordelijk is voor 

de winning van hulpbronnen en het vrijkomen van vervuiling door eindproducten en -diensten. De 

virtuele verplaatsing van milieudruk (MDs) van eindgebruikers naar productielocaties is het 

prominente onderwerp in deze debatten. Om het probleem van virtuele verplaatsing (of 

uitbesteding) van milieudruk op te lossen, is de op consumptie gebaseerde boekhouding die is 

gebaseerd op het milieu-uitgebreide multi-regionale input-output (MRIO) -model op grote schaal 

gebruikt om supply chain-brede MDs van verbruikte goederen te kwantificeren en diensten. De 

belangrijkste beperkingen liggen echter in het conventionele MRIO-model: 1) de aggregatie van 

producten met verschillende milieu-eigenschappen in homogene sectoren in de discipline macro-economie, en 2) de 

verwaarlozing van het temporele dynamische kenmerk van gefabriceerd kapitaal als primaire productiefactoren in 

economische activiteiten. 

Het doel van dit proefschrift is het ontwikkelen van verbeterde modelleringstechnieken om de 

virtuele verplaatsing van MDs in de tijd in de ruimte beter vast te leggen in de gehele toeleverings- 

en gebruiksketen van producten. Dit proefschrift stelt twee verbeterde modellen voor die gebaseerd 

zijn op het conventionele, voor de omgeving uitgebreide MRIO-model om de bovengenoemde 

beperkingen aan te pakken: het hybride MRIO-model en het kapitaal-endogenized MRIO-model. 

De twee verbeterde modellen worden toegepast om vier onderzoeksvragen te beantwoorden, 

waarvan de eerste twee gerelateerd zijn aan de ruimtelijke virtuele verplaatsing van MD's 

belichaamd in handel en de laatste twee gerelateerd zijn aan de tijdelijke virtuele verplaatsing 

belichaamd in kapitaal. 

Een hybride multiregionaal input-outputmodel van China: integratie van de fysieke 

landbouwbiomassa en het voedselsysteem in de monetaire toeleveringsketen. Dit hoofdstuk 

ontwikkelt een symmetrisch MRIO-model dat het fysieke voedsel- en landbouwbiomassasysteem 

hybridiseert met de monetaire toeleveringsketen van China. Eerst worden de interprovinciale 

aanbod-, gebruiks- en input-outputtabellen in fysieke eenheden van 84 landbouw-, voedsel- en 

bosbouwproducten geconstrueerd. Deze fysieke levering/gebruik/MRIO-tabellen leggen 

systematisch de productstromen van de agrovoeding vast, op een ongekend niveau van 

productdetails, langs binnenlandse toeleveringsketens in China. Vervolgens wordt de fysieke 

MRIO-tabel van agrovoedingsproducten geïntegreerd in de monetaire MRIO-tabel voor alle 

sectoren om een symmetrische hybride MRIO-tafel van China te construeren. De toepassing van 

ons hybride MRIO-model op provinciale beoordelingen van de blauwe watervoetafdruk laat zien 
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dat het hybride model zowel de monetaire MRIO-tabelgebaseerde benadering als de 

procesgebaseerde benadering vanuit verschillende aspecten verbetert. Het hybride MRIO-model 

kan bijvoorbeeld de onzekerheid van monetaire MRIO-modellering verminderen door de 

aggregatie van producten met verschillende milieu-eigenschappen in homogene sectoren. Ten 

slotte wordt onzekerheidsanalyse geïmplementeerd om de belangrijkste bronnen van onzekerheden 

te kwantificeren en de betrouwbaarheid van ons nieuwe hybride MRIO-model voor toekomstig 

ontwerp voor duurzame ontwikkeling te begrijpen. 

Effecten van productiefragmentatie en interprovinciale handel op ruimtelijke 

blauwwaterconsumptie en schaarstepatronen in China. Dit hoofdstuk formuleert een 

alomvattende benadering om de handel uit te splitsen om de virtuele waternetwerken van drie 

handelspatronen (d.w.z. directe handel in finale goederen, handel in intermediaire goederen voor 

de laatste productiestap en handel in waardeketen) binnen China uit te werken, en analyseert verder 

de effecten van handel op provinciale blauwwaterschaarste door de werkelijke waterschaarste te 

vergelijken met die in een "no-trade"-scenario (NTS). In 2012 werd door interprovinciale handel 

128 km3 blauw water nagenoeg over provincies getransporteerd. De directe handel in finale 

goederen droeg het meest bij aan de virtuele waterhandel (goed voor 47% van het totaal), terwijl 

de waardeketengerelateerde handel het minst leidde (17%). Vergeleken met de resultaten onder de 

NTS, verlichtte de huidige handel de waterschaarste in provincies met extreme waterschaarste, maar 

verergerde de waterschaarste van dit land vanuit een breder perspectief. Het stelt beleidsmakers 

voor om specifieke handelspatronen en hun impact op de provinciale of nationale waterconsumptie 

volledig in overweging te nemen om de waterschaarste in China het hoofd te bieden. 

De milieudruk van de Chinese kapitaalontwikkeling koppelen aan de wereldwijde 

eindconsumptie van de afgelopen decennia en in de toekomst. In dit hoofdstuk is een nieuw 

mondiaal model ontwikkeld voor het beoordelen van kapitaalvorming en gebruik in de mondiale 

toeleveringsketen. Het wordt gebruikt om de verbanden te kwantificeren tussen kapitaalgebruik en 

menselijke behoefteproductie en -consumptie in de afgelopen twee decennia tussen zes MDs 

veroorzaakt door de Chinese kapitaalvorming en binnenlandse en buitenlandse consumptie. Uit de 

resultaten blijkt dat slechts 35% van de activa die China van 1995 tot 2015 heeft verworven, 32%-

39% van de geassocieerde MDs vertegenwoordigen (bijv. het waterverbruik, de uitstoot van 

broeikasgassen en de winning van metaalerts), zijn afgeschreven, terwijl de rest voor de toekomstige 

productie en consumptie zal dienen. De uitbesteding van kapitaaldiensten en de bijbehorende MDs 

is aanzienlijk, variërend van 14-25% afhankelijk van de MD-indicatoren. Zonder rekening te 

houden met de verbanden tussen kapitaal en eindverbruik in tijd en ruimte, zou men de ecologische 
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voetafdruk van China met betrekking tot de zes MDs met grote marges verkeerd inschatten, van -

61% tot +114%. 

Herallocatie van CO2-emissies van kapitaalinvesteringen gedurende de volledige 

levensduur van kapitaal. Dit hoofdstuk kwantificeert de tijdelijke verplaatsing van kapitaal en de 

bijbehorende koolstofemissies binnen China voor de periode 1995-2017. De resultaten laten zien 

dat het beschouwen van de tijdelijke verplaatsing van CO2-emissie de 

emissieverantwoordelijkheden van kapitaalgoederen voor het jaar van oprichting verlicht, met 25-

46% declinaties ten opzichte van conventionele boekhoudmethoden. Om deze tijdelijke 

verplaatsing van het verleden naar de toekomst te begrijpen, zijn drie kapitaalinvesteringsscenario's 

tot 2030 ontworpen, gebaseerd op verschillende doeleinden van kapitaalinvesteringen 

(bijvoorbeeld voor verdere economische groei of voor koolstofarme ontwikkeling). Over het 

geheel genomen zal het bestaande kapitaal in 2017 nog steeds ongeveer 10% van de CO2-uitstoot 

van China in 2030 bijdragen en meer dan 40% vertegenwoordigen voor kapitaalintensieve 

dienstensectoren zoals onroerend goed of transportdiensten. De virtuele tijdelijke verplaatsing van 

koolstofemissies in verband met kapitaal voedt een discussie over de gelijkheid tussen generaties 

als gevolg van historische en toekomstige 'verplichtingen' van emissies 

Conclusie. Het hybride MRIO-model en het kapitaal-endogenized MRIO-model, ontwikkeld en 

gepresenteerd in dit proefschrift, losten belangrijke beperkingen op in conventionele IO-

modellering voor milieudrukbeoordelingen. In detail combineert het hybride MRIO-model de 

voordelen van zowel proces- als IO-tabelgebaseerde benaderingen, waardoor het mogelijk wordt 

om de milieudruk in de toeleveringsketen van een specifiek agrovoedingsproduct te kwantificeren. 

Het kapitaal-endogenized MRIO-model endogeniseert kapitaalinvesteringen en -consumptie in 

economische productie in de loop van de tijd, waardoor milieuverantwoordelijkheden van 

kapitaalactiviteiten kunnen worden toegewezen aan verschillende kapitaalactiviteiten gedurende de 

volledige levensduur van kapitaal. Dit proefschrift heeft ook bijdragen met betrekking tot datasets, 

zoals een landelijke dataset van interprovinciale handelsgebonden aanbod-, gebruiks- en input-

outputtabellen, en een kapitaalinvesteringsdataset op provinciaal niveau in de periode 1995-2017. 

Beide modellen kunnen worden gebruikt om de milieuverantwoordelijkheden van onze productie 

en consumptie in ruimte en tijd beter toe te wijzen, en om belangrijke informatie te verstrekken 

aan beleidsmakers, producenten en consumenten om hun rol in wereldwijde duurzame 

ontwikkeling te heroverwegen en hun eigen bijdragen te leveren om een duurzame toekomst. 
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1.1. Concerns on Sustainability of Economic Development 

Rapid growth in global population (doubled by 2017) and gross domestic product (GDP, more 

than fourfold by 2017) has been recorded since 1970 (The World Bank 2020). These trends have 

required large amounts of natural resources, such as water (Hoekstra and Mekonnen 2012), coals 

(IEA 2017), metals (Wiedmann et al. 2015), and land (Kastner et al. 2012), to fuel economic 

development and enhance human well-being. For example, global material extraction has grown 

from 27 billion tons (7 tons per capita) in 1970 to 92 billion tons (12 tons per capita) in 2017 

(UNEP and IRP 2018). Significant environmental consequences (e.g., climate change or 

biodiversity loss) have been widely observed due to resource consumption. Natural resource 

extraction and processing make up approximately half of the global greenhouse gas (GHG) 

emissions (UNEP and IRP 2018). Global land use activities caused 11% loss of existing species 

(Lenzen et al. 2012b, Weinzettel et al. 2018). These phenomena have received a fair share of 

attention in the last decades with a series of environmental research and policies related to them. 

The international communities have widely committed, for instance, to combat climate change 

through the United Nations Framework Convention on Climate Change and the Paris Agreement 

(UNFCCC 2015), and biodiversity loss through the Convention on Biological Diversity (CBD 

2006). These conventions are further incorporated in the Sustainable Development Goals (SDGs), 

which emphasize the key role they play in achieving global sustainability ambitions (United Nations 

2017). 

Literature has widely discussed the effectiveness of global or national policies of reducing anthropic 

environmental pressures (Eder and Narodoslawsky 1999, Lenzen et al. 2007, Rodrigues et al. 2006), 

and how to assign the environmental responsibilities across countries (Davis and Caldeira 2010, 

Hoekstra and Mekonnen 2012, Lenzen et al. 2012b, Wiedmann et al. 2015). Two perspectives on 

environmental pressures have been introduced, the production and consumption perspectives 

(Peters 2008, Peters and Hertwich 2007, Steininger et al. 2014). The production perspective focuses 

on the environmental pressures occurring at the production sites (IPCC 1996), i.e., producers being 

responsible for the pressures associated with the production of goods and services. Relevant policy 

suggestions to reduce environmental pressures mainly look at production sites, e.g., emphasizing 

optimizing production structures and technologies. The consumption perspective focuses on 

upstream pressures of final goods and services (Davis and Caldeira 2010, Hoekstra and Mekonnen 

2012, Wiedmann et al. 2015), i.e., assigning the supply chain-wide environmental pressures to the 

end consumers. It drives policy makers to consider environmental problems more broadly—not 

only looking at local impacts, but from a broader system boundary such as a regional, national, or 

even global scope. Irrespective of the perspective on environmental pressures, the consensus is 
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that if the rising trend in resource-intensive development pathway persists, the goals of the Paris 

Agreement will become difficult to meet and the achievement of the SDGs will be put at risk (Davis 

and Caldeira 2010, Hoekstra and Mekonnen 2012, Peters and Hertwich 2007, Steininger et al. 2014, 

Wiedmann et al. 2015). 

1.2. Important Role of China in Global Sustainable Development 

China has experienced one of the fastest economic growth in human history and increased its share 

in global GDP from 2% in 1995 to nearly 15% in 2015 (The World Bank 2020). This fast-economic 

growth was based on an export, capital and resource intensifying mode. China’s annual share in 

global capital investment increased even faster than its share in global GDP, from 3% to 25% 

between 1995 and 2015 (The World Bank 2020). In addition, China exported two-fifths of the 

world’s semiconductors, more than half of the world’s mobile phones, and almost all of the world’s 

printed circuit boards in 2016 (Allen 2018). As for resource use, from the production perspective, 

China consumed 2123 exajoules (EJ) of primary energy, and occupied 114 billion m2 of land, and 

extracted 216 gigatons (Gt) of non-metallic mineral ores during 1995-2015, contributing 16%, 8%, 

and 39% of the global totals, respectively (Stadler et al. 2018). From the consumption perspective, 

researchers traced the environmental pressures embodied in China’s exports along the global 

supply chain, and revealed a geographical shift of environmental pressures to China that were 

mostly from today’s developed countries like the United States, Japan or Germany (Meng et al. 

2018, Mi et al. 2017a). Thus, economic (e.g., capital development) and environmental performance 

(e.g., improving energy use efficiency) of China (in)directly influences both China itself and global 

social-economic-environmental development towards sustainability. 

Efforts made by China such as technological improvement and resource conservation have been 

enhancing its sustainable development significantly (Liu and Diamond 2005, Mi et al. 2017b, Zhang 

et al. 2020). Back to 2004, the average carbon intensity of China’s exports (2.18 kg of carbon dioxide 

per dollar) was four times of that of the United States’ exports (0.49 kg of carbon dioxide per dollar) 

(Davis and Caldeira 2010). Main reasons include relatively inefficient energy use, coal-dominated 

energy structure, and export specialization of carbon-intensive products (Jakob and Marschinski 

2012, Minx et al. 2011). Great efforts have been made by the Chinese government, companies, and 

individuals to reduce the environmental intensities of economic outputs, under the instructions of 

a series of policies and measures such as Five-Year Plans, carbon trade scheme, or the Intended 

Nationally Determined Contributions submitted to the Paris Agreement. By 2017, the average 

carbon intensity of China’s exports have reduced to 0.74 kg of carbon dioxide per dollar (Shan et 

al. 2020a). China has entered an era of “new normal” economic growth mode, with rapid increase 

of domestic trade (NBSC 2020). The growing domestic trade also led to new features of 
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environmental performance within China. For example, the growth in domestic trade have resulted 

in an expansion of 6.3 million hectares in national land use during 1997–2012 (Chen et al. 2021). 

Given that the most significant driver for environmental pressures in China is economic activities 

(Guan et al. 2008, Zhou et al. 2020), gaining an accurate picture of the transactions across associated 

sectors/products of the domestic economy is a prerequisite to achieving China’s sustainable 

development goals. 

1.3. Spatio-Temporal Virtual Displacement of Environmental Pressures Making the 

Pressure Assessment Complicated 

In the context of the Paris Agreement, SDGs, and circular economy agendas, whoever is 

responsible for the resource extractions and pollution releases of final goods and services has been 

debated. The virtual displacement of environmental pressures from primary production is the 

prominent issue in these debates. It hence transforms the consideration of environmental pressures 

from the production perspective into the consumption perspective. There are two dimensions of 

virtual displacement of environmental pressures, that is, spatially (Section 1.3.1) due to geospatial 

separations of producers and consumers via trade, and temporally (Section 1.3.2) because of using 

durable capital assets for economic production. 

1.3.1. Spatial virtual displacement of environmental pressures via trade 

Trade separates the locations of production and consumption of final products, and leads to a 

spatial virtual displacement of environmental pressures (Davis and Caldeira 2010, Feng et al. 2013, 

Hoekstra and Mekonnen 2012, Meng et al. 2018, Wiedmann and Lenzen 2018). Global exports of 

goods and services have tripled during the past two decades (1995-2015), from $8 trillion (2010 US 

dollars) to $23 trillion (2010 US dollars); and on average, exports accounted for 29% of a country’s 

GDP in 2015 (The World Bank 2020). Along with the traded goods and services, the capital inputs, 

resource requirements, and pollution emissions during the production processes of (or “embodied 

in”) these goods and services are also virtually displaced from the consumption sites to the 

producers. 

Tracing environmental pressures along supply chains is challenging. Lacking systematic and supply 

chain-wide trade data in high resolutions of commodity categories made the spatial virtual 

displacement mainly assessed at the sectoral level (Davis and Caldeira 2010, Feng et al. 2013, Meng 

et al. 2018) or by few products such as palm oil (Meijaard et al. 2020) or livestock (Uwizeye et al. 

2020). Moreover, traded goods and services can be directly consumed as final consumption of 

importers, directly re-exported to other regions, or further processed as intermediate inputs to 

produce other products (Arce González et al. 2012, López et al. 2013, Wang et al. 2017). These 
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different using purposes of traded goods and services result in associated trade patterns across 

regions, and have different influences in regional economic structure and environmental profiles. 

For instance, primary production is generally resource-intensive while re-exporting products seems 

cost-efficient between resource consumption and economic benefits (Arce González et al. 2012, 

López et al. 2013, Wang et al. 2017). It indicates that both economic and environmental aspects are 

not homogeneous over supply-chains, making specification of trade patterns politically important.  

1.3.2. Temporal virtual displacement of environmental pressures embodied in durable 

capital assets 

Capital as one durable production factor links historical economic and resource inputs to current 

as well as future production and consumption. This capital is existing as diverse forms of fixed 

assets, from roads and railways to power plants, communication networks to cultivated machines, 

and factory warehouses to computer software.  

Different from non-capital goods and services that are purchased to be consumed every year, 

capital assets have two unique features. First, capital assets are invested by economic sectors for 

their productive purposes, while the producers of capital assets are usually different from their 

investors and users. This feature raises arguments about how to allocate environmental pressures 

of capital activities (Chen et al. 2018, Lenzen and Treloar 2004, Södersten et al. 2018a), to the 

producers or to the users or to the final consumers of goods and services that are produced by 

using associated assets. Second, capital assets can exist for several years or even decades, and serve 

economic production throughout their lifespans. This feature implies that future production and 

consumption will induce not only environmental pressures in the future, but also those that 

historically occurred and embodied in built-up capital as long as the capital is used in the future. It 

hence leads to the temporal displacement of environmental pressures of capital activities along 

capital’s full lifespan. Such a temporal displacement is also important for assessing the sustainability 

and efficiency of national resource use especially in fast-developing countries which may have 

capital investment booms in short periods (Chen et al. 2018), and the equity of resource use across 

generations (Thacker et al. 2019). 

To well understand this important temporal dimension of environmental responsibility 

displacement requests a full picture of capital flows across sectors and regions (according to the 

first feature) and throughout its lifespans from the past to the future (according to the second 

feature). It is challenged by both methodologies and data. First, conventional consumption-based 

accounting methods rely on input-output (IO) tables that are published on an annual basis which 
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cannot represent capital use stretching over longer time periods. Second, data on capital investment 

and consumption at a sufficient resolution of both assets and sectors is lacking. 

1.4. Consumption-Based Accounting of Environmental Pressures and Its Key Limitations 

Scientific methods have been developed for environmental pressure assessments. These methods 

can be grouped in production-based and consumption-based accounting methods, which assess 

environmental pressures from the production and consumption perspective (see Section 1.1), 

respectively. The production-based accounting relies on the statistical data or survey data that 

record direct (or on-site) environmental pressures of entities belonging to a region (IPCC 1996, 

Peters 2008). The consumption-based accounting quantifies both direct and indirect (upstream 

pressures along the supply chains) environmental pressures during the 

production/trade/consumption of final goods and services of a region, yielding the environmental 

“footprints” of the region. By comparing consumption-based environmental pressures with 

production-based pressures—the net displacement of environmental pressures embodied in trade, 

regions can be categorized as either net exporters or net importers of associated environmental 

pressures. Such information is vital in the design of international policies (e.g., carbon abatement 

targets for each country) regarding environmentally sustainable development, but it also requires 

that approaches used for the consumption-based accounting are carefully devised to capture the 

indirect environmental pressures accurately and comprehensively. 

The process-based and input-output table-based approaches are two main approaches for 

consumption-based accounting, but each has its (dis)advantages. The process-based approach is 

more detailed but has high data requirements regarding process and trade information—using raw 

physical data of production/trade for each product of interest multiplied by its environmental 

intensity. By far, it has been mainly applied for blue water consumption (Chapagain and Hoekstra 

2003, Chapagain et al. 2005, Hoekstra and Mekonnen 2012), water stress (Boulay et al. 2017, Pfister 

et al. 2009) or land use (Ibarrola-Rivas and Nonhebel 2019, Kastner et al. 2014) of agricultural 

products with modestly complex production chains. The IO table-based approach is based on economic IO 

or multi-regional IO (MRIO) tables that capture the entire supply chain-wide inputs in monetary terms, but at low 

resolutions of sectors which represent a range of products with different environmental properties yet aggregated into 

homogeneous sectors (Lenzen 2011). In this context, it argues that the IO table-based approach would 

be inadequate to account for certain environmental pressures such as water consumption related 

to the production and consumption of a specific product like wheat or pork. To make use of the 

advantages of both consumption-based accounting approaches and limit the disadvantages, a 

hybrid approach has been developed (Ewing et al. 2012). The hybrid approach enriches the 

monetary IO/MRIO approach with detailed physical-unit production and trade data of agri-food 
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products, and has recently been applied in studies on European consumption footprints (Steen-

Olsen et al. 2012), Chinese exports (Weinzettel and Wood 2018), and analysis of global biodiversity 

(Weinzettel et al. 2018). Yet, most literature just presented the spatial displacement of environmental pressures 

from the sources to the destinations with a total amount of virtual displacement, while few literature considered different 

trade patterns to conduct a systematic analysis of respective contributions of trade patterns to the total environmental 

pressure displacement. 

Neither the process-based nor IO table-based approach systematically captures capital’s role in production and 

consumption, and hence fails to allocate the environmental responsibilities of capital activities throughout capital’s full 

lifespan in footprint assessments. Neglecting capital’s two important features, both consumption-based 

approaches treat the purchase of capital assets in the same way as the purchase of final 

consumption, and assign associated environmental pressures to the purchasing country and the 

purchasing year (Gao et al. 2020). Acknowledging the economic and environmental significance of 

capital (see Section 1.3.2), there have been a few endeavors to tackle the methodological and data 

challenges related to modeling capital assets as intermediate inputs used in production, also known 

as ‘capital endogenization’ in the IO table-based approach (Chen et al. 2018, Lenzen and Treloar 

2004, Södersten et al. 2020, Södersten et al. 2018a, Södersten et al. 2018b). Consistently, they show 

that the inclusion of capital as intermediate inputs leads to substantial re-distribution of carbon and 

material footprints across industries and countries. However, the inter-temporal features of environmental 

pressures embodied in capital assets remain unaddressed since capital assets used for year n’s production and 

consumption are of different age cohorts that are produced based on the production recipe, trade 

networks, and environmental intensities of year n, n-1, n-2, n-3, ... Such temporal dynamics are 

inherent to the retrospective distribution of historically-generated resource use and emissions to 

current final consumption, and critical for understanding the temporal trends and thus the future 

needs of resources and emissions for capital formation particularly in rapid developing and 

transitioning economies. 

1.5. Goal and Approach of this Research 

The goal of this thesis is to develop improved modelling techniques to better capture 

spatiotemporal virtual displacement of environmental pressures along the entire supply and use 

chain of goods and services. To this end, an environmentally extended MRIO model is applied for 

the environmental pressure accounting throughout this thesis. This thesis proposes the following 

two improved models based on the conventional environmentally extended MRIO model to 

address aforementioned limitations (in italic font) that exist in previous analysis of environmental 

pressures: the hybrid MRIO model and the capital-endogenized MRIO model. The two improved 

models are applied to answer four research questions, of which the former two are related to the 
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spatial virtual displacement of environmental pressures embodied in trade and the latter two are 

related to the temporal virtual displacement embodied in capital: 

Q1. How to capture the supply chain-wide environmental pressures related to the production, trade, and 

consumption of a specific agri-food product? 

Q2. What are the respective roles of different trade patterns in regional resource consumption and inter-regional 

virtual displacement of environmental pressures? 

Q3. What is the role of capital system playing in satisfying human final consumption and associated 

environmental pressures? 

Q4. How do the historically built-up capital assets—used in productive processes for years or decades—influence 

national environmental performances throughout their lifespans? 

All the questions will be answered by using China as the main study area, because of its rapid 

economic transition and its important role in global sustainable development. 

To answer Q1 and Q2, this thesis first develops a standard inter-provincial MRIO model that 

hybridizes the physical food and agricultural production system with the monetary supply chain of 

China. Secondly, this thesis disaggregates China’s interprovincial trade into three patterns, i.e., 

direct final goods trade, intermediate goods trade for the last step of production, and value chain-

related trade. After that, the hybrid MRIO model is applied to re-assess provincial blue water 

footprints and particularly quantify virtual water displacements of specific agri-food products 

across provinces (Chapter 2). Furthermore, this thesis elaborates on the virtual blue water 

networks of three trade patterns within China and their respective contributions to the virtual blue 

water networks (Chapter 3). 

To answer Q3 and Q4, this thesis first develops a capital-endogenized MRIO method that 

addresses the temporality issue regarding dynamic formation and depreciation of capital assets as 

well as associated environmental pressure displacement. After that, the capital-endogenized MRIO 

model is applied to quantify the linkages between China’s capital development and associated 

environmental pressures with the final consumption of China and other countries (Chapter 4). 

Secondly, this thesis narrates China’s capital investment pathways by two capital-focused scenarios 

and a “business-as-usual” scenario into 2030. The two capital-focused investment pathways are 

developed on the principle of improving economic growth and social well-being, and the principle 

of low carbon development, respectively. Under each scenario, this thesis quantifies China’s future 

CO2 emissions that consider the temporal carbon transfers along capital’s lifespan, to present a 
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more comprehensive picture of carbon emissions for future production and consumption 

(Chapter 5). 

1.6. Structure of the Research 

The structure of this thesis is illustrated in Figure 1-1. Detailed conclusions of this thesis and 

outlook of future work are provided in Chapter 6. 

 

Figure 1-1. Conceptual diagram of the structure of this thesis. 
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2.1. Introduction 

China has been one of the largest consumption countries of agricultural biomass and food products, 

because of its large population (The World Bank 2020), the meat-dominated (e.g., pork) diet of its 

inhabitants (Liang et al. 2020), and the significant food waste (Li et al. 2016). China is also one of 

the important global players in agricultural and food production and trade. In 2019, China produced 

around one-third of this planet’s rice, 23% of this planet’s maize, and 40% of this planet’s pork 

(FAOSTAT 2020), most of which were supplied for domestic consumption. Meanwhile, China 

also accounted for large shares, as an importer, of the global trade market for several agricultural 

and food products, e.g., 60% of soybean, 21% of sorghum, and 23% of pork (FAOSTAT 2020). 

Challenges to assure food security for the 1.4 billion people have been highlighted in China’s 14th 

Five Year Plan (State Council of China 2020). On the other hand, domestic trade within China has 

grown rapidly (NBSC 2020). The growing domestic trade also led to new features of socio-

economic development patterns and environmental pressures because resource use and emissions 

during the production process of goods and services are virtually transferred along the trade. For 

example, virtual water flows embodied in the trade of those key food products such as maize and 

pork within China have increased by 40% and 23%, respectively, over the period of 2000-2013 

(Zhuo et al. 2019); the carbon emissions embodied in China's exports have declined whereas the 

carbon transfer through inter-provincial trade in China has reversed since the global financial crisis 

(Mi et al. 2017a); while the change in interprovincial trade structure has led to an increase of national 

average land use intensity during 1997–2012, with a results of 6.3 million hectares growth of land 

use (Chen et al. 2021). Given that the most significant driver for environmental pressures in China 

is economic activities (Guan et al. 2008, Zhou et al. 2020), gaining an accurate picture of the 

transactions across associated sectors/products of the domestic economy is a prerequisite for 

achieving sustainable development goals. However, a comprehensive supply-use network of 

agricultural and food products that captures the production, trade, intermediate uses, conversion 

processes, and final consumption of associated products within China, to our best knowledge, has 

not been constructed yet. 

To describe the supply-use chains, the monetary input-output (IO) model or multi-regional input-

output (MRIO) model has been regarded as an appropriate tool, and widely applied in previous 

literature. Based on the IO/MRIO model, the carbon (Hertwich and Peters 2009), material 

(Wiedmann et al. 2015), and other environmental footprints (Cabernard and Pfister 2021) 

associated with the annual human consumption of nations have been assessed. However, it argues 

in earlier publications (Bruckner et al. 2019, Ewing et al. 2012, Steen-Olsen et al. 2012) that current 

monetary-IO/MRIO-based environmental footprint assessments are often inadequate to account 
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the specific environmental pressures related to a large range of agricultural products, as well as to 

capture the physical basis of the food system. It is because that the monetary structure of the 

economy does not always represent the physical product flows correctly, due to price variations of 

product flows between different customers (Bruckner et al. 2015). Moreover, mismatches also exist 

between agricultural and forestry statistics reported in physical units and macroeconomic 

production statistics in monetary units, for example due to different system boundaries 

(Schaffartzik et al. 2015). Lastly, from the perspective of macroeconomy, the monetary IO tables 

are constructed based on limited sectors, which have to aggregate products with different 

environmental properties into homogeneous sectors (Lenzen 2011). 

A more comprehensive physical unit production, trade and consumption dataset, which could be 

further integrated into the monetary supply-use chains, has been suggested to reduce the 

uncertainties arising from the limitations of monetary IO models. As such, a hybrid approach that 

enriched the monetary IO/MRIO approach with detailed physical-unit production and trade data 

of agricultural products was developed (Ewing et al. 2012), and recently applied in studies on 

European consumption footprints (Steen-Olsen et al. 2012), Chinese exports (Weinzettel and 

Wood 2018), and net primary production (Weinzettel et al. 2019). Yet, all these hybrid MRIO 

models rely on monetary input-output data to track biomass products from the first (or second) 

use stage to the final consumers. Thus, it was also suggested to describe the whole structure of 

material conversion and distribution networks in physical terms―by means of detailed physical 

supply (i.e., products supplied by sectors) and use (i.e., products used by sectors) tables (PSUT) 

(Heun et al. 2018, Kovanda 2018). To fill this data gap, systemic global PSUT and MRIO tables of 

food and agricultural biomass (FABIO) were constructed by (Bruckner et al. 2019), describing the 

intermediate uses and conversion processes, thereby retaining flow information of associated global 

supply chains. One of the main limitations of FABIO is the exclusion of those highly food-related 

sectors (e.g., food manufacturing sectors) to capture the complete supply chain for input-output 

analysis and environmental pressure assessments. In addition, the existing PSUTs are mainly 

compiled at the national scale (i.e., describing the global economy). The economic transactions as 

well as the associated resource transfers across fine-scale domestic regions are less understood, 

especially for some vast countries with great spatial variations in socio-economic development 

patterns and resource endowments such as China. 

This study tries to fill these gaps by developing a symmetric hybrid MRIO model that integrates 

the physical agricultural biomass and food supply-use system into the entire monetary supply chain 

across 22 provinces, 4 municipalities, and 5 autonomous regions (regarded as “province” from here, 

Table A-1, Appendix A) of mainland China. Following the global FABIO model (Bruckner et al. 
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2019), this study develops the FABIO model for China (FABIO-CHN), i.e., a national set of inter-

provincial trade-linked PSUTs and physical MRIO tables that capture specific supply chain 

information of agricultural and food products. We specify 84 raw and processed agricultural and 

food commodities (Table A-2, generally designated as “agri-food” commodities) supplied and used 

by 75 processes (Table A-3). The total 84 agri-food commodities cover the main grain crops (e.g., 

rice, maize, and wheat), cash crops (e.g., sugar beets, groundnuts, and cotton), fruits (e.g., apples, 

and citrus), vegetables (e.g., tomatoes), live animals (e.g., cattle, and sheep), livestock (e.g., bovine 

meat, mutton meat, and pork), fishery, and forestry products, which to our best knowledge 

formulates the most comprehensive classifications of agri-food commodities for sub-national 

supply chain analysis. After that, symmetric hybrid MRIO tables for China are further constructed 

by integrating the physical FABIO-CHN MRIO tables into the monetary MRIO tables obtained 

from Mi et al. (2017a) for the year 2012. We apply the hybrid MRIO model to the case of blue 

water footprints (i.e., consumptive use of surface and groundwater resources) of provinces in China 

to examine the rationality of our model. We hypothesize that with a higher level of disaggregation 

of agri-food commodities in the MRIO modeling, the product-specific water footprints and 

associated virtual water trade networks can be understood more comprehensively, especially of key 

products for China’s food security. Lastly, uncertainty analysis is implemented to quantify the main 

sources of uncertainties, and understand the reliability of our new hybrid MRIO model. 

2.2. Methods 

The prerequisite of the hybrid MRIO model is the construction of inter-provincial PSUT and 

physical MRIO tables of agri-food commodities in physical terms (e.g., in tonnes, m3, or heads). 

Following the global FABIO model (Bruckner et al. 2019), the whole procedure of FAIBO-CHN 

also consists of four main steps―illustrated in Figure 2-1: 

(1) quantify each commodity’s supply from its primary production (e.g., maize from maize 

production) or processes (e.g., soybean oil and soybean cake from soybean oil extraction) 

for each province, and construct province-specific supply tables with 84 commodities 

from 75 processes in physical terms; 

(2) quantify each commodity’s use, specifically for the purposes of seed, feed, waste, 

processing, food, and other uses, by associated primary production (e.g., maize used as 

seed by maize production), process (e.g., maize used as feed by cattle husbandry), and 

final demand (e.g., maize consumed as food by local population), and construct 

province-specific use tables with 84 commodities by 75 processes as well as 3 final 

demand categories in physical terms; 
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Figure 2-1. Schematic for the procedures to build FABIO-CHN. Note, the PSUTs and 
PMRIOT in this chart only capture the transactions across 84 products and 75 processes specified 
in FABIO-CHN, which exclude other economic sectors such as electricity generation sectors or 
service sectors that will be further integrated at a latter step. The format of this chart is in 
accordance with (Bruckner et al. 2019). 
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(3) distribute each province’s supply and use of 84 commodities across 31 provinces based 

on the inter-provincial trade information, thereby constructing multi-regional PSUTs; 

(4) construct the systemic physical MRIO table through industry technology assumption 

using the trade-linked supply and use tables of 31 provinces. 

We describe the four steps in detail in the following sections. Before that, we first elaborate the 

data requirements and associated data sources as well as the main assumptions to fill the missing 

data, since the lack of data (e.g., inter-provincial trade data in physical terms) is one of the main 

challenges for FABIO-CHN compared to the global FABIO. The multi-regional PSUTs and 

MRIO tables are all available at the public repository Figshare (Ye 2021). 

After constructing the physical MRIO tables of 84 agri-food commodities, symmetric hybrid 

MRIO tables for China are constructed by integrating the physical FABIO-CHN MRIO tables into 

the monetary MRIO tables. For this first trial, we use the monetary MRIO tables for the year 2012 

compiled by Mi et al. (2017a), which describe the production, inter-provincial and international 

trade, intermediate consumption, and final demand of China’s economy by 42 sectors (listed in 

Table A-4) and 31 provinces. Two highly-aggregated agri-food related sectors are included in the 

42 sectors, i.e., sector “Agriculture, forestry, animal husbandry and fishery products and services” (AFF) and 

sector “Food and tobacco manufacturing” (FTM). Therefore, the integration procedures of physical and 

monetary MRIO tables are to disaggregate the transactions related to sectors AFF and FTM into 

84 agri-food commodities in physical terms based on commodity-specific price information. 

Figure 2-2 illustrates the framework of a symmetric hybrid input-output table. For each intra-

provincial (from province m to province m) or inter-provincial (from province m to province n) 

intermediate input table, it consists of four blocks, with an overall dimension of 126×126. The 

upper-left block records physical intermediate flows across 84 FABIO-CHN agri-food 

commodities. The lower-right block records the intermediate monetary flows across 42 economic 

sectors. The upper-right block records the physical intermediate inputs from the 84 agri-food 

commodities to manufacturing sectors for industrial use (e.g., oil for soap or fuels). The lower-left 

block records the monetary intermediate inputs from the 42 economic sectors to 84 agri-food 

commodities. The final demand table, international export table, and total output table have the 

same structure, i.e., with the upper agri-food demand/export/outputs in physical terms and the 

lower economic final demand/export/outputs in monetary values. The international imports of 

agri-food commodities as intermediate inputs or final demand are also in different physical units in 

our dataset. Here to give a clearer format of the hybrid IO table, we illustrate the international 

import table only in monetary terms. 
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Figure 2-2. Structure of a symmetric hybrid input-output (IO) table. 

2.2.1. Food and agricultural biomass input-output model for China (FABIO-CHN) 

2.2.1.1. Data sources and missing data filling 

The main data sources for building provincial supply and use tables are National Bureau of Statistics 

of China (NBSC 2020), statistical yearbooks including China Agriculture Yearbook 2013 (CAYEC 

2013), China Light Industry Yearbook 2013 (CLIF 2013), and Almanac of China's Population 2013 

(IPLE-CASS 2013). Table A-5 summarizes the data requirements and associated data sources for 

FABIO-CHN. In addition, FAOSTAT also provides the national-level data of production, 

international trade, and use of agri-food commodities (FAOSTAT 2020), which will be used as 

benchmarks for the estimation of provincial missing data. 

The construction of provincial Commodity Balance Sheets (CBS), in the same structure of national 

CBS from FAOSTAT, is the core of building FABIO-CHN PSUTs. The national CBS from 

FAOSTAT provide balanced supply (Sdom) and domestic use (Udom) data for primary (e.g., wheat) 

and processed (e.g., soybean oil) commodities in terms of physical quantities. The national supply 

of each commodity equals to domestic production (Pdom) plus international import (imdom) plus stock 

removals (Stkdom) minus international export (exdom), while the domestic use categories include feed, 

seed, waste, processing, food, and other uses. We construct the provincial CBS by balancing the 

provincial supply and provincial use of each commodity in each province. The provincial supply of 

each commodity equals to provincial production (Pm) plus inter-provincial import (∑ tnm
n, n≠m ) plus 

international import (imm) plus provincial stock removals (Stkm) minus inter-provincial export 
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(∑ tmn
n, n≠m ), and international export ( exm ), while the provincial use categories also include 

provincial feed (U_fem), seed (U_sm), waste (U_wm), processing (U_pm), food (U_fom), and other uses 

(U_othm). The 31 provincial CBS of each commodity are also balanced into the national CBS of 

that commodity for each element (e.g., feed). The construction of provincial CBS by each element 

is described in detail below. 

Feed. Provincial feed requirements of each crop are estimated by allocating the national feed 

requirement of each crop from FAOSTAT according to provincial hypothetical feed 

requirements for all live animals. We specify eight animal husbandry sectors in FABIO-CHN 

(Table A-2). The hypothetical feed requirements are estimated based on the feeding periods 

of each animal and the daily feed requirements for that animal. The estimation approach is fully 

described in Appendix A.2. We balance the hypothetical feed requirements of each crop in 31 

provinces into the national feed use of that crop from the national CBS. It should be noted 

that the estimated feed requirements have high uncertainty due to key assumptions such as the 

same feed compositions, thus, we select feed requirements as one critical uncertainty factor of 

FABIO-CHN for uncertainty analysis (see Section 2.3.2 Uncertainty analysis). 

Seed. Provincial seed requirements of crops for sowing, eggs for hatching, and fish for bait are 

estimated by the same method as FAO does. That is, the data of seed requirements have been 

estimated either by multiplying a seed rate with the sown area under the crop of the subsequent 

year, or as a percentage of supply like eggs for hatching. The associated data (e.g., a seed rate) 

are documented as technical conversion factors by FAO (FAO 1986, 2003).  

Waste. Provincial wastes of commodities are also estimated by the same method proposed by 

FAO. Concretely, waste is estimated as a fixed percentage of availability (defined as production 

plus import plus stock variation). We set the ratio between the waste quantity and the 

availability in the national CBS from FAOSTAT as the fixed percentage of each commodity, 

i.e., U_wdom/(Pdom+imdom+Stkdom). Consequently, the provincial stock removal can be derived 

according to the waste quantity and the fixed percentage, minus the production and import 

quantities. 

Processing. Provincial processing data are estimated in three ways, which depend on the inputs 

and outputs of processes: 1) single-processed commodities (e.g., oil crops), we estimate the 

processed quantities using a fixed percentage (equal to U_pdom/Udom given in the national CBS) 

of the overall provincial use quantity; 2) multiple crops for same output (e.g., sugar cane and 

sugar beet for refined sugar), we estimate the processed quantities by solving a constrained 

linear least-squares optimization problem; and 3) multipurpose crops (e.g., maize for maize 
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germ oil and fermented beverages), we estimate the processed quantities as the input 

requirements to each process based on the national technical conversion factors. Details about 

the estimations could be found in Appendix A.3.  

Food. Provincial food requirements are estimated by multiplying the per-capita food 

requirement of each commodity with the provincial population. The per-capita food 

requirement of each commodity is calculated based on the U_fodom given in the national CBS 

and the national population. Totally, there are 54 agri-food commodities are used as food for 

local population. 

Other Uses. Other uses refer to quantities of commodities used for non-food purposes, e.g., oil 

for soap (FAOSTAT 2020). Provincial other uses of commodities are estimated either as the 

rest of provincial use after feed, seed, waste, processing and food requirements (if all of these 

are already estimated), or as a fixed percentage of provincial use (equal to U_othdom/Udom given 

in the national CBS from FAOSTAT). 

Provincial total use. Provincial total use quantities of each commodity are estimated by the total 

quantities of feed, seed and food (plus processing if available) in each province divided the 

sharing of total quantities of feed, seed and food (plus processing if available) in the overall 

domestic use quantity as given in the national CBS from FAOSTAT. 

Provincial production of vegetable oils, oil cakes, livestock offal, fats, and hides and skins are not 

recorded in China. We estimate the provincial production of these commodities based on the 

provincial processed quantities of primary oil crops or slaughtered animal and the national technical 

conversion factors. Provincial feed, seed, waste, processing, food and other use of vegetable oils, 

oil cakes, livestock offal, fats, and hides and skins are estimated by the same methods as described 

before. 

Trade data, especially the inter-provincial trade data (tmn), in the physical terms of 84 FABIO-CHN 

commodities are the main data gap for fine-scale domestic supply-use analysis of China. Here, we 

use a linear programming optimization model to estimate the bilateral trade quantities of FABIO-

CHN commodities, which pursues a transport cost minimization for inter-provincial trade flows 

following Dalin et al. (2014) and Zhuo et al. (2019). The optimization model is fully described in 

Appendix A.4. All estimated trade data, inter-provincial and international, of all 84 commodities 

are harmonized into one bilateral trade database. 

2.2.1.2. Building provincial supply tables 
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Building the supply table is straightforward, as production quantity of commodities attributed to a 

specific process. First, we identify the processes that supply more than one output, i.e., joint 

products or byproducts. They are the crushing of oilseeds for oils and oil cakes, and livestock 

products, according to Bruckner et al. (2019). We insert the aggregated production data for each 

process-item combination into a supply table. Since five livestock commodities (milk from “Dairy 

cattle husbandry” and “Dairy sheep husbandry”, meat of other animals, and slaughtering byproducts such 

as edible offal, animal fats, and hides and skins) are supplied by multiple processes, the production 

quantities of those should be divided by the respective processes. Details could be found in 

Bruckner et al. (2019). We obtain one supply table Sm with 84 commodities from 75 processes for 

each province m in 2012. 

2.2.1.3. Building provincial use tables 

Provincial CBS contain the uses of each commodity as feed, seed, waste, processing, food, and 

other uses. Here, we invert the supply item stock removals, thereby converting it into the additional 

use item stock additions. In addition, food, stock additions, and other uses are considered as final demand 

categories in FABIO-CHN, because these commodities are not further used as production inputs. 

We describe the allocation of feed, seed, waste, and processing quantities to associated processes 

as follows: 

• Feed requirements of each commodity by eight animal husbandry sectors are allocated to the 

respective animal husbandry sectors in the use table. 

• Seed requirement of a crop are considered an own use of the process which later harvests a 

crop. Seed requirement of eggs are considered an own use in poultry birds farming. 

• Waste is allocated to the process where the waste occurs as the global FABIO did (Bruckner 

et al. 2019). This allows for the tracking of embodied flows, which is required for footprint 

accounting (Wiedmann and Lenzen 2018). 

• Processing quantities are also allocated in three ways: 1) for single-process commodities, 

given processing quantities are directly allocated to the respective processes; 2) for processes 

with multiple input crops, we insert the optimal solutions from the linear least-squares 

optimization model that give the input requirements for these processes in each province; 3) 

for multipurpose crops, we allocate the estimated processed quantities of crops to each 

process. 
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We obtain one use table Um with 84 commodities by 75 processes plus 3 final demand categories 

(Ym) for each province m in 2012. 

2.2.1.4. Trade-linking 

Once the provincial supply and use tables are built, they are linked into multi-regional supply and 

use tables based on the trade data. 

The multi-regional supply table S with the dimensions {m, c}×{n, p} contains zeros at the inter-

provincial trade blocks (where m≠n) and is filled with the domestic supply tables where m=n. c and 

p indicate commodity and process, respectively. 

The provincial use tables are trade-linked by spreading the use of a commodity c in a process p in 

province n over the initial provinces m of that product: uc,p
m,n= uc,p

n ∙hc
m,n , where 

h𝑐𝑐m,n=t𝑐𝑐
m,n/(∑ tcm,n

m +imc
n). Finally, we build a matrix U with the dimensions {m, c}×{n, p}. Trade-

linked final demand is spread by the same method for building provincial use tables. The use of 

international imported commodities in each process or final demand of each province are recorded 

in an extra matrix (IM) with the dimensions c×{n, p+3} (where the number 3 represents three 

categories of final demand), while the international exported commodities (EX) are compiled as an 

extra column with dimensions {m, c}×1. 

2.2.1.5. Constructing a symmetric physical MRIO table 

The transformation from rectangular commodity-by-process PSUTs into symmetric commodity-

by-commodity MRIO tables are applied through the widely used industry technology assumption 

(Casler and Wilbur 1984, Miller and Blair 1985), i.e., process inputs are allocated to its respective 

outputs according to the supply shares documented in the supply table. We achieve this by first 

dividing the product mix matrix or transformation matrix V=STi�
-1

ST, where T is the transpose of 

a matrix, i is a summation vector of appropriate length, “^” is the diagonalization of a vector; and 

then multiplying the use with the transformation matrix Z=U·V. Part of the import matrix for 

processes only (IMp in c×{n, p}, excluding the import of final demand) is also transformed by 

IMp·V. 

2.2.2. Integrating the physical MRIO into the monetary MRIO 

Based on the physical and monetary MRIO tables, we construct a symmetric hybrid MRIO table 

for China, covering 126 commodities/sectors (i.e., 84 FABIO-CHN commodities and 42 economic 

sectors) in 31 provinces. As aforementioned, the main task is to disaggregate the transactions 

related to sector AFF and sector FTM in the monetary MRIO tables into 84 agri-food commodities 
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in physical terms. We rely on the price allocation (Bruckner et al. 2015, Többen et al. 2018) to 

achieve this. The price information of agri-food commodities for the year 2012 is collected from 

FAOSTAT and China Price Statistical Yearbook 2013 (NBSC 2013). In addition, we keep the 

residual transactions of the two economic sectors after price allocation as “Rest of agriculture, forestry, 

animal husbandry and fishery products and services” and “Rest of food and tobacco manufacturing” in the 

monetary parts, to make sure the MRIO tables are well balanced before and after hybridization. 

Since the physical and monetary MRIO tables are all constructed by 31 provinces, the hybridization 

processes are manipulated using the bilateral transactions between provinces, e.g., the physical 

intermediate input block (in 84×84) and the monetary intermediate input block (in 42×42) from 

province m to province n. The hybridization processes for the intermediation inputs from province 

m to province n (Figure 2-2) are described below: 

To obtain the upper-right block, we allocate the other uses (one category of final demand in the 

provincial use tables) to manufacturing and other economic sectors as intermediate inputs. The 

allocation relies on the shares of monetary inputs to the destination sectors from sector AFF 

for agricultural commodities (or from sector FTM for food commodities). 

To obtain the lower-left block, we should first extract the transactions among 84 agri-food 

commodities (recorded in the upper-left block) and the transactions of 84 agri-food 

commodities for other uses (recorded in the upper-right block)—converted into monetary values 

based on the prices—from the monetary transactions from sector AFF and sector FTM to 

associated sectors. This step is to avoid double-counting. After that, the monetary intermediate 

inputs from the 42 economic sectors to sector AFF (or sector FTM) will be allocated to 

agricultural commodities (or food commodities) as intermediate inputs. This allocation relied 

on the shares of monetary value of agricultural commodities (or food commodities) in the total 

monetary values of all agricultural commodities (or food commodities). 

The lower-right block is the residual transactions left in the monetary intermediate inputs. The 

changes in the lower-right block from the original 42×42 monetary intermediate input matrix 

only happen in the relevant transactions with sector AFF and sector FTM. 

For hybridization process of final demand from province m to province n, we first aggregate all the 

categories of final demand of province m, either in physical terms (omitting “Other uses”) or 

monetary terms. Then we extract the final demand of 84 agri-food commodities—converted into 

monetary values based on the prices—from the monetary final demand of sector AFF and sector 

FTM. The latter step is also applied to manipulate the international export and import. The total 
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outputs of all 126 commodities/sectors then can be recalculated. Detailed features of our hybrid 

inter-provincial MRIO tables could be found in Appendix A.6. 

2.2.3. Provincial blue water footprint accounting 

The direct blue water consumption data of FABIO-CHN crops are obtained from simulations with 

a crop water productivity model, following the accounting framework of Hoekstra et al. (2011). 

The direct blue water consumption of economic sectors is obtained from provincial Water 

Resource Bulletins (2012), and Chinese Economic Census Yearbook (2008). Details about the data 

sources could be found in Appendix A.5. 

The calculation of provincial blue water footprints based on our hybrid MRIO model equals the 

conventional monetary MRIO modelling. Eq. 2-1 calculates the supply chain-wide blue water 

footprints (WFm
H, in million m3/yr) of province m’s final demand (Ym

H): 

WFm
H=fHLHYm

H=SH(I-AH )-1Ym
H                                                                                               (2-1) 

fH is a row vector of direct blue water consumption intensities of FABIO_CHN commodities or 

economic sectors (e.g., in million m3/tonne or million m3/Yuan), calculated by the direct water 

consumption of FABIO_CHN commodities or economic sectors (Appendix A.5) divided by 

associated total outputs. LH is the Leontief inverse matrix, describing the supply chain-wide outputs 

associated with per unit finished goods and services. LH is calculated from AH with each element 

ai,j
H representing the amount of intermediate input i directly required per unit of output j, and an 

identity matrix I. It should be noted that the blue water footprint is a physical measure of supply 

chain-wide water consumption, which does not provide any information on the scarcity of blue 

water in provinces. To further assess how scarce the water is or the actual impact from blue water 

consumption, the water stress indicators should be integrated (Pfister and Hellweg 2009). 

2.3. Results and Discussion 

This section presents the results of applying our hybrid MRIO model in provincial water footprint 

assessment in China, and discusses uncertainties and limitations of the model. The demonstration 

of provincial water footprint assessment reveals that our hybrid MRIO model enhances both the 

traditional MRIO table-based approach and the process-based approach from different aspects 

(Table 2-1). Thus, the merits of our hybrid MRIO model are also justified from two perspectives. 

Compared with the traditional MRIO table-based approach, 1) the hybrid MRIO model provides 

specific information of agri-food products’ water footprints and associated virtual water transfers 

within China; and 2) using product-specific water intensities also reduces the uncertainty of  
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Table 2-1. Comparison of provincial water footprints estimated in this study with those 
estimated by previous literature.  

 Literature      
 Zhang 

and 
Anadon 
(2014) 

Xu et al. 
(2020a) 

Zhang 
et al. 
(2019) 

Dalin 
et al. 
(2014) 

Zhuo 
et al. 
(2016) 

Zhuo 
et al. 
(2019) 

This 
study 

Year(s) 2007 2012 2012 2005 1978-
2008 

2000-
2013 

2012 

Indicator(s) Blue 
water 
consum
ption 

Blue 
water 
consum
ption 

Blue 
water 
withdra
wal 

Blue 
and 
green 
water 
consum
ption 

Blue 
and 
green 
water 
consum
ption 

Blue 
and 
green 
water 
consum
ption 

Blue 
water 
withdra
wal 

Model 
(whether fully 
considering 
the supply 
chain-wide 
water 
consumption/
withdrawal of 
final 
consumption) 

Monetar
y MRIO 
modelli
ng (√) 

Monetar
y MRIO 
modelli
ng (√) 

Monetar
y MRIO 
modelli
ng (√) 

Process
-based 
approa
ch (×) 

Process
-based 
approa
ch (×) 

Process
-based 
approa
ch (×) 

Hybrid 
MRIO 
modelli
ng (√) 

Number of 
sectors/produ
cts (number of 
agri-food 
sectors/produ
cts) 

30 (2) 30 (2) 42 (2) 8 (8) 22 (22) 2 (2) 126 
(84+2) 

Degree of agri-
food product 
disaggregation 

Low Low Low Low Mediu
m 

Low High 

Water 
intensities of 
agri-food 
sectors/produ
cts 

One 
value 
(m³/mo
netary 
unit) for 
all 
related 
product
s 

One 
value 
(m³/mo
netary 
unit) for 
all 
related 
product
s 

One 
value 
(m³/mo
netary 
unit) for 
all 
related 
product
s 

Produc
t-
specific 
values 
(m³/ph
ysical 
unit) 

Produc
t-
specific 
values 
(m³/ph
ysical 
unit) 

Produc
t-
specific 
values 
(m³/ph
ysical 
unit) 

Product
- and 
sector-
specific 
values 
(m³/ph
ysical 
unit 
and 
m³/mo
netary 
unit) 

Reducing main 
limitations of 
monetary 
MRIO models 
for footprint 
assessments 

× × ×    √ 
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monetary MRIO modelling arising from the aggregation of products with different water intensities 

into homogeneous sectors. Compared with the traditional MRIO table-based approach, our hybrid 

MRIO model strengthens the process-based approach by capturing the whole supply chain-wide 

water consumption, which is the main limitation of the process-based approach (Feng et al. 2011). 

The total 84 commodities specified in our hybrid model covers the most categories of agri-food 

products compared with the literature of process-based water footprint assessments in China. The 

results of uncertainty analysis show the reliability of this new hybrid MRIO model, and the 

confidence for future implication of the hybrid model in environmental and sustainable 

development research. 

2.3.1. Provincial water footprints and virtual water trade in China 

The comparison of provincial water footprints by our hybrid MRIO model with those estimated 

in previous studies, which is visualized in Figure 2-3A and Table A-7, highlights the role of 

product disaggregation within the supply chain for the water footprint assessment. The provincial 

water footprints estimated by our hybrid MRIO model are in line with those estimated by 

conventional monetary MRIO modelling (Xu et al. 2020a, Zhang and Anadon 2014). Provinces, 

e.g., Xinjiang, Guangdong, and Jiangsu, have smaller water footprints in this study compared with 

Xu et al. (2020a) which relied on the same monetary MRIO tables as we did. The main reduction 

is observed in crop-related water footprint. Using an identical water intensity (“drop per money”) 

for all crops in monetary MRIO modelling could be regarded as the main reason. That is, using an 

identical water intensity results in the overestimation of associated water footprints and virtual 

water flows of those cash crops, e.g., sugarcane, sugar beet or fruits, which have relatively higher 

prices whereas lower blue water contents (“drop per ton”) compared with grain crops. Another 

reason is from the water flows embodied in crops that are used as feed for animal husbandry. The 

feed-related water flows share big parts in those crops’ total virtual water flows (shown in Figure 

2-4), and the final destinations of these feed-related water flows are animal slaughtering sectors 

(aggregated in sector FTM in the monetary MRIO tables used in this study). The monetary MRIO 

tables only record the transactions from animal husbandry sectors to animal slaughtering sectors, 

since crop production and animal husbandry are aggregated in sector AFF. Thus, this part of feed-

related water footprints is accounted in the water footprint of sector AFF, and results in the 

overestimation of its water footprints. The lower water footprints observed in these provinces also 

imply that their net virtual water exports are underestimated by the monetary MRIO model (Figure 

2-3B), given that regional footprint (consumption-based) equals to the territorial pressure 

(production-based) minus the net export of the pressure. The relative changes in net export look 

significant for provinces Jilin, Guizhou, and Inner Mongolia, yet the significant changes only 
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because their absolute export is too small and thus any little fluctuation of net export will raise 

significant relative changes. 

 
Figure 2-3. Profile of blue water footprints (A), and the relative changes in net virtual water 
export (B) of 31 provinces in China. In A, we compare the blue water consumption footprints 
of year 2007 (Zhang and Anadon 2014) and 2012 (Xu et al. 2020a) with our results. In B, relative 
changes in the net virtual water export (left y-axis) estimated by the hybrid MRIO model compared 
with those estimated by the monetary MRIO model are plotted. The red dots represent net virtual 
water export (right y-axis) estimated by the hybrid MRIO model. Full geographical names of 
regions: NC (North China), NEC (Northeast China), EC (East China), CC (Central China), SC 
(South China), SWC (Southwest China), and NWC (Northwest China). 
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From the profiles of provincial water footprints, we can find that the agri-food commodities 

(represented by cold color tones) share the main water footprints in all provinces, while service 

sectors also share big part in some provinces. The consumption of agri-food commodities accounts 

for more than 60% of the national water footprint, while in some provinces, mostly locating in 

North China like Heilongjiang, Gansu, and Xinjiang, the figure is around 80%. The water footprints 

of livestock commodities, especially pork, are obviously higher in Jiangsu, Shandong, and Hubei, 

compared with those in other provinces. Local population’s meat-dominate diet is one reason, 

while the relatively larger population is the other. Last but not least, the consumption from service 

sectors has relatively larger contribution in provinces locate in South China, such as Guangdong, 

Fujian, and Zhejiang, accounting for more than 30%. In comparison, the national average 

contribution of water footprint of service sectors is 23%. Water footprints of industrial sectors 

show relatively higher shares in provinces locate in Center China, e.g., Henan, Hunan, and Hubei, 

accounting for around 20% compared with 14% at the national average level. The associated results 

are similar with those found in Xu et al. (2020a) and Zhang and Anadon (2014). 

Our hybrid MRIO model can also provide detailed information about the entire supply chain-wide 

water consumption and associated water flows of specific agri-food products. Figure 2-4 illustrates 

the virtual water flows embodied in the transactions across crop production, animal husbandry, 

and animal slaughtering sectors. From the production-perspective, North China provides 70% of 

all blue water consumption (61.8 km3/yr) for the commodities and sectors analyzed here, mainly 

for the production of crops like maize and rice. Water from South China (26.9 km3/yr) is mainly 

used to raise animals, especially for pigs that account for 47% of the total water consumption from 

the South. Flows of crops to animal husbandry represent the consumed blue water embodied in 

the crops that are used as feed, 36% of which are attributable to maize. When switching from the 

production- to the consumption-perspective, the share of North China drops to 58%. Most of the 

blue water footprint of the North’s final demand (51.7 km3/yr) is from the North itself. In South 

China, the water footprint of local consumption of crops and livestock is 37 km3/yr, of which 31% 

is imported from North China (mainly embodied in other livestock and crop commodities). It 

should be noted that the actual virtual water flows from South China to North China embodied in 

the livestock commodities may be larger than the results illustrated in Figure 2-4, since the 

optimization model may underestimate trade flows. To achieve minimal cost of transportation, the 

model tends to trade commodities among adjacent provinces. The impact of uncertainties in the 

trade data on the water footprint results will be further discussed in the next section. 
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Figure 2-4. Virtual water flows (km3/yr) embodied in the transactions across crop 
production, animal husbandry, and animal slaughtering sectors. The top two commodities 
of each product categories that have the largest virtual water flows are shown in this plot. 

2.3.2. Uncertainty analysis 

The hybrid MRIO model presented in this study relies on the data from multiple sources as well 

as a range of necessary assumptions, which introduce with uncertainties in the model. We expect 

that the main sources of uncertainties are: 1) the inter-provincial commodity trade in physical terms, 

which are estimated by an optimization model with the constraint of minimal costs of 

transportation following Dalin et al. (2014) and Zhuo et al. (2019); 2) commodity prices between 

trade partners, for which we reply on the national average prices to construct the symmetric hybrid 

MRIO model; 3) feed production and feed demand by animal husbandry sectors, which are 

estimated by fix amounts of per-head feed demand by animal. To present uncertainty information 

of the hybrid model, we apply the typical Monte Carlo method and estimate the uncertainties arisen 

by these three factors, also with the blue water footprint case. 

Overall, arisen by the same factor, the related uncertainty is more significant for 

commodity/sector-specific water footprints in term of standard deviation, compared with the 

province-specific ones (Figure 2-5 and Table A-8). 
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Figure 2-5. Uncertainty analysis of provincial (upper plots) and sectoral (lower plots) blue 
water footprints by three key factors (i.e., inter-provincial trade, commodity prices, and 
feed requirements for animal husbandry). Five provinces with the smallest and largest, 
respectively, STD of blue water footprints are illustrated. While top eleven sectors with the largest 
STD of blue water footprints are illustrated. Results of uncertainty analysis, including the median, 
mean, and standard deviations of blue water footprints, in all 31 provinces could be found in Table. 
A-8. The error bars indicate the deviation between each blue water footprint and the average blue 
water footprint of that province/sector. Full names of the abbreviations: mfg. = manufacturing, 
agri. = agriculture, prod. = products, and svc. = services. 

Uncertainty by inter-provincial trade. Lack of statistics data that cover the inter-provincial commodity 

trade in physical terms leads us to model the inter-provincial trade network. Main models that have 

been used to construct the inter-regional trade networks include computable general equilibrium 

(CGE) models (Partridge and Rickman 1998, West 1995), gravity models (Leontief and Strout 1963, 

Mi et al. 2018, Theil 1967), entropy-maximizing approaches (Roy and Thill 2004, Snickars and 

Weibull 1977, Többen et al. 2018, Wilson 2011), optimization models (Dalin et al. 2014, Zhuo et 

al. 2019), and others for example non-survey models (Sargento et al. 2012) or behavior-based 

models (Isard 1998, Lahr et al. 2020). However, these models strongly rely on the priori trade 

information while perform quite differently to a context of very limited trade information. 

Considering the data availability for agri-food commodities in China’s provinces (e.g., production, 

demand, inter-provincial and international import and export), most of these models are not 

feasible for our analysis. For CGE models, the initial factor, capital, labor, and demand data of agri-
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food sectors are missing, while for gravity models the provincial gross inflows and outflows of agri-

food commodities would be needed. Upholding the principle of hybridizing commodity-specific 

input-output information into the monetary supply chain as much as possible, we choose the 

optimization model in this study, which does not rely on the monetary trade data as the identical 

proxy to allocate the physical data. In addition, the optimization model, with relative lower 

robustness though, requires the least data to construct the trade networks, as long as the constraints 

and the boundary of each variable have adequate rationality and accuracy. It should also be noted 

that the optimization model cannot capture the whole bi- or multi-lateral trade activities of agri-

food commodities. It is because that we assume only provinces with surplus (deficit) commodities 

are for the inter-provincial export (import) of the commodities. This assumption neglects the re-

export of commodities, and the priority of commodity consumption (i.e., local consumption of 

local production is assumed as the priority compared to exports, yet exports can be prioritized 

compared to local consumption in one province driven by economic benefits). To apply the 

uncertainty analysis, we randomly generate ten thousand 31-by-31 matrices of uniformly distributed 

random numbers between 0 and 1 for each FABIO-CHN commodity, and allocate the total inter-

provincial trade volume of that commodity into each element of the 31-by-31 matrices. For the 

water case in China, provinces with high trade-related activities in terms of virtual water trade 

(Figure 2-3B), e.g., Shandong, Xinjiang, Guangdong, Jiangsu, and Shanghai, show higher impacts 

by the inter-provincial trade modelling, and vice versa. While at a sectoral level, the two rest of 

economic sectors, i.e., “Rest of agriculture, forestry, animal husbandry and fishery products and services” sector 

and “Rest of food manufacturing and tobacco” show the largest impact by the inter-provincial trade 

modelling, other commodities like poultry meat, bovine meat, and other meat show the relatively 

high impacts. 

Uncertainty by commodity prices. The uncertainty of price variations of product flows between different 

customers is also a key issue in the monetary MRIO modelling, in which multiple commodities or 

sectors are aggregated into one or several sectors with same price systems. In this study, we only 

examine the uncertainty by commodity prices existing in the disaggregation of two monetary 

sectors AFF and FTM into the 84 FABIO-CHN commodities and the two rest of economic sectors. 

Although the hybrid model has significantly reduced the uncertainty by commodity prices 

compared with the monetary MRIO models, commodity prices still impact the final results of 

footprint accounting by big margins. From the macroeconomic perspective, the changes in 

commodity prices, either for final expenditure or intermediate inputs, may not be too much. We 

apply -50%―100% uncertainty intervals of raw commodity prices from province m to province n, 

and run ten thousand times of the hybrid model. For the water case in China, provinces, e.g., 

Heilongjiang, Jiangsu, Guangdong, Shandong, and Hubei, show relative higher impacts by the price 
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variations. While at a sectoral level, the two rest of economic sectors, i.e., “Rest of agriculture, forestry, 

animal husbandry and fishery products and services” sector and “Rest of food manufacturing and tobacco” are 

still with the largest impacts by the price variations, others like pig meat, poultry meat, and 

construction sector show relatively high impacts. 

Uncertainty of feed requirements. Feed production and demand as an important part of crop use are 

always neglected in the existing monetary MRIO analysis, while the accurate estimation of feed 

demand is a big challenge. It not only depends on the farming system like industrial system or 

grazing system, but also differs among animal types (e.g., cattle vs. sheep), feed mix, and crops as 

fresh or dry matter. FABIO-CHN attempts to use the best available data and reconcile feed 

production and feed demand estimates into a mass-balance consistent model, but nevertheless it 

must be kept in mind that estimates of feed demand remain a source of uncertainty in the results. 

We select top five crops/oilcakes used for animal feed in China for uncertainty analysis, i.e., maize, 

soyabean cake, vegetables, roots, and wheat, which accounted for 76% of the total animal feed 

requirements in 2012. For the water case in China, provinces with higher farming of live animals 

or production of livestock, e.g., Hunan for pigs and pig meat, Shandong for poultry and poultry 

meat, and Xinjiang for mutton meat, show relative higher impacts by the feed requirements. While 

at a sectoral level, the most important livestock in the dietary of Chinese population, e.g., pig meat, 

poultry meat, and bovine meat, as well as the largest feed crop maize show the relatively high 

impacts by feed requirements. 

Among the three key factors, the uncertainty of inter-provincial trade has the largest impacts on 

the blue water footprint estimation. Yet, the level of uncertainty arisen by the three factors may 

also vary among the environmental indicators for accounting. For instance, feed requirements 

would be a more significant factor for land footprint estimation, due to the high relevance with the 

animal farming sectors, while price variations would be a more significant factor for labor- or job-

related indicator accounting. This study only demonstrates the uncertainty by the three factors with 

a water case. The indicator-specific uncertainty analysis is out of the scope of this study, but should 

be further addressed depending on the purposes of future application of the hybrid MRIO model. 

2.3.3. Limitations 

The hybrid MRIO model developed in this study overcomes the main limitation of the global 

FABIO model, i.e., integrating the physical agri-food system in China into the monetary MRIO 

model for year 2012. However, other uncertainties (e.g., the uncertainty by feed requirements) or 

limitations (e.g., linear dependency of feed inputs among monogastric and ruminant animals) also 

exist in FABIO-CHN. Meanwhile, FABIO-CHN has its own limitations, given the study area from 
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a global scope into a provincial level of one nation. In addition to the three key factors discussed 

before, the estimation of commodity production by technical conversion factors (e.g., crop oil, oil 

cake, or animal offal), and provincial use of seed, waste, and processing are also the potential 

limitations of our model. Although there are also other ways to estimate these missing data, such 

as the commodity balance model used in Kastner et al. (2012) or based on the value-to-weight 

relationships applied in Többen et al. (2018), we use the same approaches and parameters as 

FAOSTAT did because it will be easier to estimate associated data for multiple commodities. It 

should be noted that the actual “true” values must have differences from the estimated ones, and 

thus have potential uncertainties or limitations. As discussed in the uncertainty analysis section, to 

reduce the uncertainty arising from the trade data, a systematic dataset recording adequate data that 

cover the production, consumption by purpose, inter-provincial trade of agri-food commodities is 

required. Even with only one-year specific data or trade data among big regions as estimated by 

the CHINAGRO economic model (Fischer et al. 2007), researchers can rely on that to estimate 

the associated data in near years, which would be more reliable compared with the data estimated 

without any actual data basis. When we collected the data of agri-food commodities from the 

statistics bureau, we also found that the boundaries or categories of crops, live animals, and other 

commodities varied or did not record in some years. For example, in early years around 2000, the 

slaughtered and end-of-year in-stock quantities of cattle and buffalo were recorded separately by 

the statistics bureau, but in recent years, they are aggregated together as “cattle”. In this context, a 

comprehensive system of commodity as well as industrial classifications should be formulated, like 

the international standard industrial classification, to guide the future statistics work with high 

spatiotemporal consistency. 

Another limitation exists in the monetary MRIO tables for year 2012. To our knowledge, these 

monetary MRIO tables are also not officially constructed by the statistics bureau, but compiled by 

some research teams in China (Liu 2012, Liu et al. 2014a, Mi et al. 2017a, Zheng et al. 2020), based 

on the supply and use tables of each province. FABIO-CHN also constructs the provincial PSUTs 

of agri-food commodities. Therefore, one of the potential approaches to reduce the uncertainty 

arising from the monetary MRIO model is integrating the provincial PSUTs of agri-food 

commodities into the provincial monetary SUTs in the first place, and then compiling the hybrid 

MRIO tables based on the hybrid SUTs. With this approach, the uncertainty by inter-provincial 

physical and monetary trade could be both reduced and the local economic structure in one 

province would also be captured more accurately. Considering that the product and sector 

classifications of these monetary SUTs differ among provinces and thus hard to be harmonized, 

this study directly integrates the PIOT into the monetary MRIO tables as the first trial for the 

symmetric hybrid MRIO model. The next step of our work is about to apply the province-based 



2. A hybrid multi-regional input-output model of China 

33 
 

integrating approach to formulate the hybrid PSUTs and MRIO tables for multiple years and 

develop a time-series hybrid dataset. 

2.4. Conclusions 

This study develops a symmetric inter-provincial MRIO model that hybridizes the agri-food system 

with monetary supply chain within China. First of all, we construct the inter-provincial supply, use, 

and input-output tables in physical units of 84 agri-food products. Then we integrate the physical 

MRIO table of agri-food products into the monetary all-sector MRIO table to construct a 

symmetric hybrid MRIO table of China. The application of our hybrid MRIO model to the case 

of provincial blue water footprint assessments reveals that the hybrid model enhances both the 

traditional monetary MRIO table-based approach and the process-based approach with different 

aspects. With the integration of 84 agri-food commodities specified in FABIO-CHN, the hybrid 

MRIO model could provide with specific information of agri-food products’ water footprints and 

associated virtual water transfers. In addition, using product-specific water intensities also reduces 

the uncertainty of monetary MRIO modelling arising from the aggregation of products with 

different environmental properties into homogeneous sectors. Our hybrid MRIO model also 

strengthens the process-based approach by capturing the whole supply chain-wide water 

consumption, which is the main limitation of the process-based approach. The total 84 

commodities specified in our hybrid model covers the most categories of agri-food products 

compared with the literature of process-based water footprint assessments in China.  

With this hybrid MRIO model that specifies many different agri-food commodities with high 

granularity, we can determine those key commodities that have larger water consumption and are 

highly relevant for people’s daily consumption habits. These key commodities will be crucial for 

future water management towards sustainability. For example, we suggest producers to further 

improve the water productivity in water scarce regions like Xinjiang to reduce their net water 

exports or replacing those water-intensive crops (e.g., maize) with less water-intensive oil cakes for 

feed use to reduce upstream water inputs. Consumers can diminish their water footprint by 

reducing the consumption of water-intensive foods like livestock products, identified in detail in 

our analysis. Information at this high level of regional and product detail, as provided by our hybrid 

MRIO model, is highly relevant to all actors along the supply chain interested in minimizing 

harmful impacts on the environment. 

Beyond the water footprint assessment case demonstrated in this study, we also foresee a couple 

of research applications that can benefit from the capabilities of the presented hybrid MRIO model, 

including 1) re-assessing the key environmental footprints as well as the virtual flows embodied in 
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the inter-provincial trade to reveal more complete stories behind that, the water case of maize-pig-

pork production and consumption for instance; 2) benchmarking setting of resource productivities 

(e.g., water) for agricultural, farming or industrial production to estimate the potential resource 

savings, which would provide efficient evidences for the management of key resources; 3) 

decomposition analysis to determine the main driving factors of resource consumption and 

pollution discharges, which would deliver an important empirical basis future trade-offs arising 

from the increased competition for biomass and for designing actions by business and policy 

makers to reduce competing demands. A prerequisite for such assessments is a comprehensive 

environmental inventory database has been constructed (Cabernard and Pfister 2021), including 

water stress, or land use and related biodiversity loss. Lastly, given that China is an important player 

in global agricultural and food production and trade, we can also link FABIO-CHN or the hybrid 

MRIO tables of China into the global MRIO database. After that, the roles of specific provinces 

played in the global market and the downstream environmental-social impacts can be further 

revealed, particularly for the provinces with high international exports or imports such as Liaoning, 

Guangdong and Zhejiang. In addition to these potential applications, we believe the model can 

inspire and assist in other applications as well that need comprehensive information on physical 

and monetary flows in the Chinese economy. 

2.5. Nomenclature 

A technical coefficient matrix 
AFF sector “Agriculture, forestry, animal husbandry and fishery products and 

services” 
Agri. agriculture 
b food and agricultural biomass 
BTD bilateral trade database 
c agri-good commodity specified in FABIO-CHN 
CBS commodity balance sheets 
CC Central China 
CGE computable general equilibrium 
dom domestic 
EC East China 
ex international export volume of agri-food commodity 
EX international export table 
f a row vector of direct blue water consumption intensities 
FABIO food and agricultural biomass input-output model 
FABIO-CHN food and agricultural biomass input-output model for China 
FAO the Food and Agriculture Organization 
FAOSTAT the Food and Agriculture Organization Corporate Statistical Database 
FTM sector “Food and tobacco manufacturing” 
h share of intermediate input product from each source 
H hybrid 
i a summation vector of appropriate length 
I the identity matrix 
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im international import volume of commodity 
IM international import table 
Intl. international 
IO input-output 
L the Leontief inverse matrix 
m province in China 
m monetary 
mfg. manufacturing 
MRIO multi-regional input-output 
n province in China 
NBSC National Bureau of Statistics of China 
NC North China 
NEC Northeast China 
NWC Northwest China 
p primary production or process specified in FABIO-CHN 
P primary production volume of FABIO-CHN commodities 
PMRIOT physical multi-regional input−output table 
PSUT physical supply and use tables 
s economic sectors 
S the total supply volume of agri-food commodities 
S physical supply table 
SC  South China 
STD standard deviations 
Stk stock removal volume 
svc. services 
SWC Southwest China 
t inter-provincially traded volume of commodity 
T the transpose of a matrix 
u use volume of commodity 
U physical use table 
U the total use volume of agri-food commodities 
U_fe the use volume of agri-food commodities for feed 
U_fo the use volume of agri-food commodities for food 
U_oth the use volume of agri-food commodities for other use 
U_p the use volume of agri-food commodities for processing 
U_s the use volume of agri-food commodities for seed 
U_w the use volume of agri-food commodities for waste 
V the product mix matrix or transformation matrix 
WF the supply chain-wide blue water footprint 
x total outputs 
Y final demand 
Z the intermediate input matrix 
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Abstract

Freshwater resources are used to produce

commodities that are traded and consumed

elsewhere, which generate virtual water

flows. The relation between regional blue

water scarcity levels―the degree of

competition over limited surface and

groundwater flows―and inter-regional virtual

water flows has been studied. However, the

effects of production fragmentation on this

relation are still not properly understood.

Production fragmentation is the distribution

of the production process across different

regions, resulting in inter-regional trade of

both intermediate and finished goods and

services, which involve different virtual water

networks. This study formulates a

comprehensive trade disaggregation

approach to elaborate the virtual water

networks of three trade patterns (i.e., direct

final goods trade, intermediate goods trade

for the last step of production, and value

chain-related trade) within China, and further

analyzes the impacts of trade on provincial

blue water scarcity by comparing the actual

water scarcity with that under a “no-trade”

scenario (NTS). In 2012, there was 128 km3

blue water virtually transferred across

provinces because of inter-provincial trade.

Direct final goods trade contributed the most

to the virtual water trade (accounting for

47% of the total), whereas value chain-

related trade induced the least (17%).

Compared with the results under the NTS,

we found that current trade alleviated the

water scarcity in provinces under extreme

water scarcity, but worsened the water

scarcity of this nation from a broader scope.

Our study suggests policy makers fully

considering specific trade patterns and their

impacts on provincial or national water

consumption to cope with water scarcity in

China.

Effects of production fragmentation 
and inter-provincial trade on spatial 
blue water consumption and scarcity 
patterns in China

This chapter has been
published as: Ye, Q., et 
al. (2022) Journal of 
Cleaner Production 334.

Read Me:
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3.1. Introduction 

China has entered an era of “new normal” economic growth recently, towards more sustainable 

and environmental-friendly development paths. Yet, the past decades’ socioeconomic development 

has accompanied with significant resource and environmental consequences (Feng et al. 2013, Jiang 

et al. 2019), particularly for freshwater resources that are threatened by the stress of both quantity 

and quality (Guan et al. 2014, Ma et al. 2020). Over half of the population are affected by either 

quantity-related (0.9 billion) or quality-related water scarcity (1.2 billion) for at least one month of 

the year (Ma et al. 2020, Mekonnen and Hoekstra 2016). Thus, there is an urgent need to improve 

national or sub-national water resource management to cope with water scarcity in China. 

Moreover, domestic trade within China has grown rapidly (NBSC 2020), which presents new 

features of environmental pressures because resource use and emissions during the production 

process of goods and services are virtually transferred along the trade. For example, the intra-

national virtual water trade has increased by 90% during the period of 2002-2012, mainly from the 

water-scarce Northwest and Northeast China to the water-rich South (Cai et al. 2019). As for 

product-specific environmental pressures, maize-related virtual water flow from the North to the 

South China has increased by 40%, while pork-related virtual water flow from South to North has 

increased by 23% over the period of 2000-2013 (Zhuo et al. 2019). 

An important debate on virtual water transfers, bilateral or multi-lateral, is their ultimate role in 

reducing or increasing water consumption of such a system consisting of all related regions (Dalin 

et al. 2012, Hoekstra and Mekonnen 2012, Zhang et al. 2011). For instance, international trade of 

crops may help save water at the global scale by exchanging virtual water from highly productive 

countries to less productive locals, resulting in a smaller water consumption per unit of crop grown 

(Chapagain et al. 2005). The estimation of virtual water transfers, from the sources to the 

destinations, has been widely carried out (Chen and Chen 2013, Chen et al. 2012, Dalin et al. 2014, 

Han et al. 2017, Han et al. 2018, Hoekstra and Mekonnen 2012, Wu et al. 2019, Zhuo et al. 2019), 

and based on that, relevant research such as the drivers of virtual water flows or the potential water 

savings have been further addressed (Dalin et al. 2017, Tamea et al. 2014). However, the effects of 

production fragmentation on virtual water flows are still not properly understood. Production 

fragmentation is the distribution of production process across different regions, resulting in inter-

regional trade by different trade patterns (e.g., the direct trade of final products or the trade of 

intermediate input products for production) which have different associated virtual water networks. 

The lack of data that provide sufficient information about the commodity trade and the supply 

chain-wide transactions among these commodities or economic sectors is the main reason (Feng 

et al. 2011). 



3. Effects of production fragmentation and inter-provincial trade 

39 
 

Prior studies (Arce González et al. 2012, López et al. 2013, Wang et al. 2017) disaggregated the 

bilateral trade from the production perspective into three patterns, i.e., trade of final demand, trade 

of intermediate products for the last step of production, and trade of intermediate products for the 

remaining steps of inter-regional production. For the first two patterns of trade, products are 

absorbed by the trade partners, which also regarded as traditional Ricardian trade that represents 

the direct value added trade pattern (Borin and Mancini 2015). The last pattern of trade is regarded 

as supply chain-wide related trade, as the exported intermediate products are processed and re-

exported as inputs for other regions’ production (Wang et al. 2017, Zhang et al. 2017). Based on 

the disaggregation, the contributions of different trade patterns as well as the effects of different 

socioeconomic factors on the inter-regional virtual water flows could be addressed (Liu et al. 2019), 

as the cases of carbon transfers by Zhang et al. (2017) and Feng et al. (2020). Although previous 

studies presented a great framework for trade pattern disaggregation, there was still a calculation 

error in disaggregating the trade of intermediate products, i.e., neglecting the trade of intermediate 

products for the last step of final goods production that are further traded to trade partners. 

Without capturing this trade pattern, the actual inter-provincial trade values within China would be 

underestimated (a simple example demonstrating the underestimation could be found in Appendix 

B.1). 

Apart from the research gap on the effects of production fragmentation on virtual water networks, 

the effects of trade (compared to a situation without trade) on national water consumption and 

provincial water scarcity are not sufficiently assessed either. With more attention on carbon 

emissions and carbon transfers, previous studies have made great contributions to reveal the effects 

of trade on global and regional carbon emissions, mainly using three methods—decomposition 

analysis (Arto and Dietzenbacher 2014, Hoekstra et al. 2016, Jakob and Marschinski 2012, Jiang 

and Guan 2017, Jiang et al. 2018, Zhu and Jiang 2019), the pollution haven hypothesis (López et 

al. 2018, Zhang et al. 2017), and the no-trade scenario (NTS). However, two totally opposite 

conclusions have been summarized from the studies relying on the first two methods. That is, a 

general net positive effect was found by decomposition analysis, whereas the current international 

trade generating global emission savings was revealed by the pollution haven hypothesis. This 

suggested that to comprehensively understand the effects of trade on global or national 

environmental performances (not only air pollution emissions but other environmental pressures 

like blue water consumption), the NTS method would be the most appropriate one compared with 

the other two methods. However, the existing NTSs, with the core of reallocating the supply chain-

wide environmental pressures for product production into consuming region itself, had main 

limitations such as still using with-trade economic structures or neglecting the differences in 

commodity prices and production efficiencies among regions (Wu et al. 2021b). In addition, most 
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of the previous NTSs were developed to re-construct the international (Duchin 2007, Wu et al. 

2021b, Xu et al. 2020b) or bilateral trade (Liu et al. 2010, Shui and Harriss 2006, Tan et al. 2013) 

across countries. Little is known about the effects of domestic trade on sub-national environmental 

pressures, especially for vast countries with great spatial variations in socio-economic development 

patterns and resource endowments such as China. 

In summary, although existing literature has addressed the changes in provincial water 

consumption and inter-provincial virtual water trade in China yielding novel insights and policy 

suggestions, the effects of product fragmentation and trade (compared to an NTS) on shaping the 

national water consumption and provincial water scarcity are not properly understood. Therefore, 

the objectives of this study are: 1) to formulate a comprehensive trade disaggregation approach to 

elaborate the virtual water networks of three trade patterns (i.e., direct final goods trade, 

intermediate products trade for the last production, and value chain-related trade) within China; 

and 2) to analyze the impacts of trade on provincial water scarcity by comparing the actual water 

scarcity with that under the NTS. In this analysis we include blue water consumption (BWC, the 

consumptive use of surface water and groundwater) as indicator for water-related pressures. Data 

availability at provincial level for BWC is better than for possible additional indicators such as the 

green water footprint (consumptive use of rainwater) or the grey water footprint (the volume of 

fresh water required for assimilation of pollutants Hoekstra et al. (2011)). Also BWC is relevant for 

both agricultural and other economic sectors, is less controversial and is more widely discussed in 

previous studies, allowing to compare our results to others. The remainder of this paper is 

organized as follows: Section 3.2 elaborates the trade disaggregation approach and the NTS we 

formulate. Section 3.3 presents the key results about the virtual water trade embodied in different 

trade patterns and the effects of trade on provincial water consumption as well as water scarcity. 

Section 3.4 discusses our results and potential policy implementation. Conclusions will be 

summarized in Section 3.5. 

3.2. Methods 

The methodology improvements in this study include: 1) formulating a more accurate 

disaggregation approach to capture the three inter-provincial trade patterns in China, which 

addresses the underestimation issue of existing trade disaggregation approaches (Feng et al. 2020, 

Liu et al. 2019, Zhang et al. 2017); and 2) developing a novel NTS with the core of reallocating the 

supply chain-wide indirect inputs for the production of province m’s final demand into province m 

itself, whilst considering the distinctions of production structures and coefficients between 

provinces as well as the local production factor endowments (Duchin 2007, Wu et al. 2021b).  
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3.2.1. Disaggregation of trade patterns 

Provinces are connected through the inter-provincial trade of intermediate and final products, and 

each province is connected with the global economy through international imports and exports. 

The exports from province m to province n (Tmn) include the exports of final demands (Ymn) and 

intermediate inputs (Zmn), i.e., Tmn=Ymn+Zmni, where i is a summation vector of appropriate length. 

The intermediate input (Zmn) can be calculated by Zmn=Amnxn� , where Amn is the input coefficient 

matrix that represents the direct economic requirements for one-unit output. The total output xn 

equals to the sum of intermediate inputs, final demands and international exports (EXn), i.e., 

xn =∑ Znr ig
r=1 +∑ Ynrg

r=1 +EXn =∑ Anr xrg
r=1 +∑ Ynrg

r=1 +EXn , where g is the number of 

regions. 
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                                                                                                                                                (3-1) 

In a standard multi-regional input-output (MRIO) modelling, we have x=B(Yi+EX), where B=(I-

A)-1 is the Leontief inverse matrix, representing the supply chain-wide economic requirements to 

increase a one-unit monetary increase of final demand or exports. I is an identity matrix. Thus, the 

equation of total output xn can be transformed into 

xn =∑ Bnr (∑ Yrvg
v=1 +EXr )g

r=1 =∑ Bnr ∑ Yrvg
v=1

g
r=1 +∑ Bnr EXrg

r=1 , and then the exports Tmn 

can be calculated by: 

Tmn=Ymn+Amnxn= Ymn�
T_fmn

+ AmnLnnYnn�������
T_in

mn

+ AmnLnn ∑ Ynvg
v≠n�����������

T_inon_n
mn�������������������

T_imn

  

                             + AmnLnn ∑ Anr Brng
r≠n ∑ Ynvg

v=1 +Amn∑ Bnrg
r≠n ∑ Yrvg

v�������������������������������
T_dmn

+ Amn ∑ Bnr EXrg
r=1�����������
T_gmn�������������������������������������������

T_vmn

   

(3-2) 

where L is the local Leontief inverse matrix. Bnn in Eq. 3-2 is decomposed into 

Bnn=Lnn+Lnn ∑ Anr Brng
r≠n  according to Wang et al. (2017) and Zhang et al. (2020). We define: 1) 

T_fmn as the trade of final products—the trade partner n would directly absorb the exported 

products from m, and the exporter m is located in the last stage of production; 2) T_imn as the trade 
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of intermediate products for the last stage of production, which includes the last stage of final good 

production consumed by the trade partner (T_in
mn, with the traded products cross the border of 

region m once), as well as the trade partner’s trade partners (T_inon_n
mn , with the traded products cross 

the border of regions m and n once) which has not been captured in previous studies (Appendix 

B.1); 3) T_vmn as the value chain-related trade of products—crossing the provincial or national 

borders more than once—finally absorbed by domestic provinces (T_dmn) or further processed 

and exported to foreign counties (T_gmn). 

3.2.2. Supply chain-wide virtual water flows 

The BWC coefficients of products and sectors in province m (fm ) are calculated by fm =Fm xn� -1 , 

where Fm is a row vector of direct BWC of products and sectors in province m. The total BWC of 

province m, Wm, including the BWC for household purposes (W_hhm) which accounts for a big part 

of BWC in some populous provinces but tends to be neglected in previous studies, can be 

calculated as: 

Wm =fm xm +W_hhm =(fm LmmYmm+W_hhm )+fm LmmEXm  

                                 +fm Lmm∑ T_fmng
n≠m +fm Lmm ∑ T_imng

n≠m +fm Lmm ∑ T_vmng
n≠m                (3-3) 

The total BWC of province m is disaggregated into five terms. The first term represents the BWC 

assigned to the economic activities and household use within province m, which has no relation 

with the inter-provincial or international trade. The second term represents the BWC assigned to 

the direct exports of final products to foreign countries. The last three terms represent the BWC 

assigned to different trade patterns. 

The local BWC embodied in the export, also known as virtual water outflow (Allan 1998), from 

province m to province n is: 

W_EXmn=fmLmmTmn=fmLmmT_fmn+fmLmmT_imn+fmLmmT_vmn                                                    (3-4) 

The net virtual water flows (NVW) between provinces m and n are calculated by: 

NVWmn=W_EXmn-W_EXnm= �fm LmmT_fmn-fn LnnT_fnm������������������
NVW-1

+ �fm LmmT_in
mn-fn LnnT_in

nm������������������
NVW-2

 

                                                 + �fm LmmT_inon-n
mn -fn LnnT_inon-n

nm ��������������������
NVW-3

+ �fm LmmT_dmn-fn LnnT_dnm������������������
NVW-4

 

                                                 + �fm LmmT_gmn-fn LnnT_gnm������������������
NVW-5

                                               (3-5) 
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The right five terms NVW-1—NVW-5 represent the net virtual water flows in different trade 

patterns. A positive value of NVWmn  indicates that the bilateral trade increases the BWC of 

province m, and vice versa for a negative value of NVWmn. 

3.2.3. Developing the no-trade scenario (NTS) 

Before describing the development of the NTS, it should be clearly noted that the NTS is 

completely hypothetical, thus based on some key assumptions such as using production factors to 

constrain the hypothetical production capacities (Wu et al. 2021b). To reallocate the supply chain-

wide indirect inputs for the production of province m’s final demand into province m itself, we first 

calculate the supply chain-wide indirect inputs (i.e., the intermediate inputs) for province m’s final 

demand, Zm=ABYm�  as: 

⎣
⎢
⎢
⎢
⎢
⎡Zm11 … Zm1m … Zm1g

…    …    …    …    …
Zmm1 … Zmmm … Zmmg

…    …    …    …    …
Zmg1  … Zmgm … Zmgg

⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡A11 … A1m … A1g

…  …  …  …  …
Am1 … Amm … Amg

…  …  …  …  …
Ag1  … Agm … Agg ⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎡B

11 … B1m … B1g

…  …  …  …  …
Bm1 … Bmm … Bmg

…  …  …  …  …
Bg1 … Bgm … Bgg ⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎡Y1m … 0  …    0

…  …  …  …  …
0  …  Ymm  …   0
…  …  …  …  …

0  …  0  …    Ygm
⎦
⎥
⎥
⎥
⎤

  

(3-6) 

where Zmnm is the indirect inputs for local production of province m’s final demand; Zmmn (n≠m) 

is the indirect inputs exported to other provinces for the external production of province m’s final 

demand; Zmnh (n≠m and h≠m) is the indirect inputs between other provinces for the external 

production of province m’s final demand. 

Under the NTS, we assume the final demand of province m would not change, but all the outputs 

of its final demand (i.e., direct final demand Ym plus indirect inputs Zm) would be provided by 

province m itself. The reallocation of direct final demand is straightforward: we sum up the direct 

final demand by province, i.e., Y' m=∑ Ynmg
n=1 . The international import of final demand is 

allocated into each sector by the sectoral share in Y’m. To reallocate the indirect inputs for the 

production of province m’s final demand, we consider the distinctions of production structures and 

coefficients between provinces. The indirect inputs for province h’s production of province m’s 

final demand (i.e., ∑ Zmnhg
n=1 ) is proportionally reallocated into province m itself according to local 

technical coefficients, i.e., Dm ∑ Zmnhg
n=1 /Dh , where D is the local technical coefficient matrix. 

Meanwhile, we also generate the national average technical coefficient of product i for one-unit 

output of product j to reallocate the indirect inputs to province m itself in any case that province m 
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requires all the production requirements of product i from other provinces. The indirect inputs for 

the local production of province m’s final demand under the NTS is: 

Z' m=∑ Dm ∑ Zmnhg
n=1 /Dhg

h=1                                                                                                (3-7) 

The total outputs of province m under the NTS are: 

x' m=Z' mi+Y' m                                                                                                                        (3-8) 

We can see that under the NTS, not only the final use part of trade was removed, but also 

production upstream in the supply chain was shifted to the province of final use. 

The next step is to apply the provincial constraints like resources or labour force in the NTS 

(Duchin 2007, Wu et al. 2021b). We consider three production factors as the main constraints in 

our NTS, i.e., land, blue water availability, and labour force. The hypothetical provincial economic 

production capacities under the NTS should be constrained by their territorial production factor 

endowments. 

fcs
mx' m ≤ Fcs

m                                                                                                                              (3-9) 

where fcs
m is the vector of direct coefficient of constraint factor cs (e.g., km2 per unit of the output 

for land) for each sector. Fcs
m is the provincial endowment of constraint factor cs. Provincial land 

endowment, blue water availability, and employment data are collected from the National Bureau 

of Statistics of China (NBSC 2020). If fcs
mx' m exceed any provincial factor endowments, we use a 

scaling factor Fcs
m/(fcs

mx' m) to scale down x' m . Z' m and y' m are further balanced using RAS method 

(Günlük‐Şenesen and Bates 1988). 

The total BWC of province m under the NTS is: 

W' m=f' m(I-Z' mx' m�
-1

)-1Y' m                                                                                                    (3-10) 

The difference between Wm and W’ m represents the contribution of province m-related trade to the 

national blue water consumption (CNW). A positive value indicates that province m-related trade 

increases the national BWC, and vice versa for a negative value of CNWm . 

3.2.4. Blue water scarcity index 

The blue water scarcity index of province m with and without trade (WSIm and WSI’ m, respectively) 

are calculated as the ratio of BWC in province m with and without trade (Wm and W’ m, respectively) 

to the average annual blue water availability (WAm), respectively (Eq. 3-11 and Eq. 3-12): 
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WSIm = Wm

WAm                                                                                                                           (3-11) 

WSI' m= W' m

WAm                                                                                                                           (3-12) 

The differences between the two water scarcity indices represent the effects of virtual water trade 

in terms of increasing (i.e., WSIm>WSI’ m) or mitigating (i.e., WSIm<WSI’ m) the water scarcity in 

province m. Low, moderate, severe, and extreme water scarcity levels are typically defined as 

previous studies did (Zhao et al. 2015). The details about water scarcity level of each province are 

illustrated in Figure 3-1 and Table B-1 in Appendix B. 

 
Figure 3-1. Geographical location of each province in China as well as local water scarcity 
level for the year 2012. 

3.2.5. Data sources 

The main data sources elaborated in this section include the data sources of multi-regional input-

output tables, irrigational BWC of agricultural products, BWC of economic sectors, and annual 

blue water availability by province. 

The hybrid MRIO model developed in Chapter 2 is used in this study. It describes the Chinese 

economy by 84 agricultural biomass and food commodities and 42 monetary economic sectors in 

physical (such as tonnes, heads, or m3) and monetary units at the provincial level for the year 2012. 

They particularly disaggregated the two highly-aggregated agri-food-related sectors included in the 

original 42 economic sectors (Mi et al. 2017a), i.e., sector “Agriculture, forestry, animal husbandry 
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and fishery products and services” and sector “Food and tobacco manufacturing”, into 84 

individual agricultural biomass and food commodities in physical terms. The total 84 agri-food 

commodities cover the main grain crops (e.g., rice, maize, and wheat), cash crops (e.g., sugar beets, 

groundnuts, and cotton), fruits (e.g., apples, and citrus), vegetables (e.g., tomatoes), live animals 

(e.g., cattle, and sheep), livestock (e.g., bovine meat, mutton meat, and pork), fishery, and forestry 

products, which to our best knowledge formulates the most comprehensive classifications of agri-

food commodities for sub-national supply chain analysis. 

The total irrigational BWC of each crop in each province is calculated by the provincial crop 

production multiplied by its average blue water content (in m3 per ton). The average blue water 

content of crops are estimated at 5 × 5 arc-minute grid level following the accounting framework 

of Hoekstra et al. (2011), which are comprehensively described in Appendix A.5.  

Provincial BWC of five main economic sectors, i.e., irrigation, animal husbandry, industry 

(including electricity generation), services (including construction), and household, are partially 

available in the provincial Water Resource Bulletin for the year 2012 (see Table A-6). To fill the 

data gaps of agricultural BWC in the provinces without available data, we use the national BWC 

coefficient to estimate local BWC of agriculture. For electricity generation sector, we calculate the 

average BWC coefficient of electricity generation sector in the provinces with available BWC data, 

and apply the average BWC coefficient in other provinces. For other industrial sectors, we rely on 

the national BWC data as well as the provincial water withdrawal data of each sector from Chinese 

Economic Census Yearbook (2008). We allocate the national BWC of each sector to provinces by 

the provincial water withdrawal. Here we assume that the more water withdrawn for sectoral 

production, the more water consumed by that sector. After that, we scale the adjusted industrial 

BWC into the actual industrial BWC in 2012. For construction sector, we calculate the average 

BWC coefficient of construction sector in the provinces with BWC data, and apply the average 

BWC coefficient in other provinces. For household BWC, we calculate the per-capita BWC by the 

provinces with available data and estimate the household BWC in provinces without available data 

based on the per-capita BWC and local population. The average annual blue water availability of 

province m is calculated from annual water availability data for the period 2007-2017 collected from 

the provincial Water Resource Bulletin (2012). 

3.3. Results 

3.3.1. Disaggregation of total blue water consumption 

At the national scale, blue water is mainly consumed to produce goods and services for local final 

demands (i.e., without either inter-provincial or international trade) as well as for household use, 
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which together account for 52% of the national BWC (the pie chart in Figure 3-2). This can be 

explained by the relative larger population in China and the higher domestic consumption of water-

intensive food products such as rice, maize, and pork by local population (FAOSTAT 2020). 

Among all the trade activities, direct final goods trade makes the largest contribution to national 

BWC (19%), while the other three, intermediate goods trade for the last stage of local production, 

direct global export, and value chain-related trade, account for 15%, 7%, and 7%, respectively. At 

the provincial level, Xinjiang, Jiangsu and Heilongjiang are the top three provinces with the largest 

BWC in 2012, while Beijing, Tianjin and Qinghai have the lowest BWC. The BWC profile in each 

province has quite different features (the bar chart in Figure 3-2 and Table B-2). The share of 

local activities in provincial BWC is only 23% in Hainan, in contrast, this figure in Shaanxi is 77%. 

Hainan has the largest share of both intermediate goods trade and value chain-related trade in its 

BWC, accounting for 35% and 17%, respectively, whereas Beijing has the lowest, for 7% and 2%, 

respectively. Direct final goods trade shows a high share in the BWC of provinces, e.g., Xinjiang 

(34%), Gansu (26%), and Heilongjiang (25%). From the production perspective, highly-developed 

provinces like Beijing or Shanghai mainly produce to satisfy local demand, and at the same time, 

import resource-intensive products either as intermediate inputs for local production or direct final 

products; these imports stem from less-developed provinces such as Xinjiang or Heilongjiang. As 

for global exports, coastal provinces like Zhejiang (24%), Guangdong (17%), Jiangsu (15%) and 

Fujian (15%) have relatively higher shares in their BWC compared with the national total. 

 
Figure 3-2. Provincial (bar chart) and national (pie chart) blue water consumption (BWC) 
profile by economic activity in 2012. The horizontal dashed lines in the bar chart represent the 
average BWC of provinces under the same water scarcity level. Local activities include the 
production of local final demand, and household activities. Global export indicates the direct final 
goods exported to foreign countries; final goods trade, intermediate goods trade for the last stage 
of production (Intermed. trade), and value chain-related trade (Val. chain) indicate different trade 
patterns of inter-provincial trade. Particularly, intermediate goods trade A and B represent the trade 
of intermediate products for the last stage of production for final demand of the trade partner and 
of the trade partner’s trade partners, respectively. 
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Our results also reveal that local water scarcity level possibly plays a role in the provincial BWC 

profile. That is, provinces under moderate and extreme water scarcity have relatively higher share 

of local activities in their BWC (58% and 56% as averages, respectively) compared with the national 

total, whilst provinces under low water scarcity have relatively higher shares of trade-related 

activities in their BWC (particularly for intermediate goods trade, and value chain-related trade). 

This indicates that the economic structure of provinces could be influenced by the endowments of 

local resources such as water, and the marginal costs of economic production in water-scarce 

provinces would increase faster than those in water-abundant provinces, similar to the carbon 

emission reduction found in Feng et al. (2013). Provinces under severe water scarcity do not show 

similar profiles: for Xinjiang and Heilongjiang, they have higher shares of final goods trade and 

intermediate goods trade, together accounting for 51% of these two provinces’ BWC; while for 

others (i.e., Shanxi, Gansu, Liaoning, Henan, and Shandong), a higher share of local activities is 

observed (62% on average). Last but not least, the average total BWC of provinces under severe 

and moderate water scarcity are higher than that of provinces under extreme and low water scarcity. 

In addition to the two agriculture-dominated provinces, i.e., Xinjiang and Heilongjiang, other 

provinces under severe and moderate water scarcity like Guangdong, Anhui, Hubei, and Zhejiang 

are all economically developed and populous provinces with high blue water requirements for their 

production of exports and finished goods, and for local household use. 

3.3.2. Provincial balance of virtual water flows by trade pattern 

Traditional debates on the displacement of environmental pressures (e.g., carbon emissions) from 

the consumption sites to the producers are also observed for this water case of China (Figure 3-

3A). Provinces with high BWC, Xinjiang and Heilongjiang for instance, are those with large net 

water exports (i.e., ∑ NVWmng
n=1 >0), whereas consumption-oriented provinces, such as Zhejiang, 

Guangdong, Beijing, Tianjin and Shanghai, show net virtual water import (i.e., ∑ NVWmng
n=1 <0). 

The top three provinces with the largest net virtual water exports are Xinjiang (22.4 km3/yr), 

Heilongjiang (8.3 km3/yr), and Guangxi (4.3 km3/yr), whereas the top three provinces with the 

largest net water imports are Shandong (10.5 km3/yr), Zhejiang (6.5 km3/yr), and Guangdong (5.3 

km3/yr). Among these six provinces, only Guangxi is under low water scarcity level. As for other 

provinces, generally, provinces under moderate and severe water scarcity have net virtual water 

imports, while provinces under low water scarcity have net virtual water exports. The number of 

provinces with net virtual water exports or imports under extreme water scarcity is equal in our 

analysis. Furthermore, provinces like Jiangsu (under extreme water scarcity), Hubei and Inner 

Mongolia (both under moderate water scarcity) have relatively high BWC yet low net virtual water 

flows. To explain this, a high share of local activities in their BWC (Figure 3-2) is one factor, the  
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Figure 3-3. Virtual water flows related to the exports (above the abscissa in A) and imports 
(below the abscissa in A), as well as the largest net virtual water exports (red dots in A, and 
arrow lines in B-E) of 31 provinces in China for year 2012. Final goods trade, intermediate 
goods trade for the last stage of production (Intermed. trade), and value chain-related trade (Val. 
chain) indicate different trade patterns of inter-provincial trade. Particularly, intermediate goods 
trade A and B represent the trade of intermediate products for the last stage of production for final 
demand of the trade partner and of the trade partner’s trade partners, respectively. The negative 
values in panels B-E indicate that the associated provinces have net virtual water imports. Unit in 
panels B-E is km3 per year. 
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almost even import and export of virtual water is another. It implies that these provinces also act 

actively in national commodity markets for more bilateral and multilateral collaboration with other 

provinces, and thus are also important in shaping the virtual water network within China. 

The geographical distributions of net water flows related to intermediate goods trade (Figure 3-

3C), value chain-related trade (Figure 3-3D) as well as the total net water flows of all trade patterns 

(Figure 3-3E) are similar within China, whilst that related to final goods trade (Figure 3-3B) shows 

some differences. Provinces with total net water exports are Xinjiang, Heilongjiang, and those 

located in the central and southwestern China, whereas provinces with total net water imports are 

Shandong, Sichuan and those located in southeastern and northern China. In similar distributions 

with that of the total net water flows, we further find that Xinjiang (7.2 km3/yr and 2.8 km3/yr, 

respectively), Heilongjiang (3.5 km3/yr and 1.7 km3/yr), and Hunan (2.1 km3/yr and 1.1 km3/yr) 

are the top three provinces with the largest virtual water exports related to intermediate goods trade 

and value chain-related trade, whereas Shandong (7.4 km3/yr and 2.9 km3/yr) and Zhejiang (1.8 

km3/yr and 1.5 km3/yr) are the top two provinces with the largest virtual water imports related to 

these two trade patterns. The distribution of the net virtual water flows related to direct final goods 

trade is a little bit different from those related to other trade patterns. That is, provinces with large 

virtual water imports of direct final goods trade are those with high level of economic development 

like Zhejiang (3.3 km3/yr), Guangdong (2.9 km3/yr), and Shanghai (2.4 km3/yr), or with large 

population like Sichuan (2.8 km3/yr). From the export perspective, in addition to Xinjiang (12.4 

km3/yr) and Heilongjiang (3.0 km3/yr), provinces like Jiangsu (1.8 km3/yr), Guangxi (1.4 km3/yr) 

and Hebei (1.1 km3/yr) also show large net virtual water outflows of direct final goods trade within 

China. 

Our results also find that direct final goods trade contribute the most to the net virtual water flows 

within China (accounting for 42% of the total), whereas value chain-related trade induces the least 

(19%), the rest are associated with the intermediate goods trade (39%). First, the total net water 

flows embodied in bilateral trade are mainly from Xinjiang to Sichuan and Shandong for fruits and 

cotton seeds while to Hunan for livestock, as well as from Heilongjiang to Shandong and 

Guangdong, and from Hunan and Guangxi to Shandong for agri-food products. Direct final goods 

trade is the major driver of the net virtual water flows. The net virtual water flows embodied in the 

direct final goods trade are largely from Xinjiang to Sichuan, Hunan, Jiangxi, Shaanxi and Hubei, 

as well as from Heilongjiang, Shandong, Guangxi and Xinjiang to Guangdong. The major traded 

commodities are also cotton seeds, fruits, and livestock from Xinjiang, while agri-food products to 

Guangdong. The net virtual water networks of intermediate goods trade and value chain-related 

trade look similar to that of the total net water flows. For the former trade pattern, the largest  
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embodied water flow is from Xinjiang to Sichuan mainly for cottonseeds and live animals; 

moreover, Shandong is distinct for the net virtual water flows embodied in the intermediate goods 

trade (7.4 km3), of which 76% is consumed for the last stage of Shandong’s production to satisfy 

the final demand of local population while the rest is consumed for producing goods and services 

finished by Shandong’s trade partners (Figure 3-3A). Although value chain-related trade induces 

the less virtual water flows within China, it is the most complicated trade pattern and hard to be 

captured. In our analysis, we find that provinces with high virtual water inflows or outflows, notably 

like Xinjiang and Heilongjiang (for outflows) as well as Shandong, Zhejiang and Guangdong (for 

inflows), are all with relatively large virtual water flows related to the value chain-related trade 

(Figure 3-3A). It indicates that these provinces are critical to link the intermediate production and 

product trade that cross borders many times through inter-provincial trade before final products 

are consumed by the end users, and thus play significant roles in shaping the virtual water network 

of value chain trade pattern. The associated virtual water flows are mainly from Xinjiang to 

Shandong and Guangdong for cotton lint and textile-related products, as well as from Heilongjiang 

to Shandong and Guangdong and from Guangxi to Shandong for agri-food products. 

3.3.3. Effects of trade on provincial blue water consumption and water scarcity 

As one of the main commodity-exporting countries, the current trade, both inter-provincial and 

international, benefits China’s economic growth yet with more resource consumption. Under the 

NTS, China’s total outputs would decrease $4.3 trillion 2012 US dollars (accounting for 16% of 

the actual national outputs), as a consequence, the national total BWC would decrease 27.4 km3/yr 

(accounting for 9% of the actual national BWC). This hypothetical deceleration of China’s BWC 

would substantially mitigate the water scarcity in most provinces, particularly in the provinces under 

moderate and severe water scarcity (Figure 3-4A, and Table B-3 for province-specific changes). 

Under the NTS, all provinces are self-sufficient for their finished goods and services, the water 

scarcity level would reduce (compared to the with-trade case) in seventeen provinces (mostly with 

net virtual water export like Xinjiang, Heilongjiang, Anhui, Hunan, and Guangxi), whereas it would 

increase in other fourteen provinces (mostly with net virtual water import like Zhejiang, 

Guangdong, Sichuan, and Beijing). Out of these fourteen, there are six provinces which are already 

under severe (Shanxi) or extreme water scarcity (Jiangsu, Ningxia, Beijing, Tianjin, and Shanghai) 

in reality, indicating that the current inter-regional trade only partially relieves water scarcity in these 

provinces, including Beijing and Tianjin which are the economic centers of North China meanwhile 

with limited available water resources.  

Our results also reveal that the current trade has influenced the inequality of water scarcity among 

provinces within China, particularly for the inequality among provinces under low, moderate and  
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Figure 3-4. Effects of trade on the changes in provincial water scarcity index (A) and 
provincial inequality (B) by water scarcity level, and the trade-related environmental 
performance of each province on the national and provincial blue water consumption (C). 
Panel B illustrates the cumulative fraction of water availability against cumulative fraction of water 
consumption of provinces under the same water scarcity level, sorted by increasing magnitudes of 
water scarcity index. The deviation between the curved line (black for current with-trade situations 
while colorful for the NTS) and the diagonal dashed line (of perfect equality) indicates the 
provincial inequality of water scarcity. NVW and CNW in panel C are the net virtual water flows 
and the contribution to the national BWC, respectively. 

severe water scarcity (Figure 3-4B). Specified previously, high inequality of spatial water scarcity 

among provinces exists in China (Ma et al. 2020, Zhao et al. 2015), which is also confirmed in this 

study (Figure B-1, Appendix B). As illustrated in Figure 3-4B and Figure B-1, the curves of 

cumulative fractions of water consumption and water availability (sorted in an ascending order of 

the provincial water scarcity indices) are far from the diagonal dashed line (representing perfect 

water consumption equality), which implies the high inequality in spatial water scarcity within China. 

Although effects of current trade on changing the inequality among all 31 provinces is slight, the 

associated effects on changing the inequality among provinces under low, moderate and severe 

water scarcity are visible. For the provinces under low and moderate water scarcity, the current 

trade has increased the water scarcity inequality among them, whereas for the provinces under 

severe water scarcity, current trade has decreased the water scarcity inequality among them. The 

reason is that provinces with relatively larger (smaller) water scarcity indices under low or moderate 

water scarcity are those with net virtual water exports (imports), such that under the NTS, their 

BWC would reduce (increase) and the associated water scarcity indices would reduce (increase). 

The situations among provinces under severe water scarcity are different, mainly because Henan 

and Liaoning are two provinces with relatively lower water scarcity which would further reduce 

their BWC under the NTS. The effects of current trade on the water scarcity inequality among 

provinces under extreme water scarcity is small. 
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We further examine the trade-induced environmental performances of each province on the 

provincial (by NVW) and national blue water consumption (by CNW). As illustrated in Figure 3-

4C, by selecting CNW as the horizontal axis and NVW as the vertical axis, 31 provinces are sorted 

into four categories (or quadrants). Distinctly as the provinces located in the upper right quadrant, 

such as Xinjiang, Heilongjiang, Anhui, and Hunan, the trade related to these provinces increases 

both provincial and national BWC. Ideally as the provinces located in the lower left quadrant, 

mostly are affluent provinces like Shanghai, Zhejiang, Beijing and Tianjin, of which the related 

trade contributes to a reduction in both provincial and national BWC. Other provinces like 

Shandong, Jiangsu, and Henan have different environmental performances on the local provincial 

BWC and the national total. For the future water resource utilization and management towards 

sustainability, attention should be paid to the provinces in the upper right quadrant. It was already 

known that the virtual water exports of these provinces are mainly driven by final demand for some 

low-value-added but water-intensive agricultural (e.g., rice, wheat, cotton seeds, and fruits) and 

food products (e.g., livestock). Considering that future per-capita incomes in China could further 

increase and the diet of Chinese could be more westernized, the requirements of these agri-food 

products could be growing. Thus, it would be more critical for these provinces to sustainably use 

the limited water resources in the locals, meanwhile to contribute to the food security of China. 

3.4. Discussion 

We have assessed the effects of production fragmentation and trade on provincial blue water 

consumption and scarcity in China using an improved trade disaggregation approach and a novel 

“no-trade” scenario. In this section we first reflect on the potential implications of this study’s 

finding for water management and policy making in China. Subsequently, we address the limitations 

of this study and provide recommendations for future research. 

3.4.1. Potential policy implications 

Although current trade alleviates the water scarcity in provinces under extreme water scarcity, it is 

worsening the water scarcity of this nation from a broader scope, i.e., the national water scarcity 

would be less if there is no trade. This finding is consistent with the previous analysis by Zhao et 

al. (2018), Zhao et al. (2015), and Zhuo et al. (2016). Given that future inter-provincial trade will 

further increase due to the development of multiple urban agglomerations (e.g., Jing-Jin-Ji, the 

Yangtze River Delta, and the Pearl River Delta) in China, the embodied virtual water flows will 

also be intensified. Previous policy suggestions for water saving and water scarcity alleviation 

mainly focused on supply-side measures, by putting caps to water consumption by river basin 

(Mekonnen and Hoekstra 2016), increasing water-use efficiencies of sectors (Zhou et al. 2020), and 



PhD Dissertation by Quanliang Ye 

54 
 

better sharing of the limited freshwater resources (Zhao et al. 2015). Based on our more accurate 

trade disaggregation, the purpose of traded commodities like for final consumption or as 

intermediate inputs for further production, and the effects on provincial water consumption and 

scarcity in China are now better understood. This knowledge can be used to consider re-

organization of production sites and trade patterns among provinces to affect spatial water 

consumption and scarcity patterns. We have shown that the final demand-related trade contributes 

the largest part of China’s virtual water flows (Figure 3-2), and is mainly related to agri-food 

products. The first suggested measure is to enhance local production of final commodities or 

decrease the final demand of water-intensive products like livestock, especially in provinces with 

high final goods-related virtual water import such as Guangdong, Jiangsu, and Sichuan. For 

provinces currently under extreme water scarcity like Beijing, Tianjin or Shanghai, their 

development under NTS would increase local water scarcity (as shown in Figure 3-4A); thus to 

enhance the trade with adjacent provinces or co-development with adjacent provinces will be the 

potential measures to improve their self-sufficient capacities as well as decrease the economic and 

resource cost for trading products. To optimize spatial cropping patterns with more production in 

rainfed areas for primary crops like rice, wheat and maize, or in places with higher irrigation 

efficiencies relying on more advanced irrigation technologies would also be potential options 

(Chouchane et al. 2020). A recent study showed that the massive investment on irrigation 

infrastructure in water-scarce regions of China during the period of 2002-2017 has driven a 

substantial reduction in the BWC of staple crops (Huang et al. 2021). Yet, how to formulate the 

cropping patterns should consider multiple social-economic-environmental factors to avoid the 

extra increasing in BWC due to the rebound effects arising from the improvement in water 

productivity and economic benefits by extending farming areas. This may be more important for 

less developed provinces located in the northwestern (with a relatively slow-growing economy and 

serious water shortages), central and northeastern China (major provinces for blue water export). 

The last is to promote better measures of water conservation, unconventional water resources (e.g., 

rainwater, seawater or reclaimed water), and industry productivity locally by all parties. This would 

help decrease national water use and enhance industrial commodity supplies in locals. For 

household BWC, which accounted for 9% of the national total in 2012, we suggest that formulating 

a rational water price system in urban areas as well as better managing the self-withdrawn 

groundwater in rural areas would be the options to reduce this part BWC. 

Literature estimating water use and virtual water flows in different terms, such as “water withdrawal” 

(Liu et al. 2019, Zhao et al. 2015) or “water consumption” (Dalin et al. 2014, Zhuo et al. 2016), 

may come up with quite different policy suggestions. Estimating water use in “water withdrawal”, 

Liu et al. (2019) found that electricity generation sector was another key sector in addition to 
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agriculture sector with high water withdrawal in China, and then suggested future measures to 

reduce water withdrawal by shifting electricity generation system into air cooling systems. It is true 

that electricity generation sector abstracts a large quantity of water for cooling purpose. In Jiangsu 

for instance, water withdrawal by electricity generation sector (14 km3/yr) was around three times 

of that by other industrial sectors (5 km3/yr). Yet, the actual water consumption (i.e., loss of water 

from the available ground-surface water body in a catchment area) of this sector is relatively low in 

China (around 10% of its water withdrawal), and has been decreasing by adopting air-cooling or 

seawater-cooling technologies (Zhang et al. 2018). Other key sectors in addition to agriculture with 

high “water consumption”, e.g., chemical industrial sector, metal smelting and rolling sector, and 

food manufacturing sector, should be paid more attention to for China’s green-economic transition 

in future. Furthermore, other literature also weighted virtual water flows with the “water scarcity” 

concept and estimate as scarce virtual water flows (Feng et al. 2014, Liao et al. 2020, Zhao et al. 

2018). The interdependence between “water scarcity index” and “water use” would make this 

indicator estimated based on a main assumption that “water scarcity index” is an independent and 

unchanged variable. Therefore, in some cases, the interpretation of scarce virtual water flows would 

be controversial, and hard for comparison with other studies. 

3.4.2. Limitations and future work 

The almost 10-year time lag of our analysis (for year 2012) should be noted when interpreting the 

main results. The most recent year for which inter-provincial MRIO tables of China are known is 

2015 (Li et al. 2020, Zheng et al. 2020), but with high uncertainty arising from the main assumptions 

on provincial production structures and inter-provincial trading patterns in order to fill the data 

gap of actual inter-provincial transactions across industries. On the other hand, the hybrid MRIO 

model (Chapter 2) relies on food and agricultural biomass input-output model that is developed 

based on the production, trade and use data of crops, livestock, and foods from FAOSTAT, which 

only reported the associated data with high reliability by the year 2013. While other production and 

consumption data of crops, livestock and food products were also relatively comprehensively 

recorded for year 2012 by the Chinese National Bureau of Statistics. We also realized that where 

data on macro-economic structure in general do bear uncertainty and are experienced to undergo 

changes until far after the year of reference, the main results on virtual water trade networks are 

largely robust to such uncertainty. Therefore, we stick to use the best available MRIO tables of Mi 

et al. (2017a) and carry out this study in 2012. Lastly, the distribution of freshwater resources within 

the nation as well as the economic structures especially for main water-consuming provinces like 

Xinjiang, Jiangsu and Heilongjiang have not changed significantly in the past decades (NBSC 2020). 

The main water scarce regions are still located in the North (Beijing, Tianjin, and Hebei), Northeast 
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(Heilongjiang, Jilin and Liaoning) and Northwest (Ningxia, Xinjiang, and Gansu) China. Thus, the 

analysis of current virtual water networks associated different trade pattern may have small changes 

as 2012 did. Yet we still believe a more recent analysis of trade effects on national or provincial 

water consumption and water scarcity changes will be more reliable for future policy and decision 

making. 

There exist other potential limitations in this study. To better simulate provincial economic 

structure and consumption patterns under the NTS, we need to analyze the changes in product-

specific production, trade and consumption by one province. In this context, time-series MRIO 

tables should be constructed. Based on that, we could capture the key products that are increasingly 

imported to substitute associated products that are previously produced by the province itself. Yet, 

if we rely on the monetary MRIO table (in a relatively low resolution of sectors or product 

categories) to develop the no-trade scenario, although with high uncertainty, this misallocation 

issue (i.e., misallocating the products to the consumers that cannot produce them locally) may not 

influence the results by a big margin. When associated products, like crops, fruits and livestock, are 

aggregated into few product categories, the hypothetical inputs and outputs of these categories 

would be determined by the main crops that dominate local production. Future studies could focus 

on establishing such a database with time-series product-specific MRIO tables that give sufficient 

information about the development of provincial and national economy. Second, in this NTS 

analysis we selected three production factors as the main constraints on the provincial production 

capacities under the NTS. It should be noted that the hypothetical results of economic production, 

human consumption, and water consumption would highly depend on the constraint factors 

applied in the NTS. Future work needs to apply more resource and social constraints on the NTS, 

especially for key production factors and inputs such as materials or fuels, to simulate the 

production and environmental impacts under the NTS more comprehensively. Lastly, trade also 

impacts on economic structure, consumption patterns, and technology development (Jiborn et al. 

2018), and therefore on provincial BWC. However, the economic structure, consumption patterns, 

and technology development cannot be simulated dynamically based on a static MRIO model. 

Insights from dynamic economic modelling could, to some extent, generate assumptions for altered 

MRIO model parameters in simulating scenarios with trade scenarios. Further integrating the static 

MRIO model with a dynamic economic model, to some extent, can reduce the uncertainty from 

these factors in the hypothetical BWC modelling. This line of research is beyond the scope of this 

analysis but worth future explorations. 

3.5. Conclusions 
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Production fragmentation has been changing the traditional production and consumption models 

of commodities as well as the associated resources inputs and pollution emissions. In this study we 

formulated a comprehensive trade disaggregation approach to elaborate the virtual blue water 

networks of three trade patterns (i.e., final goods trade, the trade of intermediate products for the 

last stage of production, and value chain-related trade) within China, and further examined the 

impacts of trade on provincial blue water scarcity by comparing the actual water scarcity with the 

hypothetical results under the NTS. In 2012, there was 128 km3 blue water that virtually transferred 

among provinces because of inter-provincial trade. Direct final goods trade contributed the most 

to the virtual water trade (accounting for 47% of the total), whereas value chain-related trade 

induced the least (17%), the rest are associated with the intermediate goods trade (36%). Compared 

with results under the NTS, we found that the current trade, both inter-provincial and international, 

benefits China’s economic growth yet with more resource consumption. Furthermore, the current 

trade has influenced the inequality of water scarcity among provinces within China, particularly for 

the inequality among provinces under low, moderate and severe water scarcity. Our analysis enables 

the consideration of specific trade patterns and their impacts on provincial and national water 

consumption to cope with water scarcity in China, such as enhancing local production of final 

commodities or decreasing the final demand of water-intensive products like livestock, especially 

in provinces with high final goods-related virtual water import such as Guangdong, Jiangsu, and 

Sichuan, while promoting better measures of water conservation, unconventional water resources, 

and industry productivity locally by all parties. 

3.6. Nomenclature 

A technical coefficient matrix 
B the Leontief inverse matrix 
BAE Balance of Avoided Emissions  
BWC blue water consumption 
CNW national blue water consumption 
cs constraint factor 
D local technical coefficients matrix 
EX a column vector representing international exports 
f a row vector representing blue water consumption coefficients of products 

and sectors 
F provincial endowments of constraint factors 
F a row vector representing direct blue water consumption of products and 

sectors 
FAOSTAT Food and Agriculture Organization Corporate Statistical Database 
g number of regions 
h a certain province in China 
i a certain product or sector 
i a summation vector of appropriate length 
I an identity matrix 
L local Leontief inverse matrix 
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m a certain province in China 
MRIO multi-regional input-output 
n a certain province in China 
non_n other provinces in China except province n 
NTS no-trade scenario 
NVW net virtual water flows 
T a column vector representing exports from province 
T_d a column vector representing value chain-related trade of products finally 

absorbed by domestic provinces 
T_f a column vector representing trade of final products 
T_g a column vector representing value chain-related trade of products further 

processed and exported to foreign counties 
T_i a column vector representing trade of intermediate products for the last 

stage of production 
T_v a column vector representing value chain-related trade of products 
W total blue water consumption 
W' total blue water consumption under the no-trade scenario 
W_EX local blue water consumption embodied in the export 
W_hh blue water consumption for household purposes 
WA blue water availability 
WSI blue water scarcity index 
WSI' blue water scarcity index under the no-trade scenario 
x a column vector representing total outputs 
x' a column vector representing total outputs under the no-trade scenario 
Y a column vector representing final demands 
Y' a column vector representing final demand under the no-trade scenario 
yr year 
Z intermediate input matrix 
Z' intermediate input matrix under the no-trade scenario 
Zm a square matrix representing supply chain-wide indirect inputs for province 

m’s final demand 
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4.1 Introduction 

In a period of unprecedented economic growth, China increased its share of world gross domestic 

product (GDP) from less than 2% in 1990 to nearly 15% in 2015 (The World Bank 2020). With 

investment accounting for 34-48% of the country’s GDP since 1990, China produced or imported 

capital assets such as livestock for breeding, power plants, and communication networks, and 

computer software. The production of capital assets, however, typically requires more resources 

and generates more pollution than that of non-capital goods (Jiang et al. 2019, Tukker et al. 2016, 

Zheng et al. 2018). From 1995 to 2015, 22 million km2 of land use, 630 km3 of blue water 

consumption, 759 EJ (exajoules) of primary energy use, and 10 Gt (gigatonnes) of metal ore 

extractions were appropriated in China for its capital development, accounting for 15%, 21%, 41%, 

and 39% of the national totals, respectively; outside of China, another 16 million km2 of land, 135 

km3 of blue water, 130 EJ of energy, and 7 Gt of metal ore extractions were associated with China’s 

capital expansion (Figures C-1 and C-2, Appendix C). 

However, little is known about how significant environmental pressures (EPs) generated in capital 

assets production link to global final consumption, i.e., the satisfaction of human needs through 

the goods and services produced with the help of those assets. Conventionally, consumption-based 

accounting (CBA) is used to investigate the attribution of various EPs to the national final demand 

of products (i.e., goods and services), yielding the environmental footprints (EFs) of nations 

(Hertwich and Peters 2009, Wiedmann et al. 2015). The EFs of nations are thus the EPs occurring 

throughout the supply chain of goods and services allocated to the final consumption of those 

goods and services (Tukker et al. 2016, Wiedmann and Lenzen 2018). Historically, CBA was based 

on multi-regional input-output (MRIO) tables representing the production, trade, and 

consumption of products in a single year, so it could not represent the use of capital assets 

stretching over longer time periods. While CBA has become a crucial tool for assessing the 

sustainability, efficiency, and equity of resource use from the perspective of consumers and 

government (Tukker et al. 2016, Weinzettel et al. 2013), current CBA models fail to capture capital’s 

role in production and consumption and hence misallocates the EPs embodied in capital assets 

(EPK) in EF assessment. Unlike non-capital goods that are purchased for consumption, capital 

assets are bought to be used in productive processes. Therefore, intuitively, EPK shall be allocated 

throughout the lifetime of the assets, i.e., over years or even decades, to those who consume the 

finished products made using the assets directly and indirectly, regardless of the geographical 

location of the assets or the final consumption. Neglecting capital’s spatiotemporal features, 

conventional CBA models treat the purchase of capital assets in the same way as the purchase of 
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non-capital goods, assigning EPK to the purchasing country and the purchasing year (Gao et al. 

2020). 

Acknowledging the economic and environmental significance of capital, there have been a few 

endeavors to tackle the methodological and data challenges related to modeling capital assets as 

intermediate inputs used in production, also known as ‘capital endogenization’ in input-output 

analysis (Chen et al. 2018, Lenzen 1998, Södersten et al. 2020, Södersten and Lenzen 2020, 

Södersten et al. 2018a, Södersten et al. 2018b). Consistently, they show that the inclusion of capital 

as intermediate inputs leads to substantial re-distribution of carbon and material footprints across 

industries and countries. The implications are especially significant for countries featuring high 

capital investments and export, such as China, and the final consumption of services related to real 

estate, public administration, transport and storage, and education, which usually require a lot of 

material- and carbon-intensive capital assets, such as buildings and infrastructure (Södersten et al. 

2020, Södersten et al. 2018a). However, the inter-temporal features of EPK remain unaddressed 

since capital assets used for year n’s production and final consumption are of different age cohorts 

produced based on the production recipe, trade networks, and environmental intensities of year n, 

n-1, n-2, n-3 …(Södersten et al. 2018a). Such temporal dynamics are inherent to the retrospective 

distribution of historically-generated resource use and emissions to current final consumption, and 

critical for understanding the temporal trends and thus the future needs of resources and emissions 

for capital formation. 

By developing a new capital endogenization method that addresses the above temporality issue, we 

present a novel analysis on how China’s capital development and the associated resource use and 

emissions over the past two decades (1995-2015) are linked to meeting the final consumption of 

China and other countries throughout this time period. Our analysis focuses on six indicators of 

environmental pressures: primary energy use, blue water consumption, land use, metal ore 

extractions, nonmetallic mineral mining, and greenhouse gas (GHG) emissions, because they 

represent priority resources and development goals in China and globally. With the linkages 

quantified, we then reassess China’s environmental footprints. Our results indicate an urgent need 

to quantify and emphasize economic and environmental efficiency for the decision-making of 

capital use and investment. 

4.2. Materials and methods 

The new method for endogenizing capital in input-output analysis is achieved through three main 

steps:  
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(1) trace and allocate the contribution of year t’s capital investments to year n’s inter-industry 

production networks depicted by year n’s MRIO tables, obtaining Dt,n
K  (t≤n);  

(2) quantify the supply chain-wide EPs that were generated during the production of the capital 

inputs Dt,n
K  based on year t’s production structures and environmental intensities of production 

activities depicted by year t’s MRIO tables, obtaining (Ft,n
K ); 

(3) attribute ∑ Ft,n
Kn

t  to year n’s final consumption based on year n’s production-consumption 

systems depicted by year n’s MRIO tables, obtaining ∑ EFt,n
Kn

t . 

We describe the three steps in detail in the following sections. The MRIO tables are obtained from 

EXIOBASE 3 (Stadler et al. 2018), which offers a time series of MRIO tables and environmental 

intensity estimates ranging from 1995 to 2015 for 44 countries (28 EU member plus 16 major 

economies) and five rest of the world regions. EXIOBASE 3 offers MRIO tables with high level 

of consistent sectoral (200 products) and environmental (417 emission categories and 662 material 

and resources categories) detail.  

4.2.1. Constructing the global capital consumption matrix Dt,n
K  

The process to construct Dt,n
K  is composed of five segments. First, annual capital consumption 

from the capital investment times series is calculated. We modeled consumption in year n of asset 

a invested in year t by sector s in country i as capital depreciation (Di,a,s,t,n
K ) calculated using the 

geometric method (Eq. 4-1). The geometric method is a standard practice adopted by national and 

international statistical agencies and researchers for constructing capital consumption time series 

(O’Mahony and Timmer 2009). Geometric depreciation depicts each year the asset is depreciated 

by a constant percentage of the previous periods value. The capital consumption (depreciation) 

represents the gradual depreciation of assets via output generation, i.e., wearing out, getting lost or 

breaking down, or becoming obsolete through advances in technology or shifts in consumer 

demand. 

Di,a,s,t,n
K = δi,a,s

K (1-δi,a,s
K )

n-t
Ii,a,s,t
K                                                                                                         (4-1) 

Capital investment values (Ii,a,s,t
K ) and corresponding depreciation rates (δi,a,s

K ) are obtained from 

three macroeconomic datasets: EU KLEMS (2009 release and 2017 release) (EUKLEMS 2019), 

WORLDKLEMS (WORLDKLEMS 2019), and the Penn World Table (PWT) 9.1 (Feenstra et al. 

2015). Details of the investment data and depreciation rates obtained from the three data sources, 

such as the classifications of the investing sectors and assets, are presented in Appendix C.1. For 
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instance, Austria’s annual capital investment data (IAustria,t
K ) are specified by 34 investing sectors and 

10 assets, obtained from EU KLEMS (2017 release); the 34 sectors and 8 assets are further detailed 

in Table C-3, Appendix C. δ are constant throughout the years of our simulation (1995-2015), 

but vary by asset a, the capital investing sector s, and the capital investing country i. Note, we 

assume that the capital investing sectors are also the capital consuming sectors. Mathematically, 

Di,t,n
K  is a two-dimension matrix variable with the same shape as Ii,t

K : sectors that invested and 

consumed assets are aligned by columns, assets are aligned by rows, while each element in Di,t,n
K  is 

calculated through Eq. 4-1. All elements in the Ii,t
K  and Di,t,n

K  are measured in million euros (€) of 

year t. 

The second step is to link capital consuming sector s to capital producing sector s* through capital 

asset a. Each element in the transformed Di,t,n
K  matrix is Di,s*,s,t,n

K . Such a transformation is achieved 

through ‘asset-capital producing sector’ concordance tables created in a prior study (Södersten et 

al. 2018a). The capital producing sectors follow the 200-product sectoral classification adopted by 

EXIOBASE 3. 

We then further distinguish the capital producing sectors to those located in country i and those 

outside of country i, i.e., capital assets that were imported. Such allocation is based on year t’s fixed 

capital formation matrix Yi,t
K  available in EXIOBASE 3. Yi,t

K  presents country i’s investment records 

in year t, specifying the expenditures across 200 sectors and 49 countries/regions. This step 

transforms the Di,t,n
K  matrix again, expanding the number of rows (producing sectors) from 200 to 

9800 (49×200). Throughout the second and third steps, the sum of all elements Di,t,n
K  remains the 

same and the unit of each element is still million euros (€) of year t. 

Next, we map the capital consuming sectors s that are defined in the macroeconomic datasets (e.g., 

34 sectors in EU KLEMS 2017 release) to EXIOBASE 3’s 200-product sectoral classification. 

Such transformation is based on the sector concordance tables created in a prior study (Södersten 

et al. 2018a). This step transforms Di,t,n
K  to a matrix with 9800 rows specifying capital production 

across the world and 200 columns specifying capital consuming sectors in country i. The 

transformation does not change the sum of all elements in Di,t,n
K  and the unit of each element is still 

million euros (€) of year t.  

The final step in creating the global capital consumption matrix Dt,n
K  is to horizontally concatenate 

the aforementioned developed D1,t,n
K , D2,t,n

K , …, D49,t,n
K  for each of the 49 countries/regions 

specified in EXIOBASE 3. Dt,n
K  is thus a 9800×9800 matrix with capital producing and capital 



PhD Dissertation by Quanliang Ye 

64 
 

consuming sectors along rows and columns, respectively; each element records the quantity of 

assets that were invested in year t and consumed (i.e., depreciated) in year n, measured in million 

euros (€) of year t. 

4.2.2. Quantifying the supply chain-wide EPs attributable to the consumed capital assets 

Eq. 4-2 calculates the supply chain-wide EPs that occurred in year t and is attributable to Dt,n
K : 

Ft,n
K =St�LtDt,n

K =St�(I-At)-1Dt,n
K                                                                                                       (4-2) 

For any EP indicator (e.g., GHG emissions), St is a row vector of direct resource use or emissions 

intensities of economic activities (e.g., kg/million € of year t), specified by 200 sectors and 49 

countries/regions (1×9800) and obtained from EXIOBASE 3. Lt is the Leontief inverse matrix 

(Leontief 1970), describing the supply chain-wide economic outputs associated with per unit 

finished goods and services in year t (9800×9800). Lt is calculated from At (9800×9800 in 

EXIOBASE 3) with each element ai,j representing the amount of intermediate input i directly 

required per unit of output j and a 9800×9800 identity matrix I. 

Ft,n
K  is a 9800×9800 matrix. Aligned along the rows are the 9800 country-sector pairs that directly 

extracted resources or released emissions in year t while partaking in the supply chains of the capital 

assets produced in year t―the supply chain-wide connections are made through Lt. The 9800 

columns specify the country-sector pairs that consumed the corresponding capital assets in year n, 

i.e., following the columns of Dt,n
K . Intuitively, Fn

K=∑ St�LtDt,n
Kn

t  captures the supply chain-wide EPs 

that were generated from year t to year n when the capital inputs allocated to year n’s production 

activities (i.e., ∑ Dt,n
Kn

t ) were produced. The unit of each element in Ft,n
K  and Fn

K , e.g., if the EP 

indicator is GHG emissions, is kg/year. 

4.2.3. Re-assessing the environmental footprints (EFs) 

From the consumption perspective, which is the key concept taken by environmental footprint 

accounting, Fn
K is ultimately attributable to final consumption in year n (Yn

C). That is, the consumed 

capital (∑ Dt,n
Kn

t ) and the associated EPs (Fn
K) are attributable to production activities in year n (xn), 

and those production activities ultimately serve for final consumption in year n. Thus, we calculate 

the environmental intensities of year n’s production activities owing to capital consumption as Sn
K 

(Eq. 4-3). 

Sn
K=φFn

Kxn�
-1                                                                                                                             (4-3) 
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xn is a 1×9800 column vector that records economic outputs of the 9800 country-sector pairs in 

year n, obtained from EXIOBASE 3 and measured in million euros (€) of year n. φ is a 1×9800 

summation vector of ones. Sn
K is a row vector describing the resource use or emission intensities 

for the 9800 country-sector pairs that consumed ∑ Dt,n
Kn

t  in year n. The unit of each element in Sn
K, 

e.g., if the EP indicator is GHG emissions, is kg/million € of year n. 

We can then reassess the environmental footprints of countries (Eqs. 4-4 and 4-5): 

EFn
K=Sn

KLn Yn
C                                                                                                                         (4-4) 

EFn =EFn
C+EFn

K+EFn
HH=Sn Ln Yn

C+EFn
K+EFn

HH                                                                  (4-5) 

The final consumption matrix Yn
C (9800x49) is obtained from EXIOBASE 3 and describes the 

finished goods and services, specified by the 9800 country-sector pairs, that are consumed by 49 

countries/regions in year n. EFn
K a 1x49 vector, captures the historical EPs that are attributable to 

Yn
C owing to the capital consumption attributable to year n’s production activities (∑ Dt,n

Kn
t ). EFn

C 

(1×49) captures the EPs that occurred in year n and are attributable to Yn
C owing to the non-capital 

inputs used in year n’s production activities, which can be calculated by the conventional CBA 

approach. EFn
HH captures the EPs directly released by households in year n and is available in 

EXIOBASE 3. 

4.3. Results 

4.3.1. Annual profiles of China’s capital consumption 

Approximately one third of the $36.7 trillion (2015 US dollars) capital assets invested by China 

during 1995-2015 were consumed by 2015, whilst two thirds remain effective for future productive 

purposes. In most years, the assets acquired by non-industrial enterprises (i.e., agriculture, 

construction, and services), such as livestock for breeding, orchards, residential and office 

buildings, and intellectual property, dominated the capital consumption. In 2015, they accounted 

for 55% of the nation’s total capital consumption, while the consumption of industrial equipment 

accounted for about another 40% (Figure 4-1A). 

When examining annual profiles and trends, it is important to note that the consumption of capital 

goods invested before 1995 was not accounted for in our analysis, because data for earlier capital 

investments and production practices are sparse or not readily available for many countries. As a 

result, our estimates of capital consumption are conservative, especially for the early years in our 

modeling period (e.g., year 1995). For the later years, the impacts of neglecting pre-1995 capital 
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Figure 4-1. China’s annual capital consumption (DChina

K ) profile by the type of capital asset 
(A), and by year of investment (B). In both (A) and (B), capital assets purchased from China are 
plotted above the abscissa and those imported from other countries are plotted below the abscissa; 
all assets were invested during 1995-2015. The vertical dashed line illustrates that capital invested 
in 1995 accounted for less than 1% of annual capital consumption since 2011; further analysis 
indicates that pre-1995 investment likely accounts for a small fraction of the capital consumption 
profile since 2011 (Appendix C.7 and Figure C-3, Appendix C). In (A), ‘Equipment by industrial 
sectors’ covers computing, communication and transport equipment, other machinery and 
equipment, and computer software and databases; ‘Structures by industrial sectors’ includes non-
dwelling buildings and structures; ‘Assets by non-industrial sectors’, invested by non-industrial 
enterprises (agriculture, construction, and service sectors), includes residential structures, cultivated 
assets, research and development, and other intellectual property products assets. In (B), numbers 
on top of the bars show the weighted average age of capital assets consumed. 

modeling period (e.g., year 1995). For the later years, the impacts of neglecting pre-1995 capital 

investments become much smaller (see additional analysis in Appendix C.7 and Figure C-3). 

Starting with 2011, less than 1% of the capital consumption came from capital goods invested in 

1995. Such a low presence of early investments is likely very unique to China, owing to the rapid 

growth of the capital stock in recent years (Figure C-1) as well as the relatively short life span of 

capital assets in China as compared to other countries (Table C-9). Based on the temporal results 
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of 2011-2015, when the implications of neglecting pre-1995 investments are deemed low, our 

results show that the capital assets consumed in China averaged 4-4.6 years old (Figure 4-1B). 

Our results also reveal that only 8% of the capital consumption originated from capital assets 

imported from outside of China, and this fraction decreased from 14% in 1995 to 7% in 2015 

(Figure 4-1B). However, for industrial equipment and machinery, imported capital goods 

consistently accounted for a much larger share (16-21%) of the capital consumption throughout 

the 20 years (Table C-10). Japan, Germany and the United States have been the most important 

producers of capital assets consumed, accounting for half of the imported assets consumed in 

China’s economic development. South Korea is playing an increasingly important role in China’s 

capital investment and economic production. During 1995-2015, the industrial equipment and 

machinery imported from South Korea to China tripled; by 2015, capital assets imported from 

South Korea accounted for nearly 13% of China’s consumption of imported capital goods, 

increased from 5% in 1995.  

4.3.2. Attributing the EPs embodied in China’s capital consumption to global final 

consumption 

Significant resource use and emissions occurred during the production of the capital assets 

consumed in China between 1995-2015. This sums to 311 EJ primary energy used, 300 km3 blue 

water consumed, 14.4 million km2 land used, 5.4 Gt metal ore extracted, 42.7 Gt nonmetallic 

mineral mined, and 23.8 Gt GHG emitted (Figure 4-2). They account for 32% (metal ore 

extractions) to 39% (blue water consumption) of the six EPs embodied in the assets China acquired 

between 1995-2015, and 1% (land use) to 8% (nonmetallic mineral extractions) of the global 

resource use and emissions in the same period. The EPs are ultimately attributable to final 

consumption of goods and services, primarily in China. Across all six indicators, the final 

consumption of services in China dominates the EPs embodied in the capital consumption. 

Depending on the pressure indicators, 40% (metal) to 53% (mineral) of the EPs are attributable to 

real estate, public administration, education, and health services consumed in China (Table 4-1). 

This is not surprising given the real estate booms in China (Glaeser et al. 2017). The country’s fast 

expansions of public services and medical services (Meng et al. 2005) also led to large purchases of 

capital goods, such as non-residential structures, machinery, and equipment.  

Of all six indicators, more than half of the foreign-driven resource use and emissions are owing to 

the consumption in 22 OECD countries (country names are detailed in Table C-1) and nearly a 

quarter are attributed to the United States alone. The strong linkages between capital consumption 

in China and overseas final consumption are consistent with the crucial role that export activities  
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Figure 4-2. Attributing the resource use and emissions of China’s capital consumption over 
1995-2015 to the satisfaction of global consumption in the same period. Each subplot 
illustrates cumulative EP from 1995-2015, i.e., ∑ ∑ FChina

Kn
t=1995

2015
n=1995 . In each subplot, the three bars 

correspond to the final consumption of Chinese domestic (DOM), foreign countries (FRN), and 
the Organization for Economic Co-operation and Development-1990 countries (OECD), 
respectively; the resource use or emissions that occurred in China and in other countries are plotted 
above and below the abscissa, respectively. To highlight the linkages between capital consumption 
and human needs satisfaction, here we categorized the finished goods and services defined by the 
200-product categories in EXIOBASE 3 into 7 main categories of human needs (see Table C-8). 

Table 4-1. Product categories of domestic (D) and foreign (F) final consumption that 
account for the highest EPs related to China’s capital consumption from 1995-2015. All 
values are shown in percentages (%); blank indicates a value of less than <1%. 
Footprint type   Energy  Water  Land  Metal  Minerals  GHG 
Product category  D F  D F  D F  D F  D F  D F 
Radio, TV, communication equipment and 
apparatus 

   3   2   2   3   1   2 

Motor vehicles, trailers and semi-trailers   2 1  1 1  1   2 2     1 1 
Supporting transport and travel agency services   2   2   3   2    3   2  
Real estate services   17   18   20   15    24   19  
Computer and related services   2   2   2   2    2   2  
Public administration, defense, social security   14 2  14 2  16 2  13 2   17 1  15 2 
Education services   6   7   7   6    7   7  
Health and social work services   6 1  5 1  5 1  6 2   5   5 1 
Sum of the rest product categories   29 14  29 13  28 11  29 15   27 10  28 13 
Total   78 22  80 20  83 17  75 25   86 14  80 20 
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have played in China’s (accounting for 20% of China’s GDP over 1995-2015) and the global 

economy. Different from China’s domestic consumption, the foreign consumption of 

manufactured products dominates the capital-related EPs. Quite surprisingly, for the product 

category of ‘Radio, TV, communication equipment and apparatuses’, foreign consumption even exceeded 

the domestic consumption in its attribution to all six environmental pressures (Table 4-1). China 

is known as the world’s “manufacturing powerhouse.” In 2016, two-fifths of the world’s 

semiconductors were produced in China. Similarly, China was involved in the production of more 

than half of the world’s mobile phones and produced almost all of the printed circuit boards (Allen 

2018). A varying fraction of the EPs embodied in the consumed assets occurred outside of China, 

as the supply chains of the capital assets are distributed around the globe (B in Figure 4-2). The 

foreign implications are especially significant regarding metal and land, accounting for 43% of the 

metal ore extractions and 33% of the land use embodied in the consumed capital assets. Latin 

America is the most important region for the metal ore extractions underlying China’s capital 

development, contributing 16% (38%) in the total (foreign) the metal ore extraction embodied in 

the consumed assets. As for the foreign land use embodied in China’s capital consumption, it is 

mainly distributed in economies in transition, other Asian countries, and OECD countries, 

accounting for 28%, 25% and 22%, respectively. In contrast, only 3% of the nonmetallic mineral 

extractions and 8% GHG emissions embodied in the country’s capital consumption occurred 

outside of China. Moreover, EPs associated with China’s capital investment and depreciation as 

well as the domestic and foreign implications are contrasted and discussed in Appendix C5 and 

Figure C-2. 

4.3.3. EFs of China over 1995-2015 distinguishing between capital and non-capital goods 

By linking the resource use and emissions associated with both capital and non-capital goods 

produced and consumed worldwide in 1995-2015 to China’s final consumption in the same time 

period, we reassessed China’s footprints in the six indicators (b1 in Figure 4-3). We find that, 

depending on the pressure indicators, 8% (land)―46% (metal) of China’s footprints are owing to 

capital consumption (gap between b1 and a2 in Figure 4-3). More than 40% of the metal ore 

extractions and land use and as little as 4% of the mineral mining and GHG emissions related to 

capital consumption occurred outside of China (gap between b1 and b2 in Figure 4-3). Note that 

the capital consumption attributable to China’s final consumption include capital assets located in 

China as well as in other countries, as long as they were used to meet the final consumption of 

goods and services in China. 
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Figure 4-3. Environmental footprints of China’s final consumption during 1995-2015 
assessed by different consumption-based accounting (CBA) methods and scopes. Line a1, 
a2: The area between a1 and a2 represents EPs associated with China’s capital investments since 
a1 shows China’s capital investments in year n and the related EPs included as part of China’s EFs 
in year n using the existing CBA approach while a2 shows the EF accounting with capital 
investments and related EPs omitted. Line b1 shows the reassessed EFs of China using our capital 
endogenization method. The colored area between b1 and a2 indicates China’s EFs related to 
capital consumption in year n (the consumed assets were produced in year 1995, …, n, within China 
and abroad). The area between a2 and b2 indicates the resource use and emissions that occurred 
within China while the area between b1 and b2 indicates the resource use and emissions that 
occurred outside of China. For the EFs related to capital consumption, we further specified the 
years when EPs were generated in Figure C-5. The grey dashed line: additional analysis indicates 
that pre-1995 investments, which were neglected here due to data limitation, will likely have small 
impacts on the values of the reassessed EFs in recent years (e.g., 2011-2015 on the right side of the 
grey dashed line; see Appendix C.7 and Figure C-3). 

Our results demonstrate that, by treating capital investment the same as final consumption of non-

capital goods or neglecting capital investment in footprint accounting, existing CBA methods 

grossly misrepresent China’s EFs. For instance, in 2015, the energy, GHG, mineral, and metal 

footprints (a1 in Figure 4-3) are 41%-114% higher than the values that results from allocating the 

EPs of investments to current and present, domestic and foreign, consumption (b1 in Figure 4-

3). Most of the overestimates come from failing to assign historical EPs to future consumption. 

Those assets will serve final consumption both in China and abroad, hence the embodied EPs need 

to be assigned accordingly. On the other hand, if the EPs associated with the production of capital 
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assets are omitted from footprint accounting (a2 in Figure 4-3), China’s footprints in 2015 would 

be underestimated by 12% to 61% depending on the pressure indicators. 

Table 4-2. Changes of China’s EFK in 2015 by varying the depreciate rates (i.e., effective 
life spans) of capital assets located in China. Notes: a smaller (larger) depreciation rate indicates 
a longer (shorter) life span; type of capital assets: a. equipment by industrial sectors, b. structures 
by industrial sectors, and c. assets by non-industrial sectors. ∆=0−0.1. 

Changes in 
depreciation 
rate  

Footprint type 

Energy  Water  Land  Metal  Mineral  GHG 
-10% (a) -2.2%  -1.9%  -1.5%  -2.8%  -0.8%  -1.7% 
-10% (b) -∆%  -∆%  -∆%  -∆%  -∆%  -∆% 
-10% (c) -4.5%  -4.2%  -4.6%  -4.2%  -6.3%  -5.1% 
-10% (a, b, c) -6.7%  -6.1%  -6.1%  -7.0%  -7.0%  -6.8% 
+10% (a) 2.0%  1.8%  1.4%  2.6%  0.7%  1.6% 
+10% (b) ∆%  ∆%  ∆%  ∆%  ∆%  ∆% 
+10% (c) 4.2%  3.8%  4.2%  4.0%  5.9%  4.8% 
+10% (a, b, c) 6.2%  5.6%  5.6%  6.6%  6.6%  6.3% 

The EFs attributable to capital consumption (EFK) can be effectively reduced by increasing the 

effective life spans of the capital assets (Table 4-2). When all capital assets are used for a longer 

time in China, with a -10% change of the depreciation rates, China’s EFK in 2015 would be reduced 

by 4.2-6.3% across the six indicators. In the case of buildings, due to different internal (e.g., 

inadequate architectural design, poor construction quality and non-effective operation and 

maintenance plans) and external (e.g., demolishing buildings to pursue commercial profits, poor 

planning) factors, the actual life span of buildings in China is about 30 years, much shorter than 

their designed life spans and the actual life spans of buildings in developed countries, which range 

from 44 to 132 years (Hertwich et al. 2019, Wang et al. 2018). For the purpose of using capital 

assets more efficiently and reducing the related EPs, several strategies could be considered in China, 

such as implementing more stringent quality standards for new capital projects, enhancing the 

maintenance of existing capital goods, as well as promoting circular economy strategies. Moreover, 

the EFK appear to be the least sensitive to life span changes of industrial structures in China (e.g., 

warehouses, thermoelectricity plants) mainly due to these structures’ already long lifespans. 

4.4. Discussion 

Capital development influences the attainment of all 17 of the sustainable development goals 

(SDGs) (Thacker et al. 2019). Our research, for the first time, reveals how China’s vast capital 

development from 1995 to 2015 and the associated emissions and resource use are linked to the 

satisfaction of various human needs, both inside and outside of China. It also reveals that, from 

the consumption perspective, foreign countries especially the rich ones outsourced capital services 
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to China, enabled by the country’s capital development, and displaced the associated EPs to China 

and other places in the world. The capital-embodied EPs are mainly attributable to meeting final 

consumption of services, principally real estate, public administration, education and medical 

services in China, and the final consumption of manufactured products in other countries. The 

capital-final consumption linkages and the temporal cross-country interdependencies of the capital 

development are crucial yet neglected by the existing literature that use conventional CBA models. 

Our results also shed light on future capital development. We show that 65% of the capital assets 

acquired by China from 1995 to 2015 remain effective for productive purposes after 2015, and 61% 

or more of the six EPs embodied in the acquired assets are attributable to final consumption 

beyond 2015. Based on the trend of 2011-2015, China’s overall capital stock is still growing, 

measured in monetary values as well as by the amount of embodied resource use and emissions 

(Figure C-6). The compositions of the investing sectors are consistent, with the real estate, 

transportation and storage, public administration, and utility sectors dominating the capital stock 

and the embodied EPs. A recent study highlights that the level of residential floor area in China 

has surpassed that of the United Kingdom on a per capita basis and there is huge overcapacity of 

steel mills and power plants (Hertwich et al. 2019). Together the findings indicate an urgent need 

to emphasize economic and environmental efficiency in the decision-making of capital investment. 

More broadly, our results demonstrate the importance of establishing long-term visions in assessing 

the resource and emission implications of achieving the SDGs through capital development. For 

instance, accounting for the temporal dynamics of GHGs emitted during current capital 

development and their attributions to future capital use can help make equitable carbon budgets at 

the national and global scales. On the other hand, due to the long life spans of capital assets, future 

generations are locked into operating and maintaining historically-developed capital stocks and the 

specific use patterns of assets, which may no longer meet future needs of resources efficiency and 

climate change mitigation (Hertwich et al. 2019). This line of research is beyond the scope of this 

analysis but worth future explorations. 

Capital endogenization and its conceptual values are still quite new for both researchers and policy 

makers. Understanding and accounting for the temporal dynamics of capital goods in economic 

production and in allocating the associated EPs accordingly will benefit sustainability science and 

policy making, where inter-generational implications are considered to be important. In the 

dynamic framework, we further highlight the effects of asset lifespan and the roles of a global 

capital market for mitigating the considerable EPs associated with capital development and use. A 

few measures, such as implementing more stringent quality standards for new capital projects, 

enhancing the maintenance of existing capital goods, as well as promoting circular economy 
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strategies, can effectively decrease the associated resource usage and emissions. Prior studies show 

that short-lived buildings in China have contributed to considerable environmental pressures that 

could have been avoided (Andrews 1993, Cai et al. 2015), consistent to what we found in the 

sensitivity analysis (Table 4-2). More specifically, prior studies indicate that if average building 

lifespan in China can be extended from 30 years to around 50 years, 5.8 km3 water and 426 Mt 

CO2 emissions would be avoided in one year (Cai et al. 2015). Future capital development in China 

needs to specify both “quantity” (more than $94 trillion US dollars predicted by 2040) (Thacker et 

al. 2019) and “quality” (resource-efficient, low-impact). Technology advancements, a major driver 

that historically reduced the consumption of key resources (e.g., water, or energy) and the emissions 

(Guan et al. 2008, Zhou et al. 2020), will also be a promising means for future sustainable capital 

development. 

It is crucial to note that the magnitude of EPs we quantify here (e.g., 300 km3 blue water 

consumption and 14.4 million km2 land use) do not directly indicate the magnitude of 

environmental impacts (e.g., water stress and biodiversity loss) (Steffen et al. 2015). The latter are 

more complex to infer and depend upon many characteristics of the pressures, such as timing and 

location. For example, the environmental impacts of metal ore extraction, mineral mining, and 

GHG emissions importantly depend on temporal accumulations of the pressures. GHGs emitted 

in one year have limited implications on global climate change; resource depletion of metal and 

minerals are often a result of years’ or decades’ unsustainable extraction activities. For water use, 

the environmental impact in the form of water stress typically depends on temporary 

appropriations, unless the water is appropriated from non-renewable groundwater bodies. The 

impacts of land use are more complex, depending on temporal characteristics (i.e., short-term, 

permanent, or irreversible), the types of land-using capital (e.g., orchards and other plantations of 

trees, residential dwellings or industrial buildings), and land use change (e.g., from natural to 

human-dominated habitats). Moreover, some limitations of the method we use remain, primarily 

due to the limited availability of capital data in earlier years and developing countries. Future efforts 

are still needed, however, to develop a consistent dataset of capital investment and consumption, 

with a higher resolution of capital goods and economic sectors and longer time-series and involving 

more countries. Note that although this study focused on China, capital development accounts for 

a considerable fraction of resource use and emissions in many other countries and globally. The 

methodological improvement will become increasingly important as the global production 

networks linked by international trade continue to grow. 

We also note that the new capital model we used in this analysis relies on various types of data―the 

MRIO data, capital time series, and resource use and emissions accounts, all of which come with 
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uncertainty, as documented in refs. EUKLEMS (2019), Feenstra et al. (2015), and Stadler et al. 

(2018). Therefore, the estimates we present here are calculated results and need to be interpreted 

with caution. Crucially, our new model addressed the temporality issue left unresolved by prior 

capital endogenization efforts, e.g., refs. Chen et al. (2018), Lenzen (1998), Södersten et al. (2020), 

and Södersten et al. (2018a), which assume capital consumed today were produced using today’s 

technology. As illustrated by Figure C-7, the EF estimates appear sensitive to this methodological 

improvement. However, such improvement comes with a trade-off. For each year from 1995 to 

2015, the two key technology-related variables regarding production configuration and 

environmental intensity of production are described by matrix A and matrix S in EXIOBASE 3, 

respectively. As such, the temporal scope of our analysis is constrained to 1995-2015, the temporal 

coverage of EXIOBASE 3, although capital statistics in earlier years are available and earlier capital 

investments can have non-negligible implications to the EF estimates of 1995-2015. To the best of 

our knowledge, EXIOBASE 3 offers one of the longest times series of MRIO data and the 

corresponding environmental accounts among all global MRIO databases. Moreover, our model 

and the EP estimates are constrained by the aggregated capital asset classifications. In comparison 

to earlier capital endogenization studies, our work already benefited from the refined capital 

classifications enabled by recent capital data development efforts. Capital goods are classified into 

8-10 asset categories in recent releases of KLEMS (EUKLEMS 2019), which cover most European 

Union countries, the United States, Japan, and Australia, 3-7 asset categories in WORLDKLEMS 

(WORLDKLEMS 2019) for China, South Korea, and Canada, and 4 asset categories in PWT 9.1 

for the rest of countries/regions (see Tables C-2 and C-7). Although such asset resolution suffices 

many economic studies, it remains rough for capturing the varying production inputs and 

environmental intensities associated with the production of different assets. Lastly, the temporal 

dynamics of the capital goods owned and used by final consumers (i.e., households, governments, 

and non-governmental organizations) are yet to be modeled and captured by future works. The 

consumption of those capital goods may follow different depreciation patterns than those used for 

economic production. Unlike the capital used in economic production, the beneficiaries of the 

capital goods owned by final consumers are more straightforward and will not change with time 

unless the capital goods enter the second-hand markets and get a new owner. However, all capital 

goods, whether owned by producers or final consumers, will eventually enter waste streams, either 

though disposal or through recycling and integration into further production. To the best of our 

knowledge, those flows are yet to be modeled and accounted for in future research. 

4.5. Conclusions 
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Enabled by a new global model of capital formation and use, this study quantifies the linkages over 

the past two decades and into the future between six EPs caused by China’s capital formation and 

domestic as well as foreign consumption. We show that only 35% of the assets acquired by China 

from 1995 to 2015, representing 32%-39% of the associated EPs (e.g., water consumption, GHG 

emissions, and metal ore extractions), have been depreciated, whilst the majority rest will serve 

future production and consumption. The capital-embodied EPs are mainly attributable to meeting 

final consumption of services, principally real estate, public administration, education and medical 

services in China, and the final consumption of manufactured products in other countries. The 

outsourcing of capital services and the associated EPs are considerable, ranging from 14-25% of 

depending on the EP indicators. Without accounting for the capital-final consumption linkages 

across time and space, one would miscalculate China’s environmental footprints related to the six 

EPs by big margins, from -61% to +114%. 
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Abstract

Future economic production depends on

existing capital assets such as machinery, and

buildings and hence induces embodied CO2

that emitted in the past. The inertia of capital

assets results in a temporal displacement of

emission responsibilities along capital’s

lifespan. Neglecting this temporal

displacement in conventional emission

accountings misleads the allocation of

capital-associated emission responsibilities to

actual capital consumers in different time

cohorts. Here we quantify the temporal

displacement of capital and associated

carbon emissions within China for the period

from 1995−2017. The results show that

considering the temporal CO2-emission

displacement relieves the emission

responsibilities of capital assets for the year

of formation, with 25‒46% declinations

from conventional accounting methods. To

understand this temporal displacement from

the past to the future, we further design three

capital investment scenarios until 2030, based

on different purposes of capital investments

(e.g., for further economic growth or for

low-carbon development). Overall, the

existing capital in 2017 will still contribute

approximately 10% of China’s carbon

emissions in 2030, and account for more

than 40% for capital-intensive service sectors

like real estate or transportation services. The

virtual temporal displacement of carbon

emissions associated with capital feeds into a

discussion on the equity across generations

due to historical and future ‘commitments’ of

emissions.

Re-allocating CO2
emissions of capital 
investment along capital’s 
full lifespan
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5.1. Introduction 

Considerable investments from government and economic sectors in capital assets such as power 

plants, machinery, and infrastructure have been acquired to enable global fast-growing production 

activities (GIH 2017, Thacker et al. 2019). Capital investments account for around one quarter of 

global gross domestic product (GDP) since 1970 (The World Bank 2020). In some developing 

countries, for instance China, capital investments could account for up to 47% of its national GDP, 

with an annual average growth rate of 12% since 1995 (The World Bank 2020). Building up capital 

assets requires considerable resource inputs and causes pollution (Jiang et al. 2019, Tukker et al. 

2016). For instance, 156 gigatons (Gt) of carbon dioxide (CO2) have been emitted globally to 

produce capital assets invested by China between 1995 and 2015, accounting for 32% of global 

total carbon emissions during the same period (Stadler et al. 2018). 

Different from non-capital products that are purchased to be consumed every year, capital assets 

have two unique features. First, capital assets are invested and used by economic sectors for their 

productive purposes, while the producers of capital assets are usually different from their investors 

and users. This feature hence raises arguments about how to allocate environmental responsibilities 

of capital activities (Chen et al. 2018, Lenzen and Treloar 2004, Södersten et al. 2020, Södersten et 

al. 2018a), to the producers or to the users of the capital assets, or to the final consumers of goods 

and services that are produced by using these assets. Second, capital assets can exist for several 

years or even decades, and serve economic production throughout their lifespans. Taking China as 

an example, approximately one-third of the capital assets (in monetary terms) invested between 

1995−2015 have been depreciated, while the rest remains effective for future production (Chapter 

4). This feature implies that future production and consumption will induce not only direct 

economic inputs and environmental pressures in the future, but also those indirect inputs and 

pressures that historically occurred and embodied in capital. It hence leads to the temporal 

allocation of environmental responsibilities of capital activities along capital’s full lifespan. 

Little is known about the second feature of capital assets and its impacts on the allocation of 

environmental pressures along capital’s lifespan. Literature has investigated the geospatial 

displacement of environmental pressures along supply chains, and allocated them from producers 

to final consumers, yielding consumption-based environmental pressures or environmental 

footprints (Hertwich and Peters 2009, Wiedmann and Lenzen 2018, Wiedmann et al. 2015). Due 

to aforementioned two features of capital, how to treat the purchase of capital assets and allocate 

associated environmental responsibilities is still debated. In a conventional way, literature treated 

capital assets in the same way as final consumption products, allocating environmental pressures 

that occurred during the production of capital assets to the purchasing sectors and countries in the 
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year of purchasing (Davis and Caldeira 2010, Jiang et al. 2022, Wiedmann and Lenzen 2018, 

Wiedmann et al. 2015). Recently, studies treated capital as one production factor (i.e., as 

intermediate inputs for economic production), and allocated capital-related environmental 

pressures to final consumption across sectors and countries (Chen et al. 2018, Lenzen and Treloar 

2004, Södersten et al. 2020, Södersten et al. 2018a). However, the intertemporal features of capital 

assets remain unaddressed since capital assets used in a specific year are from different age cohorts, 

and are produced using time-specific production characteristics, trade networks, and environmental 

intensities. 

To properly understand this important temporal dimension of environmental responsibility 

displacement requests a full picture of capital flows across sectors and regions (according to the 

first feature) and throughout its lifespans from the past to the future (according to the second 

feature). This study presents a novel analysis of capital development and quantifies temporal CO2 

displacement along capital production, trade and consumption over the period of 1995−2017 as 

well as under three scenarios of capital investment for the near future until 2030. We take China as 

the study area because capital growth is the major driver of China’s resource consumption and 

emissions (Jiang et al. 2022), and conduct this analysis at the provincial level since great spatial 

variations in socioeconomic development patterns and resource endowments exist across Chinese 

provinces (Feng et al. 2013, Jiang et al. 2019). We first develop an inter-provincial capital-

endogenized multi-regional input-output (MRIO) model to link provincial capital depreciation to 

the production side of actual capital using sectors, and subsequently to the consumption side of 

final goods and services of each province. Second, to understand the temporal dimension of 

environmental responsibility displacement from the past to the future, we design China’s future 

capital investment pathways by a ‘business-as-usual’ (BAU) scenario and two capital-oriented 

scenarios into 2030. The two capital-oriented investment pathways are developed on the principle 

of improving economic growth and social well-being (KES, here ‘K’ standing for capital), and the 

principle of low carbon development (KLC), respectively. We then quantify spatiotemporal CO2 

displacements embodied in capital flows across sectors and provinces, and over time. We show 

that temporally displaced CO2 emissions along capital’s full lifespan take a significant share in total 

emissions of China, and capital-intensive service sectors. This virtual temporal displacement, 

although virtual, is important for assessing the sustainability and efficiency of national resource use 

especially in developing countries which may have capital investment booms in short periods, and 

the equity of resource use across generations. 

5.2. Methods 
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The procedures to endogenize capital investment and consumption into the economic supply 

chains of China are following (Chapter 4), which developed a capital-endogenized MRIO model 

for a global case. However, lacking systematic, complete, and consistent capital development data 

with high asset-by-sector resolutions and time-series MRIO tables makes this fine-scale capital-

endogenized endeavor challenging. This section will start with the construction of time-series 

datasets of provincial capital investment (Section 5.2.1) and inter-provincial MRIO tables (Section 

5.2.2), to fill the data gap of this sub-national capital endogenization model for China. After that, 

the main procedures of endogenizing capital investment and consumption into China’s sub-

national MRIO tables will be introduced (Sections 5.2.3 and 5.2.4). Lastly, the construction of 

three capital investment pathways until 2030 (i.e., BAU, KES, and KLC) and the key assumptions 

to support the three pathways will be elaborated (Section 5.2.5). All the data sources are 

summarized and described in Appendix D.1. 

5.2.1. Constructing annual capital investment and depreciation flows 

5.2.1.1. Annual capital investment by sector and by province 

Official capital investment data from the National Bureau of Statistics of China (NBSC) are 

recorded by two main annual series, ‘total investment in fixed assets (TIFA)’ and ‘newly increased 

fixed assets (NIFA)’. TIFA refers to the ‘workload’ of activities in construction and purchases of 

fixed assets in monetary terms (NBSC 2017b), which may not produce results that meet standards 

for fixed assets in the current period or may take many years to become qualified for fixed assets 

(Chow 1993). NIFA refers to the value of investment projects completed and put into production 

or meeting the standards for fixed assets in the current year (NBSC 2017b), hence reflecting the 

fixed assets formed in the current period as a result of those effective investment projects taking place 

in the current and previous periods. Given that the concept of ‘capital investment’ used in the 

perpetual inventory method (PIM), a standard geometric method that is adopted in this study to 

calculate capital consumption time series, are those effective capital assets that have been completed 

and put into production, this study relies on NIFA to construct the provincial capital investment 

time series. Official NIFA are distinguished as rural NIFA and urban NIFA by 19 major economic 

sectors (see Table D-1, Appendix D). Particularly, urban NIFA are also recorded by 40 specific 

industrial sectors (see Table D-1). More details about the differences between TIFA and NIFA 

and the problem of directly using TIFA in PIM are discussed in Appendix D.2. 

Although NIFA (denoted as N) is more reasonable than TIFA to be used as capital investment 

(denoted as I) in PIM, an upward adjustment has to be made to transfer N to I. This upward 

adjustment is to include the projects less than half million yuan by non-state firms that are not 
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reported in official investment statistics plus the value of likely underreported (Young 2000). The 

standard I by sector s of province m in year t could be estimated as: 

Im,t,s=
Nm,t,s

1-λm,t,s
, (λ<1)                                                                                                                     (5-1) 

where 𝜆𝜆 is to adjust N by the effects of missing and/or underreported investment, respectively. 

There is little information available on 𝜆𝜆 especially those at provincial level. We apply the national 

λt,s from Wu (2015) to adjust Nm,t,s, and further scale Nm,t,s into the national capital investment by 

sector s in year t from WORLDKLEMS (WORLDKLEMS 2019). Therefore, we also specify 37 

sectors (Table D-2) in our provincial capital investment dataset, which are consistent with the 

sectoral classification in WORLDKLEMS. 

5.2.1.2. Disaggregating capital investment by asset type 

There are limited investment data by asset type, especially with specific investing sectors. In the 

official investment statistics, under the subcategories of TIFA ‘capital construction’ and ‘technical 

update and transformation’, there are data for ‘equipment’ and ‘structures’. The ‘structures’ 

indicator also distinguishes ‘housing’ or ‘non-productive’ constructions. We rely on TIFA by these 

categories (although they are not directly relevant with NIFA), and industrial investment statistics 

in annual statistics bulletins (DITS multiple years) about industry and transportation economy, 

commune and brigade factories, and township and village enterprises to disaggregate the capital 

investment. According to Wu (2015), this study also disaggregates four categories of industry-

specific fixed assets, namely, ‘equipment’, ‘residential structures’, ‘non-residential structures’ and 

‘others’. We re-allocate ‘others’ into ‘equipment’ and ‘non-residential structures’ by a ratio of 3:7 

according to Wu (2015). 

Without category-specific data on investments in non-industrial sectors (i.e., agriculture, 

construction, and all services), the estimation of capital investment by non-industrial sectors is 

largely based on assumptions. We assume that the non-industrial sector-specific I is equal to the 

official NIFA of that sector. Also due to the lack of necessary information, we use the share of 

productive structures given by the economic-wide TIFA to decompose the total investment into 

non-residential structures and equipment. 

All the capital investment data by sector and asset will be scaled into the national capital investment 

from WORLDKLMES (WORLDKLEMS 2019). 

5.2.1.3. Constructing capital consumption time series 
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The procedures to trace and allocate the contribution of year t’s capital investment to year n’s inter-

industrial production networks are similar to the global capital endogenized MRIO model 

(Chapter 4). The key step to obtain the supply chain-wide capital consumption matrix Dt,n
K  (t≤n) 

within China is to re-create the concordance tables that are used to convert capital assets and capital 

consumption sectors into the sectoral classifications of MRIO tables. The classifications of capital 

consumption sectors (37 sectors from WORLDKLMES, Table D-2) are different from the 42 

MRIO-sectors (see section 5.2.2, and Table D-5). The final capital consumption matrix Dt,n
K  

within China has capital producing and capital consuming sectors along rows and columns, 

respectively; and each element records the quantity of assets that were invested in year t and 

consumed (i.e., depreciated) in year n. 

5.2.2. Constructing China’s inter-provincial MRIO table series (1995−2017) 

We rely on the current best available MRIO tables in 2007 (Liu et al. 2012), 2010 (Liu et al. 2014b), 

2012 (Liu et al. 2018), 2015 and 2017 from CEADs (Zheng et al. 2020), 1995−2006 from Wang 

(2017) as the benchmarks to construct the inter-provincial MRIO table time series. Before that, we 

first adjust the final demand, exports, imports and value-added data in the benchmarking MRIO 

tables (see Appendix D.3), according to the available statistical data from the NBSC. This is 

because we found that some benchmarking MRIO tables have big data gaps from the available 

statistical data, especially for early years. We rebalance these benchmarking MRIO tables by the 

GRAS method (Günlük‐Şenesen and Bates 1988), and use them to estimate the MRIO table in the 

missing years. The GRAS method can quantify the intermediate input matrix Z’ in the target year 

based on the matrix Z in the reference year and gross intermediate inputs, gross intermediate 

outputs, and total outputs in the target year. Details about estimating final demand, exports, total 

outputs, and using the GRAS method to balance the MRIO tables in the target years could be 

found in Appendix D.3. In addition, the MRIO tables in 2007 and 2010 only have 30 regions 

(without Tibet) and 30 sectors, while others have 31 regions and 42 sectors. To ensure the 

consistency of MRIO table time series, we omit all the transactions relevant to Tibet in other MRIO 

tables, meanwhile disaggregate the 30 sectors into 42 sectors for further calculation. 

5.2.3. Re-assigning capital-related carbon emissions  

The supply chain-wide CO2 emissions (Ft,n
K ) generated in year t when the capital inputs allocated to 

year n’s production activities (i.e., Dt,n
K ) can be estimated by IO modelling, Ft,n

K =St�LtDt,n
K , where St 

is a row vector of direct carbon emission intensities of economic activities, collected from CEADs 

(Shan et al. 2018, Shan et al. 2020a, Shan et al. 2016); Lt is the Leontief inverse matrix (Leontief 

1970), describing the supply chain-wide economic outputs associated with per unit final goods and 
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services in year t. When allocating Ft,n
K  to the actual capital using sectors in year n, we can obtain 

production-based emissions of capital depreciation in year t for year n’s production. When assigning 

Ft,n
K  to final consumption (Yn

FC, including final expenditure of rural population, urban population, 

and government), GFCF (Yn
GFCF ), and international exports (Expn ) in year n, we can obtain 

capital-related consumption-based emissions in year t for different economic activities in year n 

(Eq. 2-4). 

St,n
K LnYn

FC                                                                                                                                 (5-2) 

St,n
K LnYn

GFCF                                                                                                                             (5-3) 

St,n
K LnExpn                                                                                                                              (5-4) 

where St,n
K  describes the one-unit carbon emissions of province-sector pairs in year t that consumed 

Dt,n
K  in year n, calculated by St,n

K =φFt,n
K xn�

-1, in which xn is a column vector of total economic outputs 

of year n, and φ is a summation vector of ones. 

5.2.4. Re-assessing carbon emissions of provinces 

Different from conventional emission accounting of capital activities (represented by 

consumption-based carbon emissions of GFCF in one-year base, CBEt
GFCF=StLtYt

GFCF), we re-

allocate CBEt
GFCF to the actual capital using sectors or further to the final demand throughout the 

assets’ lifespans according to annual Ft,t
K , Ft,t+1

K , Ft,t+1
K , … This re-allocation of FK hence changes 

annual carbon emissions accounting of provinces from both production-based and consumption-

based accounting (i.e., consumption-based carbon emissions of final demand, 

SnLn(Yn
FC+Yn

GFCF+Expn )). Two steps are taken to re-assess provincial carbon emissions. One is 

omitting the conventional PBEs and CBEs that are related to GFCF of a center province. The 

other is adding back FK re-allocated to capital using sectors generating PBEs after FK re-allocation, 

or adding back FK re-allocated to final demand generating CBEs after FK re-allocation. 

5.2.5. Developing scenarios of capital investment until 2030 

We project China’s capital investment pathways from reference year 2017 up to year 2030 by two 

capital-oriented scenarios, as variations of a ‘business-as-usual’ (BAU) scenario as the baseline 

scenario. The two capital investment pathways are developed on the principle of improving 

economic growth and social well-being (KES), and the principle of low carbon development (KLC), 

respectively. We select 2030 for a short-term analysis of capital investments because capital assets  
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Table 5-1. Summary of the ‘business-as-usual’ (BAU) scenario and the two capital 
investment scenarios. A is the direct coefficient matrix showing inputs per-unit total output. vd 
is the value-added matrix. YFC is the final consumption matrix. YGFCF is the gross fixed capital 
formation (GFCF) matrix. F is a row vector of direct carbon emissions of economic activities. 

 Scenarios   
 BAU KES KLC 
Explanation Economic 

development 
(including capital 
investment) and 
carbon emissions 
following current 
paths and climate 
policies 

A particular increase in 
infrastructure 
investment (i.e., 
transportation, power, 
water, and 
communication) to 
improve economic 
growth and social well-
being* 

A particular increase in 
capital investment in low-
carbon technologies by the 
electricity generation sector, 
and end-use sectors such as 
transportation services** 

Changes in 
A 

General reductions 
in direct inputs due 
to the improvement 
in production 
efficiency, and 
particular changes in 
energy related 
sectors due to the 
changes in energy 
mix 

Same as BAU Adjusting A in BAU 
according to the energy mix 
changes under the low-
carbon development 

Changes in 
YFC 

Estimated by the 
predicted 
population, and per-
capita final 
expenditure 

Particular increase in 
YFC from the seven 
infrastructure-related 
sectors compared with 
BAU 

Particular changes in YFC 
from the using sectors of 
low-carbon technologies 
compared with BAU 

Changes in 
YGFCF 

Estimated by the 
capital investment of 
each investing 
sectors, and the 
capital production 
structure in the base 
year 

Allocating specific 
investment in seven 
infrastructure 
categories to associated 
capital producing 
sectors, and further 
adjusted into the capital 
intensity of unit GDP 
in BAU 

Allocating specific 
investment in low-carbon 
technologies by electricity 
generation sector and end-
use sectors to associated 
capital producing sectors, 
and further adjusted into 
the capital intensity of unit 
GDP in BAU 

Changes in 
vd 

GDP growth rate 
set as 6.5% before 
2020, and 5% after 
2020 

Changes according to 
YFC and YGFCF 

Changes according to YFC 
and YGFCF 

Changes in 
F 

Consistent with the 
change in the 
intermediate inputs 

Consistent with the 
change in the 
intermediate inputs 

Adjusting F in BAU 
according to the carbon 
emissions of generation 
sector and end-use sectors 
under the low-carbon 
development 

Notes: * associated capital investment in each infrastructure are collected from GIH (2017); ** 
associated capital investment in low-carbon technologies by electricity generation sector and end-
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use sectors are collected from World Energy Outlook (IEA 2017), and only relative changes in key 
parameters such as carbon intensity of one unit GDP are used. 
 

currently in use in China are on average 4−4.6 years old, and the associated environmental pressures 

have on average occurred in the last 5-6 years (Chapter 4). Moreover, current policies in China 

such as peaking carbon emissions mostly set 2030 as the targeting year. All three scenarios are in 

constant prices of year 2017 and developed based on the economic activities and CO2 emissions 

in 2017 as the base year. We assume that the national average capital intensity of one-unit GDP is 

the same for each scenario. All the scenarios will be implemented by manipulating the MRIO tables 

of the year 2017 to each projecting year, as summarized in Table 5-1. The narrative and 

implementation of each scenario are further described in the following sections and Table 5-2. 

Table 5-2. The main parameters in the three capital investment scenarios and the base year. 
 Base year 

(2017)* 
BAU 
(2030) 

KES 
(2030) 

KLC 
(2030) 

Economic-related     
GDP (in billion, 2017 Yuan) 83210 163725 165556 156905 
Share of GFCF in GDP 42.7% 42.7% 42.4% 46.6% 
Electricity price (annual change until 
2030) 

 0.93% 0.93% 0.9% 

Cumulative investment (in billion, 
2017 Yuan)** 

    

Electricity/water  28656 31327  
Transportation  47402 51731  
Telecommunication  3543 3750  
Low-carbon technologies    13003 

Social-related***     
Population (billion) 1.39 1.46 1.46 1.45 
Urbanization rate 59.0% 70.8% 70.8% 71.6% 

Energy-mix-related****     
Total energy supply (million toe) 2490 3540 3578 2820 

Coal  1819 2353 2379 1802 
Oil  195 252 255 156 
Natural gas  122 213 215 191 
Nuclear  65 278 281 218 
Renewable 289 442 447 453 
Power generation (TWh) 6557 9321 9426 8771 

Total energy use (million toe)     
Coal 1970 2549 2577 1873 
Oil 578 822 831 711 
Gas 198 393 397 374 
Nuclear 65 164 166 218 
Renewables 289 475 480 455 

Note: * data for the base year were collected from the National Bureau of Statistics of China (NBSC 
2020); ** the cumulative investment in the seven infrastructure under the KES, and on the low-
carbon technology under the KLC are listed in this table, which do not show the total cumulative 
investment from all 42 economic sectors; *** future population and urbanization rate of China are 
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collected from Chen et al. (2020); **** the associated energy mix data of China are collected from 
the New Policy Scenario developed in the World Energy Outlook 2017 (IEA 2017). 

5.2.5.1. ‘Business-as-usual’ (BAU) scenario 

The BAU scenario, referred to De Koning et al. (De Koning et al. 2015), is developed by continuing 

historical trends of population growth, efficiency improvements, and productivity growth until 

2030 (summarized in Table 5-2). The trends in general efficiency improvement (influenced by 

current economic and climate policies) into 2030 are determined by actual trends in the last decade, 

looking in detail at sector- and province-specific development (recorded in A). If we assume total 

outputs in the projecting year would not change, efficiency improvements reduce intermediate 

inputs (including domestic inputs and imported inputs) for economic activities and further lead to 

substantial economic growth. We then make up the difference to meet overall GDP growth 

(recorded in vd) based on the autonomous economic growth accomplished by efficiency change. 

GDP growth rates are set as 6.5% per year before 2020, and 5% per year after 2020 (Guan et al. 

2008, Yang et al. 2021). Final consumption of rural and urban population (recorded in YFC) is 

estimated based on projected population, urbanization rates, and per-capita expenditures. Rural 

and urban population in each province until 2030 are estimated using total provincial population 

and national urbanization rate, obtained from Chen et al. (2020). Per-capita final expenditure of 

rural and urban population until 2030 are estimated by the same method used in previous studies 

(Hubacek and Sun 2001, Hubacek and Sun 2005). Final consumption of government is estimated 

according to the total changes in the final consumption of rural and urban population. Capital 

investment of sectors is estimated according to required future capital stock of each sector. We 

first predict the capital stock intensity of value-added of each sector in 2030, based on its capital 

stock intensity in the base year, elasticity parameter, and changes in capital price (Leimbach et al. 

2017). Total capital stock of each sector in 2030 can be calculated by multiplying the capital stock 

intensity with its total value-added. Annual average capital investment until 2030 can be calculated 

by the PIM, given that the capital stock in year T equals to ∑ I(1-δ)T-t+1T
t , where 𝛿𝛿  is the 

depreciation rate of each asset. After that, we distribute the capital investment of each investing 

sector to capital producing sectors, based on the capital production structure in 2017, to obtain 

YGFCF in target year. International export is assumed to proportionally increase according to growth 

of GDP. Total outputs, intermediate inputs, and international imports for intermediate inputs in 

the target year can then be calculated by the basic equations of IO modelling. We balance total 

inputs and outputs through GRAS method. Furthermore, we adjust the balanced MRIO tables 

according to the changes in energy mix (Figure D-2, Appendix D). The total energy supply and 

use are consistent with the projections in IEA (2017). Changes in energy supply and use per source 

(i.e., coal, oil, natural gas, nuclear and renewable energy) lead to proportional changes in the 



5. Re-allocating CO2 emissions of capital investment along capital’s full lifespan 

87 
 

transactions with associated sectors (e.g., coal mining). We also adjust the transactions from 

different energy sources to electricity generation sectors according to the changes in their shares in 

total power generation. The adjusted MRIO tables are balanced again using GRAS method. Direct 

carbon emissions from sectors are changed as well (recorded in F). It is assumed that the changed 

intermediate inputs in sectors brings changes in emissions accordingly. 

5.2.5.2. Capital for economy and social well-being (KES) scenario 

Under the KES scenario, China is increasingly focusing on the role of capital assets, especially 

infrastructure, to improve economic growth and social well-being (China 2020). We rely on the 

associated outlook of infrastructure development in China (summarized in Table 5-2) from GIH 

(2017), and integrate future infrastructure investment data into the MRIO model for carbon 

emission accounting. Seven infrastructure categories are covered in this scenario, i.e., roads, 

railways, airports, sea ports, electricity generation and supply, water generation and supply, and 

telecommunications. The KES scenario is developed on top of the BAU scenario. We first 

determine the sectors that invest in infrastructure. That is, we assume roads, railways, airports, and 

sea ports are mainly based on investments by the sector ‘Transportation, storage and post services’, 

electricity/water generation and supply are invested by the sector ‘Production and supply of electricity, 

heat, gas, and water’, and telecommunications are invested by the sector ‘Information transfer, software 

and information technology services’. According to statistical data recorded in NBSC (NBSC 2018b), 

investments in roads, railways, airports, and sea ports annually account for approximately 94% of 

total investment from ‘Transportation, storage and post services’, investment in electricity/water 

generation and supply accounts for approximately 97% of total investment from ‘Production and 

supply of electricity, heat, gas, and water’, and investment in telecommunications annually accounts for 

approximately 92% of total investment from ‘Information transfer, software and information technology 

services’. For each infrastructure category, we disaggregate its investment into three assets (see 

section 5.2.1.2). Asset-specific investment data will be allocated to capital producing sectors 

according to sectoral shares in GFCF, obtaining a GFCF matrix that represents the GFCF of 

producing sectors for building up the infrastructure. Furthermore, we scale the GFCF matrix of 

infrastructure according to the annual shares of investment in associated infrastructure in the total 

investment from the associated investing sector. Based on the scaled GFCF matrix, we further 

adjust the associated GFCF of infrastructure producing sectors under the BAU scenario (if there 

is any investment default) to get YGFCF under the KES scenario. Final consumption from seven 

infrastructure-related sectors will change proportionally according to their investment. We assume 

more investment in specific infrastructure will lead to more consumption (evidence to support this 

assumption can be found in Figure D-3). Value-added in this scenario would change due to 
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changes in final demand, compared with the BAU scenario. Intermediate inputs would also change 

to meet economic production of final demand and exports. The adjusted MRIO tables are balanced 

again using GRAS method. Direct carbon emissions from sectors are changed as well. It is assumed 

that the changed intermediate inputs in sectors compared with those in the BAU scenario changes 

emissions accordingly. 

5.2.5.3. Capital for low-carbon development (KLC) scenario 

This scenario is designed to focus on China’s future capital investment in low-carbon technologies 

by the electricity generation sector, and end-use sectors such as transportation services. The 

scenario assumes additional capital investments for relevant economic sectors (represented in 

YGFCF) which will yield a reduced carbon intensity (parameters leading to F). Data (Table 5-2) for 

energy supply and energy use by energy sources (i.e., coal, oil, natural gas, nuclear and renewable 

energy), capital investment requirements on low-carbon technologies (e.g., carbon capture and 

storage, or electric vehicles) by different using sectors (e.g., industry sectors, or transportation 

services), carbon emissions by economic sectors are collected from the World Energy Outlook 

2017 (IEA 2017). The procedures to construct YGFCF matrix under the KLC scenario according to 

the capital investment in low-carbon technologies and further adjustments on YFC matrix are 

described in the development of the KES scenario. Changes in energy mix in the MRIO tables 

follows Figure D-2, which has been described in the development of the BAU scenario. 

International export would decline whereas international import would increase (O’Neill et al. 

2017), since the objective of this capital investment pathway is to reduce China’s territorial CO2 

emissions. The adjusted MRIO tables are balanced again using the GRAS method. Lastly, we 

further adjust the direct carbon emissions from sectors accordingly, based on emissions data from 

the World Energy Outlook. It should be noted that only relative changes in key parameters such 

as technology use in economy (A) and carbon intensity per unit of GDP are used in developing the 

KLC scenario, as more structural economic changes are not assumed to occur on the timescale at 

which the scenario is considered. 

5.3. Results 

5.3.1. Re-allocating monetary capital and associated carbon emissions 

Distinguishing capital formation from capital investment and use is a prerequisite to understand 

the full lifespan of capital. Monetary capital flows and associated CO2 flows across key sectors of 

capital investment (i.e., sectors undertaking the investment to build their capital stock), capital 

production (so-called ‘capital formation’ in national accounting), capital use (i.e., the original 

investing sectors), and final demand throughout the full lifespans of capital assets have been 
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constructed in this study (Figure 5-1). Overall, the structures of the monetary capital flows and 

associated CO2 flows look similar. In addition, CO2 emissions from the primary production sectors 

such as electricity generation are not included in Figure 5-1b, considering that those sectors are 

not exclusively for capital-related production. 

Monetary capital flows (Figure 5-1a) start from capital investing sectors to capital producing 

sectors, and end in capital using sectors for the production of final demand. Real estate services, 

transportation services, electricity generation, and residential services are the main capital investing 

sectors in China, which together accounted for half of total capital investment during the study 

period 1995−2017. Information of annual capital formation is recorded as gross fixed capital 

formation (GFCF) in the national accounts, which show that construction (contributing 58% of 

total GFCF), general equipment manufacturing (7%), and transportation equipment manufacturing 

(5%) dominated China’s capital formation over 1995−2017. As such, main flows from capital 

investment to formation are observed among these key capital investing and producing sectors. 

Capital using sectors (i.e., the original investing sectors) will take over capital assets produced by 

capital formation sectors for their productive purposes over years. We find that approximately one-

third of all the capital assets built-up during 1995–2017 have been depreciated to produce final 

consumption (14%), fixed capital (12%), and international exports (6%) by 2017. The remaining 

assets are still effective for future economic activities. Based on the three capital scenarios 

developed in this study, we show that another one-third (31%) of the capital assets built-up in 

1995−2017 would be depreciated between 2018 to 2030. This depreciation in near thirteen years 

is almost equal to the depreciation during the past two decades. It can be explained by the rapid 

growth of capital investment in recent years in China (Figure D-4), such that the depreciation of 

capital assets built-up before 2017 in these two periods are mostly from recent years. As estimated 

in Chapter 4, the capital assets depreciated in China in 2015 were averagely invested in the 

proceeding five years. 

Our study reveals that conventional estimations of supply chain-wide CO2 emissions of ‘capital 

investment’ are, to some extent, misleading the allocation of capital-related emission 

responsibilities to capital producers instead of capital users. Sectors that mainly contribute capital-

related CO2 emission flows are same as those in the monetary flows (Figure 5-1b). the construction 

sector took the largest share in consumption-based CO2 emissions of capital formation (CBEGFCF), 

accounting for 68% of total CBEGFCF during 1995–2017. This result is consistent with precious 

findings regarding CBEs of GFCF sectors (Davis and Caldeira 2010, Feng et al. 2013). As for 

consumption-based CO2 emissions of capital use and depreciated capital (FK), real estate service, 

transportation services, and residential services are observed as main contributors. CO2 emissions  
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Figure 5-1. Monetary capital flows (a) and assocaited carbon transfers (b) among key 
sectors of China’s capital development. The cumulative amounts of capital-related flows 
between 1995‒2017 are shown in the plots. Only the effective capital investments from capital 
investment sectors to capital fromation sectors are shown in (a). Capital-related flows for the period 
2018−2030 are shown as the average flows of all three sceanrios developed in this study. Seven key 
sectors highly relevant for China’s capital development are selected in the plots. Full names of 
sectors could be found in Table D-5. 

embodied in capital depreciation flows can also be allocated to final goods and services by 2017, 

between 2018 to 2030, and for long-term future production after 2030, which account for 35%, 

33%, and 32%, respectively, of total CBEGFCF during the study period. It is important to note that 

supply chain-wide CO2 emissions embodied in capital investment and use have rarely been 
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estimated for actual investing sectors. Previous supply chain-wide CO2 emissions of ‘capital 

investment’ were calculated for capital formation sectors, i.e., CBEGFCF (Davis and Caldeira 2010, 

Feng et al. 2013). As mentioned before, capital investing sectors―the final users of capital 

assets―are different from capital formation sectors. Therefore, a mis-allocation of capital-related 

emission responsibilities to capital producers instead of capital consumers is revealed in 

conventional input-output table-based estimates of supply chain-wide CO2 emissions of ‘capital 

investment’. Re-allocating this part of capital-related CO2 emissions to the acutal capital consumers 

or further to final goods and services throughout the full lifespan of capital, substantially alters CO2 

emission accounting at both regional and sectoral levels. 

5.3.2. Capital re-allocation altering regional carbon emission accounts 

How we assign capital-related CO2 emissions substantially influences regional CO2 emission 

accounting from both production and consumption perspectives (Figure 5-2). Conventionally, 

scholars treat capital assets the same way as non-capital goods, and assign capital-related CO2 

emissions at annual basis to the producing region yielding PBEs of GFCF or to the purchasing 

region yielding CBEs of GFCF. In this study, we treat capital assets as production inputs by 

endogenizing capital investment and consumption into economic production over time and across 

provinces, and re-allocate supply chain-wide CO2 emissions of annual capital depreciation (FK) to 

capital using sectors for production-based accounting, or to final demand for consumption-based 

accounting. 

 
Figure 5-2. Alteration to the production-based emissions (PBEs) and consumption-based 
emissions (CBEs) due to capital re-allocation at the (a) national, (b) regional, and (c) 
provincial levels. In (a), the national PBE and CBE with and without the re-allocation of capital-
related carbon emissions (FK) are shown. In (b), the changes in regional per-capita PBEs and CBEs 
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for the year 2017 with and without the re-allocation of FK are plotted. The geographical partition 
of China can be found in Table D-3. In (c), the inter-provincial inequality of per-capita PBE and 
CBE in 2017 with and without the re-allocation of FK are illustrated. The gray dashed line represents 
the perfect equality of per-capita carbon emissions. 

National PBEs and CBEs after FK re-allocation are lower than conventional PBEs and CBEs 

(Figure 5-2a). The reason is that only one third of the carbon emissions of GFCF occurring during 

1995‒2017 would be assigned to economic production over the same period (Figure 5-1b), and 

the rest hence will enable future production. From the production perspective, national PBEs after 

FK re-allocation would decrease by 25‒35% since 1995, compared with conventional PBEs. The 

decrease in national PBEs implies that conventional PBEs of GFCF in a certain year is still larger 

than cumulative FK embodied in all capital depreciation from 1995 to that year for the production 

of capital using sectors. The changes would even be larger from a consumption perspective with 

31‒46% decrease from conventional CBEs. We also observe that the relative changes in recent 

years from conventional emission accounts to our capital-endogenized accounting method are 

generally smaller than those in the early years around 1995. Economic growth needing more capital 

inputs is one reason, whilst neglecting pre-1995 capital investment and their carbon emissions (due 

to lacking data) for current production is another. Our estimates of capital consumption and 

associated FK are conservative, especially for the early years in our modeling period (e.g., year 1995). 

For the later years, the impacts of neglecting pre-1995 capital investments become much smaller. 

Starting with 2013, less than 1% of the FK was allocated from the carbon emissions embodied in 

capital goods invested in 1995. 

Changes in PBEs and CBEs drive associated changes in per-capita carbon emissions (Figure 5-

2b). Similar to changes in national PBE and CBE, regional per-capita PBEs and CBEs after FK re-

allocation also decline compared with conventionally accounted emissions. Changes in per-capita 

carbon emissions vary significantly among regions for the year 2017, especially per-capita PBEs. 

The per-capita PBEs after FK re-allocation are observed with a range of 15‒38% reduction in 2017. 

The Northwest, the North, and the Northeast have relatively larger reductions in their regional 

per-capita PBEs, compared to regions such as Beijing-Tianjin and the Central Coast. Yet, these 

northern regions only invested around 28% of the total capital formation in 2017. We also observe 

that changes in per-capita PBEs with and without FK re-allocation are consistent with regional 

changes from conventional per-capita PBEs to CBEs. Thus, to explain the relatively larger changes 

in per-capita PBEs in these northern regions, their net-exporting roles of capital assets and 

associated carbon emissions may be the main reason. In contrast, the relatively larger changes in 

per-capita CBEs are found in the regions having more capital investment, such as the Central (-

36%) and the Southwest (-36%) which contributed 28% and 17%, respectively, of national total 
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GFCF in 2017. Lastly, our results also reveal that capital re-allocation would decrease the inter-

provincial inequality of per-capita PBEs, but also to some extent increases the inequality of per-

capita CBEs (Figure 5-2c). This is because the distinction among provinces of per-capita capital 

investment (with a standard deviation of 0.20) is more pronounced than that of per-capita CBEs 

(with a standard deviation of 0.17), whereas smaller than that of per-capita PBEs (with a standard 

deviation of 0.21). 

5.3.3. Temporal displacement of carbon emissions is considerable 

To reveal the full lifespans of capital assets from the past to the future, future production and use 

of capital in China are projected by a ‘business-as-usual’ (BAU) scenario and two capital-oriented 

pathways (i.e., KES and KLC scenarios) that focus on different purposes of capital investment. 

Conventional PBEs and CBEs of China substantially increase under the BAU and KES scenarios 

(Figure 5-3a), but show modest growth (less than 2%) under the KLC scenario, with potential 

decreases in some regions (e.g., the Beijing-Tianjin, and the Southwest, see Figure D-5). 

Uncertainty analysis (details see Appendix D.9) shows that national carbon emissions in 2030 

would have the largest fluctuation of -4 to +6% under the KES scenario (Figure 5-3a). Moreover, 

compared with the BAU scenario, an extra 7% investments in low-carbon technology under the 

KLC scenario would gain a 9% reduction in national PBE, but would also result in a 4%-decrease 

in national GDP. Detailed analysis of future projections of conventional PBEs and CBEs of China 

and each region can be found in Appendix D.7. 

When continuing allocating FK occurring during 1995−2017 to economic production and 

consumption in the near future, our results show that approximately 10% of national carbon 

emissions (represented by PBE or CBE after FK re-allocation) in 2030 would be allocated from the 

period of 1995−2017 (Figure 5-3b). This share of pre-2017 FK in national carbon emissions would 

be even higher in 2018 and 2019, accounting for 23−30%, since the re-allocated FK from a certain 

year decreases along the lifespans of assets (Figure D-7). The total share of FK (including both 

pre-2017 emitted and future emissions between 2018 and 2030) in national PBE and CBE after FK 

re-allocation would be respectively 32−34% and 37−39% in 2030, and both have ±2% fluctuations 

based on the uncertainty analysis. 

In this study, we regard the part of capital-related emissions (i.e., re-allocated FK) that occurred 

before year n but are finally allocated to economic production and consumption in year n as 

historically committed carbon emissions. The historically committed carbon emissions 

conceptually are different from ‘commitment to future emissions’ (regarded as future committed carbon 

emissions from hereon) that were estimated by Davis et al. (2010) and Tong et al. (2019). The 
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future committed carbon emissions look forward at expected carbon emissions after year n by 

operating existing fossil fuel-burning infrastructure by year n, extrapolating the implications of 

investments in capital assets up to the present. Our historically committed carbon emissions look 

backward at how much of the historically emitted CO2 that was embodied in capital assets should 

be attributed to economic production and consumption in a year n, as production and consumption 

rely on these capital assets that were built up in the years preceding year n. Based on the three 

capital scenarios, this study extends the analysis of spatiotemporal downstream impacts of capital 

development on regional carbon emission accounting, and indeed quantify both historically and 

future committed carbon emissions of all economic sectors, while the previous future committed 

carbon emissions were only estimated for the power generation sector. 

 
Figure 5-3. National carbon emissions with and without the re-allocation of capital-related 
carbon emissions under the three scenarios until 2030. In (a), the color-shaded areas represent 
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the 25th—75th percentile of uncertainty analysis results. In (b), the national carbon emissions and 
GDP for the year 2017, and year 2030 under the three capital scenarios are showed. The re-
allocated carbon emissions of capital depreciation (FK) are disaggregated into those occurred in the 
period of 1995−2017 (with solid purple edge line) and those would occur in the period of 
2018−2030 (with dashed purple edge line). 

Contributions of historically and future committed carbon emissions to sectoral carbon emission 

(represented by PBE or CBE after FK re-allocation) vary widely in our analysis. Table 5-3 

summarizes historically and future committed carbon emissions of four capital-intensive 

production sectors in 2030 under each scenario. We find that most carbon emissions of the 

electricity generation and supply sector are future committed emissions, as highlighted in previous 

studies (Davis et al. 2010, Tong et al. 2019), whereas historically committed carbon emissions of 

its production and consumption are relatively small (only accounting for 4-6%). In contrast, 

historically committed carbon emissions of service-related sectors would occupy a significant share 

of their future carbon emissions. Particularly for real estate services and residential services, 

historically committed carbon emissions would dominate their future carbon emissions from both 

production and consumption perspectives, accounting for more than 83% of their carbon 

emissions. Transportation service sector would have less difference in its historically and future 

committed carbon emissions, compared with other sectors, and would have more future 

committed emissions (contributing more than 60%) in 2030. Furthermore, historically committed 

carbon emissions from 1995−2017 would take the largest share in carbon emissions of China and 

most sectors in 2030 under the KLC scenarios. This is because cleaner production under the KLC 

scenario would reduce associated carbon emissions of production and consumption in future, 

which hence enlarges the share of historical carbon emission of capital production that relied on 

lower-efficient production technologies. Our results suggest that the earlier development of 

efficient productive capital would bring less carbon emissions for future production, as did in 

today’s developed countries like the United States and Japan (Feng et al. 2013, Wu et al. 2021a, 

Xiao et al. 2021). 
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Table 5-3. The sectoral carbon emissions for the year 2030 under the three capital investment scenarios. 
 Electricity Supply Construction Transport. Svc. Real Estate Residential Svc. 
 BAU KES KLC BAU KES KLC BAU KES KLC BAU KES KLC BAU KES KLC 
PBE 4443 4862 4038 78 79 77 717 725 901 15 15 15 11 11 10 
PBE after FK re-
allocation 

3105 3499 2808 32 32 30 763 769 867 595 598 546 398 401 359 

From 1995–2017 42 
(1%) 

43 
(1%) 

40 
(1%) 

13 
(42%) 

13 
(41%) 

13 
(45%) 

97 
(13%) 

97 
(13%) 

97 
(11%) 

227 
(38%) 

227 
(38%) 

227 
(42%) 

103 
(26%) 

103 
(26%) 

103 
(29%) 

From 2018–2030 110 
(4%) 

114 
(3%) 

96 
(3%) 

17 
(51%) 

17 
(51%) 

14 
(48%) 

188 
(25%) 

189 
(25%) 

162 
(19%) 

358 
(60%) 

361 
(60%) 

310 
(57%) 

286 
(72%) 

289 
(72%) 

247 
(69%) 

                
CBE of final 
consumption 

2381 2784 2158 11 11 9 514 519 606 22 21 20 43 43 39 

CBE 2381 2784 2158 2576 2604 2112 544 549 639 31 31 29 45 44 40 
CBE after FK re-
allocation 

2505 2922 2274 421 425 379 725 731 801 492 493 451 266 263 239 

From 1995–2017 35 
(1%) 

38 
(1%) 

35 
(2%) 

122 
(29%) 

122 
(29%) 

119 
(31%) 

69 
(10%) 

69 
(9%) 

70 
(9%) 

181 
(37%) 

181 
(37%) 

181 
(40%) 

60 
(23%) 

59 
(22%) 

60 
(25%) 

From 2018–2030 89 
(4%) 

100 
(3%) 

82 
(4%) 

289 
(69%) 

292 
(69%) 

251 
(66%) 

141 
(19%) 

142 
(19%) 

125 
(16%) 

290 
(59%) 

291 
(59%) 

250 
(55%) 

163 
(61%) 

161 
(61%) 

141 
(59%) 

Notes: We select four of the key sectors of capital development in China (see Figure 5-1). The percentages in commas represent the share of associated 
carbon emissions in the sectoral total emissions. Unit: Mt. 
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5.4. Discussion  

5.4.1. The concept of historically committed CO2 emissions  

The two features of capital assets raise two important topics of analyzing capital activities and their 

environmental responsibilities. One is the allocation of environmental responsibilities across 

different capital activities such as capital formation or capital use, the other is temporal 

displacement of environmental responsibilities along capital’s lifespan. The first topic has been 

explored by endogenizing capital into MRIO modelling (Chen et al. 2018, Lenzen and Treloar 2004, 

Södersten et al. 2020, Södersten et al. 2018a), while the second topic has not been well analyzed 

before in literature. This study explores the second topic, and demonstrates a new approach to 

quantify and allocate supply chain-wide capital inputs and associated CO2 emissions among sectors, 

across regions, and over time. Historically committed CO2 emissions are defined in this study, in 

contrast to future committed CO2 emissions (Davis et al. 2010, Tong et al. 2019). Future committed 

carbon emissions limit the remaining carbon budgets for other economic and human activities. 

Historically committed carbon emissions have no influence on actual CO2 emitted each year, but 

provide a new scheme to assign environmental responsibilities of capital activities. The new 

accounting scheme assigns environmental responsibilities of capital activities into capital users 

instead of capital producers as conventionally done, and allocates the environmental burden of 

capital formation from the year of emissions over capital’s entire lifetime. Both historically and 

future committed CO2 emissions start with the inertia of the capital system, and emphasize that 

any construction and plans of capital assets today will influence future resource use and emissions. 

This inertia of the capital system is especially important for environmental pressures such as CO2 

emissions which accumulate over time and have impacts on the earth system over long time spans. 

The concept of historically committed emissions complements the idea of future committed 

emissions. Both ideas suggest policy makers to consider the inertia of capital system when designing 

policies for future sustainable development, for instance by considering historically and future 

committed CO2 emissions when setting per-capita emission caps for a distant future. 

5.4.2. Implications for policy making 

Capital systems influence the attainment of all of the Sustainable Development Goals (Thacker et 

al. 2019). Few studies systematically project future capital development at the global or national 

level, not to mention the analysis of supply chain-wide downstream impacts of capital development 

on regional environmental performance. This study fills this important research gap through 

developing the BAU, KES, and KLC scenarios to compare China’s future capital development 

pathways and associated CO2 emissions. China has promised to peak its CO2 emissions by 2030. 
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To achieve this target, it is projected that China's energy and CO2 intensity levels need to decline 

by 43% and 45%, respectively (Mi et al. 2017b). This indicates that a substantial amount of 

investments in high-efficient productive devices are expected in the near future, and associated 

carbon emissions possibly increase in the capital investment to achieve reduced use-phase 

emissions. The KLC scenario presents an alternative pathway for China, namely low-carbon 

development via efficiency improvement and energy transition. Results show that under the 

assumptions of the scenario, low-carbon technology investments designed in the KLC scenario 

would be cost-efficient at the national scale―an extra 7% low-carbon technology investments 

would gain a 9% decline in national CO2 emissions compared with the BAU scenario―and in most 

provinces, especially in Hebei, Jiangxi, and Sichuan. In addition, we find that historically committed 

CO2 emissions are mostly attributable to the production and consumption of capital-intensive 

service sectors (Table 5-3), which are not usually regarded as main CO2-emitters because emissions 

for the supporting constructions are not accounted for. Failing to include this historically 

committed part of CO2 emissions in the CO2 emission accounting of service sectors hence strongly 

underestimates their impacts on the climate. Given that the post COVID-19 economy recovery 

needs further investments which are mostly assigned to service sectors (Hertwich 2021). The 

endogenization of capital is an additional necessary step to ensure that policy makers realize the 

synergies and trade-offs between intensive-capital-enabled economic development and the 

associated environmental burden, and pursue a cost-efficient pathway of economy recovery like 

the one demonstrated in the KLC scenario instead of the KES scenario. 

China has launched its first national emissions-trading scheme on 16 July 2021, which is regarded 

as the world’s biggest among countries having such carbon-pricing mechanisms (Nogrady 2021). 

The core of the emission-trading scheme is to provide incentives to more efficient generation or 

less carbon-intensive generation of energy, which requires considerable capital investments in 

associated high-efficient machinery and infrastructure. China’s emission-trading scheme focuses 

on direct emissions of energy generation. This study draws attention to the indirect emissions that 

are not only embodied in the traded commodities at the annual basis, but also in the productive 

capital throughout their lifespans (i.e., historically committed carbon emissions). The choice for 

conventional emissions accounting or the consideration of such historically committed carbon 

emissions could considerably influence the emission accounting (section 5.3.2), and finally 

determine the emission allowances of each plant in the emissions-trading market. The former 

influence will be more significant for the plants that were built-up earlier with relatively lower 

efficiencies of economic production and resource use, i.e., having more embodied emissions which 

would be allocated to future production as demonstrated in this study. The latter emission 

allowances cannot be specified based on the current study but could result from a similar dedicated 
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scenario study. We also come up with some suggestions for policy makings to consider capital-

related emissions in China’s emissions-trading market, particularly for energy plants: 1) 

constructing a systematic database that covers the lifetime each device operating (the start date, 

retired or ceased operating date); 2) developing a standard accounting method to quantify capital 

inputs (either in physical terms or monetary terms) for economic production, better in high 

resolutions of capital assets and using sectors; and 3) formulating a rational and fair price 

mechanisms for both historical and current emissions for companies to trade their emission 

allowances. 

5.4.3. Limitations 

This study has several limitations. Our model relies on data from multiple sources with different 

levels of uncertainty, such that the calculated results need to be interpreted with caution. For 

instance, it is more reasonable to identify temporal changes of capital-related carbon emissions, 

relative importance of final consumption categories, or differences in results produced by different 

models. Second, evaluating the use of physical capital assets in production by capital consumption 

or capital services is highly debated (Södersten et al. 2018a). Data on capital consumption are more 

available than that of capital services, while capital services rely on the prices of capital assets which 

have higher uncertainty among provinces and in different years. Capital consumption data are 

mostly calculated using the PIM (O’Mahony and Timmer 2009), which has been widely accepted 

by national and international statistical agencies and researchers. Thus, we also conduct this analysis 

by relying on capital consumption to represent the use of the physical capital assets. The third 

limitation relates not to the general modelling framework, but rather to the actual implementation 

of the scenarios and how we design the scenarios. Compared with the KES scenarios based on 

investments in specific infrastructure, there is not sufficient data available for all the required low-

carbon technology investments under the KLC scenario, e.g., increased storage capacity for 

electricity from renewables or electric vehicle charging stations, which are not explicitly considered 

in the scenario. This is also relevant to dynamically modeling the changes in economic and 

investment structure under different capital investment pathways, rather using a static input-output 

model. As shown by our main scenario results, using base year’s investment structure results in 

relatively small differences between the scenarios. For the dynamical modeling, possible supply and 

production capacity constraints should be considered. Lastly, shifting the fossil-based economy to 

bio- or renewable-energy-based economy will also request significant capital investment. 

Furthermore, the post-COVID-19 economy recovery requires considerable capital investment in 

general and professional equipment or infrastructure on the one hand (Shan et al. 2020b), while 

has changed previous plans in capital investment on the other (IEA 2020). Other alternative 
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pathways of capital development are also interesting for future exploration, yet need other methods 

and approaches to model the entire economic and energy structures for future capital development 

narratives. 

5.5. Conclusions 

Capital assets (e.g. machinery, and buildings) underpin economic production throughout their full 

lifespans, but associated carbon emissions from the production of the capital assets themselves are 

concentrated in the period of their production. The durable feature of capital assets poses serious 

challenges in allocating the emissions related to capital assets over their full life span. This study 

provides a conceptual and operational approach for consistently allocating emissions related to 

capital assets to final uses including the consideration of temporal displacement. 

Different from a conventional way that treated capital as one category of final demand and 

assigning associated carbon emissions to the capital producers (i.e., capital formation sectors) at 

annual basis, this study treats capital assets as production inputs and re-allocates carbon emissions 

of annual capital production to actual capital using sectors, and further to final goods and services 

over time. Capital formation is clearly distinguished from capital investment and use. Based on this, 

we found that conventional estimations of supply chain-wide CO2 emissions of ‘capital investment’ 

are misleading the allocation of capital-related emission responsibilities to capital producers instead 

of capital users. For instance, CO2 emitted during the construction phase of airports are assigned 

to construction sectors from conventional consumption-based accounting, instead of to the actual 

users of airports such as transportation services. 

We also show that conceptual and methodological choices in the way we treat capital purchase and 

associated carbon emissions considerably influences China’s emission accounts. Similar 

conclusions have also been summarized by previous studies (Chen et al. 2018, Lenzen and Treloar 

2004, Södersten et al. 2020, Södersten et al. 2018a), but neglecting the temporal feature of capital 

assets led previous conclusions heavily skewed to the spatial displacement of emissions, and hence 

made the conclusions not comprehensive enough. Considering the temporal CO2-emission 

displacement relieves the emission responsibilities of capital assets for the year of formation but 

also takes associated responsibilities from the past. Consequently, the consideration of temporal 

CO2-emission displacements in national CO2 accounts results in 25‒35% and 31‒46% net decrease 

compared to conventional accounting methods from the production and consumption perspective 

since 1995, respectively. 

To understand this temporal displacement from the past to the future, we further design three 

capital-investment scenarios until 2030 (i.e., the BAU, KES, and KLC scenarios), based on different 
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purposes of capital investments. Conventional PBEs and CBEs of China substantially increase 

under the BAU and KES scenarios, but show modest growth (less than 2%) under the KLC 

scenario, with potential decreases in some regions (e.g., the Beijing-Tianjin, and the Southwest). 

Considering the temporal CO2-emission displacement in future CO2 emission accounting, the pre-

2017 capital-associated CO2 emissions will contribute 10 (under the BAU scenario) –13% (under 

the KLC scenario) of China’s CO2 emissions in 2030, and could reach more than 40% for capital-

intensive service sectors (e.g., real estate services or transportation services) under all the three 

scenarios.  

This study provides a new scheme to assign environmental responsibilities of capital activities based 

on the concept of historically committed CO2 emissions, which improves our understanding of the 

role of the capital system played in economic production and associated spatiotemporal 

displacement along capital’s lifespan. The temporal displacement that is highlighted in this study, 

although virtual, is also important for assessing the sustainability and efficiency of emissions across 

regions, and the equity of emissions across generations due to historical and future ‘commitments’ 

of CO2 emissions. 
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The goal of this thesis is to develop improved modelling techniques to better capture 

spatiotemporal virtual displacement of environmental pressures along the supply chain of goods 

and services. The hybrid MRIO model and the capital-endogenized MRIO model developed and 

presented in the previous chapters intend to solve key limitations in conventional IO modelling for 

environmental pressure assessments. In detail, the hybrid MRIO model combines advantages of 

both process- and IO table-based approaches, thus enabling to quantify the supply chain-wide 

environmental pressures of a specific agri-food product. The capital-endogenized MRIO model 

endogenizes capital investment and consumption into economic production over time, thus 

enabling to allocate environmental responsibilities of capital activities among different capital 

activities along capital’s full lifespan. Scientific contributions of this thesis and possible implications 

for policy making are summarized in Sections 6.1 and 6.2. In Section 6.3, some future research 

directions that promisingly strengthen the consumption-based accounting of environmental 

pressures are introduced. 

6.1. Scientific contributions of this thesis 

6.1.1. Improvements in MRIO models to better capture spatial virtual displacement of 

environmental pressures 

The hybrid MRIO model (Chapters 2 and 3) enables to capture product-specific environmental 

pressure displacement along its entire supply chain. The hybrid MRIO model integrates the physical 

supply and use systems of total eighty-four agri-food products into the monetary MRIO tables of 

China. Before the integration, the physical multi-regional supply, use, and IO tables of the specified 

agri-food products for China during the period of 1990-2013 are also compiled. Compared with 

existing hybrid IO models that rely on monetary IO data to track biomass products from the first 

(or second) use stage to the final consumers (Ewing et al. 2012, Steen-Olsen et al. 2012), the 

proposed hybrid MRIO model describes the whole structure of material conversion and 

distribution networks by means of detailed physical supply and use tables. Compared with the 

global FABIO model that only includes agri-food products (Bruckner et al. 2019), the proposed 

hybrid MRIO model integrates the physical agri-food supply-use system into the monetary all-

sector supply chain. The two applications of the hybrid MRIO model show: 

• The first application to the case of provincial blue water footprint assessments in China 

(Chapter 2) illustrates that the hybrid model enhances both the traditional monetary IO 

table-based approach and the process-based approach. Compared with the traditional 

monetary IO table-based approach, the hybrid model reduces the uncertainty arising 

from the aggregation of different products into homogeneous sectors, by using product- 
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and sector-specific environmental intensities rather using one value for all related agri-

food products. Compared with the process-based approach, the hybrid model captures 

the whole supply chain-wide environmental pressures, and allows to quantify upstream 

environmental pressures occurring along the supply chain for final consumed agri-food 

products. 

• The second application combines the hybrid MRIO model with a trade disaggregation 

approach and a novel no-trade scenario, to analyze effects of production fragmentation 

and inter-provincial trade on blue water consumption and scarcity patterns in China 

(Chapter 3). It shows that the hybrid model is applicable to be jointly used with other 

approaches for broader research studies. The combination demonstrated in this thesis 

reveals the opposite roles of current trade in alleviating water scarcity in provinces under 

extreme water scarcity and in China from the national scope. It hence sheds light on the 

consideration of specific trade patterns and their impacts on provincial and national 

water consumption to cope with water scarcity in China, such as enhancing local 

production of direct final consumption commodities.  

6.1.2. Improvements in MRIO models to capture temporal virtual displacement of 

environmental pressures 

The capital-endogenized MRIO model (Chapters 4 and 5) enables to capture the temporal virtual 

displacement of environmental responsibilities embodied in dynamic capital development over 

time. The improved capital-endogenized MRIO model quantifies the linkages between temporal 

capital development, the economic production as enabled by capital assets, and human final 

consumption throughout the full lifespan of capital. Compared with existing capital-endogenized 

MRIO models (Chen et al. 2018, Lenzen and Treloar 2004, Södersten et al. 2020, Södersten et al. 

2018a), the capital-endogenized MRIO model developed in this thesis considers both inter- and 

intra-annual dynamic features of capital production (using different technologies during different 

age cohorts) and consumption (with an intra-annual production-depreciation-reproduction cycle). 

The two applications of the capital-endogenized MRIO model in this thesis allow to extend the 

traditional debate of spatially environmental displacement with a temporal dimension. In detail: 

• The first application to China’s capital development and the re-assessment of its 

environmental footprints (Chapter 4) results in a new accounting scheme of regional 

environmental pressures. In the chapter, China’s capital development during 1995-2015 

is linked to current human consumption around the world. The results show that without 
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accounting for the capital−final consumption linkages across time and space, one would 

miscalculate environmental footprints by big margins. 

• The second application to the projections of China’s future capital development and 

associated carbon emissions (Chapter 5) extends the linkages from past and present into 

the future. The capital-endogenized MRIO model is used to quantify the ‘historically 

committed’ carbon emissions that occurred in the historical time when producing the used 

capital assets but will serve future economic production and consumption. The results 

highlight the important role of historically built-up capital assets in future economic 

production and sustainable environmental development, especially when focusing on 

specific sectors such as transportation services. This historically committed 

environmental pressure concept allows the conventional debates of inter-regional virtual 

displacement of resource and pollution to consider inter-annual responsibility 

displacement according to capital investment, trade, and consumption.  

6.1.3. Contributions related to datasets 

This thesis also has contributions related to datasets. First, a national dataset was constructed with 

inter-provincial trade-linked supply, use and input-output tables that capture specific supply chains 

of agri-food products in physical units (e.g., tonnes, heads) during the period of 1990-2012 in China 

(Chapter 2). Eighty-four raw and processed agri-food commodities supplied and used by seventy-

five processes are specified in the dataset. The dataset covers the main grain crops (e.g., rice, maize, 

and wheat), cash crops (e.g., sugar beets, groundnuts, and cotton), fruits (e.g., apples, and citrus), 

vegetables (e.g., tomatoes), live animals (e.g., cattle, and sheep), livestock (e.g., bovine meat, mutton 

meat, and pork), fishery, and forestry products, which to our best knowledge encompasses the 

most comprehensive classification of agri-food commodities for sub-national supply chain analysis. 

Second, this thesis also developed a capital investment dataset at the provincial level during the 

period of 1995-2017 for China (Chapter 5). The provincial capital investment dataset recorded 

annual effective capital investment, i.e., the newly increased fixed assets, for each province at the 

resolution of three asset types and thirty-seven investing sectors, following WORLDKLEMS. The 

recorded effective capital investment is more appropriate for environmental pressure-related studies 

of capital investment, compared with the annual initiated capital investments which always result 

in an overestimation issue. The two datasets have been made publicly available in the open data 

repository Figshare. 

6.2. Possible implications for policy making 
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The virtual displacement of environmental pressures from primary production to the final 

consumers is a prominent issue in current international debates regarding the assignment of 

environmental responsibilities (COP26 2021, IPCC 2014). In this context, traceability tools are 

needed to support both stakeholders and policy makers in monitoring and governing 

spatiotemporal flows of products, capital requirements, and the embodied environmental pressures. 

6.2.1. Production- or consumption-based?  

Production and consumption perspectives present different scopes of regional environmental 

responsibilities.  

The production-based accounting focuses on territorial factors that drive environmental pressures 

such as economic production, technology levels, and resource endowments, but tends to overlook 

the interdependence among regions via trade. The trade disaggregation approach (Chapter 3) 

provides relevant information about different use-purposes of traded commodities like for final 

consumption or as intermediate inputs for further production, and reveals their respective 

contributions to regional resource consumption. This knowledge can help policy makers fully 

consider specific trade patterns and their pressures on local environment to further optimize trade 

patterns among regions. For instance, given that direct final goods trade contributed the most to 

the virtual water trade within China and the main exporting provinces of virtual water are those 

water-deficient provinces (e.g., Xinjiang or Heilongjiang), associated water importing provinces are 

suggested to change their trade partners of direct final commodities from water-deficient provinces 

to water-adequate provinces if these water-adequate provinces can also supply same or substitute 

final commodities. In addition, long-distance trade will lead to more resource consumption for the 

transportation, which can be reduced by trade with adjacent regions. The idea of co-development 

among adjacent regions and urban agglomerations (such as Jing-Jin-Ji) has been widely suggested 

in China. The co-development among adjacent regions, to some extent, can increase the self-

sufficient capacities of a single region in the agglomeration if the region is limited in resources and 

products, which hence costs less resource consumption for importing goods from outside of the 

agglomeration especially from long-distance regions. 

The consumption-based accounting shows the virtual spatial displacement (or outsourcing) of 

environmental pressures from the commodity importers to the exporters, and reveals the spatial 

inequality of environmental pressures of human consumption. Yet, the inter-generational inequality 

of environmental responsibilities is not assessed. The capital-endogenized MRIO model (Chapters 

4 and 5) fills this research gap and quantifies the temporal virtual displacement of environmental 

pressures embodied in capital production and consumption. Using the capital-endogenized MRIO 
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model, researchers or policy makers can achieve a better estimate of expected benefits from current 

capital investment instead of perpetuating a lock-in through investment-heavy consumption. As 

for private capital investment or individual asset purchasing, the in-use stock levels differ widely 

among population with different income levels—spatially across countries and temporally across 

generations. The durable feature of in-use capital stocks implies that putting more investments in 

less-resource-intensive assets or capital assets with high efficiencies of resource consumption are 

important for current and future resource consumption to produce and operate these assets. This 

inertia of the capital system is especially important for environmental pressures such as CO2 

emissions which accumulate over time and have impacts on the earth system over long time spans. 

When designing policies for future sustainable development, policy can take into account this 

inertia of the capital system, for instance by considering historically and future committed carbon 

emissions when setting per-capita emission caps for a distant future. 

6.2.2. Choice of system boundaries and environmental indicators 

Environmental pressure assessments at which scale (e.g., national or provincial) or of which object 

(e.g., a certain product or sector) influence sustainability-oriented suggestions for policy making. 

The choice of system boundaries shows its importance. Usually, a systematic all-sector analysis of 

resource consumption and emissions would miss detailed information regarding a certain product, 

which is regarded as the main trade-off between process-based and IO table-based approaches for 

environmental pressure assessments. The proposed hybrid MRIO model well balances the 

product-level details and the sector-level comprehensiveness, and captures the transactions among 

not only main agri-food products but also with other manufacturing and service sectors. 

Information derived from using the hybrid model can help policy makers determine key agri-food 

products with large environmental pressures and highly relevant to people’s daily consumption 

habits for future resource management towards sustainability. According to the Chinese case 

analyzed in Chapter 2, key agri-food products consuming most water include maize and rice in the 

North China whilst pigs in the South China. This implies that measures to reduce water 

consumption can mainly direct to maize and rice in the North China (e.g., constructing irrigation 

infrastructure), whilst to pig farming in the South China (e.g., applying industrial farming systems 

or concentrated farming systems).  

For the same environmental problem, choosing different indicators, e.g., to estimate pressures on 

freshwater in the terms of water withdrawals or water consumption, may also result in quite 

different policy suggestions. The capital-endogenized MRIO model re-assigns the capital-related 

environmental pressures first to the capital using sectors and further to the final goods and services 

that are produced by the assets along capital’s lifespan. Previous assessment of environmental 
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pressures of capital investment always stopped at the capital production phase, and neglected the 

downstream use of capital assets. When extending the system boundaries by including the 

downstream operation of capital assets, it can lead to a totally different conclusion of 

environmental responsibilities of capital activities, that is, switching from the producers of capital 

assets to the actual users. Based on the capital-endogenized MRIO model, we also point out two 

new environmental indicators from production and consumption perspectives (i.e., production- 

and consumption-based emissions after capital allocation) and a new concept ‘historically committed’ 

environmental pressures. The newly proposed indicators and concept theoretically distributes the 

environmental burden of capital formation from the year of emissions over capital’s entire lifetime, 

and offers the decision makers new insights into the construction plans of capital-intensive projects. 

For instance, when current huge environmental pressures are the main concern to launch a capital-

intensive project, the idea of mortgages of environmental burden, which are complemented by 

environmental pressure neutrality measures during the pay-back period, can be applied on the 

project. 

6.2.3. Synergies and trade-offs for sustainable development.  

Understanding the synergies and trade-offs among inter-regional trade, capital investment, 

economic structure and environmental pressures is vital to achieve the SDGs (Thacker et al. 2019, 

Wang et al. 2022, Xu et al. 2020b). Although this thesis does not directly identify synergies or trade-

offs between different components of the earth system, the proposed hybrid and capital-

endogenized models can be used to analyze them.  

According to the Chinese case in Chapter 3, under the no-trade scenario, China's total outputs 

would decrease $4.3 trillion 2012 US dollars, and the national total water consumption would also 

decrease 27.4 km3/yr. This shows that there is a synergy between inter-regional trade and economic 

growth, and a trade-off between inter-regional trade and water consumption. Enabled by the hybrid 

MRIO model developed in this thesis, this synergy between inter-regional trade and economic 

growth and the trade-off between inter-regional trade and broader environmental pressures can be 

conducted at the agri-food-product level, if policies and decisions are related to associated products. 

For example, whether a relative or absolute decoupling can be achieved between water 

consumption and economic benefits of crop production.  

As for capital system, the synergy and trade-offs will be even clearer. That is, the manufactured 

capital system enables sectors to produce essential goods, services, and shelter for human beings, 

while consumes resources and induces environmental pollutions when using the assets. This, in 

turn, necessitates changes in human, nature, and capital and their interactions, such as the rapid 
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growth in low-carbon technology of energy supply and use to cope with climate changes. The 

proposed capital-endogenized MRIO model reveals the full lifespans of capital assets from their 

original investment to the formation, and the depreciation processes by the using sectors to 

produce different goods and services. It presents not only the upstream economic and resource 

inputs for capital cycle, but also the downstream impacts on economic production, commodity 

consumption, and associated spatiotemporal environmental displacement. Information generated 

by the capital model can be used to better understand the synergies and trade-offs among capital, 

economy and environment, and support future policy making of capital development for a long-

term planning. 

6.3. Future Research Directions 

The proposed hybrid MRIO model and capital-endogenized MRIO model have well solved the 

selected key limitations in conventional IO modelling for environmental pressure assessments. Yet, 

there still are relevant research challenges ahead that need following-up research to strengthen these 

two models.  

Key factors with high uncertainty that are revealed in the implementations of two proposed models 

trigger a first main challenge for future research. For the hybrid model, key uncertain factors include 

inter-regional trade amounts of various products and feed requirements for animal farming, whilst 

for the capital-endogenized model, key uncertain factors are limited categories of capital assets and 

less information of capital consumption by time cohorts. A promising research strategy on these 

themes would be to develop systematic and comprehensive databases regarding inter-regional trade 

of various products in different units and in high resolutions of resources, pollutions, capital assets, 

capital investing sectors, and lifespans.  

Second, the integration of multiple industrial products will also be a potential research interest to 

strengthen the hybrid MRIO model. This research line can be further combined with circular 

economy agendas, analyzing the challenges and solutions for countries to achieve resource 

recycling and reusing in industrial sectors like cement manufacturing. To hybridize industrial 

products will depend on the development of associated databases described for the first challenge, 

which states the importance of developing such databases in the future. Overall, the hybrid MRIO 

model can benefit future research relevant to product-specific environmental pressure assessments, 

spatiotemporal displacement, and benchmarking of resource productivities, but the prerequisite is 

to extend with comprehensive environmental inventories such as water stress, land use, and related 

biodiversity loss.  
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Capital investments serve fundamentally different purposes. Capital theorists often differentiate 

between the replacement capital, which constitutes the investments done to maintain and upgrade 

the existing capital, and the net capital formation, which entails new investments. Incorporating 

the dynamics of capital would hence constitute a potential direction for future versions of the 

capital-endogenized model, not only based on input-output modelling but also in other accounting 

approach such as life cycle assessments. Particularly for the input-output model, the relatively static 

feature of the model is the main challenge to conduct this research line. Hence, the construction 

of a capital coefficients matrix that represents the dynamic changes in capital investment and 

consumption and further to be endogenized into the standard dynamic Leontief models will be a 

potential solution. Future research can also focus on practical uses of the historically committed 

concept of capital and associated environmental pressures pointed out in this thesis, for instance, 

in the assessment of environmental pressures as conducted in Chapter 5, or in the trading schemes 

of carbon emissions or other resources. This research line depends largely on specific questions 

researchers are looking at.  

Lastly, the idea of integrating the two proposed models is also on the table for future exploration. 

The key point of this integration will focus on the linkages between agricultural production and its 

investment on different capital terms, i.e., natural capital like land, manufactured capital like 

irrigation machinery, and human capital like labor force. Fully understanding the interactions 

between natural, manufactured, and human capital will be helpful to build up a more 

interdependent and sustainable capital system for our planet. 
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Södersten, C.-J.H., Wood, R. and Hertwich, E.G. (2018a) Endogenizing capital in MRIO models: 
the implications for consumption-based accounting. Environmental Science & Technology 
52(22), 13250-13259. 



PhD Dissertation by Quanliang Ye 

124 
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Appendix A: An Appendix to Chapter 2 

A.1. Supplementary Tables for Chapters 2 and 3 

Table A-1. Lists of 31 provinces of mainland China covered in FABIO_CHN. 
Province Code Name Region 
r1 Beijing North China 
r2 Tianjin North China 
r3 Hebei North China 
r4 Shanxi North China 
r5 Inner Mongolia North China 
r6 Liaoning Northeast China 
r7 Jilin Northeast China 
r8 Heilongjiang Northeast China 
r9 Shanghai East China 
r10 Jiangsu East China 
r11 Zhejiang East China 
r12 Anhui East China 
r13 Fujian East China 
r14 Jiangxi East China 
r15 Shandong East China 
r16 Henan Central China 
r17 Hubei Central China 
r18 Hunan Central China 
r19 Guangdong South China 
r20 Guangxi South China 
r21 Hainan South China 
r22 Chongqing Southwest China 
r23 Sichuan Southwest China 
r24 Guizhou Southwest China 
r25 Yunnan Southwest China 
r26 Tibet Southwest China 
r27 Shaanxi Northwest China 
r28 Gansu Northwest China 
r29 Qinghai Northwest China 
r30 Ningxia Northwest China 
r31 Xinjiang Northwest China 

 

Table A-2. Lists of commodities covered in FABIO_CHN. 
Commodity 
Code FAO Name FAO Group Notes 

c1 
Rice (Paddy 
Equivalent) Cereals  

c2 
Wheat and 
products Cereals  

c3 
Barley and 
products Cereals  

c4 
Maize and 
products Cereals  
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c5 Millet and products Cereals  

c6 
Sorghum and 
products Cereals  

c7 Cereals, Other Cereals Including rye and oats 

c8 
Potatoes and 
products 

Roots and 
tubers  

c9 Roots, Other 
Roots and 
tubers 

Including cassava, and sweet 
potatoes 

c10 Sugar cane Sugar crops  
c11 Sugar beet Sugar crops  

c12 Beans 
Vegetables, 
fruit, pulses Excluding soyabeans 

c13 Soyabeans Oil crops  

c14 
Groundnuts 
(Shelled Eq) Oil crops  

c15 Sunflower seed Oil crops  

c16 
Rape and 
Mustardseed Oil crops  

c17 
Coconuts - Incl 
Copra Oil crops  

c18 Sesame seed Oil crops  
c19 Oilcrops, Other Oil crops Including olives 

c20 
Tomatoes and 
products 

Vegetables, 
fruit, pulses  

c21 Vegetables, Other 
Vegetables, 
fruit, pulses  

c22 
Oranges, 
Mandarines 

Vegetables, 
fruit, pulses  

c23 
Grapefruit and 
products 

Vegetables, 
fruit, pulses  

c24 Citrus, Other 
Vegetables, 
fruit, pulses  

c25 Bananas 
Vegetables, 
fruit, pulses  

c26 
Apples and 
products 

Vegetables, 
fruit, pulses  

c27 
Pineapples and 
products 

Vegetables, 
fruit, pulses  

c28 Dates 
Vegetables, 
fruit, pulses  

c29 

Grapes and 
products (excl 
wine) 

Vegetables, 
fruit, pulses  

c30 Fruits, Other 
Vegetables, 
fruit, pulses  

c31 
Coffee and 
products 

Coffee, tea, 
cocoa  

c32 
Tea (including 
mate) 

Coffee, tea, 
cocoa  

c33 Jute Fibre crops  
c34 Sisal Fibre crops  
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c35 Tobacco 
Tobacco, 
rubber  

c36 Rubber 
Tobacco, 
rubber  

c37 Cottonseed Oil crops 
Estimated by TCF of China based 
on the data of cotton lint 

c38 
Sugar, Refined 
Equiv 

Sugar, 
sweeteners  

c39 Soyabean Oil Vegetable oils Estimated by TCF of China 
c40 Groundnut Oil Vegetable oils Estimated by TCF of China 
c41 Sunflowerseed Oil Vegetable oils Estimated by TCF of China 

c42 
Rape and Mustard 
Oil Vegetable oils Estimated by TCF of China 

c43 Cottonseed Oil Vegetable oils Estimated by TCF of China 
c44 Coconut Oil Vegetable oils Estimated by TCF of China 
c45 Sesameseed Oil Vegetable oils Estimated by TCF of China 
c46 Ricebran Oil Vegetable oils Estimated by TCF of China 
c47 Maize Germ Oil Vegetable oils Estimated by TCF of China 

c48 
Oilcrops Oil, 
Other Vegetable oils Estimated by TCF of China 

c49 Soyabean Cake Oil cakes Estimated by TCF of China 
c50 Groundnut Cake Oil cakes Estimated by TCF of China 

c51 
Sunflowerseed 
Cake Oil cakes Estimated by TCF of China 

c52 
Rape and Mustard 
Cake Oil cakes Estimated by TCF of China 

c53 Cottonseed Cake Oil cakes Estimated by TCF of China 
c54 Copra Cake Oil cakes Estimated by TCF of China 
c55 Sesameseed Cake Oil cakes Estimated by TCF of China 

c56 
Oilseed Cakes, 
Other Oil cakes Estimated by TCF of China 

c57 Wine Alcohol  

c58 Beer Alcohol 
Including beer of barley, maize, 
millet, and sorghum 

c59 
Beverages, 
Fermented Alcohol 

Including beverages by fermented 
rice, wheat, and apple 

c60 
Alcohol, Non-
Food Ethanol  

c61 Cotton lint Fibre crops  
c62 Cattle Live animals Including buffalo 
c63 Sheep Live animals Including goat 
c64 Pigs Live animals  
c65 Poultry Birds Live animals  
c66 Horses Live animals  
c67 Asses Live animals  
c68 Mules Live animals  
c69 Camels Live animals  

c70 
Milk - Excluding 
Butter Milk  

c71 Eggs Eggs  
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c72 Wool (Clean Eq.) 
Hides, skins, 
wool  

c73 Bovine Meat Meat 
Including meat of cattle and 
buffalo 

c74 
Mutton & Goat 
Meat Meat Including meat of sheep and goat 

c75 Pigmeat Meat  
c76 Poultry Meat Meat  
c77 Meat, Other Meat  

c78 Offals, Edible Meat 

Including offal from cattle, buffalo, 
sheep, goat, pig, horse, and camel; 
Estimated by TCF of China 

c79 Fats, Animals, Raw Animal fats 

Including fats from cattle, buffalo, 
sheep, goat, pig, and camel; 
Estimated by TCF of China 

c80 Hides and skins 
Hides, skins, 
wool 

Including hides and skins from 
cattle, buffalo, sheep, and goat; 
Estimated by TCF of China 

c81 Honey Honey  

c82 Silk 
Hides, skins, 
wool  

c83 Fish, Seafood Fish  
c84 Wood fuel Wood  

Note: TCF represents the technical conversion factor from the giving the conversion efficiencies 
for food processing. 

 

Table A-3. Lists of processes covered in FABIO_CHN. 
Processing Code Process Processing Type 
p1 Rice production Primary production 
p2 Wheat production Primary production 
p3 Barley production Primary production 
p4 Maize production Primary production 
p5 Millet production Primary production 
p6 Sorghum production Primary production 
p7 Cereals production, Other Primary production 
p8 Potatoes production Primary production 
p9 Roots production, Other Primary production 
p10 Suga cane production Primary production 
p11 Sugar beet production Primary production 
p12 Beans production Primary production 
p13 Soyabeans production Primary production 
p14 Groundnuts (Shelled Eq) production Primary production 
p15 Sunflower seed production Primary production 
p16 Rape and Mustardseed production Primary production 
p17 Seed cotton production Primary production 
p18 Coconuts production Primary production 
p19 Sesame seed production Primary production 
p20 Oilcrops production, Other Primary production 
p21 Tomatoes production Primary production 
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p22 Vegetables production, Other Primary production 
p23 Oranges, Mandarines production Primary production 
p24 Grapefruit production Primary production 
p25 Citrus production, Other Primary production 
p26 Bananas production Primary production 
p27 Apples production Primary production 
p28 Pineapples production Primary production 
p29 Dates production Primary production 
p30 Grapes production Primary production 
p31 Fruits production, Other Primary production 
p32 Coffee production Primary production 
p33 Tea production Primary production 
p34 Jute production Primary production 
p35 Sisal production Primary production 
p36 Tobacco production Primary production 
p37 Rubber production Primary production 
p38 Cotton production Primary production 
p39 Sugar production Processing 
p40 Soyabean Oil extraction Processing 
p41 Groundnut Oil extraction Processing 
p42 Sunflowerseed Oil extraction Processing 
p43 Rape and Mustard Oil extraction Processing 
p44 Cottonseed Oil extraction Processing 
p45 Coconut Oil extraction Processing 
p46 Sesameseed Oil extraction Processing 
p47 Ricebran Oil extraction Processing 
p48 Maize Germ Oil extraction Processing 
p49 Oilcrops Oil extraction, Other Processing 
p50 Wine production Processing 
p51 Beer production Processing 
p52 Beverages production, Fermented Processing 
p53 Alcohol production, Non-Food Processing 
p54 Cattle husbandry Primary production 
p55 Sheep husbandry Primary production 
p56 Pigs farming Primary production 
p57 Poultry Birds farming Primary production 
p58 Horses husbandry Primary production 
p59 Asses husbandry Primary production 
p60 Mules husbandry Primary production 
p61 Camels husbandry Primary production 
p62 Dairy cattle husbandry Primary production 
p63 Dairy sheep husbandry Primary production 
p64 Cattle slaughtering Processing 
p65 Sheep slaughtering Processing 
p66 Pigs slaughtering Processing 
p67 Poultry slaughtering Processing 
p68 Horses slaughtering Processing 
p69 Asses slaughtering Processing 
p70 Mules slaughtering Processing 
p71 Camels slaughtering Processing 
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p72 Beekeeping Primary production 
p73 Silkworm breeding Primary production 
p74 Fishing Primary production 
p75 Forestry Primary production 

 

Table A-4. List of the 42 sectors covered in the monetary MRIO table of 2012 (Mi et al. 
2017). 

Sector_code Name Abbreviations 

1 
Agriculture, forestry, animal husbandry and fishery 
products and services AFF 

2 Coal Mining Products CMP 
3 Oil and natural gas extraction products OGE 
4 Metal ore mining and products MOM 
5 Non-metallic minerals and other mining products NMM 
6 Food and tobacco manufacturing  FTM 
7 Textile and products TTP 

8 
Leather and down of textiles, clothing, shoes, hats and 
articles thereof LCS 

9 Wood products and furniture WPF 
10 Paper printing, culture, education, and sporting goods PCE 

11 
Petroleum, coking products and nuclear fuel processed 
products PCN 

12 Chemical product CHP 
13 Non-metallic mineral product manufacturing NPM 
14 Metal smelting and rolling product manufacturing MSR 
15 Metal product manufacturing MPM 
16 General Equipment GEQ 
17 Professional equipment PEQ 
18 Transportation equipment TEQ 
19 Electrical machinery and equipment EEQ 

20 
Communication equipment, computers and other 
electronic equipment CEQ 

21 Instrumentation IST 
22 Other manufactured products OMP 
23 Waste of materials WTM 
24 Repair of metal products, machinery and equipment RME 
25 Production and supply of electricity and heat EPS 
26 Gas production and supply GPS 
27 Water production and supply WPS 
28 Construction CON 
29 Wholesale and retail WSR 
30 Transportation, storage and post services TSP 
31 Accommodation and restruant AHR 

32 
Information transfer, software and information technology 
services ISI 

33 Financial services FIS 
34 Real estate services RES 
35 Leasing and business services LBS 
36 Scientific research and technical services STS 
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37 
Public services, hydrology, environment and public 
facilities management PES 

38 Resident services, repairs and other services RRS 
39 Education EDU 
40 Health and social work HSS 
41 Culture, sports and entertainment CSS 

42 
Public administration, social security and social 
organization PSS 

 

Table A-5. Summary of data requirements and associated data sources for FABIO_CHN. 
Data types Data sources Notes 
Production quantity   

crops, live animals, 
livestock products, 
fish, forestry 

National Bureau of 
Statistics of China (NBSC 
2020) 

Data for live animals include the 
slaughtered quantity and the end-
of-2012 in-stock quantity which 
will be used to estimate feed 
requirements 

China Agriculture 
Yearbook 2013 (CAYEC 
2013) 

food manufacturing 
products (excluding 
vegetable oils, oil 
cakes, offal, fats, and 
hides and skins) 

China Light Industry 
Yearbook 2013 (CLIF 
2013) 

  

International import/export China Agriculture 
Yearbook 2013 (CAYEC 
2013) 

  

Sown areas of crops National Bureau of 
Statistics of China (NBSC 
2020) 

The sown areas of crops are for 
the year 2013 

 
China Agriculture 
Yearbook 2014 (CAYEC 
2014) 

Population Almanac of China's 
Population 2013 (IPLE-
CASS 2013) 

  

Price of commodities FAOSTAT  (FAOSTAT 
2020) 

  

 
China Price Statistical 
Yearbook 2013 (NBSC 
2013) 

  

Note: CAYEC (2013) China Agricultural Yearbook (2013), China Agricultural Yearbook Editorial 
Committee; CLIF (2013) China Light Industry Yearbook (2013). Federation, C.L.I. (ed); 
FAOSTAT (2020) FAOSTAT Statistics Database (accessed on April 06, 2020). Nations, 
F.a.A.O.o.t.U. (ed); IPLE-CASS (2013) Almanac of China's Population (2013), The Institute of 
Population and Labor Economics, Chinese Academy of Social Sciences; NBSC (2013) China Price 
Statistical Yearbook (2013). Statistics, D.o.U.S.a.E. (ed), China Statistics Press; NBSC (2020) 
Annual Statistics Data by Province (accessed on April 06, 2020). China, N.B.o.S.o. (ed). 

 

Table A-6. An overview of the availability of water consumption data in 31 provinces. 
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Provinc
es 

Water consumption purposes 
Agricult
ure 

Irrigati
on 

Livest
ock 

Indus
try 

Electri
city 

Construc
tion 

Servi
ces 

Househ
old 

Beijing         
Tianjin √ √ √ √  √ √ √ 
Hebei √ √ √ √    √ 
Shanxi √ √ √ √   √ √ 
Inner 
Mongoli
a 

√ √ √ √   √ √ 

Liaoning √ √ √ √   √ √ 
Jilin √ √ √ √   √ √ 
Heilongji
ang 

        

Shanghai         
Jiangsu √ √ √ √    √ 
Zhejiang √ √ √ √   √ √ 
Anhui √ √ √ √   √ √ 
Fujian         
Jiangxi √ √ √ √   √ √ 
Shandon
g 

√ √ √ √ √ √ √ √ 

Henan √ √ √ √    √ 
Hubei √   √   √ √ 
Hunan √   √   √ √ 
Guangdo
ng 

√   √ √  √ √ 

Guangxi √ √ √ √   √ √ 
Hainan √   √   √ √ 
Chongqi
ng 

√   √  √ √ √ 

Sichuan √ √ √ √  √ √ √ 
Guizhou √ √ √ √   √ √ 
Yunnan √   √  √ √ √ 
Tibet         
Shaanxi √ √ √ √   √ √ 
Gansu √ √ √ √ √ √ √ √ 
Qinghai √ √ √ √   √ √ 
Ningxia √   √    √ 
Xinjiang √ √ √ √  √ √ √ 

 

Table A-7. Blue water footprints (km3 per year) of provinces in China estimated in previous 
studies and this study. 

Province.Code Name 

2007 
(Zhang et al. 
2014) 

2012 (Xu 
et al. 2020) 

2012 
(Zhang et al. 
2019) 

2012 (This 
study, 
hybrid) 

r1 Beijing 7.2 7.1 14.0 5.4 
r2 Tianjin 6.1 5.5 7.5 4.0 
r3 Hebei 9.5 22.0 15.9 11.8 
r4 Shanxi 5.0 7.6 7.3 8.9 
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r5 
Inner 
Mongolia 3.8 11.1 9.5 10.7 

r6 Liaoning 8.4 13.0 17.1 11.4 
r7 Jilin 5.4 5.3 10.8 6.1 
r8 Heilongjiang 8.5 14.8 18.1 12.7 
r9 Shanghai 13.0 11.3 27.6 8.3 
r10 Jiangsu 23.1 27.5 53.9 28.1 
r11 Zhejiang 14.9 16.5 40.7 14.2 
r12 Anhui 7.3 14.3 19.0 10.7 
r13 Fujian 8.6 9.4 18.1 8.0 
r14 Jiangxi 8.4 11.5 14.5 8.1 
r15 Shandong 22.0 20.7 35.0 20.6 
r16 Henan 11.2 16.0 20.8 13.2 
r17 Hubei 9.1 16.6 20.5 12.7 
r18 Hunan 8.4 16.2 22.0 11.3 
r19 Guangdong 21.8 24.2 79.8 20.4 
r20 Guangxi 7.2 10.5 17.1 7.9 
r21 Hainan 1.9 2.2 2.5 1.4 
r22 Chongqing 3.0 8.0 10.0 5.4 
r23 Sichuan 7.4 16.8 21.7 14.0 
r24 Guizhou 3.3 6.1 8.7 3.9 
r25 Yunnan 7.3 11.3 12.5 8.7 
r26 Tibet   2.2 1.4 
r27 Shaanxi 5.3 7.6 7.9 7.4 
r28 Gansu 6.8 6.3 7.6 5.9 
r29 Qinghai 1.8 2.1 2.6 2.1 
r30 Ningxia 3.1 3.3 3.1 3.0 
r31 Xinjiang 87.3 19.5 14.0 13.7 
National total 336.1 364.27 562.2 301.7 

Notes: Zhang, C. & Anadon, L. D. A multi-regional input–output analysis of domestic virtual water 
trade and provincial water footprint in China. Ecological Economics 100, 159-172, 
doi:10.1016/j.ecolecon.2014.02.006 (2014); Xu, X., Zhang, Y. & Chen, Y. Projecting China's future 
water footprint under the shared socio-economic pathways. J Environ Manage 260, 110102, 
doi:10.1016/j.jenvman.2020.110102 (2020); Zhang, S. et al. Regional water footprints and 
interregional virtual water transfers in China. J Clean Prod 228, 1401-1412, 
doi:10.1016/j.jclepro.2019.04.298 (2019). 

 

Table A-8. Uncertainty analysis of the provincial blue water footprints by three key factors 
(i.e., inter-provincial trade, commodity prices, and feed requirements for animal 
husbandry). 

  By trade By price By feed 

Province
.Code Name 

Me
an 

Med
ian 

Stand
ard 
devia
tion 

Me
an 

Med
ian 

Stand
ard 
devia
tion 

Me
an 

Med
ian 

Stand
ard 
devia
tion 

r1 Beijing 
370
8 3708 107 

466
5 4665 47 

453
2 4532 21 

r2 Tianjin 
299
3 2993 86 

319
7 3196 33 

310
2 3102 11 
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r3 Hebei 
987
8 9875 86 

973
6 9729 150 

982
5 9827 78 

r4 Shanxi 
671
4 6714 154 

810
5 8103 60 

803
1 8031 43 

r5 

Inner 
Mongo
lia 

100
41 

1004
1 118 

103
59 

1035
1 89 

102
17 

1021
9 39 

r6 
Liaonin
g 

106
32 

1063
4 126 

984
3 9848 144 

985
3 9853 94 

r7 Jilin 
534
8 5345 82 

518
7 5190 34 

517
7 5172 60 

r8 
Heilon
gjiang 

105
49 

1054
7 127 

101
99 

1028
1 468 

107
46 

1075
3 98 

r9 
Shangh
ai 

452
8 4530 176 

486
6 4866 63 

483
2 4833 23 

r10 Jiangsu 
206
02 

2060
4 159 

198
93 

1996
2 560 

203
98 

2039
5 38 

r11 
Zhejian
g 

116
09 

1160
5 143 

123
56 

1235
1 97 

120
50 

1206
3 51 

r12 Anhui 
972
0 9721 77 

967
5 9642 105 

965
6 9664 74 

r13 Fujian 
670
1 6700 91 

643
2 6439 150 

653
2 6530 16 

r14 Jiangxi 
670
1 6699 111 

687
2 6873 50 

685
0 6851 25 

r15 
Shando
ng 

208
37 

2084
3 212 

176
02 

1759
8 258 

174
41 

1743
3 116 

r16 Henan 
127
04 

1270
3 152 

118
03 

1180
1 91 

117
21 

1171
3 71 

r17 Hubei 
108
58 

1085
9 99 

110
72 

1111
7 297 

113
61 

1136
1 31 

r18 Hunan 
830
5 8306 120 

837
8 8361 114 

846
5 8460 106 

r19 
Guang
dong 

156
99 

1569
6 248 

166
10 

1659
2 192 

164
43 

1644
2 54 

r20 
Guang
xi 

687
3 6873 90 

680
5 6803 56 

675
0 6750 26 

r21 Hainan 
131
5 1315 37 

111
4 1113 10 

111
0 1105 19 

r22 
Chong
qing 

424
1 4239 95 

452
9 4525 48 

448
5 4484 16 

r23 
Sichua
n 

103
06 

1030
1 149 

132
94 

1328
4 74 

132
77 

1327
4 61 

r24 
Guizho
u 

369
6 3694 104 

361
4 3612 31 

362
6 3625 21 

r25 
Yunna
n 

704
5 7045 130 

733
6 7271 176 

753
7 7537 31 

r26 Tibet 
167
1 1673 29 

119
7 1216 142 

135
2 1357 24 

r27 Shaanxi 
511
7 5114 97 

667
7 6676 44 

665
0 6649 36 
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r28 Gansu 
473
7 4735 78 

528
9 5287 35 

519
4 5198 48 

r29 
Qingha
i 

151
0 1509 29 

190
2 1906 24 

191
5 1914 10 

r30 
Ningxi
a 

248
0 2480 26 

254
5 2542 16 

252
8 2528 9 

r31 
Xinjian
g 

169
73 

1696
8 300 

141
20 

1413
8 112 

141
83 

1418
2 82 

 

A.2. Estimation of provincial feed requirements 

We specify eight animal husbandry sectors in FABIO-CHN, i.e., cattle (including buffaloes), sheep 

(including goats), pigs, poultry birds, horses, asses, mules, and camels. We obtain feed requirements 

(in ton per year) of cattle, sheep, goats, pigs, poultry birds, horses, asses, and mules from (Chapagain 

and Hoekstra 2003). The composition of animal feeds in industrial systems and grazing systems 

are distinguished into wheat, barley, maize, oats, other cereals, peas, soyabeans, rapeseed, and other 

feeds (e.g., oil cakes). See below: 

Unit: 
ton/(head
·yr) 

Feed compositions 

Animals Wheat 
and 
produ
cts 

Barley 
and 
produ
cts 

Maize 
and 
produ
cts 

Oat
s 

Cerea
ls, 
Othe
r 

Pea
s 

Soybea
ns 

Rape and 
Mustards
eed 

Oth
er 
feed
s 

Industrial systems 

Cattle 
0.054 0.533 0.792 0.0

69 
0.034 0.0

05 
0.151 0.058 4.02

0 

Sheep 
0.002 0.032 0.004 0.0

05 
0.001 0.0

01 
0.002 0.001 0.70

3 

Goats 
 0.013 0.006 0.0

04 
0.001  0.002 0.001 0.16

3 

Pigs 
0.069 0.39 0.220 0.0

39 
0.004 0.0

18 
0.053 0.048 0.13

3 
Poultry 
Birds 

0.011  0.010    0.003 0.002 0.00
8 

Horses 
0.001 0.078 0.025 0.2

00 
0.012 0.0

02 
0.026 0.003 3.34

1 

Donkey 
0.001 0.078 0.025 0.2

00 
0.012 0.0

02 
0.026 0.003 3.34

1 

Mules 
0.001 0.078 0.025 0.2

00 
0.012 0.0

02 
0.026 0.003 3.34

1 
Grazing systems 

Cattle 
0.012 0.129 0.162 0.0

25 
0.007 0.0

02 
0.032 0.013 5.39

3 

Sheep 
0.001 0.013 0.003 0.0

03 
0.001 0.0

01 
0.001 0.001 0.41

6 
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Goats 
 0.007 0.003 0.0

02 
0.001  0.001 0.001 0.25

4 

Pigs 
 0.047   0.140  0.024  0.37

9 
Poultry 
Birds 

0.011  0.010    0.003 0.002 0.00
8 

Horses 
0.001 0.031 0.010 0.0

78 
0.005 0.0

01 
0.010 0.001 4.06

1 

Donkey 
0.001 0.031 0.010 0.0

78 
0.005 0.0

01 
0.010 0.001 4.06

2 

Mules 
0.001 0.031 0.010 0.0

78 
0.005 0.0

01 
0.010 0.001 4.06

2 
 

We assume that grazing systems are applied in Inner Mongolia, Tibet, Gansu, Qinghai, Ningxia, 

and Xinjiang, while industrial systems applied in the rest provinces. Given that some animals are 

fed for only a few weeks or months before slaughtering while others for several years, we classify 

two categories of animals according to their average farming periods (Chapagain and Hoekstra 

2003), one as animals raised and slaughtered within a year (including sheep, pigs, poultry birds, and 

other live animals), the other as animals raised for years (including cattle, horses, asses, mules, and 

camels). For each animal of the former category, we first convert the annual quantity of each crop 

used as feed into daily basis, and multiply the daily feed requirement with the average lifespan of 

that animal, and lastly multiply with the end-of-2012 in-stock quantity (regarded as 0.5 head) as 

well as the slaughtered quantity of that animal. For each animal of the later category, we calculate 

the quantity of each crop used as feed by multiplying the end-of-2012 in-stock quantity as well as 

the slaughtered quantity (regarded as 0.5 head) of that animals with its annual feed requirements. 

The last step is balancing the provincial animal feed requirement of each crop to match the national 

feed use from the national CBS.  

Feed requirements of each commodity by 8 animal husbandry sectors are aggregated in provincial 

CBS, but it will be allocated to specific animal husbandry sectors when we build provincial use 

tables (see Section 2.2.1.3 Building provincial use tables). 

A.3. Estimation of provincial use of commodities for processing 

Provincial processing data are estimated in different ways, which depend on the inputs and outputs 

of processes: 

• single-process commodities. They are oil crops (processed in the respective oil extraction processes 

into oil and oil cake), cotton (processed in the cotton production process), and live animals 

(processed by the respective slaughtering sectors). We estimate the processed quantities of oil 

crops and cotton as a fixed percentage (equal to the share of processing in all domestic uses in 
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the national CBS from FAOSTAT) of the overall provincial use quantity; while the processed 

quantities of live animals as the slaughtered quantities.  

• multiple crops for same output. They are sugar cane and sugar beet for refined sugar; barley, maize, 

millet and sorghum for beer; rice, wheat, apple for fermented beverages. We estimate the 

processed quantities of crops by solving an optimization problem. With sugar cane and sugar 

beet used in sugar production as an example, we have the provincial production of sugar crops 

ac
m  and refined sugar bs

m , the national technical conversion factors φc,s 4 , and the national 

processed quantity of sugar crops U_Pc. With these inputs, we solve the constrained linear 

least-squares problem, min
u_p

1
2
‖φ∙u_p-b‖2

2  such that 0≤ u_pc
m ≤ ac

m , and ∑ u_pc
m

i =U_Pc , to 

estimate the provincial processing requirements of sugar crops u_pc
m. We can obtain an optimal 

solution representing the processed sugar crop requirements for sugar production in each 

province. 

• multipurpose crops. They are rice for ricebran oil and fermented beverages, maize for maize germ 

oil and fermented beverages, and grape for wine and juice (juice excluded in FABIO-CHN). 

We estimate the processed quantities of crops as the input requirements to each process based 

on the national technical conversion factors. The processed quantities of rice (same with maize 

and grape) for different purposes are aggregated in provincial CBS, but it will be allocated to 

the detailed processes when we build the provincial use tables (see details in the Section 2.2.1.3 

Building the Provincial Use Tables in the main text). 

for all other commodities. We estimate the processed quantities as a fixed percentage of provincial use 

(equal to the national rate of processing in the overall domestic use quantity as given in the national 

CBS from FAOSTAT). 

A.4. Estimation of inter-provincial trade quantities 

Trade data, especially the inter-provincial trade data, in the physical terms of 84 FABIO-CHN 

commodities are the main data gap for fine-scale domestic supply-use analysis of China, thus, we 

use a linear programming optimization model to estimate the bilateral trade quantities of FABIO-

CHN commodities. We pursue a transport cost minimization for inter-provincial trade flows 

following Dalin et al. (2014) and Zhuo et al. (2019). We demonstrate the optimization model in a 

case that the inter-provincial and international trade data of one specific commodities (e.g., millet) 

 
4 Technical conversion factors represent the conversion efficiencies of food processing (e.g., 66% 
of soybean is converted into soybean oil, while the rest 33% is converted into soybean oil cake), 
and differs from countries, products, and processing technologies. 
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are missing for each province, and assume that inter-provincial and international export (import) 

occur in provinces where provincial supply is larger (smaller) than provincial use. We consider 

four harbor provinces (Tianjin, Liaoning, Shandong and Guangdong) for shipping export and 

distributing foreign import.  

min TCc=∑ tcm,n∙tcm,n
m,n,m≠n�����������

inter-provincial

+∑ tcm,h∙tcm,h
m,h�������

export

+∑ tch,n∙tch,n
h,n�������

import

                                                     (A-1) 

subject to: 

• ∀m∈[1:31]: 

Pc
m+∑ (tcn,m-tcm,n)n,m≠n +∑ (tch,m-tcm,h)h +Stockc

m�������������������������
Supply

= Uc
m�

Use

                                                               (A-2) 

• ∑ tcm,h
m,h = Expc                                                                                                                 (A-3) 

• ∑ tch,n
h,n = Impc                                                                                                                   (A-4) 

• tcm,n ≥ 0, tcm,h ≥ 0, tch,n ≥ 0                                                                                                    (A-5) 

where TCc is the total transport cost for the trade of commodity c; tcm,n is inter-provincial trade 

quantity of commodity c from initial province m to destination province n; tcm,h is the international 

export of commodity c from initial province m to harbor province h; tch,n is the international import 

of commodity c from harbor province h to destination province n; Pc
m is the production quantity of 

commodity c in province m; Stockc
m is the stock removal of commodity c in province m; Uc

m is the 

total provincial use of commodity c in province m; Expc is the national export of commodity c 

from FAOSTAT; Impc is the national import of commodity c from FAOSTAT. The inter-provincial 

transport cost ( tcm,n , in Yuan per ton) is obtained through a GIS based dataset of different 

transportation modes (rail, river, and road) between the provinces’ capital city (Gao et al. 2014). 

A.5. Data of product- and sector-specific blue water consumption 

The blue water consumption of FABIO-CHN crops, i.e., water footprints (WFs), are obtained 

from simulations with a crop water productivity model. The direct blue water consumption of 

economic sectors is obtained from provincial Water Resource Bulletins (2012), and Chinese 

Economic Census Yearbook (2008). 

For the FABIO-CHN crops specified in this study, the average WFs (in m3 per ton of harvested 

crop) of crop production per province for year 2012 are estimated following the accounting 
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framework of Hoekstra et al. (2011). The WF of a crop is calculated as the actual crop water use 

(CWU, in m3 per ha) divided by the crop yield (Y, in ton per ha). CWU is the sum of actual 

evapotranspiration (ET, in mm) from the crop field over the crop’s growing period. We use the 

computational framework described in (Hogeboom 2019), which applies the FAO's crop water 

productivity model AquaCrop (Raes et al. 2009) to estimate ET and Y at 5 × 5 arc-minute grid level 

by simulating the soil water balance and crop growth (in growing degree days mode) with a time 

step of one day. The model distinguished between ET of green water (precipitation water in the 

unsaturated zone) and the ET of blue water from irrigation or from water entering the root zone 

via capillary rise in areas where a shallow groundwater table is present using the approach described 

by Hoekstra (2019). The model was run for a sequence of years (1996-2015) with a continues soil 

water balance accounting. Afterwards estimated ET of blue water and Y for the year 2012 have 

been extracted. Details on input datasets for daily climate, crop growing areas, irrigated areas, soil 

parameters and, groundwater are described in (Hogeboom et al. 2021). The model does not account 

for non-optimal management which may occur in practice. To correct for this, we scale the 

simulated Y of each crop in all grid cells such that they match provincial production statistics (Pc
m) 

when aggregated to the provincial level, by using a scaling factor (fc
m) for each crop c in province m: 

fc
m= Pc

m

∑ Yc
m,gHAc

m,g
g

                                                                                                                          (A-6) 

whereYc
m,g and HAc

m,g are the estimated yield and harvest areas of crop c in grid cell g of province 

m. The average WF of crop c in province m is then calculated as: 

WFc
m= 10×ET����c

m,g

fc
m∑ Yc

m,g
g

                                                                                                                         (A-7) 

where ET����c
m,g is the average evapotranspiration of blue water over the growing period of crop c in 

each grid cell of province m; the factor 10 is to convert mm to m³/ha. The total blue WF of crop c 

in province m (in m³/y) is the provincial production (t/y) multiplied by the average WF (m³/t). 

Provincial water consumption of five main purposes, i.e., crop irrigation (including the irrigation 

water for FABIO-CHN included and excluded crops), animal husbandry, industry (including 

electricity generation), services (including construction), and household, are partially available in 

the provincial Water Resource Bulletin 2012 (see Table A-6). For agricultural water consumption 

in those provinces without available data, we use the national water consumption coefficient to 

estimate local water consumption of agriculture. For electricity generation sector, we calculate the 

average water coefficient of electricity generation sector in those provinces with available water 

consumption data, and apply the average water coefficient in other provinces. For other industrial 
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sectors, we rely on the national water consumption data as well as the provincial water withdrawal 

data of each sector from Chinese Economic Census Yearbook (2008). We allocate the national 

water consumption of each sector to provinces by the provincial water withdrawal. Here we assume 

that the more water withdrawn for sectoral production, the more water consumption of that sector. 

After that, we scale the adjusted industrial water consumption into the actual industrial water 

consumption in 2012. For services sector, we calculate the average water coefficient of construction 

sector in those provinces with available water consumption data, and apply the average water 

coefficient in other provinces. For household water consumption, we calculate the per-capita water 

consumption by those provinces with available data and estimate the household water 

consumption in provinces without data based on the per-capita water consumption and local 

population. The direct blue water consumption of “Rest of agriculture, forestry, animal husbandry and 

fishery products and services” sector and “Rest of food manufacturing and tobacco” sector is the blue water 

consumption of agriculture, forestry, animal husbandry and fishery products and services and food 

manufacturing and tobacco omitting the blue water consumption of associated commodities 

included in FABIO-CHN. 

A.6. Features of the hybrid MRIO model 

Figure A-1 illustrates the heatmap of the constructed physical MRIO table of 84 FABIO-CHN 

commodities in China for the year 2012. We aggregate the transaction matrix Z over all provinces 

and receive a matrix with commodity-by-commodity format. The largest flows are found within 

commodities, i.e., on the main diagonal elements. The great number of blank elements in the 

commodity-by-commodity Z matrix implies that the physical MRIO table of FABIO-CHN is a 

highly sparse matrix with flows mainly on the main diagonal, in addition to some important 

processing activities. These processing activities include the feed use in the livestock sector, oil 

crops processed into oils and cakes, as well as live animals converted into animal products, which 

are consistent with the flows documented in the global FABIO database (Bruckner et al. 2019). 

Although the international trade is not illustrated in Figure A-1, the role of the international trade 

is relatively more important for some specific commodities, like international imports in the 

domestic consumption of barley, soybean, and coffee, whereas international exports of tea. 
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Figure A-1. Transactions of food and agricultural biomass commodities for the year 2012, 
with the format of commodity-by-commodity. The logarithm of the contained values is 
illustrated. The unit of each element depends on the commodity, e.g., wheat in 104 tonnes, cattle 
in 104 heads, or wood fuel in 104 cubic meters. Full names of c1-c84 are listed in Table A-2. 

Our hybrid model offers inter-provincial MRIO tables in China for the year 2012 with relative high 

level of details for products and sectors. Products/sectors represented in the national IO tables of 

countries like the United States, Australia, Japan, and Canada have used less-aggregated categories 

(see Table A-9), yet none of them have a higher resolution in agri-food products compared to our 

hybrid MRIO model. We note that Japan specifics 81 agriculture and food products in its IO tables, 

almost as many categories as those in our hybrid model, yet it only provides supply and use 

information at the national scale which excludes the intra-national transactions. The MRIO 

database Eora captures totally 83 agri-food products for global economy. However, the limitations 

of using monetary MRIO model for environmental footprint assessments cannot be avoided when 

using Eora. Lastly, our hybrid MRIO model documents product flows in physical as well as 

monetary units. In that way, it reduces the impacts of price variations among different customers 

on supply chain analysis and environmental footprint assessments. 

 

Table A-9. Summary of national input-output (IO) and multi-regional input-output (MRIO) 
tables. The number of products or sectors are the maximum of all the available IO tables by 
country. 
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  Products/Sectors  
Spatial 
resolution 

 

Unit   Agri-
food 

Forestry Other 
sectors & 
services 

  

IO tables      National   
United States (BEA 
2020) 

 41 2 350    USD 

Australia (ABS 2020)  18 2 95    AUD 
Japan (JGS 2020)  78 3 429    JPY 
Canada (SC 2020)  55 6 361    CAD 
United Kingdom 
(ONSUK 2020) 

 3 1 60    GBP 

China (NBSC 2020)  19 2 129    CNY 
India (MSPI 2020)  33 1 96    INR 

MRIO tables         
China (Mi et al. 2017a)  2 0 40  Provincial  CNY 
GTAP (Aguiar et al. 
2016) 

 21 1 35  National  USD 

EXIOBASE (Stadler 
et al. 2018) 

 27 1 172  National  EURO 

Eora (Lenzen et al. 
2012a) 

 80 3 936  National  USD 

WIOD (Timmer et al. 
2015) 

 2 1 53  National  USD 

Hybrid MRIO tables in this 
study 

 83 1 42  Provincial  tonnes, 
heads, 
m3, 
CNY 
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Appendix B: An Appendix to Chapter 3 

B.1. A simple Example to demonstrate the disaggregation of inter-provincial trade 

We apply a simple 2-region with 2-sector case to demonstrate the disaggregation of the inter-

regional trade. The main disaggregation of the inter-regional trade is following previous studies 

Feng et al. (2020), Liu et al. (2019), and Zhang et al. (2017). Although previous studies have 

provided a helpful and powerful approach to disaggregate the inter-regional trade, we still find that 

there is another trade pattern that was ignored before, i.e., the intermediate goods trade for the last 

production in province m for the final demand consumed in province m’s trade partners. 

We use the MRIO table listed as: 

Intermediate inoputs (Z)  Final demand (Y)  
Export (EX) 

 
Output (x)   r1 r2  r1 r2   

  s1 s2 s1 s2    

r1 s1 5 4 3 2  23 6  7  50 
s2 7 8 9 3  17 7  8  59 

r2 s1 4 3 7 6  10 30  9  69 
s2 2 1 8 9  5 26  10  61 

 

We have A=Zx�-1 = �
0.1000   0.0678
0.1400   0.1356
0.0800   0.0508
0.0400   0.0169

�
0.0435   0.0328
0.1304   0.0492
0.1014   0.0984
0.1159   0.1475

�, 

B=(I-A)-1 = �

1.1352   0.0946
0.2063   1.1864
0.1208   0.0798
0.0738   0.0389

�

0.0761   0.0579
0.1950   0.0989
1.1486   0.1418
0.1637   1.1970

�, 

L11 = (I-A11)
-1

= �1.1248   0.0882
0.1822   1.1712�. 

The trade from region 2 to region 1 is: 

T21=Y21+Z21=Y21+A21x1= �10
5 �+ �0.1000   0.0678

0.1400   0.1356�× �50
59�= �17

8 �. 

According to the disaggregation formation in previous studies: 

Tsr=Ysr+AsrLrrYrr+AsrLrr � ArtBtrYrr
g

t≠r
+Asr � BrtYtr

g

t≠r
+Asr � Brt � Ytu

g

u

g

t≠r
+Asr � BrtEXt

g

t
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where g is the number of regions. For T21, We have s=2 and r=1. Thus, the trade from region 2 to 

region 1 is: 

T21=Y21+A21L11Y11+A21L11(A12B21Y11)+A21�B12Y21)+A21B12(Y21+Y22�+A21(B11EX1+B12EX2) 

      = �10
5 �+ �0.0800   0.0508

0.0400   0.0169�× �1.1248   0.0882
0.1822   1.1712�× �23

17� 

          + �0.0800   0.0508
0.0400   0.0169�× �1.1248   0.0882

0.1822   1.1712�× �0.0435   0.0328
0.1304   0.0492�× �0.1208   0.0798

0.0738   0.0389�× �23
17� 

           +�0.0800   0.0508
0.0400   0.0169�× �0.0761   0.0579

0.1950   0.0989�× �10
5 � 

           +�0.0800   0.0508
0.0400   0.0169�× �0.0761   0.0579

0.1950   0.0989�× ��10
5 �+ �30

26�� 

           + �0.0800   0.0508
0.0400   0.0169�× ��1.1352   0.0946

0.2063   1.1864�× �7
8�+ �0.0761   0.0579

0.1950   0.0989�× � 9
10��= �16.1252

7.6228 � 

According to the disaggregation formation in this study: 

Tsr =Ysr +Asr Lrr Yrr +Asr Lrr � Yru

u≠r
+Asr Lrr � ArtBtr � Yru

ut≠r
+Asr � Brt � Ytu

ut≠r
+Asr � BrtEXt

t
 

We have: 

T21=Y21+A21L11Y11+A21L11Y12+A21L11A12B21(Y11+Y12)+A21B12�Y21+Y22�+A21(B11EX1+B12EX2) 

     =�10
5 �+ �0.0800   0.0508

0.0400   0.0169�× �1.1248   0.0882
0.1822   1.1712�× �23

17� 

        + �0.0800   0.0508
0.0400   0.0169�× �1.1248   0.0882

0.1822   1.1712�× �6
7� 

        + �0.0800   0.0508
0.0400   0.0169�× �1.1248   0.0882

0.1822   1.1712�× �0.0435   0.0328
0.1304   0.0492�× �0.1208   0.0798

0.0738   0.0389�× ��23
17�+ �6

7�� 

        + �0.0800   0.0508
0.0400   0.0169�× �0.0761   0.0579

0.1950   0.0989�× ��10
5 �+ �30

26�� 

        + �0.0800   0.0508
0.0400   0.0169�× ��1.1352   0.0946

0.2063   1.1864�× �7
8�+ �0.0761   0.0579

0.1950   0.0989�× � 9
10��= �17.0000

8.0000 � 

The part highlighted in red color is the trade pattern not captured in previous studies. We further 

find that without capturing this pattern of trade, the actual inter-provincial trade would be 
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underestimated by 7% within China for year 2012, more than the total economic outputs of 

Xinjiang province that year. 

B.2. 31 provinces in mainland China 

Table B-1. List of 31 provinces in mainland China. 
Name Region Water scarcity level 
Beijing North China Extreme 
Tianjin North China Extreme 
Hebei North China Extreme 
Shanxi North China Severe 
Inner Mongolia North China Moderate 
Liaoning Northeast China Severe 
Jilin Northeast China Moderate 
Heilongjiang Northeast China Severe 
Shanghai East China Extreme 
Jiangsu East China Extreme 
Zhejiang East China Moderate 
Anhui East China Moderate 
Fujian East China Low 
Jiangxi East China Low 
Shandong East China Severe 
Henan Central China Severe 
Hubei Central China Moderate 
Hunan Central China Low 
Guangdong South China Moderate 
Guangxi South China Low 
Hainan South China Low 
Chongqing Southwest China Low 
Sichuan Southwest China Low 
Guizhou Southwest China Low 
Yunnan Southwest China Low 
Tibet Southwest China Low 
Shaanxi Northwest China Moderate 
Gansu Northwest China Severe 
Qinghai Northwest China Low 
Ningxia Northwest China Extreme 
Xinjiang Northwest China Severe 

 

B.3. Provincial blue water consumption 

Table B-2. Blue water consumption (km3/yr) in each province for year 2012. 

Province 

Local 
activitie
s 

Globa
l 
Expor
t 

Final 
good
s 
trade 

Interm
. trade 
A 

Interm
. trade 
B 

Val. 
chain: 
domesti
c 

Val. 
chain
: 
globa
l 

Tota
l 

Beijing 0.89 0.10 0.11 0.06 0.02 0.02 0.01 1.20 
Tianjin 0.73 0.13 0.22 0.19 0.06 0.06 0.06 1.45 
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Hebei 8.64 0.48 2.33 1.46 0.56 0.35 0.57 
14.4
0 

Shanxi 3.81 0.08 0.50 0.44 0.11 0.15 0.15 5.24 
Inner 
Mongolia 6.35 0.16 2.31 1.08 0.23 0.28 0.47 

10.8
9 

Liaoning 5.30 0.77 1.75 0.53 0.13 0.13 0.18 8.79 
Jilin 3.99 0.20 1.04 0.51 0.14 0.13 0.15 6.16 
Heilongjian
g 8.13 0.47 5.07 3.31 1.13 1.04 1.08 

20.2
4 

Shanghai 1.03 0.32 0.32 0.30 0.09 0.09 0.09 2.24 

Jiangsu 14.86 4.16 4.17 2.11 0.61 0.58 0.88 
27.3
7 

Zhejiang 5.59 2.59 0.76 0.87 0.24 0.24 0.34 
10.6
2 

Anhui 7.36 0.48 2.54 2.11 0.63 0.65 0.70 
14.4
8 

Fujian 4.18 1.20 0.95 0.82 0.26 0.24 0.26 7.91 

Jiangxi 4.61 0.77 2.12 1.59 0.51 0.47 0.55 
10.6
1 

Shandong 8.31 1.07 2.71 1.00 0.24 0.22 0.34 
13.8
9 

Henan 9.60 0.17 2.28 1.08 0.27 0.17 0.23 
13.8
1 

Hubei 9.38 0.44 1.45 0.81 0.23 0.23 0.34 
12.8
7 

Hunan 6.17 0.29 2.73 2.30 0.66 0.62 0.73 
13.4
9 

Guangdon
g 9.03 2.84 2.28 1.50 0.45 0.43 0.44 

16.9
7 

Guangxi 5.44 0.25 3.02 2.13 0.68 0.59 0.69 
12.8
1 

Hainan 0.48 0.03 0.48 0.54 0.18 0.17 0.18 2.05 
Chongqing 2.48 0.34 0.51 0.42 0.10 0.12 0.14 4.10 

Sichuan 8.25 0.90 1.27 0.84 0.21 0.18 0.27 
11.9
1 

Guizhou 2.12 0.21 0.78 0.79 0.24 0.24 0.25 4.62 
Yunnan 4.87 0.37 1.37 0.93 0.29 0.25 0.28 8.36 
Tibet 0.85 0.09 0.42 0.22 0.09 0.07 0.08 1.83 
Shaanxi 3.83 0.11 0.39 0.33 0.09 0.09 0.12 4.96 
Gansu 3.58 0.17 2.05 1.10 0.37 0.27 0.32 7.86 
Qinghai 1.05 0.03 0.32 0.15 0.08 0.04 0.05 1.71 
Ningxia 1.85 0.08 0.67 0.37 0.12 0.11 0.12 3.31 

Xinjiang 12.83 2.75 13.44 5.66 1.96 1.48 1.60 
39.7
2 

 

B.4. Changes in water scarcity index under the no-trade scenario 

Table B-3. Changes in water scarcity index under the no-trade scenario from the current 
with-trade situations. 

Province Water scarcity level Change in water scarcity index 
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Beijing Extreme 53% 
Tianjin Extreme 61% 
Hebei Extreme -19% 
Shanxi Severe 72% 
Inner Mongolia Moderate 6% 
Liaoning Severe -4% 
Jilin Moderate -18% 
Heilongjiang Severe -33% 
Shanghai Extreme 121% 
Jiangsu Extreme 1% 
Zhejiang Moderate 17% 
Anhui Moderate -24% 
Fujian Low -18% 
Jiangxi Low -19% 
Shandong Severe -7% 
Henan Severe -14% 
Hubei Moderate -6% 
Hunan Low -24% 
Guangdong Moderate 15% 
Guangxi Low -20% 
Hainan Low -46% 
Chongqing Low 19% 
Sichuan Low 0% 
Guizhou Low -1% 
Yunnan Low 7% 
Tibet Low 14% 
Shaanxi Moderate -21% 
Gansu Severe -19% 
Qinghai Low 9% 
Ningxia Extreme 19% 
Xinjiang Severe -32% 

 

B.5. Provincial inequality of water scarcity 

 
Figure B-1. Inequality of water scarcity among all 31 provinces of China. Cumulative 
probability of water availability against cumulative portability of water consumption of provinces 
in China, sorted by increasing magnitudes of water scarcity indices.  
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Appendix C: An Appendix to Chapter 4 

C.1. Data sources 

EXIOBASE 

EXIOBASE 3.6 provides detailed environmental extended MRIO tables, trade-linked in order to 

follow global supply and use chains (Stadler et al. 2018). The MRIO tables describe the world 

economy in terms of the annual production, trade, intermediate consumption and final 

consumption of 200 products between and within 44 countries (Table C-1) and 5 continental 

groups of countries (i.e., the rest of world (RoW) Asia and Pacific, RoW America, RoW Europe, 

RoW Africa, RoW Middle East) for the period 1995 to 2015 in current prices. They distinguish 

final demands into: the final consumption expenditures by households, nonprofit organizations 

serving households, and government; gross fixed capital formation (GFCF); changes in inventories, 

and valuables. 

EU KLMES, World KLEMS and Penn World Table 

The capital investment data and depreciation rates of assets by sector are obtained from different 

sources according to the availability of data (see Table C-1 for an overview). The EU KLEMS 

Growth and Productivity Accounts (EU KLEMS) are a set of detailed accounts on capital 

expenditure and use covering 25 European as well as 5 non-European countries (i.e., Australia, 

Canada, Japan, South Korea, and the United States) (EUKLEMS 2019). Capital investment, capital 

stocks, capital consumption accounts, and depreciation rates in an asset-by-sector resolution until 

2007 are available for 13 countries from the EU KLEMS 2009 release. Capital investment, capital 

stock, and depreciation rates are available for 23 countries from the EU KLEMS 2017 release. 

Details about the categories of assets and sectors could be found in Tables C-2 and C-3. 

The World KLEMS initiative is a global collaborative project derived from the EU KLEMS project 

(WORLDKLEMS 2019), also aims at facilitating the analysis of growth and productivity patterns 

around the world. Although it is less harmonized and standardized than the EU KLEMS, the 

database provides capital accounts and depreciation rates that are more detailed than traditional 

national account tables. We relied on the World KLEMS to obtain capital investment data of China, 

Canada, and South Korea (see Table C-1). Details about the categories of assets and sectors could 

be found in Tables C-4, C-5, and C-6. 

Penn World Table (PWT) version 9.1 provides capital information on capital investment, capital 

stock, and capital consumption data by four assets, covering 182 countries between 1950 and 2017 

(Feenstra et al. 2015). We rely on the PWT database for those countries not covered neither in EU 
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KLEMS nor World KLEMS (see Table C-1). Moreover, a year-specific disaggregated proxy is 

used to disaggregate the total investment of each asset to KLEMS sectors. The disaggregated proxy 

is built on as an average formation pattern of countries with complete data from EU KLEMS 2017 

release. Details about the categories of assets could be found in Table C-7. 

When capital investment in several years are not available, the nearest available capital data scaled 

up by the missing year’s GFCF from EXIOBASE is used. 

Table C-1. An overview of countries (country names and affiliated regions) in our model 
and data sources of their capital investments. OECD1990, the Organization for Economic 
Co-operation and Development in the1990s; EIT, economies in transition; ASIA, Asia; LAM, 
Latin America; MAF, Middle East and Africa. RoW = rest of the world. 

Country Assets Investing sectors Sources 

Austria (OECD1990) 10 34 EU KLEMS 2017 Release 

Belgium (OECD1990) 4  PWT 9.1 

Bulgaria (EIT) 10 34 EU KLEMS 2017 Release 

Cyprus (EIT) 10 34 EU KLEMS 2017 Release 

Czech Republic (EIT) 10 34 EU KLEMS 2017 Release 

Germany (OECD1990) 10 34 EU KLEMS 2017 Release 

Denmark (OECD1990) 10 34 EU KLEMS 2017 Release 

Estonia (EIT) 10 34 EU KLEMS 2017 Release 

Spain (OECD1990) 10 34 EU KLEMS 2017 Release 

Finland (OECD1990) 10 34 EU KLEMS 2017 Release 

France (OECD1990) 10 34 EU KLEMS 2017 Release 

Greece (OECD1990) 10 34 EU KLEMS 2017 Release 

Croatia (EIT) 4  PWT 9.1 

Hungary (EIT) 10 34 EU KLEMS 2017 Release 

Ireland (OECD1990) 10 34 EU KLEMS 2017 Release 

Italy (OECD1990) 10 34 EU KLEMS 2017 Release 

Lithuania (EIT) 10 34 EU KLEMS 2017 Release 

Luxembourg (OECD1990) 10 34 EU KLEMS 2017 Release 

Latvia (EIT) 10 34 EU KLEMS 2017 Release 

Malta (EIT) 10 34 EU KLEMS 2017 Release 

Netherlands (OECD1990) 10 34 EU KLEMS 2017 Release 



Appendix 

155 
 

Poland (EIT) 10 34 EU KLEMS 2017 Release 

Portugal (OECD1990) 10 34 EU KLEMS 2017 Release 

Romania (EIT) 10 34 EU KLEMS 2017 Release 

Sweden (OECD1990) 10 34 EU KLEMS 2017 Release 

Slovenia (EIT) 10 34 EU KLEMS 2017 Release 

Slovakia (EIT) 10 34 EU KLEMS 2017 Release 

United Kingdom (OECD1990) 8 32 EU KLEMS 2009 Release 

10 34 EU KLEMS 2017 Release 

United States (OECD1990) 9 34 EU KLEMS 2017 Release 

Japan (OECD1990) 8 32 EU KLEMS 2009 Release 

China (ASIA) 3 37 World KLEMS 

Canada (OECD1990) 4 31 World KLEMS 

South Korea (ASIA) 11 62 World KLEMS 

Brazil (LAM) 4  PWT 9.1 

India (ASIA) 4  PWT 9.1 

Mexico (LAM) 4  PWT 9.1 

Russia (EIT) 4  PWT 9.1 

Australia (OECD1990) 8 32 EU KLEMS 2009 Release 

Switzerland (OECD1990) 4  PWT 9.1 

Turkey (OECD1990) 4  PWT 9.1 

Taiwan (ASIA) 4  PWT 9.1 

Norway (OECD1990) 4  PWT 9.1 

Indonesia (ASIA) 4  PWT 9.1 

South Africa (MAF) 4  PWT 9.1 

RoW Asia and Pacific (ASIA) 4  PWT 9.1 

RoW America (LAM) 4  PWT 9.1 

RoW Europe (EIT) 4  PWT 9.1 

RoW Africa (MAF) 4  PWT 9.1 

RoW Middle East (MAF) 4  PWT 9.1 
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Table C-2. Categories of assets and sectors of capital investment data and depreciation 
rates from EU KLEMS 2009 Release. 

Assets Sectors 
Computing equipment  Agriculture, hunting, forestry and fishing 
Communications equipment  Mining and quarrying 
Software Food, beverages and tobacco 
Transport Equipment Textiles, textile, leather and footwear 
Other Machinery and 
Equipment 

Wood and of wood and cork 

Total Non-residential 
investment 

Pulp, paper, paper, printing and publishing 

Residential structures Coke, refined petroleum and nuclear fuel 
Other assets Chemicals and chemical 
 Rubber and plastics 
 Other non-metallic mineral 
 Basic metals and fabricated metal 
 Machinery, nec 
 Electrical and optical equipment 
 Transport equipment 
 Manufacturing nec; recycling 
 Electricity, gas and water supply 
 Construction 
 Sale, maintenance and repair of motor vehicles and 

motorcycles; retail sale of fuel 
 Wholesale trade and commission trade, except of motor 

vehicles and motorcycles 
 Retail trade, except of motor vehicles and motorcycles; repair 

of household goods 
 Hotels and restaurants 
 Transport and storage 
 Post and telecommunications 
 Financial intermediation 
 Real estate activities 
 Renting of m&eq and other business activities 
 Public admin and defence; compulsory social security 
 Education 
 Health and social work 
 Other community, social and personal services 
 Private households with employed persons 
 Extra-territorial organizations and bodies 

 

Table C-3. Categories of assets and sectors of capital investment data and depreciation 
rates from EU KLEMS 2017 Release. 

Assets Sectors 
Computing equipment  Agriculture, forestry and fishing 
Communication equipment  Mining and quarrying 
Software Food products, beverages and tobacco 
Transport Equipment Textiles, wearing apparel, leather and related products 
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Other Machinery and 
Equipment 

Wood and paper products; printing and reproduction of 
recorded media 

Total Non-residential 
investment 

Coke and refined petroleum products 

Residential structures Chemicals and chemical products 
Cultivated assets Rubber and plastics products, and other non-metallic mineral 

products 
Research and development Basic metals and fabricated metal products, except machinery 

and equipment 
Other Intellectual Property 
Products 

Electrical and optical equipment 

 Machinery and equipment n.e.c. 
 Transport equipment 
 Other manufacturing; repair and installation of machinery 

and equipment 
 Electricity, gas and water supply 
 Construction 
 Wholesale and retail trade and repair of motor vehicles and 

motorcycles 
 Wholesale trade, except of motor vehicles and motorcycles 
 Retail trade, except of motor vehicles and motorcycles 
 Transport and storage 
 Postal and courier activities 
 Accommodation and food service activities 
 Publishing, audiovisual and broadcasting activities 
 Telecommunications 
 IT and other information services 
 Financial and insurance activities 
 Real estate activities 
 Professional, scientific, technical, administrative and support 

service activities 
 Public administration and defence; compulsory social security 
 Education 
 Health and social work 
 Arts, entertainment and recreation 
 Other service activities 
 Activities of households as employers; undifferentiated 

goods- and services-producing activities of households for 
own use 

 Activities of extraterritorial organizations and bodies 
 

Table C-4. Categories of assets and sectors of capital investment data and depreciation 
rates in China 

Assets Sectors 
Equipment by industrial 
enterprises 

Agriculture, forestry, animal husbandry & fishery  

Non-residential structures by 
industrial enterprises 

Coal mining 
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Investment by non-industrial 
enterprises (agriculture, 
construction, and all services) 

Oil & gas excavation 

 Metal mining 
 Non-metallic minerals mining 
 Food and kindred products 
 Tobacco products 
 Textile mill products 
 Apparel and other textile products 
 Leather and leather products 
 Saw mill products, furniture, fixtures 
 Paper products, printing & publishing 
 Petroleum and coal products 
 Chemicals and allied products 
 Rubber and plastics products 
 Stone, clay, and glass products 
 Primary & fabricated metal industries 
 Metal products (excluding rolling products) 
 Industrial machinery and equipment 
 Electric equipment 
 Electronic and telecommunication equipment 
 Instruments and office equipment 
 Motor vehicles & other transportation equipment 
 Miscellaneous manufacturing industries 
 Power, steam, gas and tap water supply 
 Construction 
 Wholesale and retail trades 
 Hotels and restaurants 
 Transport, storage & post services 
 Information & computer services 
 Financial Intermediations 
 Real estate services 
 Leasing, technical, science & business services  
 Government, public administration, and political and social 

organizations, etc. 
 Education 
 Healthcare and social security services 
 Cultural, sports, entertainment services; residential and other 

services 
 

Table C-5. Categories of assets and sectors of capital investment data and depreciation 
rates in Canada. 

Assets Sectors 
Total Non-residential 
investment 

Agriculture, hunting, forestry and fishing 

Residential structures Mining and quarrying 
ICT assets Food products, beverages and tobacco 
Non-ICT assets Textiles, textile products, leather and footwear 
 Wood and products of wood and cork 
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 Pulp, paper, paper products, printing and publishing 
 Coke, refined petroleum products and nuclear fuel 
 Chemicals and chemical products 
 Rubber and plastics products 
 Other non-metallic mineral products 
 Basic metals and fabricated metal products 
 Machinery, nec 
 Electrical and optical equipment 
 Transport equipment 
 Manufacturing nec; recycling 
 Electricity, gas and water supply 
 Construction 
 Sale, maintenance and repair of motor vehicles and 

motorcycles; retail sale of fuel 
 Wholesale trade and commission trade, except of motor 

vehicles and motorcycles 
 Retail trade, except of motor vehicles and motorcycles; repair 

of household goods 
 Hotels and restaurants 
 Transport and storage 
 Post and telecommunications 
 Financial intermediation 
 Real estate activities 
 Renting of m&eq and other business activities 
 Public admin and defence; compulsory social security 
 Education 
 Health and social work 
 Other community, social and personal services 
 Private households with employed persons 

 

Table C-6. Categories of assets and sectors of capital investment data and depreciation 
rates in South Korea. 

Assets Sectors Sectors (continued) 
Residential structures Agriculture Railroad equipment and transport 

equipment nec 
Total Non-residential 
investment 

Forestry Manufacturing nec 

Transport equipment Fishing Recycling 
Computing 
equipment 

Mining of coal and lignite; 
extraction of peat  

Electricity supply 

Communications 
equipment 

Extraction of crude petroleum 
and natural gas and services 

Gas supply 

Other Machinery and 
Equipment 

Mining of uranium and 
thorium ores  

Water supply 

Computer software 
and databases 

Mining of metal ores  Construction 

 Other mining and quarrying  Sale, maintenance and repair of 
motor vehicles and motorcycles; 
retail sale of fuel 
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 Food products and beverages Wholesale trade and commission 
trade, except of motor vehicles and 
motorcycles 

 Tobacco products Retail trade, except of motor 
vehicles and motorcycles; repair of 
household goods 

 Textiles Hotels and restaurants 
 Wearing apparel, dressing and 

dying of fur 
Inland transport 

 Leather, leather products and 
footwear 

Water transport 

 Wood and products of wood 
and cork 

Air transport 

 Pulp, paper and paper 
products 

Supporting and auxiliary transport 
activities; activities of travel agencies 

 Publishing Ost and telecommunications 
 Printing and reproduction Financial intermediation, except 

insurance and pension funding 
 Coke, refined petroleum 

products and nuclear fuel 
Insurance and pension funding, 
except compulsory social security 

 Pharmaceuticals  Activities related to financial 
intermediation 

 Chemicals excluding 
pharmaceuticals 

Imputation of owner occupied rents 

 Rubber and plastics products Other real estate activities 
 Other non-metallic mineral 

products 
Renting of machinery and 
equipment 

 Basic metals Computer and related activities 
 Fabricated metal products Research and development 
 Machinery, nec Legal, technical and advertising 
 Office, accounting and 

computing machinery 
Other business activities, nec 

 Insulated wire Public admin and defence; 
compulsory social security 

 Other electrical machinery and 
apparatus nec 

Education 

 Electronic valves and tubes Health and social work 
 Telecommunication 

equipment 
Sewage and refuse disposal, 
sanitation and similar activities  

 Radio and television receivers Activities of membership 
organizations nec  

 Scientific instruments Media activities 
 Other instruments Other recreational activities 
 Motor vehicles, trailers and 

semi-trailers 
Other service activities   

 Building and repairing of ships 
and boats 

Private households with employed 
persons 

 Aircraft and spacecraft Extra-territorial organizations and 
bodies 

Table C-7. Categories of assets of Penn World Table version 9.1 
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Assets 
Structure 
Machinery 
Transport equipment 
Other 

 

C.2. Sector classifications 

Table C-8. 200 EXIOBASE product categories to 7 human needs categories. Details about 
the 200 product categories are available in Stadler et al. (2018). 

Human Needs Product Codes from EXIOBASE 
Clothing 15, 55, 56, 57 
Construction 33, 34, 35, 36, 37, 38, 39, 40, 41, 97, 98, 99, 100, 101, 102, 103, 150, 151 
Food 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 42, 43, 44, 45, 46, 47, 48, 

49, 50, 51, 52, 53, 54, 88, 89  
Manufacturing 60, 61, 62, 63, 86, 87, 90, 96, 104, 105, 106, 107, 108, 109, 110, 111, 112, 

113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127 
Mobility 67, 68, 69, 70, 71, 72, 73, 92, 93, 94, 95, 157, 158, 159, 160, 161, 162 
Services 152, 153, 154, 155, 156, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 

173, 174, 175, 196, 197, 198, 200 
Shelter 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 58, 59, 64, 65, 66, 74, 75, 

76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 91, 128, 129, 130, 131, 132, 133, 134, 
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 
191, 192, 193, 194, 195, 199 

 

C.3. Building life spans in various countries 

Table C-9. Statistics data of building lifespans in China and other countries. Data sources: 
refs. Aktas and Bilec (2011), CABR (2014), Cai et al. (2015), Erik Bradley and Kohler (2007), Huang 
et al. (2017), Huang et al. (2013), Komatsu (2008), Moura et al. (2015), Müller (2006), Reyna and 
Chester (2015), Sandberg et al. (2016), Song (2004), Tanikawa and Hashimoto (2010). 

Country Lifespan (years) 

China 25-30 

Japan 30-40 

United States 50-60 

Germany 64 

Spain 77 

Switzerland 71 

Austria 80 

France 102 

United Kingdom 132.6 

Belgium 90 
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Netherlands 71.5 

 

C.4. Capital investment time trends 

 
Figure C-1. China’s gross fixed capital formation (GFCF) and share in GDP, 1995-2015. Red 
line represents the share of capital investments in national gross domestic product (GDP). Results 
in the figure are calculated based on EXIOBASE 3.6. (Stadler et al. 2018). 

C.5. EPs embodied in China’s capital investment and depreciation 

The EPs embodied in China’s gross fixed capital formation (GFCF) and capital depreciation (Fn
K) 

are contrasted in Figure C-2. We also distinguish between the EPs that occurred in China from 

those that occurred in foreign countries. Over the period of 1995-2015, 759 EJ (exajoules) of 

energy, 630 km3 of blue water, 22 million km2 of land, 10 Gt (gigatonnes) of metal ores, 124 Gt of 

non-metallic mineral ores, and 63 Gt greenhouse gas (GHG) emissions were appropriated in China 

for its capital investment. Outside of China, another 130 EJ of energy, 135 km3 of blue water, 16 

million km2 of land, 7 Gt of metal ores, 4 Gt of non-metallic mineral ores, and 6 Gt GHG emissions 

were associated with China’s capital expansion. The shares of foreign EPs embodied in China’s 

capital investment vary greatly among the six environmental indicators we analyzed, with the most 

significant in land use (66% in 2015) and metal ore extractions (42%) and the least significant in 

non-metallic mineral extractions (5%) and GHG emissions (10%). 

EPs embodied in China’s capital depreciation were much smaller than those embodied in its capital 

investment, accounting for 267 EJ of energy, 253 km3 of blue water, 10 million km2 of land, 3 Gt 

of metal ores, 41 Gt of non-metallic mineral ores, and 22 Gt GHG in China, while 44 EJ of energy, 

48 km3 of blue water, 5 million km2 of land, 2 Gt of metal ores, 1 Gt of non-metallic mineral ores, 

and 2 Gt GHG emissions outside of China. 
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Figure C-2. EPs embodied in China’s gross fixed capital formation (above the abscissa) 
and capital depreciation (below the abscissa), 1995-2015. Darker and lighter color tones 
indicate EPs occurred in China and overseas, respectively. 

C.6. Sources of the capital assets consumed in China 

Table C-10. Capital consumed in China: domestic and imported capital assets over 1995-
2015. The cumulative capital consumption (in million 2015 US dollars) of the capital assets 
imported from the top 20 countries are listed. “Equipment by industrial sectors” covers computing, 
communication and transport equipment, other machinery and equipment, and computer software 
and databases; “Structures by industrial sectors” includes non-dwelling buildings and structures; 
“Assets by non-industrial sectors”, encompasses those assets by non-industrial enterprises 
(agriculture, construction, and service sectors), and includes residential structures, cultivated assets, 
research and development, and other intellectual property products assets. RoW = rest of the world. 

 Equipment by 
industrial sectors 

Structures by 
industrial sectors 

Assets by non-
industrial sectors 

China 917288 2745021 6415067 
Japan 46201 147364 5585 
Germany 31090 91026 5424 
USA 27889 89277 4075 
South Korea 25230 74804 3571 
RoW Asia and Pacific 18809 60821 7768 
France 5446 17173 2790 
Italy 5468 17714 1373 
United Kingdom 5198 15592 3096 
Sweden 2264 7464 956 
Switzerland 2307 6986 1236 
RoW Middle East 1868 5485 2115 
Finland 1703 5993 653 
Russia 1289 4790 1482 
Netherlands 1303 4144 2024 
Belgium 1500 4848 1089 
Austria 1635 5024 643 
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Canada 1393 4546 1185 
Spain 1069 3324 1872 
Australia 957 2977 1010 
Indonesia 985 3073 269 
Others 9080 26717 7114 

 

C.7. Hypothetical contributions of pre-1995 capital investments and EPs 

 
Figure C-3. Environmental footprints of China’s final consumption during 1995-2015 
accounting for capital invested from 1975-2015. Line c: EFs calculated by conventional CBA. 
Lines d1-d2: reassessed EFs accounting for capital consumption and the associated EPs. Line d2 
accounts for capital assets produced from 1995 to 2015, whilst Line d1 accounts for capital assets 
produced since 1975. 

Since capital investment data for pre-1995 capital investments and production practices (MRIO 

tables) are sparse or not readily available for many countries, we assume that the capital investment 

each year before 1995 equals to the investment in 1995, which was actually less than the values in 

1995; thus, the associated EPs in year t (the gap between d1 and d2) would be overestimated in 

Figure C-3. We found that the pre-1995 capital investment and the associated EPs would 

contribute for a great proportion in early years (e.g., 1995), especially of minerals ore extractions. 

In 2015, the EPs related with the pre-1995 capital investment would share 2%-6% percentage of 

that year total EPs. Yet, the actual contribution of pre-1995 investment would be less as Figure 

C-3 illustrates. 

C.8. Linking capital consumption to final consumption  

Figure C-4 below are extended results related to Figure 4-2 in the main manuscript.  
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Figure C-4. Heat maps linking top capital investing (using) sectors (rows) with the top 
sectors of final consumption in China (A) and in foreign countries (B).  

The final consumption sectors shown in this figure made at least a 2% contribution to the total 

environmental pressures embodied in China’s capital consumption. For the abbreviated sector 
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names:  “AGR” (Agriculture, forestry, animal husbandry & fishery), “CHE” (Chemicals and allied 

products), “MET” (Primary & fabricated metal industries), “MCH” (Industrial machinery and 

equipment), “ICT” (Electronic and telecommunication equipment), “TRS” (Motor vehicles & 

other transportation equipment), “UTL” (Power, steam, gas and tap water supply), “SAL” 

(Wholesale and retail trades), “T&S” (Transport, storage & post services), “P&T” (Information & 

computer services), “REA” (Real estate services), “ADM” (Government, public administration, 

and political and social organizations, etc.), “EDU” (Education); P121 (Radio, TV, communication 

equipment and apparatus), P123 (Motor vehicles, trailers and semi-trailers), P163 (Supporting 

transport and travel agency services), P168 (Real estate services), P170 (Computer and related 

services), P173 (Public administration, defense, social security), P174 (Education services), and 

P175 (Health and social work services). 

C.9. Capital-related EP of China’s final consumption (EFK)  

The annual profiles and trends of the capital-related EFs of China’s final consumption (EFK) are 

presented in Figure C-5. These extended results are related to Figure 4-3 in the main manuscript. 

We also note that capital consumption attributable to China’s final consumption include capital 

assets located both in and outside of China. 

Depending on the year of final consumption and the EP indicators, the share of the foreign-

occurred EP in EFK varies substantially. During 1995-2015, the foreign shares range from 10-17% 

for the energy footprint, 10-21% of the blue water footprint, 12-50% of the land footprint, 30%-

48% for the metal footprint, 1%-5% for the mineral footprint, and 6%-10% for the GHG footprint. 

Notably, foreign land use related to capital consumption has become increasingly important in 

supporting China’s final consumption. Capital consumption has increased from 12% to 50% of 

the capital-related land footprint from 1995 to 2015. Over the years, a large fraction (30%-48%) of 

the metal footprint related to capital consumption occurred outside of China. Among the six EP 

indicators, mineral extractions related to capital consumption had the lowest foreign requirements, 

ranging from 1%-5%. 

The average ages of capital-related EP attributable to China’s final consumption i.e., average time 

EP occurred, can be revealed based on the temporal results of 2011-2015. The average age for 

energy use, blue water consumption, land use, metal ore extractions, mineral extractions, and GHG 

emissions is 6, 7, 7, 5, 6, and 6 years, respectively. 
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Figure C-5. Annual profiles of capital-related EPs of China’s final consumption (EFK) by 
the year when the EP occurred. EFK occurred in China and in other countries are plotted above 
and below the abscissa, respectively. 

C.10. Capital stocks and EP embodied in capital stocks 

Results in Figure C-6 support the discussion section. In the figure, we present the capital stock 

results from 2011-2015. The choice of 2011-2015 is because these years were not significantly 

affected by the fact that our model did not include pre-1995 capital investments. Capital invested 

in 1995 accounted for less than 1% of annual capital stocks after 2011 and therefore pre-1995 

capital investments are considered negligible. 
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Figure C-6. Capital stocks and the embodied EP of main capital investing (i.e., using) 
sectors in China, 2011-2015. For the abbreviated sector names: “AGR” (Agriculture, forestry, 
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animal husbandry & fishery), “CHE” (Chemicals and allied products), “MET” (Primary & 
fabricated metal industries), “MCH” (Industrial machinery and equipment), “ICT” (Electronic and 
telecommunication equipment), “TRS” (Motor vehicles & other transportation equipment), “UTL” 
(Power, steam, gas and tap water supply), “SAL” (Wholesale and retail trades), “T&S” (Transport, 
storage & post services), “P&T” (Information & computer services), “REA” (Real estate services), 
“ADM” (Government, public administration, and political and social organizations, etc.), “EDU” 
(Education). 

C.11. Implications of technology change in assessing the capital-related EFs. 

Inherent to the retrospective distribution of historical resource extractions and emissions, the 

capital goods used in current year come from different age cohorts, produced using different 

technologies, i.e., with different environmental intensities. In general, productivity and technology 

improvement make production processes increasingly cleaner, such as indicated by decreasing 

resource and emissions intensity of the same production sector along time. Assuming capital assets 

produced previously were produced using current technologies, as current capital-endogenized 

CBA models did (Chen et al. 2018, Lenzen 2001, Södersten et al. 2018a), the EPs associated with 

capital use for current final consumption would be underestimated in general. As shown in Figure 

C-7, such underestimates are particularly high for blue water consumption and land use, for they 

experienced a relatively large reduction of the intensities. As for GHG emissions, the yearly 

underestimates have the median (25th-75th percentile) of 16% (5-27%), which explains the 

difference between our results and those in ref. 8. However, for metal ore extractions, the ‘current 

technology assumption’ led to overestimates of the capital-related EF during the period of 2002-

2008, possibly due to decreasing ore grades. 

 
Figure C-7. Difference in China’s EFKC estimates when assuming all consumed capital 
assets of different age cohorts were produced with current production systems and 
resource and environmental intensities. The median and 25th–75th percentiles (box), and 
maximum and minimal values (whiskers) are shown. 
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C.12. EFs of China over 2011-2015 distinguishing between capital and non-capital goods 

Table C-11 below is extended results related to Figure 4-3 in the main manuscript. 

Table C-11. Environmental footprints of China’s final consumption during 2011-2015 
assessed by different consumption-based accounting (CBA) methods and scopes. a1, a2, 
b1, and b2 indicate Lines a1, a2, b1, and b2 in Figure 4-3 in the main manuscript, respectively. 

  2011  2012  2013  2014  2015 
Energy (EJ)           

a1  145.9  152.5  161.8  164.0  168.0 

a2  78.4  80.9  85.3  86.6  88.6 

b1  98.9  103.8  110.7  114.4  119.3 

b2  95.4  99.9  106.2  109.6  114.0 

BWC (km3)           

a1  173.0  184.0  194.1  192.2  202.1 

a2  127.2  137.2  140.5  141.0  146.8 

b1  145.7  157.0  161.8  163.7  171.3 

b2  142.0  152.9  157.4  158.9  166.2 

Land (million m2)           

a1  10.3  10.2  11.2  11.7  12.0 

a2  7.7  8.2  8.2  9.0  9.1 

b1  8.6  9.2  9.3  10.2  10.3 

b2  8.2  8.8  8.8  9.6  9.7 

Metal (Gt)           

a1  1.8  2.0  2.2  2.1  2.2 

a2  0.3  0.4  0.4  0.4  0.4 

b1  0.7  0.8  0.9  0.9  1.0 

b2  0.5  0.6  0.7  0.7  0.7 

Minerals (Gt)           

a1  13.3  14.1  15.4  15.9  16.7 

a2  3.5  3.8  4.3  4.7  5.2 

b1  6.4  7.1  7.9  8.7  9.6 

b2  6.3  6.9  7.8  8.5  9.4 

GHG (Gt)           

a1  9.6  10.2  10.7  10.8  11.1 

a2  4.5  4.7  4.8  4.9  5.1 

b1  6.1  6.5  6.8  7.1  7.5 

b2  5.9  6.3  6.6  6.9  7.2 
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Appendix D: An Appendix to Chapter 5 

D.1. Data Sources 

D.1.1 Capital data 

The major capital data we use in this study include total investment in fixed assets (TIFA) by sector 

and by province, newly increased fixed assets (NIFA) by sector and by province, and depreciation 

rates by asset and by capital consuming sectors. TIFA and NIFA are mainly collected from the 

statistical database of the National Bureau of Statistics of China (NBSC) (NBSC 2020) and the 

Statistical Yearbook of the Chinese Investment in Fixed Assets (NBSC 2018b). Official NIFA are 

distinguished as rural NIFA and urban NIFA by 19 major economic sectors (e.g., “Agriculture, 

Forestry, Animal Husbandry and Fishery” or “Construction”, see Table D-1). Particularly, urban 

NIFA are also recorded by 40 specific industrial sectors (e.g., “Food Manufacturing” or “Electricity, 

Heat Production and Supply”, see Table D-1). However, the industrial classifications of the official 

data are inconsistent overt time. That is, before 2002, sector “Hotels and Catering Services” was 

aggregated into sector “Wholesale and Retail Trades”; sector “Education” was aggregated into sector 

“Cultural, Sports, and Entertainment Services”; while sectors “Information Transmission, Computer Services 

and Software”, “Leasing and Business Services”, “Services to Households and Other Services” and “Public 

Administration and Social Organization Services” were aggregated as “Public Services”. To ensure the 

consistency of sectoral classification during the study period, we re-allocate these aggregated sectors’ 

capital investment into each sector based on their shares in the capital investment in the year 2003. 

Furthermore, rural NIFA of major industry sectors, i.e., “Mining and Quarrying Industry”, 

“Manufacturing Industry”, and “Production and Supply of Electricity, Gas and Water”, are disaggregated 

into 40 specific industrial sectors based on their shares in urban NIFA in each province. 

Table D-1. Categories of sectors of newly increased fixed assets (NIFA) recorded by the 
National Bureau of Statistics of China.  

Rural NIFA Urban NIFA 
Agriculture, Forestry, Animal 
Husbandry and Fishery 

Agriculture, Forestry, Animal Husbandry and 
Fishery 

Mining and Quarrying Industry Mining and Quarrying Industry 
Manufacturing Industry Mining and Washing of Coal 
Production and Supply of Electricity, 
Gas and Water 

Petroleum and Natural Gas 

Construction Mining and Processing of Ferrous Metal Ores 
Wholesale and Retail Trades Mining and Processing of Non-Ferrous Metal 

Ores 
Transport, Storage and Post Minging and Processing of Nonmetal Ores 
Hotels and Catering Services Mining Supportive Activities 
Information Transmission, Computer 
Services and Software 

Minging of Other Ores 
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Financial Intermediation Manufacturing Industry 
Real Estate Services Processing of Food from Agricultural Products 
Leasing and Business Services Manufacture of Foods 
Scientific Research, Technical Service 
and Geologic Prospecting 

Manufacture of Beverages 

Management of Water Conservancy, 
Environment and Public Facilities 

Manufacture of Tobacco 

Services to Households and Other 
Services 

Manufacture of Textile 

Education Manufacture of Textile Wearing Apparel, 
Footware and caps 

Healthy Services Manufacture of Leather, Fur, Feather and 
Related Products 

Cultural, Sports, and Entertainment 
Services 

Processing of Timber, Manufacture of Wood, 
Bamboo, Rattan, Palm and Straw Products 

Public Administration and Social 
Organization Services 

Manufacture of Furniture 

 Manufacture of Paper and Paper Products 
 Printing, Reproduction of Recording Media 
 Manufacture of Articles For Culture, Education 

and Sports Activities 
 Processing of Petroleum, Coking, Processing of 

Nuclear Fuel 
 Manufacture of Raw Chemical Materials and 

Chemical Products 
 Manufacture of Medicines 
 Manufacture of Chemical Fibers 
 Manufacture of Rubber and Plastics Products 
 Manufacture of Non-metallic Mineral Products 
 Smelting and Pressing of Ferrous Metals 
 Smelting and Pressing of Non-ferrous Metals 
 Manufacture of Metal Products 
 Manufacture of General Purpose Machinery 
 Manufacture of Special Purpose Machinery 
 Manufacture of Transport Equipment 
 Manufacture of Electrical Machinery and 

Equipment 
 Manufacture of Communication Equipment, 

Computers and Other Electronic Equipment 
 Manufacture of Measuring Instruments and 

Machinery for Cultural Activity and Office Work 
 Manufacture of Artwork and Other 

Manufacturing 
 Recycling and Disposal of Waste 
 Metal Product Machinery and Equipment Repair 

Industry 
 Production and Supply of Electricity, Gas and Water 
 Production and Supply of Electric Power and 

Heat Power 
 Production and Supply of Gas 
 Production and Supply of water 
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 Construction 
 Wholesale and Retail Trades 
 Transport, Storage and Post 
 Hotels and Catering Services 
 Information Transmission, Computer Services and 

Software 
 Financial Intermediation 
 Real Estate Services 
 Leasing and Business Services 
 Scientific Research, Technical Service and Geologic 

Prospecting 
 Management of Water Conservancy, Environment 

and Public Facilities 
 Services to Households and Other Services 
 Education 
 Healthy Services 
 Cultural, Sports, and Entertainment Services 
 Public Administration and Social Organization 

Services 
 

Table D-2. Categories of 37 capital investing sectors recorded in the WorldKLEMS 
(WORLDKLEMS 2019). 

Sector 
Number 

Full Name 

1 Agriculture, forestry, animal husbandry & fishery  
2 Coal mining 
3 Oil & gas excavation 
4 Metal mining 
5 Non-metallic minerals mining 
6 Food and kindred products 
7 Tobacco products 
8 Textile mill products 
9 Apparel and other textile products 
10 Leather and leather products 
11 Saw mill products, furniture, fixtures 
12 Paper products, printing & publishing 
13 Petroleum and coal products 
14 Chemicals and allied products 
15 Rubber and plastics products 
16 Stone, clay, and glass products 
17 Primary & fabricated metal industries 
18 Metal products (excluding rolling products) 
19 Industrial machinery and equipment 
20 Electric equipment 
21 Electronic and telecommunication equipment 
22 Instruments and office equipment 
23 Motor vehicles & other transportation equipment 
24 Miscellaneous manufacturing industries 
25 Power, steam, gas and tap water supply 
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26 Construction 
27 Wholesale and retail trades 
28 Hotels and restaurants 
29 Transport, storage & post services 
30 Information & computer services 
31 Financial Intermediations 
32 Real estate services 
33 Leasing, technical, science & business services  
34 Government, public administration, and political and social organizations, 

etc. 
35 Education 
36 Healthcare and social security services 
37 Cultural, sports, entertainment services; residential and other services 

 

D.1.2 MRIO-related data 

According to the data needed to construct China’s inter-provincial MRIO table series, the 

associated data sources include: the current best available MRIO tables collected for the year 2007 

(Liu et al. 2012), 2010 (Liu et al. 2014b), 2012 (Liu et al. 2018), 2015 and 2017 from CEADs (Zheng 

et al. 2020), and 1995-2016 from Wang (2017); product-specific per-capita expenditures of rural 

and urban population in each province from China Statistical Yearbooks (NBSC 2017b); rural and 

urban population of each province from China Statistical Yearbook , and 1995-2016 from Wang 

(2017); product-specific per-capita expenditures of rural and urban population in each province 

from China Statistical Yearbooks (NBSC 2017b), and China Rural Statistical Yearbook (NBSC 

2018a); gross final expenditures, GFCF, and stock changes of each province from China Statistical 

Yearbook (NBSC 2017b), see Table D-3 for associated data in 2017; product-specific export data 

from China Statistical Yearbook (NBSC 2017b), China Trade And External Economic Statistical 

Yearbook (NBSC 2017a), and Market Statistical Yearbook Of China (NBSC 1997). 

Table D-3. Gross regional product by expenditure approach for the year 2017. Unit: 108 Yuan. 

Region Province 
Final expenditure 

GFCF Stock 
changes Rural 

population 
Urban 
population 

Government 

Beijing-
Tianjin 

Beijing 768 10724 5351 10375 768 

Beijing-
Tianjin 

Tianjin 638 5441 2346 10138 638 

North Hebei 3486 8425 4144 19035 3486 
Northwest Shanxi 1801 4894 2062 6700 1801 
Northwest Inner 

Mongolia 1375 4661 2428 10392 1375 

Northeast Liaoning 1927 8948 2903 9639 1927 
Northeast Jilin 1089 3010 1701 10014 1089 
Northeast Heilongjiang 1753 5402 2967 9651 1753 
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Central 
Coast 

Shanghai 756 12214 4581 11507 756 

Central 
Coast 

Jiangsu 6810 25083 11128 36417 6810 

Central 
Coast 

Zhejiang 4334 14702 6443 21862 4334 

Central Anhui 2827 7843 2829 13569 2827 
South 
Coast 

Fujian 2491 7617 3043 17638 2491 

Central Jiangxi 2553 5413 2258 9738 2553 
North Shandong 7431 20854 6901 34704 7431 
Central Henan 4978 12052 6100 30415 4978 
Central Hubei 3026 9729 4417 20587 3026 
Central Hunan 3645 9639 4792 17160 3645 
South 
Coast 

Guangdong 5385 28712 11032 38391 5385 

Southwest Guangxi 2325 5522 2658 9035 2325 
South 
Coast 

Hainan 465 1465 852 2809 465 

Southwest Chongqing 1181 5838 2271 9907 1181 
Southwest Sichuan 5323 9518 4525 17689 5323 
Southwest Guizhou 1935 3897 1674 9086 1935 
Southwest Yunnan 2335 5265 2906 14826 2335 
Southwest Shaanxi 1650 5419 2607 14144 1650 
Central Gansu 1054 2664 1430 3557 1054 
Northwest Qinghai 337 737 742 3918 337 
Northwest Ningxia 348 1081 685 3836 348 
Northwest Xinjiang 1185 2867 3220 10695 1185 

 

D.1.3 Carbon emission inventory 

Carbon emissions by sector of 30 regions during the period of 1997-2017 are collected from 

emission inventories complied by CEADs (Shan et al. 2018, Shan et al. 2020a, Shan et al. 2016). 

The CEADs’ carbon emission inventories are constructed in a resolution of 45 sectors, as well as 

household emissions of rural and urban population. We aggregate the 45-sectorial emission data 

into the resolution of 42 MRIO-sectors. Moreover, there are still two-year carbon emission data 

missing. We assume the sectorial carbon emission intensities of sectors in 1995 and 1996 are equal 

to those in 1997. 

D.2. Total investment in fixed assets (TIFA) V.S. newly increased fixed assets (NIFA) 

Official capital investment data from the National Bureau of Statistics of China (NBSC) are 

recorded by two main annual series, “total investment in fixed assets (TIFA)” (“quanshehui guding 

zichan touzi” in Chinese) and “newly increased fixed assets (NIFA)” (“xinzeng guding zichan” in 

Chinese). TIFA and/or NIFA are supposed to be the basis for the gross fixed capital formation 
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(GFCF) item in the Chinese national accounts. However, these indicators do not appear to be 

consistent (Figure D-1), hence causing confusions to their users. 

 
Figure D-1. Relationship between Chinese statistical capital data. TIFA=total investment in 
fixed assets; NIFA=newly increased fixed assets; GFCF=gross fixed capital formation. Data source: 
National Bureau of Statistics of China. 

An often made, significant mistake is the direct use of TIFA as the investment variable in estimating 

capital stock or capital depreciation with the perpetual inventory method (PIM) (Hu and Khan 

1997, Huang et al. 2002, Li 1992) which is conceptually inappropriate. By official definition, TIFA 

refers to the “workload” of activities in construction and purchases of fixed assets in money terms 

(NBSC 2017b), which may not produce results that meet standards for fixed assets in the current 

period or may take many years to become qualified for fixed assets and some may never meet the 

standards, hence be completely wasted, which is a typical phenomenon in all centrally planned 

economies (Chow 1993). The problem is aggravated in the case of a large project because its 

investment “workload” is counted by stage of construction, but it cannot be used for production 

(hence should be counted as the increase in inventory) before all stages are completed and the 

operation actually commences. It can be sure that the official TIFA indicator and hence GFCF 

exaggerates the real level of fixed asset investment. 

Compared with TIFA, the series of NIFA is much more compatible with the concept of “fixed 

asset investment” used in PIM because it refers to the value of investment projects completed and 

put into production or meeting the standards for fixed assets in the current year (NBSC 2017b), 

hence reflecting the fixed assets formed in the current period as a results of those effective investment 

projects taking place in the current and previous periods. They are effective because they have been 

(or will be) turned into new fixed assets for production services rather than wasted. 
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If denote NIFA as N and TIFA as M (or the “workload” of investment projects), assuming no 

coverage problem and double counting, then N in period t is the sum of M’s in τ+1 periods (i=0, 

1, 2, …, τ) multiplied by their respective ratios Ɵ (Ɵ<1), defined as, in value terms, the proportion 

of actually completed investment in period t in the total “workload” of the investment projects 

taking place in period t-i, that is, 

Nt=∑ Ɵt-iMt-i
τ
i=0 , (i=0, 1, 2,…τ)  

It should be mentioned that there is little information available on Ɵ and τ. An officially often used 

ratio, namely “rate of fixed assets put into use” (“guding zichan jiaofu shiyonglv” in Chinese) defined 

as Nt/Mt=∑ Ɵt-iMt-i
τ
i=0 /Mt , is misleading because it compares two concepts that are virtually 

incompatible (see Table 10-17 in China Statistical Yearbook 2017 (NBSC 2017b). 

Although NIFA is more reasonable than TIFA to be used as capital investment (denoted as I) in 

PIM, two adjustments have to be made to transfer N to I. One is a downward adjustment to remove 

the investment in residential buildings, a prerequisite for conducting any production function 

analysis. The other is an upward adjustment to include the projects less than half million yuan by 

non-state firms that are not reported in official investment statistics plus the value of likely 

underreporting (Young 2000). The standard I by sector s of province m could be estimated as: 

Im,t,s=Nm,t,s
1-ηm,t,s

1-λm,t,s
, (η<1; λ<1)  

where η and 𝜆𝜆 are two parameters to adjust N by the effects of residential structures and missing 

and/or underreported investment, respectively. 

D.3. Constructing China’s inter-provincial MRIO table series (1995-2017) 

The basic framework to construct China’s inter-provincial MRIO table series (1995-2017) follows 

previous studies by Guan et al. (2008), Hubacek and Sun (2001), Hubacek and Sun (2005), and 

Zhao et al. (2015), and uses the GRAS method (Günlük‐Şenesen and Bates 1988). The GRAS 

method is a branch of the RAS method, which is a procedure that is widely used for updating IO 

information over time. Here we present a brief introduction. We denote the column sum of the 

intermediate input matrix Z as U, while denote the row sum of Z as V. The RAS method is used 

to quantify the intermediate input matrix Z’ in the target year, given the matrix Z in the reference 

year and U’, V’ and x’ in the target year. The quantification procedure is to give iterative trial and 

adjustment of U’ and V’ to obtain a balanced matrix Z’.  
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The current best available MRIO tables in 2007 (Liu et al. 2012), 2010 (Liu et al. 2014b), 2012 (Liu 

et al. 2018), 2015 and 2017 from CEADs (Zheng et al. 2020), 1995-2006 from Wang (2017) are 

relied on as MRIO tables in the reference years. Although Wang (2017) construct the time series 

of MRIO tables since 1978, the features of these MRIO tables are quite different from the statistical 

data recorded in the National Bureau of Statistics of China (NBSC). An example of provincial value 

added in 2012 recorded in the NBSC, and from MRIO tables from Liu et al. (2018) and Wang 

(2017), respectively, are listed in Table D-4. Because of the big differences of data in the MRIO 

tables complied by Wang (2017) from those in the NBSC, we only use the MRIO tables of the 

period 1995-2006 from Wang (2017) for our analysis. In addition, before we construct the MRIO 

tables in the missing years, we first adjust the final demand, exports, imports and value-added data 

in the existing MRIO tables, to make sure all the data compiled in MRIO tables are well balanced 

with the statistical data from the National Bureau of Statistics of China. The intermediate input 

table is then adjusted using the GRAS method to make sure the balances between total outputs 

and total inputs.  

Table D-4. Provincial value added in 2012 recorded in the National Bureau of Statistics of 
China (NBSC), MRIO tables from Liu et al. (2018) and Wang (2017), respectively. Unit in 
108 Yuan. 

Provinces NBSC Liu et al. (2018)  Wang (2017)  
Beijing 19025 17879 6151 
Tianjin 9043 12894 2226 
Hebei 23077 26575 14924 
Shanxi 11683 12113 6152 
Inner Mongolia 10470 16372 4346 
Liaoning 17849 24898 9108 
Jilin 8678 11939 4213 
Heilongjiang 11016 13733 6173 
Shanghai 21306 20184 7326 
Jiangsu 53702 59972 21799 
Zhejiang 34382 35911 19614 
Anhui 18342 17214 9694 
Fujian 20191 19702 8377 
Jiangxi 12808 12949 7774 
Shandong 42957 50028 20624 
Henan 28962 29599 15031 
Hubei 22591 22415 9650 
Hunan 21207 22154 10855 
Guangdong 57008 55463 29217 
Guangxi 11304 13035 5469 
Hainan 2789 2856 1067 
Chongqing 11595 11410 4450 
Sichuan 23922 23873 13848 
Guizhou 6742 6852 3960 
Yunnan 11097 10371 6125 
Tibet 710 701 221 
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Shaanxi 14142 14454 6518 
Gansu 5393 5658 3149 
Qinghai 1528 1894 813 
Ningxia 2131 2347 1050 
Xinjiang 7412 7509 3489 

 

It should also be noted that the MRIO tables in 2007 and 2010 only have 30 regions (without Tibet) 

and 30 sectors, while the MRIO tables in 1995-2006, 2012, 2015 and 2017 have 31 regions and 42 

sectors. To ensure the consistency of MRIO table time series, we omit all the transactions relevant 

to Tibet in the MRIO tables in 2012, 2015 and 2017, and disaggregate the 30 sectors into 42 sectors 

(Table D-5) for further calculation. We also specify five final demand categories, i.e., final 

expenditures of rural population, final expenditures of urban population, final expenditures of 

government, gross fixed capital formation (GFCF), and stock changes, according to the best 

available MRIO tables. 

Table D-5. List of the 42 sectors in China’s inter-provincial MRIO table time series. 
Sector 
Number 

Full Name Short Name 

1 Agriculture, forestry, animal husbandry and fishery 
products and services 

Agri. sect. 

2 Coal mining products Coal mining 
3 Oil and natural gas extraction products Oil and nat. gas 
4 Metal ore mining and products Metal ore mining 
5 Non-metallic minerals and other mining products Mineral mining 
6 Food manufacturing and tobacco Food & tobacco 
7 Textile and products Textile 
8 Leather and down of textiles, clothing, shoes, hats and 

articles thereof 
Leather n.e.c 

9 Wood products and furniture Wood mfg. 
10 Paper printing, culture, education, and sporting goods Paper n.e.c 
11 Petroleum, coking products and nuclear fuel processed 

products 
Petroleum n.e.c 

12 Chemical product Chemical prod. 
13 Non-metallic mineral product manufacturing Mineral prod. 
14 Metal smelting and rolling product manufacturing Metal smelting 
15 Metal product manufacturing Metal prod. 
16 General equipment General eq. 
17 Professional equipment Professional eq. 
18 Transportation equipment Transportation eq. 
19 Electrical machinery and equipment Electricity eq. 
20 Communication equipment, computers and other 

electronic equipment 
Electronic eq. 

21 Instrumentation Instrumentation 
22 Other manufactured products Other mfg. 
23 Waste of materials Waste of materials 
24 Repair of metal products, machinery and equipment Repair mfg 
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25 Production and supply of electricity and heat Electricity supply 
26 Gas production and supply Gas supply 
27 Water production and supply Water supply 
28 Construction Construction 
29 Wholesale and retail Wholesale etc. 
30 Transportation, storage and post services Transport. sev. 
31 Accommodation and restruant Accommodation 
32 Information transfer, software and information 

technology services 
Info. sev. 

33 Financial services Financial sev. 
34 Real estate services Real estate 
35 Leasing and business services Business sev. 
36 Scientific research and technical services Sci. res. tech. 
37 Public services, hydrology, environment and public 

facilities management 
Public sev. 

38 Resident services, repairs and other services Resident sev. 
39 Education Education 
40 Health and social work Health sev. 
41 Culture, sports and entertainment Culture sev. 
42 Public administration, social security and social 

organization 
Public admin. sev. 

 

To estimate U’, V’ and x’ in the target year, we first estimate final demand y’ and the export EX’ 

in the target year, and then we assume U’, V’ and x’ will all change proportionally with total changes 

in y’ and EX’. Final expenditures of rural population (y_rm
′ ) and final expenditures of urban 

population (y_um
′ ) in the target year of province m are estimated in this way: we first determine the 

changes in product-specific expenditures of rural population (also for urban population) in the 

target year of province m from that in the reference year, which are calculated using the statistical 

data of product-specific per-capita expenditures of rural population (also for urban population) of 

province m, the number of rural population (also for urban population) of province m, and the 

inflation rates of associated years of province m; then we apply the product-specific changes to the 

final expenditures of associated producing sectors in y_rm (also for y_um); finally we balance y_rm
′  

(also for y_um
′ ) into the statistical data of gross final expenditures of rural population (also for 

urban population) in the target year of province m. Since there is no detailed per-capital expenditure 

data of government expenditures (y_g), we rely on the changes in final expenditures of rural and 

urban population in the target year from that in the reference year to estimate y_gm
′  in the target 

year, and also balance it into the statistical data of gross final expenditures of government in the 

target year of province m. GFCF (y_gfcfm
′ ) and stock changes (y_sm

′ ) in the target year of province 

m are estimated in the similar way of y_rm
′  or y_um

′ , but both rely on the changes in newly 

constructed capital investment time series, and finally balance them into the statistical data of gross 
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GFCF and gross stock changes in the target year of province m, respectively. It should be noted 

that the statistical data of gross final expenditures of rural population, urban population, and 

government, GFCF, and stock changes of each province include the imported part. Therefore, 

when we estimate y’ in the target year, we distinguish y’ into domestic and imported ones. Since 

we only have nationally product-specific export data, we first determine product-specific export 

changes in the target year from the reference year, and proportionally adjust the export of each 

province based on the national changes in associated producing sectors, and lastly balance EX’ into 

the nationally product-specific export data in the target year. We believe relying on more actual 

statistical data will reduce the uncertainty in estimating y’ and EX’ as much as possible. 

D.4. Applying energy mix changes in MRIO tables 

 
Figure D-2. Diagram to apply energy mix changes in MRIO tables. The diagram is referred 
to Wiebe et al. (2018). 

D.5. Relationships between sectorial capital investment and final consumption 
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Figure D-3. Trends in capital investment by, and final consumption of electricity/water 
production and supply sector as well as transportation service sector. Each scatter in this plot 
represents the pair of capital investment and final consumption of associated sector in one year. 
The data sources of capital investment and final consumption could be found in Appendix D.1. 

D.6. Capital investment in China 

 
Figure D-4. Capital investment (left y-axis) and the share of gross fixed capital formation 
(GFCF) in national value-added (right y-axis) of China during the period 1995-2017. 

D.7. Carbon emissions under capital scenarios 

National PBEs and CBEs would substantially increase under the BAU and KES scenarios 

compared with those in 2017 (Figure 5-3a in Chapter 5), while under the KLC scenario, only a 
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slight growth (less than 2%) is observed for them and potential decreases could also be expected 

in some certain regions (e.g., the Beijing-Tianjin, and the Southwest, see Figure D-5). 

From a production perspective, the national PBE in 2030 (Figure 5-3b in Chapter 5) would 

increase by 15% under the BAU scenario from the base-year level, and by 20% under the KES 

scenario because more investment will be made in infrastructure for economic growth and social 

well-being improvement. The main growth in national PBEs under the BAU and KLC would be 

observed in transportation services due to the increase of its final consumption, whereas offset by 

carbon emissions from electricity generation given the efficiency improvement of production and 

energy use (Figure D-6). From the consumption perspective, similar growth rates would also be 

found in national consumption-based carbon emissions of final consumption and final demand, 

showing the largest changes under the KES scenario (by 35% and 22%, respectively) whereas least 

changes under the KLC scenario (by 15% and 1.8%, respectively). Moreover, at the regional level, 

the relative changes in regional consumption-based carbon emissions of final demand are larger in 

less developed regions such as the Northeast and the Northwest (+9–34%), mainly due to the 

growth of electricity generation, construction, and transportation services. In comparison, the 

changes in consumption-based carbon emissions of final demand in highly developed regions like 

Beijing-Tianjin, the Central Coast, and the South Coast would be in the range of -4–+20%. 

 
Figure D-5. Regional carbon emissions for the year 2017, and year 2030 under the three 
capital investment scenarios. In each panel, capital-related carbon emissions (FK) are 
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disaggregated into those occurred in the period of 1995−2017 (with solid edge line) and those 
would occur in the period of 2018−2030 (with dashed edge line). 

 
Figure D-6. Sectoral contributions to the regional carbon emission changes in 2030 under 
the three capital investment scenarios. CFC and CFFD represent the carbon footprint of final 
consumption and final demand, respectively, by conventional consumption-base accounting. PBE 
represents the production-based carbon emissions, excluding the carbon emissions embodied in 
international exports. 

D.8. Annual profile of capital-considered carbon footprints 

 
Figure D-7. Annual profiles of national carbon emissions with the re-allocation of capital-
related emissions (FK) during the period of 2018-2050. The re-allocated FK is further 
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disaggregated into those occurred in the period of 1995-2017 (in grey color tone) and those would 
occur in the period of 2018-2050 (in bright color tones). 

D.9. Uncertainty analysis 

To further improve the confidence in our main findings about future carbon emission assessments, 

we examine the uncertainties arising from key assumptions applied in scenario narratives. That is, 

we rely on the Monte Carlo method to rerun (10,000 times) the capital endogenized MRIO model 

using the randomly generated parameters for each scenario, which include the annual growth rates 

of GDP under the BAU scenario, the annual investment on each infrastructure under the KES 

scenario, and the annual investment in low-carbon technologies under the KLC scenario. We 

realize that there are other uncertain factors that influence the robustness of emission results. Multi-

factor uncertainty analysis is out of the scope of this study, but should be further addressed 

depending on the purposes of future application of the capital-endogenized MRIO model and 

associated scenarios. 
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