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ARTICLE INFO ABSTRACT

Keywords: Digital twins (DTs) have been found useful in manufacturing, construction, and maintenance. Adapting DTs to
Digital twins serve cities, the question arises of what an urban digital twin should contain and how it should be orchestrated
City to serve a city’s dynamical ecosystem, along with how to enhance the efficiency of the city. We are aligning

Artificial intelligence
Human factors
Sensor systems

Point clouds

with the commonplace idea that the main advantage of using DTs is economical as, for example, DTs can
improve the planning of activities thus saving money and time. But how can they be useful for a city? Instead
of looking at the DTs as solutions in search of problems to be solved, we start from city needs. Our approach
is two-fold. We start by briefly reviewing existing possibilities for meeting some specific needs, but keep the
focus on identifying and attempting to close the gap between the needs arising from everyday city functions
and the latest DT techniques useful for meeting those needs. DTs are technically different and serve different
applications, yet they share a common identity and name, as well as several technical similarities. Adopting
computer science terminology, we see a back-end city DT as the container of all information, while any single
front-end, visualized or used either by humans or robots, offers a limited but meaningful representation of the
DT for a specific application. Alas, there are multiple open questions regarding the realization and benefits
of such back-end DT. Nevertheless, we discuss how the back-end DT (or any specific DT) could be updated
autonomously from sensor data using artificial intelligence techniques, and how the front-ends could be used
for large benefits to the entire city ecosystem.

1. Introduction self-alignment. Such an ecosystem builds on the core competencies

of each player to foster innovation, is dynamic, and can be managed

Cities host over 74% of the population in Europe (WorldBank,
2022). As the population increases in cities, problems emerge, but so do
solutions too (Caragliu et al., 2013). A city with human capital, if well
managed, may become an exporter of solutions, a so-called innovation
machine (Florida et al., 2017). This is desirable since innovations bring
benefits to the economy and the quality of life of citizens (Lehtola and

with so-called orchestration (Linde et al., 2021). Orchestration is the
harmonious organization of activities (good planning) that enables
informed decisions and helps to avoid costly ad-hoc problem solving.
Digitization helps planning of activities by keeping track of essentials,
and by facilitating the inclusion of stakeholders, because everyone can

Stahle, 2014). However, it is not self-evident how such a machine can
be put together by the city management. For city management, the
thing to desire is not actually a machine, but an ecosystem. There
is a promise of increased economic efficiency if all players (private
companies and public parties) organize themselves in a good man-
ner (Calzada, 2020). Because the complexity of such a system is of
the level that if centrally managed, the system dynamics are hindered
down, the solution is an ecosystem that rewards participants for proper
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be updated to have the same and the latest information. This is why
Digital Twins (DTs) have something to offer for cities.

Digital twins were first established in manufacturing, see Fig. 1,
where a DT would mean a high fidelity plan of a product to be made
(or printed out) (Negri et al.; Jones et al., 2020). The key element of a
DT is that the whole planning process is made digital. In other words,
no adjustments (ad-hoc or planned) are done after the DT model is
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Fig. 1. Digital twins are different depending of the context. In manufacturing, DT
is replicated into products, while in construction the work site is first surveyed and
adapted to match the constructed building. Manufacturing and construction start from
the DT and end up with the physical twin, using a linear timeline, while maintenance
and smart city management are cyclic processes. Both twins are changed recursively.
Finally, when a building is maintained as a whole, only a part of a city (and its DT)
is considered to be of interest for a particular operation. In a city, different parts of
the city obtain attention with different frequency and intensity.

Maintenance:

Physical twin

ready and the production is started. In construction, Building Informa-
tion Modeling (BIM) is the closest match to DTs (Greif et al., 2020;
Deng et al.,, 2021). BIM models are high fidelity three-dimensional
(3D) construction plans, that sometimes need to be adjusted to fit in
the landscape, for example, when single form-work concrete bridges
are built. Facilities management (Wong et al., 2018; Matarneh et al.,
2019), industrial maintenance (Errandonea et al., 2020), and smart city
applications require updating of the DT (Ketzler et al., 2020; Farsi et al.,
2020). This forms a requirement that the process is cyclic, see Fig. 1.

In contrast to previous DTs, see Fig. 1, a holistic city DT must
support different local levels of fidelity. Buildings in a city can be
from different centuries, and need to be scanned before they can be
added into the DT. This, and the updates, likely happen only as a
side product of other activities, meaning that there is internal variance
in the granularity level of the DT between areas, themes etc. If a
construction or maintenance activity is taking place in a city district,
that area is scanned in detail, providing a local high fidelity update.
The rest of the city DT will not be affected, and will retain the previous
level of fidelity it had. Nonetheless, a city DT would follow the original
idea in manufacturing that all of the planning is done digitally and
for a jointly shared model. A city DT must be approached also from
the perspective of human factors, if the DT is to serve the ecosystem
orchestration. A city DT is not only about the properties of a computer
model but also how the everyday services in the city are organized to
perform all planning activities in a joint digital model. Technocracy
must be balanced with democracy, if stakeholders are to be truly
included (D’Hauwers et al., 2021). Thus, if something is changed in an
existing city, then the digital planning should answer the question on
what are the consequences to the city dynamics. This digital planning
should be available also to third parties, to test new services and
changes to city plans.

City management benefits from specific digital twin techniques, for
example, in the cities of Helsinki (Ruohoméki et al., 2018), Zurich
(Schrotter and Hiirzeler, 2020), and Vienna (Lehner and Dorffner,
2020). These DTs share a common identity under the DT umbrella (Van
der Valk et al., 2020), but they are technically different and serve differ-
ent applications. We could argue that they are, in fact, manifestations
of developing DTs residing between the maintenance DTs and the city
DTs that answer more fully to the multitude of city needs.
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We ask, how can the DTs be useful in answering the city needs. What
should a digital twin of a city contain and how should it be updated
(cyclicity in Fig. 1) and offered to serve a dynamical ecosystem and
therefore enhance the efficiency that ecosystem? We argue that a digital
twin of a city would be the pinnacle of digitization of city assets and
services, when it would consist of the four following parts.

1. The DT must be based to address the needs of the city (Sec-
tion 2).

2. Support for high fidelity content must be offered, including ma-
ture BIM information, but also support for low fidelity content
and local differences in fidelity (Section 3).

3. Updating the DT of a city is of utmost importance, as the city DT
is never complete, because a city is constantly changing. We re-
view the literature not only directly under the DT umbrella, but
look for methods that could well serve the automatic updating
of city DTs. Autonomous updating from sensor systems includes
Internet of Things (IoT) sensor networks, drones, and robotic
cars, but also data from professional surveying (Section 4).

4. The benefit of interacting with DTs can be ensured only by safe
and usable systems that could enable agents to visualize and
share information appropriately to enhance decision making. A
human factors perspective is essential to identify the potential
advantages and the future use of DT systems to support city
decision making (Section 5).

Should these four items be met, we see benefits for autonomous and
human operated systems in various forms including asset management
and planning of activities and robotic services (Section 6).

2. City needs

The needs of a city follow from what the city is and what the city
does. We consider a city to be an entity that is managed in terms
of city planning and governance (Beall and Fox, 2009) to provide
good living environments for the inhabitants. In Europe, this manage-
ment role typically falls onto a democratically elected city council or
equivalent, which uplifts a plurality of needs from the civil society
it represents. Hence, the needs of a city are not constant but they
change. Furthermore, cities need to react both to internal and external
pressures demanding change. For example, the United Nations Sustain-
able Development Goals (SDGs) were formulated rather recently, in
2015. Yet, some cities are facing more traditional challenges due to
rocketing number of citizens and limited land availability leading into
vertical growth (Chen et al., 2008). Current urban planning and design
practices, and operating procedures are more in favor of sectorial
rather than systematic developments with synchronized data planning
and exchange (Klyukin et al., 2018). This often results in conflicting
situations that lead to waste of investments (OECD, 2020).

We consider the following city needs, typical for European cities.
The cities need

+ City planning and urban development to obtain good living en-
vironments. The development needs to be sustainable (SDG 11,
United Nations'). The city’s digital twin can help here in multi-
ple ways (Qian et al., 2022). These include zoning and munici-
pal development, high rise planning, climate simulation and use
in visualization for architectural competitions and participatory
planning activities, to mention some examples reported for the
city of Ziirich (Schrotter and Hiirzeler, 2020).

Primary and secondary education, arranged jointly with city
planning, avoiding socio-economic segregation and problems,
e.g. Renzulli and Evans (2005).

L https://sdgs.un.org/goals/goalll.
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» Healthcare and emergency services arranged so that they are
available and adequate (Ahmadi-Assalemi et al., 2020).
Infrastructure to be constructed and properly maintained (roads,
water, sewage, energy). DT is a viable solution in, for example,
predictive maintenance of roads (Sofia et al., 2020), simulations
and analyses of traffic (Rudskoy et al., 2021), energy (Tzanis
et al.,, 2020), but also water and waste and telecommunica-
tions (Callcut et al., 2021).

Taxes to fund these activities. Fostering the growth of economic
activities, including innovations (Florida et al., 2017), leads to
increases in city tax revenues and further investments in bettering
the lives of the citizens. Digital twins and data analytics can
enable the design and development of new commercial activities
and services based on data (see Section 6). Benefits are reachable
if challenges can be met, standardization being one of them (see
Section 3).

There is a gap in between what can theoretically be done with DTs
and what is in practice done with DTs (Kar et al., 2019). In order to
see the actual state of progress with city DTs in Europe, we look at
a particular area” in the Helsinki metropolitan area, Espoo, the most
sustainable city of Europe in 2016-2017 (Zoeteman et al., 2016, 2017).
Espoo has up-to-date 3D models for internal use, but to a certain extent
3D models can also be distributed to third parties via interfaces.> The
utilization of 3D models in urban planning has been in use in Espoo for
a long time, but the integration of real-time data (e.g. on traffic, energy
consumption, etc.) into the urban model is in the development phase. In
Helsinki, the current city strategy emphasizes the role of digitalization
as both a method to increase productivity in city services and a tool to
facilitate better prediction and response to potential changes and crises,
such as climate change (Helsinki, 2021a). The current city data strategy
perceives the digital twin as primarily a tool for scenario analysis and
simulation (Helsinki, 2021b). Research on the Helsinki example shows
that solid data infrastructure forms the foundation for a successful urban
digital twin (Héméldinen, 2021). Solid data infrastructure builds on
standards and the interoperability they enable, discussed in the next
Section.

3. Information content of DT

When in digital form, our urban environment should replicate its
essential properties, including those related to buildings, infrastructure,
vegetation, terrain and other elements, but also offer ways to link
information from various processes onto them. To determine the infor-
mation content of an urban environment requires cognition. However,
cognition is different for humans and computers (or robots). DTs can
only be stored digitally in a way that is understood by the computer
with so-called representations.* The 3D models used for DTs are usually
created using point clouds and/or images as raw material. Therefore,
we refer to them as data derivatives. These derivatives fall into five
distinct categories, listed in Table 1.

Why are there so many different data derivatives? Because they are
all useful. Point clouds are the natural output from sensor systems
(Section 4.1). Voxels are the aggregation of point data into cubes with
predefined spacing (e.g. 1 X 1 x 1 m), especially useful for physical sim-
ulations. They answer to city needs in, e.g., visibility analyses for road
safety (Aleksandrov et al., 2019; Golub et al., 2018), but also traffic
noise (Saran et al., 2018), solar radiation (Liang and Gong, 2017), and
wind analyses (see Fig. 2 b). However, the use of voxels is limited by

2 More examples of current digital twin projects and their applications can
be found in (e.g. Ketzler et al., 2020; D’Hauwers et al., 2021; Agostinelli et al.,
2021).

3 https://kartat.espoo.fi/3d/index_en.html.

4 For example, in robotics, a map representation is the way that a robot
understands the environment.
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their memory consumption, which forces a painful trade-off between
keeping the details accurate and having a large scale needed for a
city DT. Mesh surface models refer to, e.g., the triangulation of point
clouds into surface models (Berger et al., 2017; Brédif et al., 2020),
which are useful in topographic mapping (Vosselman and Maas, 2010).
Finally, 3D models are end products for GIS-based (Section 3.1) or
BIM-based (Section 3.2) DTs, or used in visualizing them (Section 5.2).
City DTs encompass a lot of information, arguably more than the
previous DTs. We shall see that city DTs have (therefore) naturally
emerged as a continuation of two existing ecosystems related to 3D
modeling: one founded on Geo-Information Systems (GIS) and the other
founded on Building Information Modeling (BIM).

3.1. GIS origins

Geo-information science has its roots in paper maps, but its modern
version is focused on vector data and how to organize it. One of
the first requirements for organized data management is to store the
collected and used datasets in a relational database management system
(DBMS) with a spatial extension such can be PostGIS or Oracle Spatial.
Moreover, they can be stored in so called 3DcityDB (Rossknecht and
Airaksinen, 2020) and DB4Geo (Breunig et al., 2010). The most widely
supported data formats for 3D city digital twins are CityGML (Chen
et al., 2020) and CityJSON (Nys et al., 2020). City GML is an Open
Geospatial Consortium (OGC) standard for multi-hierarchical geograph-
ical, topological and semantic representation (Brasebin et al., 2018),
supported by widely used geo-spatial software such as ArcGIS and
QGIS. CityJSON was proposed 2021 to OGC as another standard and
is expected to become accepted. Using CityGML, cities can in principle
be visualized in four levels of details (LoD O to LoD 4). Starting from
simple building representation and increasing the complexities incorpo-
rating even the indoor in LOD4 (Biljecki et al., 2017). Standards may be
extended to enhance their applicability. For example, SimStadt devel-
oped by TU Stuttgart extends CityGML for energy simulation (Nouvel
et al., 2017). In addition, Agugiaro et al. (2018) further developed an
Energy Application Domain Extension (ADE) for the same standard,
which from one side solves data interoperability issues among multi-
source energy-related applications, and, from the other side allows
detailed single-building energy simulations and also city-wide energy
assessments. Other applications include seismic vulnerability assess-
ment (Catulo et al., 2018), noise mapping (Deng et al., 2016), and flood
damage assessment (Amirebrahimi et al., 2016).

Validation of models is crucial before those models are used in
decision-making. However, there are issues, for example, in validat-
ing the geometrical relationships of 3D buildings and their real val-
ues (Ham and Kim, 2020). Another highly relevant example is the
cadastre. Typically, land administration systems are the platforms
where updates on ownership have to be registered in the form of
rights, restrictions, and responsibilities (RRRs), and are managed by the
national cadastral agencies (van Oosterom et al., 2020). Unfortunately,
the majority of the current cadastral systems represent, visualize, store,
and validate ownership data in 2D format (Shnaidman et al., 2019).
However, successful efforts in the direction of 3D Cadastre have, for
example, been done in the Netherlands (Stoter et al., 2017), Swe-
den (Larsson et al., 2020), Finland (Krigsholm et al., 2020), China (Ying
et al., 2015), and Australia (Rajabifard et al., 2018). First 3D Cadastre
building in Helsinki metropolitan area, Finland, was registered in 2020.
3D cadastre combines the 1) legal model based on advanced policies
and standards and 2) physical model providing the spatial property
registration (van Oosterom et al., 2018), linking the different standards
such as LADM (Land Administration Domain Model, ISO19152, 2012),
3D GIS (CityGML) or BIM with its IFC models (see Section 3.2). One
of the main challenges has been that the principles and validation
rules in the current 2D systems are not designed for examining 3D
models (Karki et al., 2010). Here, the knowledge in how to do it largely
exists (Thompson et al., 2019; Asghari et al., 2020), but the practice is
lagging behind.
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Fig. 2. Many faces of DTs: Information content of DT (Table 1) serves example applications. (a) Point clouds with color are mostly used as raw material for processing models
(City of Melbourne, CC4.0). (b) Wind simulations where a voxel grid is used (Image courtesy of AccuCities, www.accucities.com). (c) Triangulated surface mesh for terrain height
modeling (Elevation Model from the City of Helsinki). (d) 3D CityGML model describing the shapes and the placement of buildings with colors indicating building functions. Roads
are marked with red. (e) Photorealistic model for virtual reality (VR) (Jaalama et al., 2021). (f) BIM model derived from a point cloud for construction planning (Image courtesy

of bimcolab blog, bimcolab.files.wordpress.com). (Color online).

3.2. BIM origins

The second point of origin of an urban digital twin is recognized
in Building Information Modeling (BIM). BIM models are detailed
models of our built-up environment incorporating the geometries of the
buildings, their spatial and topological relationships, and detailed infor-
mation of their physical infrastructure. Consequently, as BIM includes
a large amount of data combining physical and functional building
information, it requires high level technical data storage and main-
tenance (Chen et al., 2018). Here, difficulties have been observed in
data transfer since BIM domain is still using proprietary data formats,
workflows and software (Olfat et al., 2019), although open data for-
mats, so-called OpenBIM, are gaining momentum. One of the most
used data schemes for building representation, modeling and storage,
and supported by most BIM software is Industry Foundation Class
(IFC) (Sun et al., 2019). The IFC standard supports data and model
transferability and reproducibility. Considering city DTs, we see that
open data formats would be of paramount importance to ensure wide
adaptation of intercommunicating technical solutions.

The BIM ecosystem inherently addresses certain city needs. In ad-
dition to 3D information, offering great benefits BIM offers to civil
engineers and architects, BIM models can be incorporated with infor-
mation about the cost, maintenance and construction time (Ferndndez-
Rodriguez et al., 2018), and be used to assess risks (Zou et al., 2017).
Furthermore, they can be used for other benefits serving city needs such
as cultural heritage management (Fadli and AlSaeed, 2019) and indoor
navigation (Hamieh et al., 2020).

Validation of BIM models is done using model checkers (Sacks et al.,
2017). Concerning the city, one concrete step in increasing automation
related to model validation could be automatic granting of building
permits based on IFC models, which is technically feasible (Noardo
et al., 2020). The benefits for the city organization would be a reduction
in the needed work hours to assess the building plans, and for the con-
struction company it would mean shortened throughput times. There
are also indirect beneficiaries from the faster construction processes,
for example, the future residents.

From a BIM model, different kind of DTs for buildings may be
created (Khajavi et al., 2019). For example, a building DT can be a
IoT-integrated BIM (Pan and Zhang, 2021). In general, BIM models
are developed towards DTs by including aspects such as real-time
monitoring and simulation (Boje et al., 2020). Remarkably, the primary

Table 1
Data derivatives of captured (lidar) point clouds and RGB images.

Derivative Raw data Human creation
Point clouds® Images” BIM, CAD

Point clouds with color X X

Voxels X

Mesh surface models X

3D models (e.g. BIM, CityGML) X Planning

3D models (Photorealistic or textured) X X Art

Specific process related data (Section 4)  (Section 4) Reports

3(XYZ, Intensity), including the back-scattering intensity of a pulsed lidar.
PImages are 2D perspective projections of the 3D world in the visible light range
yielding Red—Green-Blue (RGB) colors, e.g., to color point clouds.

tenet of BIM does not require the BIM model itself to be updated in
real-time to incorporate real-time sensory data (Bruno et al., 2018). In
fact, although the well-established concepts of as-is BIM and Scan-to-
BIM (Wang et al., 2019b) offer a systematic approach for updating the
BIM model, this is only done at very few key milestones (e.g., after the
construction) and thus at a very low frequency. These updates can also
serve as one mean in updating city DT, but many other means exist as
well (see Section 4). Finally, analogously with the GIS-based modeling,
BIMs act as an attractive starting point for forming city DTs, although
they are not sufficient per se.

3.3. Best of the both worlds

The applicability of BIM models can be enriched by combining them
with 3D model of the environment obtained from GIS. For example,
BIM models used in construction can be automatically transformed into
CityGML (Donkers et al., 2016). Hence, GIS and BIM can be technically
fused together, and the BIM models can be used to locally update a 3D
city model, possibly also increasing the level of detail. One interesting
example is offered by Lu et al. (2020), where the authors model 600
buildings of which certain important buildings were represented using
BIM. However, when working on large city scale, computations may
become intractable and data management issues arise (Chen et al.,
2018). Also, BIM-GIS data conversion still faces challenges when huge
data sets covering complete cities are processed (Olfat et al., 2019).
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Combining GIS and BIM makes sense, given that the overall ob-
jective is to serve the city needs. Facilitating this development has
been acknowledged in the development of the CityGML standard,
where one of the most significant recent developments has been the
CityGML 3.0 (Kutzner et al., 2020). Considering DTs, the mechanism
for including dynamic sensor data is highly relevant.

The most established approach to realizing any urban DT appears
to be the use of 3D city information model as their starting point, see
e.g. Schrotter and Hiirzeler (2020). Understandably, the city model is
focused (and developed for) describing the state of the physical city
environment. At the same time, there appears to be a widely shared
understanding that the digital twin does not simply equal a 3D city
model, but contains additional attributes and properties. Urban digital
twin expands the scope towards modeling e.g. stakeholder relations,
processes and handling simulation scenarios (Nguyen and Kolbe, 2021).
Thus, the DT becomes, from the information content perspective, an
extended, linked 3D city model. Amongst these added properties, at
least the following have been mentioned:

1. Lifecycle management of individual city objects and assets;

2. Simulation use of the 3D city model to assess various scenarios;
and

3. Linking the city model with real-time (sensor) data sources.

Maturity level assessment developed for BIM models may be applied
when urban DTs emerge from that direction. Previous research shows
that there are, in fact, multiple BIM maturity levels (Siebelink et al.,
2018). This means that even if a BIM model has lifecycle information
(cyclicity in Fig. 1), there can be a great variance in (i) what dimensions
(e.g. time, money, maintenance) the model covers, (ii) what is the
detail of information on these individual dimensions, and (iii) how
is this information used in different processes. This variance has set
a need to assess the maturity of the BIM systems, in order to identify
their stage of development. Currently, one of the most advanced BIM
maturity models is the Nordic BIM maturity model (Nordic BIM, 2020).
However, the maturity indicator yet missing from the assessment is the
one of automated updates. This would be greatly useful for city DTs.
Constant updating of the contents of a city-scale model is an immense
task, even if full GIS-BIM integration is reached standard-wise. It is
something unimaginable to be done manually. Therefore, automated
updating of models from sensor data is needed.

4. Updating DTs with sensors and AI

Large scale 3D city models can serve a variety of city needs. Ben-
efits may already be reaped related to thermal simulations (Mufioz
et al., 2019), urban ventilation analyses (Luo et al., 2017) and solar
potential estimations (Machete et al.,, 2018). However, the limiting
factor in doing this (and more) is that these models need to be created
with so-called procedural modeling techniques, requiring manual work
steps.

Significant resources and time are needed for updating DTs (Bshouty
et al., 2020). Therefore, to reduce the cost of these efforts, focus is
needed on automating the processing of data into derivatives, see
Table 1. The deployment of new sensor systems to supplement the
old ones offers various ways to acquire data on the state of physical
assets (Section 4.1). It is not self-evident how to turn this big data
into useful information that can be used to automatically update city
DTs (Section 4.2), but we argue that the new artificial intelligence (AI)
algorithms can enable ways to do this (Section 4.3).

4.1. Sensor systems
Sensor systems, both airborne and ground-based, are used to capture

geo-referenced data from the real world, see Fig. 3. These systems can
be categorized as in Table 2, where the main characteristics are also
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listed. This shows that sensor systems are both overlapping and comple-
mentary in various ways. Airborne systems, including unmanned aerial
vehicles (UAVs) (Nex et al., 2022), may have lidar and imaging systems
that output point clouds, orthophotos, and oblique imagery (Vosselman
and Maas, 2010). Terrestrial systems include static systems such as
camera networks and traffic counters, and also mobile systems such
as individual car perception systems, as with Tesla, and professional
car-mounted lidar mappers. The output of these systems is point clouds
and images from which data derivatives can be obtained, see Table 1.
Lidars have proven already useful for BIM purposes (see e.g. Liu et al.,
2021), as they offer geometrically more accurate measurements than
imaging systems.

Capturing indoor data is fundamentally different from capturing
outdoor data, because GNSS signals do not penetrate building roofs
or walls. The consequential extra effort to process and geo-reference
indoor data makes indoor modeling much harder (Lehtola et al., 2021)
and explains the gap between the abundance of LOD3 models and
scarceness of LOD4 models (see Section 3). In other words, LOD4
models are expected to contain details about the indoor spaces and
objects, but as these information cannot be obtained with the same
methods than LOD3 models, a persistent gap has emerged between
these two model types. Indoor mobile mapping systems combine both
lidar and camera data to simultaneously position themselves and output
point clouds and imagery (Lehtola et al., 2017). This technique is called
simultaneous localization and mapping (SLAM) and it is needed to
replace the missing GNSS signals. Finally, indoor data is converted into
3D models (Lehtola et al., 2021), which can be either in BIM or cityGML
format.

IoT networks may be formed from sensors that are installed perma-
nently to the urban environment and connected to internet. Communi-
cation between consumer and sensor can either be direct or via software
systems (Jacoby and Uslander, 2020). Sensor networks are used for a
variety of tasks, of which data acquisition, human-sensor interaction,
knowledge discovery and generation, and intelligent control are mostly
related to DT (He et al., 2018). Data acquisition is broad in terms of
what can be acquired, most of them relate to the real time capturing of
phenomena such as traffic and air quality. Results of these data captures
are shown to humans or go into further data processing within the
DT environment. In current practice many of the sensor networks are
connected within a certain domain. In an ideal DT environment the
different networks are communicating with each other by sharing data
and insights (Ivanov et al., 2020).

Cities have also underground utilities. Monitoring and surveying
above ground infrastructure is different than retaining an accurate rep-
resentation of the underground assets, and related processes (Delmastro
et al., 2016). However, underground utility surveys can be successfully
used to update 3D data models (Yan et al, 2021). Also, nothing
prevents extending the BIM-GIS integration or IFC and CityGML schema
(Section 3) to cover also underground facilities (Wang et al., 2019a).
The focus with underground facilities is more on predicting their main-
tenance needs, than surveying them frequently, as they are protected
from the effects of weather.

4.2. Autonomous updating of city DTs

A digital twin represents a real scene in a digital way, and uses
several types of data, such as historical data, real-time data, and
algorithm models to simulate, verify, predict, and control the entire
life cycle of the same real scene (Lv and Xie, 2021). This is our context,
while the focus is on updating city DTs automatically from sensor data.
It is good to mention that in our context the data acquisition is usually
not autonomous, although autonomous systems can also be used as data
sources. Autonomous in this context refers to data processing without
human intervention. Sensor data, i.e., the new data, comes in the form
of point clouds and imagery. The flow of information from raw data
to high-level decision making can be sensor-to-sensor, sensor-to-model,
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Fig. 3. (a) Colored point cloud captured with a car-mounted lidar and RGB camera system (Cyclomedia). (b) Airborne laser scanning for digital elevation model (DEM)
generation (Tomljenovic et al.,, 2015). Drones equipped cameras or lidars can also be used to acquire data (Image: Flaticon.com). (c) Laser scanning backpack for measuring

for indoor 3D model, e.g. BIM, generation (Karam et al., 2021). (Color online).

Table 2
Sensor systems and their strengths colored in bold green.

Sensor system Update Frequency City-wide vs local Cost per XX Precision
Airborne Lidar 2-3 yrs city-wide per km2 15 cm
UAV imagery monthly local flight path low per m2 15 cm
Car-mounted driven streets per km 5 cm
Maritime vessel-mounted steamed channels 5 cm
Indoor, human carriable on need only local per m2 2 cm
IoT sensor networks online local per installation 10 cm

and model-to-model fusion (Liu et al., 2018). Same type of data can
be straightforwardly fused together. For example, point clouds can be
co-registered and re-sampled, even if the different mobile scanning
systems yield different quality data (Lehtola et al., 2017). Model to
model matching also serves as a straightforward way to fuse BIMs (Tran
et al., 2019).

Updating city DTs from point clouds, however, means fusing data
with different modalities. This is where difficulties arise. Consider a
BIM model consisting of elements, in Fig. 4. The elements of such a
model can be parametrized and then fitted on top of a point cloud,
giving a limited way to automatically update a BIM model (Rausch
and Haas, 2021). This technique is limited to resizing and moving
the existing BIM elements, but cannot deal with the removal of el-
ements nor the addition of new ones (e.g. walls, windows, pillars).
The same issue is present with image data (Zhang and Lippoldt, 2019)
and when updating large-scale 3D city models (Bonczak and Kon-
tokosta, 2019). Hence, difficulties arise because real world data from
the sensors is more messy than e.g. planned and validated models.
Straightforward geometry matching typically fails because it is highly
susceptible to sensor noise, co-registration assumptions, and cannot
respond to changes in a dynamic scene. We can say that monitoring
even a normal urban environment poses insurmountable challenges for
these traditional techniques, because humans move and interact with
different objects as part of their normal life and then these humans
or the moved objects are visible in essentially random part of the
sensor data, creating large geometrical errors. However, if the elements
and objects are first semantically labeled using artificial intelligence
methods, and then matched smartly label-wise, this problem can be
avoided (See Section 4.3). Hence, the problem requires the application
of AI methods, so that the map updating can be done by first pairing
the semantic elements and then their geometry.

Model validation is important, as we saw in Section 3, and it
is equally important for updates. The validation of updated models
can be conducted automatically by rule-based techniques (Ledoux,
2020), regardless of whether the models are created by humans or
by computers. So, even though rule-based techniques are unreliable in
computer-based urban model creation, both indoor (Nikoohemat et al.,
2021) and outdoor, they excel in model checking. This is explainable
by human architecture tending to prefer artistic forms serving aes-
thetic objectives, while model checking focuses on clear programmable
objectives concerning the details of these models.

Therefore, the autonomous updating of city DTs needs to be con-
ducted with the following steps

1. Object detection and semantic segmentation of the point cloud;
2. Semantic matching with the (BIM) model;

3. Geometrical matching with the model; and

4. Model validation.

This ensures that (1) object pairing can be established before ge-
ometrical analysis to overcome issues in using real-world data and
(2) dynamic objects can be removed from analyses that focus on the
immovable objects or structural elements. This sets a call for novel Al
techniques.

4.3. Artificial intelligence methods

Artificial intelligence methods have shown prominence with man-
ufacturing DTs (Rathore et al.,, 2021; Huang et al., 2021). In digital
twins, the objects are represented by 3D vector models (also for cities,
see Section 3). Vectorizing objects such as buildings out of the sensor
data requires first the semantic recognition of the data pieces that
represent these objects, while vectorization itself consist of localizing
and generalizing the object boundaries.

Point cloud processing with Al uses deep learning methods for
classification, to classify the extracted subsets into specific object cate-
gories (Fig. 5a), e.g. for ground use mapping; for segmentation, i.e., to
semantically label each point on the scene by segmenting each subset of
similar points into a group with the same label (Fig. 5b); and for object
detection: to detect subsets of points that represent objects, such as
assets from the data (Fig. 5¢). These are not easy problems. In fact, the
structure of point clouds is irregular and three-dimensional, two factors
that restricted the use of deep learning methods until the quite recent
development of PointNet (Qi et al., 2017). Shortly after, Thomas et al.
(2019) presented a way to span regular kernels around the irregular
points to enable the use of convolution operators, which have been
previously found powerful in image analysis. A renaissance of deep
learning on 3D point cloud data began (Guo et al., 2020a), focusing
mostly on convolutional neural networks (CNN) and recursive neural
networks (RNN). The three above-mentioned problems are connected.
Classification and detection share similarities in the (philosophical)
sense that the scene segmentation algorithm can be thought to operate
as an multi-object detector (Plachetka et al., 2021), except that it has a
priority on labeling everything rather than focusing on the correctness
of the labels of one specific group. Hence, the scene segmentation
is applicable in visualization applications, while the applications that
require more specific and correct information, e.g. asset management
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(a) (b)

Fig. 5. Al methods on point clouds focus on problems of (a) classification of buildings (blue), outdoor objects (red), and ground (green) from each other, (b) segmentation
of individual objects (colored trees and cars) and delineation of building shapes (blue roof outlines), and (c¢) detection (red pole-like street objects). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Source: Images are from Yang et al. (2020) and Lehtoméki et al. (2010)
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Fig. 6. Cognition-based Al techniques for model updating. (a) A concept hierarchy is built while the sensor data is being captured, labeling objects, places, rooms, and
buildings (Hughes et al., 2022). (b) The ground truth of a city scene, which (c) can be (partly) reconstructed by multiple robots traversing the streets. The matching of semantic
labels of objects enables combining geometrical updates from multiple sources, i.e., data fusion (Tian et al., 2022). Note that roofs and high walls are left unseen (blank spots).
(d) AI can be taught to find holes in the point clouds and to patch them with generated points using so-called inpainting techniques, even for complex objects (Vadnanen and
Lehtola, 2019). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and construction planning, are better to rely on object detectors (Lang
et al., 2019).

Vectorizing information from image and point cloud data by deep
learning is initially described by Li et al. (2019) who present PolyMap-
per, a deep network built upon a CNN-RNN architecture. This branch
of research focuses is on 2D and 3D modeling of objects using Al,
e.g., for buildings from an airborne perspective (Zhao et al., 2021).
Al algorithms can be taught to generate relatively simple models, such

as building roofs, on top of point clouds, because these objects have
a limited number of edges and roof faces (Wichmann et al., 2018).
Still, learning and generating a variety of 2D and 3D shapes remains
an open research field. It is an open research problem to decide where
to draw this boundary, when the sensor data is noisy, and when the
object is represented by a set of points. Another interesting branch
of development is in Neural Radiance Field (NERF) multi-camera-view
techniques, which offer ways to construct implicit surfaces from image
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pairs (Wang et al.,, 2021). In other words, with two RGB images,
one can create a 3D surface that is a model for an object. This is
achievable in real-time (Yu et al.,, 2021). Moreover, the model can
be in form of triangle meshes and textures that is directly usable in
graphics engines (Munkberg et al., 2022). Although NERF techniques
are powerful, open questions exist in how the generated surfaces that
are implicit, i.e., without holes, could be joined together and altered
so that indoor modeling would be feasible. For example, doorways
in buildings cannot be modeled with implicit surfaces, i.e., facades
cannot have respective openings, and thus LOD4 models cannot be
created. Also, the geometrical accuracy from images falls short from the
one obtained from lidars, which sets a call for Al-based sensor fusion
techniques.

Deep learning approaches could focus to imitating humans, specif-
ically cartographers, in how to look at different data and create 2D
and/or 3D models. However, the success of deep learning methods
builds on the availability of big and detailed training data and a
network architecture that can process these big and detailed data, while
human activities are driven by intuition (Winiwarter et al., 2019). How
to match these two seemingly non-compatible items so that computers
could learn from humans is an open question. The same problem
persists in indoor (Nikoohemat et al., 2021) and outdoor environments.
Consequently, solutions are likely to emerge from cognitive approaches.

Cognitive concept hierarchy can be established digitally once the
semantic labeling of the data is done (Beetz et al., 2018). This can
happen in parallel to vectorization, or when the data is being acquired.
In indoor scenes, sensor observations and detected objects are linked to
rooms where they reside, see Fig. 6(a). And an ensemble of rooms make
for a building. In outdoor scenes, objects are linked to the street where
they reside, see Fig. 6 (b&c). Streets can be contained in, e.g., a city. The
straightforward benefit of this is that data fusion from different sources
can be successfully done (Tian et al., 2022). We see that this would be
a key factor in enabling the automated updates from sensor systems for
urban DTs (Section 4.2). In addition, human cognition is not the only
option for organizing the concept hierarchy. Deep generative spatial
models of environments can be learned by robots or computers using
sensor data (Pronobis and Rao, 2017). The benefit of generative models
is that they offer universality, because a multitude of observations
(seeing a place) is encoded in a small piece of information (descriptor of
the place, for humans e.g., “a fancy hotel”). Because of this universality,
generative models can be also used to cover imperfections in measured
data, i.e., to do inpainting with AI (Vdandnen and Lehtola, 2019), see
Fig. 6.

Privacy issues emerge when high resolution data is acquired from
city environments. Car number plates and humans fall under the defini-
tion of personally identifiable information (PII) of the General Data Pro-
tection Regulation (GDPR). These cannot be handled nor stored without
appropriate permissions. However, by first detecting, for example the
human faces (Kumar et al., 2019), and then technically anonymizing
the detected data beyond recognition allows for the removal of per-
sonal information and biometrics. Anonymization of humans and cars
is nowadays available in many software packages and systems, such
as in mobile phones for protecting privacy of bystanders in mobile
imagery (Darling, 2021).

5. Using DT in city decision making

Decision making in cities is typically related to investments (e.g. in-
vesting in a new autonomous service, Section 5.1), allocating money
to city functions, or city planning. City DTs can be highly relevant for
all of these three cases. This raises two essential topics: viewing DTs
(Section 5.2) and interacting with them (Section 5.3).
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5.1. Uncrewed and autonomous systems

Autonomous driving, shipping, and flight operations using un-
crewed vessels are being developed with a vision that they would be
used on a large scale. Their relationship with city DTs is two-fold. One
the one hand, autonomous systems can use the information content of
city DTs (Section 3) to operate. On the other hand, their sensors can be
used to update the city DTs (Section 4). However, before this point can
be reached there are multiple open questions on how such autonomous
operations would otherwise impact the city. These questions can likely
be answered by detailed simulations.

Simulations in robotics are used to design new systems, specifically,
their control and perception properties. These simulations are phys-
ically detailed, e.g. ROS Gazebo, and can be thus thought as digital
twins. In this line of thought, city DTs can be utilized to simulate
and plan solutions for new robotic applications. This is technically
feasible as, e.g., CityGML data can be used in ROS2/Gazebo simula-
tor (de Haag et al., 2021). In a similar fashion, simulation by city
DTs could help traffic centers and city councils in deploying more
efficient Intelligent Transportation Systems (ITS) (Dimitrakopoulos and
Demestichas, 2010), while also considering the city needs. Simulation
fed by data collected from sensors distributed on the roads may enhance
the current ways to regulate "traffic flows, providing end-users with greater
information content and safety, as well as, qualitatively increasing the level
of interaction between road users in comparison with conventional transport
systems" (Rudskoy et al., 2021). In fact, city DTs may offer multiple
benefits:

+ Autonomous driving becoming part of the smart traffic scheme,
after safety issues are resolved and legal clarity established
(Muhammad et al., 2020). City DTs could help for example to
answer questions whether it would be plausible to partially isolate
some part of the road system for autonomous driving, in order to
clarify liabilities and reduce risks.

Drone deliveries are envisioned to be operated from a truck,
i.e. the traveling salesman, that launches flying drones which
cover the last meters to the doorstep (Murray and Raj, 2020).
City DTs could help simulate the ecological, economical, and
legal benefits and risks of such services. If longer drone flights

are required, however, narrow dedicated flight ways could be
planned in city DTs to minimize risks.

Port operations could be planned to optimize ship wait time
and preceding steaming speed, which would reduce both fuel
consumption and emissions (Olba et al., 2018). Autonomous per-
ception systems on ships that could be used for autonomous
updates are slowly gaining popularity but face multiple hin-
drances (Thombre et al., 2020).

Autonomous ITS based on city DTs could assist, by predictive

modeling and real-time dynamic visualization, decision-makers
in traffic centers to better support the intervention of essential
services (e.g., police, ambulance, fire departments etc.) as well
as to better serve citizens by reducing reaction time towards
unexpected events and increase safety on the roads (Rudskoy
et al., 2021; Haméldinen, 2021).

In principle, robotic simulations can already be conducted at a large
scale. For example, the OpenDrive standard defines a representation
of the road networks to be applied in vehicle and traffic simulations.®
Such applications have also been acknowledged in the 3D city modeling
side, with e.g. further development of the transportation module of
CityGML (Labetski et al., 2018).
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Fig. 7. Viewing DTs. Left: Building models visualized in 3D on top of a flat basemap layer (Peters et al., 2021), Image copyright 3D BAG by tudelft3d. Right: DT in VR (Image

courtesy of xD Visuals Oy: xD Twin solution, https://www.xd-twin.io/).
5.2. Viewing DTs is a cartographic problem

One of the most obvious interactivity modalities for DTs is to view
them, which immediately implicates cartography and geovisual analyt-
ics, as well as current practices in video game and computer animation
visualization (Batty, 1997; Indraprastha and Shinozaki, 2009; Biljecki
et al., 2015; Chandler et al., 2018; Lock et al., 2019; Noghabaei et al.,
2020). Most cartographic data visualization to date has been 2D, but
Digital Twins will typically require oblique, 3D views with panning,
zooming, and rotating abilities (Halik and Kent, 2021; Abdelaal et al.,
2022). Contemporary video game and 3D animation visualization is
directly and immediately applicable to DT visualization, as it shares the
same fundamental 3D coordinate geometry, lighting, and perspective
view concepts. But while video gaming and computer animation gen-
erally present objects symbolized in a single, certain way (i.e., usually
with colors and textures that might represent the given object pho-
torealistically), DT visualization will also benefit from more abstract
symbolization of the sort common in thematic mapping and geovi-
sualization, such that graphic variables like color and texture can be
used to symbolize object attribute properties, rather than how the real
object would actually look to human eyes. A rich history of perceptive
and communicative properties of graphical variations — how symbol
choices like color or shape are typically interpreted by human viewers
— exists in cartographic research (Bertin, 1983; MacEachren, 2004), as
does an understanding of methods of interaction with digital maps,
and how these enable and affect their use (Roth and Harrower, 2008;
Roth, 2015; Roth and MacEachren, 2016; Tominski et al., 2021). These
concepts will need to be brought to bear in symbolizing immersive, 3D
views of DTs (Coltekin et al., 2020; Austin et al., 2020; Newbury et al.,
2021; Danyluk et al., 2021; Lee et al., 2021b; Ghaemi et al., 2022).

Fig. 7 shows illustrations on how DTs could be viewed. The origins
from GIS (baselayer map) and BIM (detailed building models) are both
visible (Section 3). Conveniently, BIM models can be transformed into
visualization models adaptable for a game engine, for straightforward
viewing (White et al., 2021b). In addition, rendering 3D point clouds is
also possible (Schiitz et al., 2016). This means that there are little back-
end related technical challenges. Instead, cartographic visualization
problems related to DT include:

+ Symbolization. How exactly things are drawn for the viewer, us-
ing what graphic variables, lighting conditions, textures, etc., and
whether or not they are symbolized analytically, as in thematic
mapping, or photorealistically, as in a faithful simulation of the
real world. E.g., CAD models could be shown on the screens
of excavators to show the location of existing pipes, and these
pipes could be best shown either symbolized for what they carry
(e.g., blue for water), or photorealistically.

5 https://www.asam.net/standards/detail /opendrive/.

+ Scale. Whether or not DT models are viewed at 1:1 cartographic
scale to simulate the real, embodied experience, or at smaller
scales, such that models are viewed on tables like doll houses.
E.g., city plans are typically visualized from top-down view at
map scales smaller than 1:1.

Perspective. Models can be viewed using perspective, or in or-
thographic projections, and either choice supports diverse visual
analyses in better or worse ways. E.g., Google Streetview offers
the possibility to look at surroundings from the path of a vehicle,
in first-person perspective view.

Interface usability. Panning, zooming, and rotating abilities need
to be provided to viewers, and how these are made available
needs to be considered in terms of usability. The characteristics
of the device affect the interface design and its usability e.g., an
augmented reality headset makes panning and zooming as natural
as moving one’s head, but also needs some gestural or vocal input
abilities for zooming and other movements. Beyond viewing, in-
terfaces also have to provide querying and settings manipulations.
The interface to a visualization system will also include visual
augmentations beyond the symbolized objects themselves, such
as labels, text boxes, and icons, and the interactivity programmed
into these elements needs to be usable as well.

Bring Your Own Device (BYOD) compatibility. A diversity of
devices, from augmented reality headsets to traditional computers
and smartphones, need to be able to participate in 3D DT viewing,
and since these have different capabilities, viewing environments
need to design for their diverse contexts.

5.3. Human factors

Discussion about human factors and how to ensure a reliable,
comprehensible and safe manipulation of DT elements is still lagging
behind, although, as we saw in Section 5.2, there has been a lot of
effort in designing and deploying technically high fidelity DT.

Certainly, there is a growing interest in using DT as interactive tools
to support (shared and augmented) decision making, co-design, sim-
ulation and training (Bilberg and Malik, 2019). However, as recently
recognized by Liu et al. (2022) researchers have done only little so far
to agree on a framework regarding the implementation of intuitive and
natural mode of interaction with DTs. Currently, clear guidelines are
missing in how to implement the interaction with DTs. What is also
missing are frameworks to exhaustively evaluate the key elements of
usability (namely, efficiency, effectiveness and satisfaction in a specific
context of use) defined by the International Standard for Organiza-
tion (ISO9241-11, 2018). Regulators are pushing the definition of a
technical framework for DT in the field of manufacturing, however,
with little or no interest on the impact on the potential stakeholders.
For instance, the recently proposed ISO 23247 for the application of DT
in the specific domain of manufacturing defines DTs as ”fit for purpose
[... ] data element representing a set of properties of an observable manufac-
turing element [. . . ] with synchronization between the element and its digital
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representation” (1S023247-1, 2021). Despite that the ISO 23247 gener-
ically refers to the usability (ISO 9241-11) of DT solutions, it does not
provide any vision on how such solutions should be evaluated as “fit
for purpose” and used appropriately by different operators. A similar
focus on the implementation can be identified in the recent perspective
proposed by the International Electrotechnical Commission technical
committee for Internet of Things and Digital Twin that suggests that
a DT could be considered a digital entity that aims to represent a
target entity with data connections that ”enable convergence between the
physical and digital states at an appropriate rate of synchronization” (JTC1-
SC41/261/C, 2021). This committee is proposing that a DT emerges
from the interplay of three key elements:

1. technical aspects and computation, i.e., semantics;
2. symbols and relationship between concepts, i.e., semiotics; and
3. pairing of semantic and semiotic elements, i.e., morphisms.

Nevertheless, again, what is left outside of the discussion is human
factors and the involvement of stakeholders in the generation and
assessment of such a system. In domains different from manufacturing,
in which DT solutions are currently not regulated, researchers are
exploring how DT should be designed and assessed to maximize the
benefit of such systems. For instance, models are emerging to integrate
data and utilize DT to support service maintenance (Steinmetz et al.,
2021) and management of transport systems (Guo et al., 2020b). Over-
all, however, researchers are rarely looking at the usability aspect of
interactive DT systems, and when they do the tendency is to adopt
different modalities of assessment, for instance, performing a heuristic
review (Sefrin et al., 2021) or by involving participants in the assess-
ment of concepts or prototypes of a DT adopting various forms of user
testing or using standardized scales of satisfaction to investigate the
reaction of the users after the interaction (Kalantari et al., 2022; Yeom
and Woo, 2021).

The lack of a well-defined methodological framework to assess
DTs brings issues in terms of bench-marking the usefulness of the
different solutions by also limiting the emergence and exchange of
good practices. The risk is that each domain will adopt different, if not
diverging, approaches to assess the quality of DT exposing stakeholders
to potentially unsafe ecosystems. While regulators and practitioners are
pursuing the right direction, there is a growing need of a cross-sectors
definition of DT and for consensus on how to assess and ensure safety
in the usage of interactive DT systems.

Researchers agree that DT solutions can present several advantages
for their stakeholders, such as offering a way of designing digitally, be-
fore the real implementation, or as ways to train people in performing
tasks or making decisions before the impact with reality (Liu et al.,
2022; Shahzad et al., 2022). Concurrently DT systems are seen as a
way of involving stakeholders in co-design and in reviewing systems
to define how to implement modifications in complex ecosystems like
cities (Lee et al., 2021a; Du et al., 2020; Dembski et al., 2020). Despite
the tendency among experts is to aim for very accurate DT solutions
that mirror the reality, it should be noted that the necessity for recreat-
ing identical (high fidelity) digital twins depends on the purpose of the
DT, and fraternal (mixed level of fidelity) twins could be also enough
in many cases, for instance, in the context of training of specific proce-
dural skills (Borsci et al., 2015; Mao et al., 2021) by offering operators
a more efficient and effective process of skills acquisition compared to
traditional training. High fidelity of DT is, however, essential for safety-
critical tasks like, for instance, systems of decision-making management
during disasters (Deren et al., 2021). In an ideal world, DT systems
are not going to be used only by expert decision-makers, and there
is a growing need of involving lay users and potential beneficiaries
of these powerful systems in the co-design and assessment of the
interaction. This could realize the possibility to, for instance, implement
an effective practice of universal design, intended here as universally
participated design (Al-Kodmany, 2000) by involving a large cohort
of citizens with different needs and levels of individual functioning
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in open experiments of user-driven adaptation of their social shared
environments by rethinking their urban and services organization, the
accessibility of the spaces and transport organization. This potential
process of changing the virtual to affect the real world, and supporting
policymakers in their decision regarding the development of urban
spaces was recently tested by White et al. (White et al., 2021a) in
the Docklands area of Dublin with roughly 30 participants providing
feedback about the potential construction of a new building. Future
implementation of such co-design paradigm supported with intuitive
and usable interfaces could be used for including a wider group of
citizens in decision-making and co-creating and revamping designs of
urban environments. It could also be used to alert about potential issues
in specific areas as well as a way to communicate and instruct citizens
about the best practice during crises or natural disasters.

6. Conclusion and benefits

Digital twins have many forms, as we have seen, yet they share the
same identity under the DT umbrella. DTs first emerged in manufactur-
ing, where their role is acting as a detailed digital model that can be
duplicated in physical copies. There, the economic benefits are reaped
from detailed planning. In construction, DT techniques provide similar
benefits, with the addition that the information about the physical
landscape of the building can be brought in the planning. Facility
management, including building maintenance and asset management,
also gains economic benefits from DT techniques, but needs periodic
updating of DTs, see Fig. 1. City DTs bring in even more complexity
in the form of both technical issues, such as the integration of GIS and
BIM, and human factors, such as that it becomes unclear what purpose
do the city DTs ultimately serve.

Technical interoperability in the form of integration of GIS and BIM
data for city DTs supports co-creation, management, and data sharing
among various stakeholders (Section 3). Clear communication between
specialists in the municipalities supports fair decision making processes
in the design phase and can prevent mistakes. In addition, DTs repre-
senting the city both above ground and underground provide reliable
information to test different scenarios such as preparing for disasters or
other societal challenges that directly impact the living environment.
Further efforts should be made to strengthen the connection between
DTs and official decision-making, including cadastral applications, for
example by advancing automated model validation methods.

Cities never stop changing, and therefore city DTs also need to
be constantly updated with appropriate autonomous techniques. The
role of Al is to enable the automated updating of the city DTs from
(crowd-sourced) sensor data (Section 4). This needs to be done in a
manner that preserves the fidelity of these DTs. Technical challenges
include deciding what parts of the DTs should be updated given a
new set of data, and how these updates are incorporated into existing
DTs. Standards are required to allow for this bottom-up updating (Sec-
tion 3). Open interfaces and operational clarity are good ways to attract
third-parties in offering their data for automated city DT updating.
Automated updating creates new opportunities, some of which are
visible and some, we argue, are not yet visible. For example, we see
that the feasibility of robotic applications may be tested in DTs, and
robotic systems may serve in updating the city DT, but how far can the
interaction between a (robotic) smart city and humans be taken is yet to
be seen. Another visible example is that change in natural elements can
be tracked, e.g. snow or water on the streets and green growth, as well
as temporary settings such as construction sites and related exceptional
traffic arrangements. Yet, monitoring events as they happen is different
than foreseeing those events and their impact, and planning ahead. It
is yet to be seen how impactful DT techniques can be when decisions
are made on preparations against simulated risks.

We may ask, who is benefiting from city DTs. The primary bene-
ficiary should be the city, based on the city’s needs (Section 2) that
follow from the everyday routines of city functions, namely, supporting
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the creation of a better living environment and providing services for
the citizens with limited resources. City DTs can serve these needs
in several ways that culminate in planning activities and involving
the citizenry. City planning and modeling (Section 3) is connected to
many applications that aim for improving the living environment of the
residents or the companies operating there, thus making these actors of
the civil society central stakeholders of these activities, and therefore of
any DT techniques that support these activities. Involving members of
the civil society in decision making is important to enrich the decision-
making process of the city organization with insights from a larger
group of stakeholders and beneficiaries (Section 5).

We may also ask, who could benefit from city DTs. Using maps
is an established way to plan human activities, be it constructing
something new or planning activities or processes. The idea of such a
map is that (1) an environment is visualized so that all the relevant
information is shown and that (2) all persons participating in the
process share the same information. If DTs are used for joint planning
purposes, they must be understood as maps (Section 5.2). Now, some
of the city’s needs are being answered with the help of DT techniques
(Section 2). Yet, for each separate item/need, there is a separate
DT. This divergence of DT manifestations is driven by the underlying
specific (sectorial) needs. Therefore, we also expect divergence in DTs
developed in different cities, as the needs across cities vary. However,
we foresee a future where the development of city DTs turns into a
converging phase: overall planning and risk assessment derived from
a joint DT could benefit a large group of civil society stakeholders.
The approach here would not be a gargantuan effort to combine these
under a single technological solution, but rather to develop a modular
architecture with collaborative interfaces. Successful urban DTs are
founded on solid data infrastructure, including appropriate data organi-
zation and standardization (Section 3). Thence, we see that standards
should be developed in the direction so that it would be technically
possible to have a back-end DT infrastructure that encompasses all
information. The back-end could then be used to derive different front-
end representations for different users (as in Fig. 2). This type of
approach would bring together the benefits of joint planning and the
flexibility to use only the information that is essential.

From the human factors point of view (Section 5.3), the diffusion of
interactive, usable and safe to use DT solutions could enable new forms
of (more or less immersive) collaborations between city stakeholders
(e.g., decision-makers, city planners, citizens etc.) paving the way for
new approaches of rethinking commune spaces, acknowledging the
needs of citizens and minorities and providing a way to construc-
tively involve stakeholders in the identification of unmet or hidden
needs. This could open up the possibility for citizens to have a digital
experience of their city on top of their daily real experience, cross-
pollinating real and virtual worlds in a positive cycle through which
citizens can actually modify or adapt their digital common living space,
and this digital transformation when accepted by the community could
be then implemented in the real world. Concurrently, municipalities
could share their future plans letting the citizens view and even explore
new buildings and viewing the impact of these plans such as changes
in the sunlight coming to neighboring properties. DT techniques could
help raising awareness about future changes in the city before their
implementation and guide this development towards what is needed,
be it new green areas, attractions, or commercial sites. Nevertheless,
we see that it is necessary to invest in identifying approaches and rules
to make DTs available, interactive, and editable by all to benefit shared
decision-making processes about future cities, in order to support this
potential positive loop between digital and real worlds.

Open questions remain. Cyber-security challenges step in when the
DT must be made not only available to third parties but preferably
updateable by them. Incentives for third parties to provide DT updates
from their sensor data must be established. When the third-party Al-
processed data comes in, quality control measures must be in place.
In other words, the Al needs to be embedded between the official city
organization and the civil society (Borsci et al., 2022).
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