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Abstract

®

CrossMark

An approach to distinguish p-wave from s-wave superconducting pairing symmetry and thus to
select potential platforms for Majorana fermions is proposed in terms of electronic transport
differences in a four terminal junction consisting of superconducting (S) and normal (N)
terminals in the diffusive regime. The Keldysh Green’s function equations are derived in the
f-parametrisation, incorporating terms previously neglected in the literature. A stable procedure
to solve these equations is presented. The supercurrent and differential conductance between
two superconducting electrodes were calculated in the Keldysh—Usadel approximation. The
N-terminals can be used to manipulate the energy distribution functions of electrons in the
junction in order to control the overall charge transport. Our results provide a new experimental
test to detect potential p-wave superconductivity. In fact, we show that the differential
conductance of junctions containing p-wave superconductors is distinctly different from the
differential conductance in junctions with s-wave superconductors, whereas the supercurrent
through the junction is qualitatively similar. This is of importance for the search for Majorana
fermions since it may help to design experiments to detect signatures of p-wave symmetry,

which may lead to potential platforms for Majorana fermions.

Keywords: superconductivity, four-terminal junction, pairing symmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

Ever since the discovery of superconductivity [1], there has
been a lot of interest in this phenomenon. Initially, the focus
was on the description of bulk superconductors of the so-called
conventional or s-wave type [2—4]. Since the prediction [5] and
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experimental verification [6] of the Josephson effect, the effect
that a DC current can flow through a non-superconducting
material sandwiched between superconductors even if no
voltage is applied and an AC current flows if a DC voltage
is applied, much attention has been paid to the combination of
superconductors with other materials, called Josephson junc-
tions. In such junctions the proximity effect plays an important
role [7]. Here, proximity refers to the effect that electrons in
a normal material close enough to a superconductor become
highly correlated in much the same way as inside the supercon-
ducting material itself. Research into superconductivity today
is not only restricted to conventional superconductors. Since
the discovery of anisotropic superconductors [8] and notably

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. A schematic of the VT junction. Superconducting
electrodes (SC) of width w are attached to a bar of length L and
width d << & between two normal metal (N) reservoirs. The
distance between the superconducting electrodes and the normal
metal reservoirs is L. Free currents can flow between the
superconducting electrodes, dissipative currents can flow between
either the electrodes or the reservoirs.

the discovery of high temperature superconductors [9], also
unconventional superconductors, such as p-wave [10, 11], and
d-wave [12] have been investigated. Unconventional super-
conductors have received even more attention since Kitaev
showed that 1D p-wave superconductors may host Majorana
particles [13]. In this paper we will concentrate on charge
transport in multiterminal junctions composed of normal and
superconducting materials in a particular arrangement that
promotes the proximity effect. The main finding of this paper
is the striking difference in the induced ’differential conduct-
ance’ between an s-wave and p-wave superconductor. These
differences form the basis for possible experimental verifica-
tion of the type of superconductor one may induce in a partic-
ular junction and thus can be used to help identifying materials
suitable for possible platforms for Majorana fermions. A typ-
ical example of a Josephson junction is the SNS junction, in
which a normal metal (N) is sandwiched between two super-
conductors (S). One way to investigate SNS junctions theor-
etically is by using Green’s functions [14—19]. In equilibrium
only the retarded Green’s function is studied, for nonequilib-
rium effects also the Keldysh component is included. Res-
ults have been obtained in various approximations, both ana-
Iytically [20-23] and numerically [24]. In this study, a four
terminal variant of the SNS-junction is considered, the VT-
junction, first investigated by Volkov and Takayanagi [25-28].
A schematic of the VT-junction is shown in figure 1. Both con-
ventional s-wave and unconventional p-wave superconductors
are studied. In s-wave superconductors the so-called super-
conducting potential, which characterises the strength of the
superconducting interactions, is isotropic, in p-wave supercon-
ductors the superconducting potential is anistropic. The influ-
ence of this anisotropy on physically measurable quantities is
theoretically investigated. The diffusive normal metal (N) is
considered to be very thin. Therefore, the Green’s functions
will have only small variation in the lateral directions, so that
the problem can be approximated to be one-dimensional fol-
lowing [29]. The interface between the superconductor and the
normal metal is modelled using the Tanaka—Nazarov boundary
conditions [30-34], which can be used for conventional as well
as for unconventional superconductors. The incorporation of
these boundary conditions for the VT-junction in equilibrium

was studied in [29, 35]. A new derivation of the equations
resulting from these boundary conditions in non-equilibrium
VT-junctions is presented for the #-parametrisation. The VT
junction can be used to study the difference between conven-
tional and unconventional superconductors. In [35] the effect
on the local density of states was investigated. In [36], a sim-
ilar approach was used for calculations on the conductance
spectroscopy for T-shaped junctions, a three-terminal junc-
tion with one superconducting electrode and two normal reser-
voirs. We develop a self-consistent theory of Cooper pair and
quasiparticle transport in the VT structure within the Keldysh—
Usadel approach. Our results demonstrate that the differential
conductance can be used to distinguish between s-wave and
p-wave superconductors. In this, the four terminal characters
of the junction will prove to be vital. A voltage will be applied
on the normal metal reservoirs, while grounding the supercon-
ductors, so that the energy distribution function of electrons in
the normal metal can be manipulated, similar to the approach
presented in [37]. In this way, the charge transport can be
controlled and differences between s-wave and p-wave con-
figurations controlled. In this paper, it is shown that the four-
terminal junction can be used to distinguish p-wave supercon-
ductors from conventional superconductors, that is, to identify
potential hosts for Majorana fermions. The organization of this
paper is as follows. In section 2 the Usadel equation is intro-
duced alongside the main approximations made in the theory.
In section 3 this theory is used to develop a solution scheme for
the problem at hand. In sections 47 the results of this scheme
are investigated. Finally, concluding remarks are contained in
section 8.

2. Usadel equation

The quasiclassical Green’s function in a Josephson junction
obeys the Eilenberger equation [38, 39]. In the dirty limit, that
is, if the coherence length £ of the Cooper pairs is much larger
than the mean-free path / of electron transport, the Eilenberger
equation simplifies to the Usadel equation [40]:

DV (GVG) + [iEr3,G] =0,
GG =1, (1)

where 1 is the identity matrix, D is the diffusion constant, £

GR GX
0 GA] , where
GR,G*,GK € C**? are the retarded, advanced and Keldysh
Green’s functions respectively. From the Green’s functions the
density of states p, which is the (1, 1)-element of Re G, the
spectral supercurrent Imls = 5 &Tr(73(G*VGF — G*VG*))
and the energy distribution functions of the electrons can be
calculated. These quantities are at the heart of the investiga-
tions into the differences between s-wave and p-wave super-
conductivity. The superconducting electrodes are incorporated
into the model similar to [29]. The two-dimensional Usadel
equation is used. Because the normal metal slab is assumed to
be very thin, i.e. the distance d in figure 1 is much smaller than
the coherence length &,

is the energy of the Cooper pair and G = [
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2

where in the second equality it was used that no current flows
into the vacuum, that is, (G(%G)y:d =0, whereas the cur-
rent from the electrode into the normal metal is S(G,x) =
S(G)Os(x), where Og is the indicator function of the elec-
trodes. The term S is determined by the Tanaka—Nazarov
boundary conditions, which read

1 0 1
S=—(G=G) =-—[G,B,
d( ay >y_0 ’YB[ ]

where g is the ratio of the boundary resistance and the res-
istivity of N metal multiplied by its coherence length and B is
aparameter in the Tanaka—Nazarov conditions discussed in the
appendix. The one-dimensional approximation to the Usadel
equation reads

0 0 .
Da (GaxG) + [—iET3,G] + SOs(x) =0,

GG=1. (3

The retarded Green’s function can be parametrised using the
f-parametrisation [15],

sinh fetX
—coshf |’

cosh@
—sinh@e X

Gt = { “)
where 6, x are complex functions of the variable x. In the bulk

of a superconductor

E
coshf = 7m, (5)
. A
sinhf = ——— m, (6)

where E is the energy, and A is the so-called superconduct-
ing pair potential. In s-wave superconductors the pair poten-
tial is isotropic, A = Ay, in a px-wave superconductor the pair
potential has a non-trivial angular dependence, A = A cos ¢.

Moreover, it has been shown [39, 41] that the Keldysh
Green’s function can conveniently and without loss of gen-
erality be parametrised as

GX = GRh — hG*
it fr 0
h= { 0 £ —fJ ! ™

with f;, fr real-valued functions of x. The notation f7,fr was
introduced by [41] to describe what were called longitudinal
and transverse modes.

Using the §-parametrisation and the parametrisation using
the distribution functions f; and f7, the normalisation con-
dition is automatically satisfied and and only the differential
equation remains to be solved.

In this parametrisation, the retarded and Keldysh equations
are the solution of

9 . D (9x\’.
Dﬁ = —2iEsinhf + ) (31’) sinh @ + SpOs(x),

O (2 -
o (smh (G)mx> + 8, (8) =0,
V(DLVfL) + V(CLVfr) + ImIsVfy + Tr(S¥) = 0,

®)

V(DrVfr) + V(CrVfy) + ImIsVf;, + Tr(738) = 0.

A derivation of the Keldysh equation in dimensionless form
is shown in appendix A, a derivation of the boundary terms
in the theta-parametrisation can be found in appendix B. It is
shown in the appendix that the terms Cy, Cy are only nonzero
if Im(%x) # 0. In the short junction limit, linearisation implies
Im(x) =0 throughout the junction. This means that these
C-terms can be ignored in the very short junction limit, con-
sistent with [20].

At the reservoirs, boundary conditions are required. In the
reservoirs, the Green’s function should equal the bulk solution
for a normal metal, G = 1. For the retarded component this is
equivalent to the condition

0(~L/2) =0(L/2) =0.

This requirement does not impose any restriction on y. A
boundary condition for x can be obtained as follows. Since
no supercurrent, that is a current that flows without voltage,
should flow into the metal reservoir, there should only be a
supercurrent between the electrodes, in the region —L/2 +
L, <x<L/2—L,. In the -parametrisation, the supercur-
rent is sinh29%. In general, for —L/2 <x< —L/2+L,
and L/2 — L, <x<L/2, §#0. Thus, having no supercur-
rent means that % =0 forxe (—L/2,-L/2+L,) and x €
(L/2 — L,,L/2). This property can be realised by imposing the
boundary condition

Ox O B
S (CL/2) = F (L/2) =0,

For the Keldysh equation, Dirichlet boundary conditions can
be used. In the reservoirs, the energy distribution functions f,
fr, follow the Fermi—Dirac distribution [42, 43], so [44]

4 + tanh E-V
2T

lt/2) =~/ = 5 (1o E

and

where voltage and temperature are normalised with respect
to Ay.
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— Initial Ansatz
Linearise G
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Error < bound G
Solution for E

{}m
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Figure 2. An overview of the computation method used to solve the
Usadel equation for a range of energies E.

3. Implementation

Following [29], the Usadel equation was recast in dimension-
less form using position x normalised by £ and energy norm-
alised by A in terms of the coherence length £ and the super-

’D .
\ /ﬁ, where D is the

diffusion constant of the normal metal and 7 the critical tem-
perature of the superconducting electrodes. In these units the
Usadel equation can be recast as

conducting energy gap Ag. Here, £ =

V20 = —2iE ( = ) sinh + 1 (Vx)?sinhf + SyOs(x),
2nT. 2
9
V (sinh® (8) Vx) + Sy (6) =0, (10)
V(DLVfL) + V(CLVfT) =+ ImIszT + Tr(S]() =0, (11)
V(DrVfr) + V(CrVfy) +ImlsVf, + Tr(m38¢) =0,  (12)

where % ~ (.28 according to BCS theory [45]. The calcu-
lation of the source terms is elaborated on in the appendix.
The system of equations (9)—(12) is the system of equations
that describes the junction and is to be solved. The retarded
equations are nonlinear equations and cannot be solved dir-
ectly. To solve the retarded equations, an iterative procedure
was used. The iterative scheme is shown in figure 2. Equation
(10) was linearised around an Ansatz. The resulting equation
can be solved using standard discretisation. The solution found
to this linearised equation was then used as a new Ansatz until
there is convergence. The iteration procedure was started for
% = 1.5. In this energy range, the effect of the superconduct-
ors is small compared to the effect for E < A, and § =0 was
used as the first Ansatz. Then, the equation was solved for

Table 1. Parameters of the VT-junction.

Parameter Value
Nx 1012
Ne 221
B 1
z 0.2
L

- 8

3

Ly

—= 1

3

w

- 0.3

13

d

= <1
3

kgT .
— 0.01*

A

2 Unless specified otherwise.

successively smaller E, using the solution of the equation for
energy E as the first Ansatz for the equation for energy E — dE.
It was found that this iterative procedure converged in all cases
that were investigated. The Keldysh equations are linear in f}
and fr, albeit with nonconstant coefficients. A standard dis-
cretisation procedure was used here.

4. Differential conductance

Similar to [36], the differential conductance was calculated for
the junction. Here all four terminals are to be used, the con-
ductance between the reservoirs depends on the supercurrent
between the superconducting electrodes. This experiment can
thus not be carried out by a normal SNS junction.

In our setup, a voltage is applied between the two normal
electrodes of the VT-junction. The superconducting electrodes
are grounded, so that their phase does not depend on time. For
the conductance, only dissipative currents are considered, that
is, only the contribution of D7V to the current is taken into
account. The differential conductance is given by [46]:

a [* 9
R = /0 S I(E)D(E)E (13)
1 (7 d -
D(E) = <L/'L T(g x)> . (14)

The expression Dy = Tr(1 — 73GR73G*) was calculated in the
f-parametrisation by direct substitution. The result is

1 1
Dr(E,x) = §|cosh6?|2 + §| sinh 0] 2 coshImy. (15)

In the limit where Imy = 0, this reduces to the expression used
in [46].
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Figure 3. The differential conductance of the VT-junction as a function of the applied voltage between the normal metal electrodes for
s-wave (a) and (c) and p-wave (b) and (d) electrodes. For s-wave electrodes, the differential conductance assumes a minimum at £ =0, for

p-wave electrodes there is a zero bias conductance peak.

In the zero temperature limit, %fT(E) =9(E—V), and the
expression reduces to

[l

~1
dl 1 1
RN7: */ 1 2 17 B dx .
dv L J_1 3[coshf|? + 3|sinh |2 coshImy
(16)

The phase difference At between the electrodes of the junc-
tion was varied. The results for both types of electrodes i.e.
s-wave and p-wave are shown in figure 3. The behaviour is
qualitatively different for the two types of superconductors. In
the case of s-wave electrodes, the differential conductance is
lowest at eV = 0 and increases with energy to just below eV =
A. For %’ > 1 the differential conductance approaches the nor-
mal state value 1 with increasing energy. With an increase
of the phase difference A1) the dip in the differential con-
ductance becomes broader, the peak appears at increasing %’ ,
approaching %’ = 1 as the phase difference between electrodes

approaches 7. For p-wave electrodes the differential conduct-
ance is quite different, as it is lowest at a value 0 < %’ < 1 that
increases with At. As A increases the peak in the differ-
ential conductance near %’ = 0 becomes smaller, but broader,
so that results for %’ > % only have a very slight dependence
on phase. The dependence of the conductance on the phase
difference can be understood best from the cases Ay = 0 and
Ay = m. If Ay =0 the electrodes are the same and the para-
meter 6§ is an even function of position. If however, the phase
difference is 7, the parameter # is odd and at the middle of
the junction the normal state is attained. Thus, if the phase dif-
ference is close to 7 the proximity effect is suppressed more
compared to the case in which the phase difference is close to
0. Since for large E the f-parameter at the center of the junction
is small in any case, this effect is most apparent in the Usadel
equation at low energies. Therefore, the deviation of the con-
ductance at low voltages will be smaller if the phase is closer
to 7, implying a decrease of the zero bias conductance peak
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Figure 4. The spectral supercurrent through the VT-junction as a function of energy for s-wave (a) and p-wave (b) electrodes. The spectral
supercurrent changes sign as energy is increased for both s-wave and p-wave electrodes. For clarity of presentation, a selection of the results

is shown. An overview of all results is shown in the appendix.

for the p-wave case and a broadening of the dip for the s-wave
case. If the phase difference between the electrodes vanishes,
the differential conductance is similar to the differential con-
ductance as found in [36], as expected.

5. Spectral supercurrent

The spectral supercurrent Imls (E,x), [20], is the energy
dependent quantity that indicates the current carried by the
levels at a given energy if these levels are occupied. The spec-
tral supercurrent is defined as

Imls = Tr (73(G*VG® — G'VGY)) (17)
=Tr (G*VGF — (GRVGR)T). (18)
In the @-parametrisation this becomes Imls=—4 Im

(sinhze%). This quantity can be calculated using only

the retarded equation. The spectral supercurrent has been
calculated for both s-wave and p-wave superconductors as
a function of energy and phase. The results are shown in
figure 4. Note that the sign of spectral supercurrent for p-wave
electrodes is arbitrary, a rotation of 7 of the electrodes will
introduce an extra minus sign in the spectral supercurrent.
This can thus not be used to distinguish s-wave and p-wave
superconductors.

For both s-wave and p-wave superconductors, there are
two extrema in the spectral supercurrent, the maximum spec-
tral supercurrent in the low energy peak being clearly larger
than the maximum spectral supercurrent in the higher energy
extremum. The low energy extremum occurs at % < %, the
high energy extremum at % > % the exact location of the
extremum depends on the phase difference between the elec-
trodes. The appearance of two extrema is a length dependent
phenomenon, and will be discussed in more detail in section 7.

The energy of both extrema was investigated for s-wave and
p-wave. The results are shown in figure 5. For the low energy
extremum, the energy dependence of the extremum on A
is smaller for p-wave case electrodes than for s-wave elec-
trodes. For both types of electrodes the extremum energy is
non-decreasing as a function of A1), with the increase slowing
down as A1) increases. However, this process is qualitatively
different between s-wave and p-wave electrodes. For s-wave
electrodes the increase gradually slows down, for p-wave elec-
trodes the extremum energy becomes approximately constant
for % > % For the second extremum the variation is much
larger in the p-wave case. As for the first extremum the beha-
viour between s-wave and p-wave superconductors is differ-
ent. For s-wave superconductors there is a monotonic increase
of extremum energy with Azt). For p-wave electrodes, there is
a minimum at around % ~ 0.3 — 0.4. From this we can con-
clude that the behaviour of the extrema can be used to detect
p-wave superconductivity.

6. Supercurrent

The spectral supercurrent has the disadvantage that it is not
directly measurable. A quantity that can be measured in exper-
iment is the total supercurrent. The total supercurrent can be
expressed as

1
Iy =

" Ry 19)

oo
/ JSi(E)ImIs(E)dE,
0
where f; is the parameter used in the parametrisation of the
Keldysh equation, e is the charge of the electron, and Ry is the
normal state resistance of the junction [20]. Also the supercur-
rent will be used in dimensionless form,

o E E E

(20)
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Figure 5. The energy of the first (a) and second (b) extremum in the spectral supercurrent as a function of phase for the VT-junction using
s-wave and p-wave electrodes. There is a qualitative difference between the results. Calculations for Ay > 7 were also calculated using a
grid with 401 grid points instead of 101 grid points. This gives the same extremum locations.
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Figure 6. The supercurrent as a function of voltage for the
VT-junction in case of s-wave and p-wave electrodes. As for the
spectral supercurrent there is a sign difference in the supercurrent
between the case of s-wave and p-wave electrodes.

The boundary conditions for the Keldysh equation are determ-
ined by the voltage applied between the normal metal reser-
voirs, as discussed in section 2. These boundary conditions are
temperature dependent. In the following calculations, the low
temperature regime was investigated, using kBKT =0.01. As for
the differential conductance, a voltage is applied between the
normal metal electrodes, whereas the superconducting elec-
trodes are grounded. The Keldysh equation has been solved
for both s-wave and p-wave superconductors. The supercur-
rent calculated from the results is shown in figure 6. The super-
current shows a peak at zero voltage level, and decreases and
changes sign as the voltage between the reservoirs is increased.
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0 / x
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g 001} /
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Figure 7. The derivative of the supercurrent with respect to the
voltage for the VT-junction for different temperatures. Temperatures
have been normalised to %. The results for 7= 0.01 and 7 =0.001

are almost equal, and correspond well with the spectral supercurrent
for T'=0.1 the results are clearly different.

There is a second, lower, peak at larger voltages. This is in
good correspondence with the results found in [37]. As expec-
ted from the results for the spectral supercurrent, the results
of the s-wave and p-wave superconductors differ in sign. A
derivative of the supercurrent can be taken with respect to
the voltage applied between the reservoirs. The so-obtained

quantity o = 9L is shown in figure 7. In the low temperat-

0%
ure regime, o is very similar to the spectral supercurrent. This
can be explained from the energy distribution functions of
electrons for the normal reservoirs. At temperatures 7 << A,

the hyperbolic tangent is very similar to the sign function,
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Figure 8. The spectral supercurrent as a function of energy and length of the junction. For clarity of presentation, it was chosen to use
log Imls. For both s-wave and p-wave electrodes, the number of zeros in Imls increases as the length of the junction is increased.

log d|Imis|/d(E/A)
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log d|Imlis|/d(E/A)

02 04 06 08 1 12 14
E/A
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Figure 9. Derivative of spectral supercurrent with respect to energy as a function of energy and length of the junction. Again, a logarithmic
plot was chosen. In the case of s-wave electrodes there is only a discontinuity at E = A. For p-wave electrodes, the discontinuity at E = A is
less apparent then for s-wave electrodes, and a discontinuity at E ~ % is visible for all lengths. This corresponds to the kink observed in

previous sections.

being —1 for negative arguments and 1 for positive arguments.
This means that f is zero in the range |E| < eV, and nonzero
outside this range. In the region between the superconductors
the exact form of f; will be different, but if the effect of the
superconductors on f; is not too large, the supercurrent can be
approximated by

2

o ~ —Imls. (22)

7. Length dependence of spectral supercurrent

The calculations for Ay = 7, were repeated for other junc-
tion lengths to investigate the length dependence of the spec-
tral supercurrent. The results are shown in figure 8. For both
s-wave and p-wave electrodes, the number of zeros of the
spectral supercurrent increases as the length of the junction
is increased. This is due to the larger variation of the complex
argument of @ if the length of the junction is varied, as illus-
trated in appendix C. This is analogous to the ballistic junction,
where multiple Andreev bound states are observed for long
junctions [19, 47, 48]. A small difference difference between
s-wave and p-wave superconductors becomes more apparent
if the energy derivative of Imls is investigated, as in figure 9.
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For both types of superconductors there is a discontinuity at
E = A, but this discontinuity is much more apparent in the
s-wave case than in the p-wave case. The results away from
E = A are qualitatively similar, although from figure 9 it is
clear that peaks in the spectral supercurrent occur at lower
voltages if p-wave superconducting electrodes are used com-
pared to if s-wave superconducting electrodes are used. This
is in good correspondence with figure 5.

8. Conclusion

In this paper a method has been developed that extends the
solution method for the Usadel equations in the VT junc-
tion, using Tanaka—Nazarov boundary conditions, to non-
equilibrium systems. The Usadel equation was derived in most
general form for non-equilibrium superconductivity, allow-
ing for a complex parameter y. New terms were identified
in the equations for the Keldysh components. It was shown
that the equations reduce to the known equations if the para-
meter y can be assumed real. It was shown numerically that
in the VT junction the imaginary part of x does not vanish
in general, showing the necessity of these terms. The Usadel
equation was supplemented by the Tanaka Nazarov boundary
conditions, which can be used for both conventional (s-wave)
and unconventional (p-wave) superconductors. The equations
resulting from these boundary conditions were derived in the
f-parametrisation. Also the boundary conditions were derived
in general form, allowing for a complex parameter , and a dis-
continuity of both parameters along the interface. The expres-
sions found were cast in such a form that the computation is
stable. The implementation boundary conditions were tested
on a few problems for which analytical approximations are
known. The results compared favourably to known theories.
Differential conductance and supercurrent were investigated
as a function of the imposed phase difference between the
electrodes. For the supercurrent, also a length analysis was
performed. In this paper, a method has been proposed to dis-
tinguish between s-wave and p-wave superconductors. Since
the latter are potential hosts for Majorana fermions, the res-
ults presented in this article contribute to the search for Major-
ana fermions. The four terminal characters of the VT junction
was exploited to study the effect of applying a voltage to the
normal reservoirs. It was shown numerically that the deriv-
ative of the total supercurrent with respect to this voltage is
approximately equal to the spectral supercurrent at low tem-
peratures. The code developed allows for several extensions.
Apart from s-wave and p-wave superconductors, also d-wave
and f-wave superconductors can be investigated. Moreover,
the normal metal in the can be replaced by a ferromagnetic
material or a topological insulator. For this latter I'm adjust-
ment, the Tanaka Nazarov boundary conditions need to be
adjusted to give a good description of the spin—orbit coupling.
This is an interesting direction for future research. If the nor-
mal metal is replaced by a ferromagnetic material adjustment
of the Tanaka Nazarov boundary conditions is not needed.
The code allows as well for an adjustment of the geometry
to multiterminal junctions with more than four terminals.
This would allow for a more elaborated investigation of the

influence of the geometry on the local density of states and
the supercurrent. An extension of the code to solve the two-
dimensional Usadel equation would provide an even larger
flexibility in the geometry. Another interesting research dir-
ection is to drop the dirty limit assumption and use the Eilen-
berger equation, the quasiclassical equation that is valid also
beyond the dirty limit approximation. In this way a greater
variety of junctions can be considered. It would be interest-
ing to show that the results of the Eilenberger do coincide
with the results of the Usadel equation in the dirty limit for
the VT-junction. Next to this, one might consider to solve the
full Gorkov equation and investigate in detail the error of the
quasiclassical approximation.
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Appendix A. Keldysh equation

In this section the equations for the Keldysh equations will
be calculated. It will be shown that in case a complex super-
conducting phase y in the normal layer is allowed, additional
terms occur compared to expressions previously noted in lit-
erature [15, 20]. Recall that the Usadel equation reads

9 [ _0G\ . B
g <G8x> +i€[G, 73] +205[G,B] = 0. (A1)

Moreover, for any matrix Z consisting of a retarded, advanced
and Keldysh components we can write Zx = Zrh — hZ, where
h is a diagonal matrix. In the following chapters, i will be used
in the normal metal, whereas h; will be used in the supercon-
ducting electrodes. First the Keldysh component of the first
term will be calculated.
(GVG)kx = GRVGk + GgV Gy
= GrV(Grh — hGs) + (Grh — hG4)V Gy
= GrVGrh+ G3iVh — GrVhGy — GrhV Gy
4+ GrhV Gy — hGAV Gy
=Vh—GrVhGys + GrVGrh — hGAsVGyu.
(A2)

Thus, the Keldysh equation reads

V(Vh—GgVhGa) + V(GrVGg)h+ GrV G Vh
— /’ZV(GAVGA) — VhGAVGA + ié([GR,T3]h - h[GA,T3])
+2[G, B]xOs(x) = 0. (A3)
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Now, adding and subtracting 2([G, B]gh — h[G, B]4)O,(x) and
rearranging the terms this can be written as

V(Vh — GRVhGA) + (V(GRVGR) + iG[GR7T3] + Z[G,B]RGX(X)) h
+ GrVGrRVh —h (V(GAVGA) + iE[GA,Tﬂ + Z[G,B}A)
— VhGsV Gy + 2([G,B]K — [G,B]Rh + h[G,B]A)@s()C) =0.
(A4)

Now, using the retarded and advanced components two of
these expressions can be seen to vanish, and the equation left
is

0= V(Vh—GgVhGy) + GrNVGrVh — VhGAV Gy
+ 2([G,B]K — [G,B]Rl’l + h[G,B]A)G)Y(x)
= V(Vh— GrVhGys) + GrVGrVh — VhGaVGs + S =0,

S =2([G, Blx — |G, Blgh + h[G, B0 (x). (AS)

|cosh|? — | sinh ] 2e—2Imx

GRT3G;ET3 =

cosh@sinh@*e= X" — cosh 0* sinh fe—iX

Thus, define

Dy = Tr(1 — GgGy) = 2 +2|coshf|?

— 2|sinh@)|? cosh2Imy, (A10)

coshd
GrGhrsy = .
—sinhfe™X

Thus, define
Cp. = Tr(13 — Gr73G4) = —2|sinh 6| sinh 2Imy = —Cr,
(A13)
and
DT = Tr(l - T3GRT3GA)
=2+ 2|coshf|? +2|sinh 6| cosh 2Imy. (Al14)

sinh fe'X cosh#*
—cosh@ | |sinhf*e

B |coshf|? + | sinh ] 2¢—2mx

" | —cosh@sinhf*e= X" — cosh6* sinh e X

—ix*

Now writing h = f1 79 + fr73 this becomes

V(1= GrGA)VfL) + V (73 — Grr3Ga) V)
+ VfL(GRVGr—GaV G) +Vfr(GrRV Grm3 —13GaV Ga)
+5=0. (A6)

Now, the terms in equation (A6) need to be calculated.

A.1. Calculation of terms

The first term in equation (A6) is 1 — GrRG4 =1+ GRT3G1TQT3.
Using that

[ cosh@ sinh fe'X
Gr = | —sinhfe™X  —cosh 9} ’ (A7)
it follows that
i cosh 6* sinh§*ex”
T3GRTs = | —sinh@*e="  —coshf* |’ (A8)
and therefore that
cosh@sinh0*eX” — cosh 0* sinh feiX
(A9)
|cosh@|? — | sinh §] 2e2mx
[
and
Cr=Tr(m3 — 3GRrG4) = 2| sinh9|2 sinh2Imy.  (All)

For the second term note that —Ggr73G4 = GRG};T3. This can
be calculated and yields

sinh 0* X
cosh 6*

cosh@sinh6*eX” 4 cosh 6* sinh feiX

Al12
—|coshf|? — |sinh @] 2e2mx (A12)

The third term reads GRVGrm3 — 73GAV G4. Now,

ex

o0

GRVGR == a

e~ 0

icosh@sinhfe’X] g,

[ isinh? 6

—icosh@sinhfe~ix —isinh?@ ox
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From this it can be calculated that

Tr(GRVGR) = 0,

(A15)
Tr(13GrVGg) = 2isinh20%.

Similarly, for G4 VG4

0 X7 o0
GaVGy = o
AV Ga e X 0 } ox
isinh?@* icosh@* sinh0*eX” | Hx*
—icosh@* sinh@*e™ X" —isinh?6* Ox °

From this it can be calculated that

TI'(GAVGA) == 0,
(A16)

Tr(r3G4VGy) = 2isinh®0* %i.
X

From equations (A15) and (A16) it now follows that

TI”(GRVGR — GAVGA) =0.

*

_ _ 2p~A *
TI'(73(GR V GR GA V GA)) = 2isinh“ 0 2isinh @

0
= —4Im (sinhzﬁx) .
Ox
This latter quantity is defined as Imls.

A.2. Parametrised Keldysh equation

With the expressions from the previous section (A10), (Al1),
(A13) and (A14) the Keldysh differential equation (A6) can be
put in parametrised form. Taking the trace of (A6) gives

V(DLVfL) + V(CLVfr) + ImIsVfr +Te(S) = 0. (A1)

The second equation is found by taking the trace of (A6) after
multiplying by 73. This gives

V(DTVfr) + V(CTVfL) + ImIsVf, + TI‘(’7'3S) =0. (Al19)

Compared with expressions in literature [15, 20], there is one
extra term in each equation, V(C,Vfr) and V(CrVf;). Now,
these terms are proportional to sinh2Imy, which means that
they vanish if x is real. Thus, in case x is real the equations
presented in [15, 20] are recovered.

Appendix B. Boundary condition

In this section the Tanaka Nazarov boundary conditions will be
calculated for the VT junction. The derivation will start from
equation (9) of [34]. The boundary condition can be expressed
as

9
26=N"1, Bl
G50 > (B1)

n

where

I, =2[G,B,)]
-1 —1 2 -1 -1
B, = (=T\,[Gi,H_'|+ H_'H — T{,Gi\H_'H, G))
x (Tin(1—HZ")+ T\,GiH_'H,) . (B2)

In this equation G is the Green’s function in the normal metal,
Hy = %(GzJr + G,_), where G4 are Green’s functions in
the superconductor with +, — indicating direction of motion
towards or away from the interface. A problem with the direct
calculation of expression (B2) is that it contains H~'. In con-
ventional superconductors H_ = 0 and in superconductors itis
possible H_ =~ 0 for several channels as well. For that reason,
B, is rewritten as

By = (—Tl,,[Gl,HZI] YH'H, - Tf,,G,H:lH+G1>7l
x (Hy'H_)"\(H7'H_) (Tln(l ~H Y+ Tl,,GlH:1H+)
- (le,,erlH,GlH:lHJrerl +TH'Gy
+1 —T%,,H;‘ALGIH:'H+G1)_1

x (T,,,(H;lH_ —H;1)+T1nH;‘H_GlH:‘H+). (B3)

In this last expression H_' is still present, but only in the
combination H,'H_G\H_'H, =H'H_G,(H{'H_)™'. It
is this latter expression that can be used for both the retarded
and Keldysh component.

B.1. Retarded component

The following derivation holds in case the superconducting
order parameter in the superconducting electrodes is A = A
or A = Agcos ¢ — a, where ¢ is the angle made with the sur-
face and « is the angular mismatch between electrodes and
normal metal.

The retarded component of B, is

BR = (_Tlan_]RmGl (Rp_]Rm>_1 + T]an_lGl

+1 = TR 'RuGi(R; ' Ry) ™' G1)

In"‘p
X (TR, 'Ry — TR, + T3, Ry ' RuG1 (R, 'Ry ™)
(B4)
We can write
8+ fieill’}
Gry = > 7 B5
= [—fﬂ:e W—gy (B>

where 1) is the superconducting phase of the electrode. There-
fore

(fy +/-)e®
—(g++eg-)

8§++8-

1
A [—(ﬁ e °0
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L 1 grte- (frtf)e”
Pt gyg —fif- [ (fe+f)e ™ —(gr+g-) |’
(B7)
1 8+ — 8- (f+ _f7>ei’l/1
Ry=~ . . BS
2 [—(f+ —f-)e™ —(g+—g-) ®9

With this, R'R,, can be calculated. Using that g3 —f7 =
g2 —f2=1 and (gy+g )y —f)—(g+—8g)(fr +
=) =gf+ —8+f- +8-f+ — 8-S —8+f+ —g+f- + 8-
fr+g-f-=2(g_f+ —g+f-), it follows that

eV
! I+gig —fif- e O
0 e
—A Lw ) } — AU, (B9)
X i
where A = % and ¥ = Loiw eO } But then
-1 -1 1 0 e“" 1 0 eiw
Rp RmGl (Rp Rm) :A |:e_i,¢) 0 GIX e_iw 0
0 v 0 v
(& ol 4
— UG, V. (B10)

With this Bg can be expressed as

Br = (~T1, UG\ UR; " + T1,R Gy + 1 - TR UG UG,)
% (T1aRy 'Ry = T1aRy ' + T1a ¥ G1) (B11)

This expression does not contain R,! and can thus be com-

puted using MATLAB.

A connection can be made to the expression found
. . coshd
in [34]. Parametrising G| = _sinhfe—X —coshf

[15], ¥G1 ¥ can be calculated as follows:

v cosh@
0 | |—sinhfe™X
] |sinh el Xx—%)
0 —coshfe™ ¥

[0
e

0
VG = gy

sinh @e'X
—cosh@

eV
0

|

coshfe'®
—sinhfe i (X—¥)

[0
e

[ —cosh@ —sinhfe i(Xx—2¥)
sinh #e!(X—%) coshd
eV
ol

If the superconducting phases in the electrodes and the normal
metal are the same, this reduces to VG| ¥ = —Gy, and in that
case equation (B11) reduces to the expression found in [34].

—G1 + 2isinhf@siny — ¢ { E)iw
e

sinh&e’x} as in (Hy'H_G\H_'"H H")x =

B.2. Keldysh component

The Keldysh component of the boundary condition can be
expressed as follows:

Ix = 2([G,B,))x = 2(G®Bg + GXB4 — BxG* — BxG*).
(B13)

Now, By has been calculated in section B.1, and B4 can be cal-
culated from By = —733;273, where 73 is the third Pauli matrix.
Thus, only Bk needs to be calculated. From equation (B3) it
can be read that B = D~ !N, where

D= (-T,H;'H_-G\H_'H H' + T,H;' G
1~ TAH'H_GiH-'H,Gy)

N=(T\,(H{'H_ —H")+T,,H,'"H_G\H_"H}). (B14)
With this expression Bk can be expressed as

Bg = Dy 'Nx — (D™ ")gNa = Dy 'Nx — D ' DDy 'Ny.

(B15)

Following [34] DXINA = By, which leaves only Ng and Dk to
be calculated. In order to find these expressions, the Keldysh
component of each of the terms of N and D will be calculated.
In order to this, the distribution functions in the normal metal
are denoted by £ as before, those in the superconducting elec-
trode by h;:

(x =0.
(H: )k = —R, 'KpA, ' =Ry 'hy — hsA,
(H{'G1)x = R,G* + (H; ")k G"
=Ry (Rih — hAy) + (R, 'hs — hyA, A,
(Hy'H-)x =R, (H- )k + (H:")kAn
=Ry 'Ruhs — Ry ' hyAu + Ry, hsAu
— Ay A
=Ry 'Ruhy — hsA, ' A,
(H;'H_GH-"H})r(H &
+ (H:'H_GiH_"H )xA,) !
= URU(R, 'hy — hyA, ")
+ (H;'H_G\H_"Hy kA, .
(Hy'H_G\H-'H.G\)x = (H{'H_GH_"H)rG*
+ (H;'H_GiH_"H, kA
= R, W(R hs — hiA;)
+ (H;'H_G\H_"H} )kA,.

Substituting these expressions
Dk = —T1, YR\ V(R hy — hA") + TR, (Rih — hA;)

_ Tl,,(Hle_GlH:IHWL)KAP_l + Tm(Rp_lh —hAp_l)Al

— T} URU(R\h— hA,) — T}, (H{"H_G H_"H  )xA;.
(B16)
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and

NK = Tlan_lRmhs - TlnhsAp_ 1Am - Tlan_lhs + TlnhSAp_l
+ T (H H_ G H_"H k. (B17)

This leaves only (H, H_GH_"H )k to calculate. To this end,
first observe that

Ay, = (- (R, ) i7) (~maRyms) = (R, )R]y
= 73(R,R,, ") 7. (B18)
Using that H, and H_' anticommute it follows that
—1 —1p i 1 1
Am Ap:—’7'3(Rm Rp) T3:—XT3\I/T3:Z\IJ, (B19)

where it was used that ¥ is a Hermitian matrix and that its
diagonal elements vanish.
Thus,

(B20)

m

A
—1 -1
R, R.GIA, Ay = ;\I}GI\I!.
Now the remaining term can be calculated:

(HyH-G\HZ'H)x = (H{H_)xA\ (HZ'Hy )4
+ (H{H_)g(Rih—hA)(H_'H,)a
+ (HyH_)gRi(H_'H, ).

As calculated before, (H_T_IH_) K= R;lRmhx - hSA;lAm.
Thus,
(HyH_)kA1(HZ"Hy)a = R, 'RuhsA1A, Ay — hiA, ' AnALAL A,
A
= 1 UhAr ¥ — b VA V.
(HyH_)rKi{(HZ'Hy)a = R, 'Ru(Rih — hA1)A;, ' A,
- %W(th A
(H+H_)rRi(HZ"H{)k = R, ' RuRi (R ' Rphs — hsA,, ' Ap)
— R, Wh, — %\Ilehs\I/. (B21)

With this the expression for (H H_G{H_'H,)x finally
becomes
(HyH_G\H_'H} ) = YR, Wh, — hyUA, ¥

+ % (URy (h— h)U — U (h—h)A|T).
(B22)

With this an expression for all terms of Bx has been found and
I can be calculated.

Appendix C. Analytical considerations

In this section a linearisation of the Usadel, valid under the
assumption of a small proximity effect and a small phase dif-
ference, is studied to improve understanding of the behaviour
of the spectral supercurrent.
The Usadel equation in the region in between the electrodes
reads in absence of a phase difference
82

0
—— + 2iaesinhd = 0.

p) (CD

Now, in case the proximity effect is small, that is, |§| < 1, this
can be approximated by

%0 .
2 + 2icel = 0. (C2)
The symmetric solution to this equation reads
h+/—2i
Bx,¢) = Bo(c) cos ioex (C3)

. b
cosh/—2iaek

where 0 (€) is the value at the left and right endpoints of the
interval under consideration, mainly determined by the super-
conducting electrodes. The value of 6y is thus not expected to
have a strong length dependence.

From this it can be deduced that

1
p——F——7,
0 cosh V—2iaek

which shows that in case y/eL>> 1 the value of 6 in the
centre of the junction is suppressed by a complex exponential
with v/eL. In case of a nonzero phase difference the coupled
equations should be considered. Again using the approxima-
tion sinhx = x, the equations read

0(0,¢) = (C4)

29 oy \

@ + 2icel — <8x) 0=0. (CS)

9 20X _
o (0 E)x) =0. (C6)

The second of these equations can be written as
X _Je

6> = =2 7
2 ()

where j. is the position independent spectral supercurrent.
Substituting this in the first equation one obtains
%9

@ + 2iceld —

j?

30 =0.

(C8)

Now suppose that the second term completely dominates the
third over the entire interval. This is the case if the current
through the junction is small enough, that is, if the phase dif-
ference between the electrodes is small enough. In this approx-
imation, the solution to the #-equation is expression (C3). Sub-
stituting this in the second equation, and considering that the
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phase difference between the ends of the intervals is A1), one
finds

L
29
mp:/z IX i (C9)
L Ox
L
[ Iy (C10)
~ ) 202"
.6 h2 2i L L 1
:] cos \/2 loes /2 i e 1)
20 —L cosh”V/2iaex

As indicated, this is in the regime /€L > 1, so the integration
limits can be replaced by +oo and the integral yields a factor
2v/2ie. Thus, the phase difference and the spectral supercur-
rent are related by

. Awﬂoz\/ —2ice
Je™ cosh? V2iaek .
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