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A B S T R A C T

Deep learning has achieved significant advances in the fault diagnosis of rotating machinery. However, it
still suffers many challenges such as various working conditions, large environmental noise interference and
insufficient effective data samples. Signal time–frequency analysis and feature transfer learning methods can
help solve these problems. Combining wavelet packet transform (WPT) and multi-kernel maximum mean
discrepancy (MK-MMD), this paper proposes a novel residual network (ResNet)-based deep transfer diagnosis
model for bearing faults. Firstly, this paper devises a distinctive WPT time–frequency feature map (WPT-TFFM)
construction method using WPT for time–frequency analysis on nonlinear and non-stationary vibration signals.
Then, a modified multi-group parallel ResNet network is structured to extract the depth features of WPT-TFFM
for the characteristics of small size and feature dispersion. Then, MK-MMD is further applied to evaluate the
distribution difference between the depth features of the source and target domain data. Combining with the
classification loss of the sample set with the source domain, the depth features extraction network is optimized
to achieve better cross-domain invariance and fault state differentiation capability of the depth features. To
evaluate the proposed method, this work conducts comparative experiments on two test rigs under different
working loads and speeds. The results reveal that the proposed method offers excellent fault diagnosis and
noise prevention capability for working condition transfer tasks.
. Introduction

Rotating machines are indispensable key equipment for both civil-
an and industry field. As one of the key components of rotating
achines, rolling bearings are very prone to failure under the working

onditions of high speed, heavy load and strong impact. Once the
ailure occurs, it will affect the efficiency of machinery and equipment,
nd even cause casualties. Therefore, it is of great significance to
xplore the intelligent fault diagnosis method for rolling bearings to
nsure the safe and efficient operation of equipment [1–3].

When the key components such as bearings and gears are in an
bnormal state, vibration signals will show different time–frequency
haracteristics. The analysis method based on the vibration signal is
urrently the most commonly used method for diagnosis of bearing
ault condition [4,5]. Time–frequency analysis methods have unique

∗ Corresponding author at: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221000, China.
E-mail address: xwliucumt@126.com (X. Liu).

advantages in analyzing nonlinear and non-stationary rotating mechan-
ical vibration signals, and the commonly used time–frequency analysis
methods include the short time Fourier transform (STFT) [6], wavelet
and wavelet packet analysis [7], Wigner-Ville distribution (WVD) [8],
empirical mode decomposition (EMD) [9] and stochastic resonance de-
modulation. In the past years, combined with time–frequency analysis
methods, machine learning methods such as Back Propagation (BP)
neural network [10], support vector machine [11,12], fuzzy c-means
clustering [13], etc., have been widely used in bearing fault diagnosis.
However, these methods need effective signal analysis means and prior
knowledge as guidance, which cannot meet the development needs of
big data in the industrial field [14–16].

Compared with traditional machine learning, deep learning can
adaptively extract deep semantic features from vibration signals by
using end-to-end learning ideas, which can reduce the participation
vailable online 8 July 2022
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of empirical knowledge and is more suitable for processing complex
bearing vibration signals [17–20]. As a result, it has been widely used
in fault diagnosis [21–24]. The deep Convolutional Neural Networks
(CNN) is one of the most used deep learning method in fault diagno-
sis [25,26]. However, with the increase of network depth, CNN network
is prone to gradient dispersion or explosion during training. To solve
this problem, He et al. [27] proposed a depth residual ResNet model in
2015, which can solve the problem of gradient disappearance, which
has become one of the most widely used depth features extraction
networks at present [14,28].

Moreover, in real application scenarios, it is very often to face the
problem of changes in equipment working conditions, and different
test targets from the training samples, which leads to differences in
the distribution of data in the source and target domains. To discover
general diagnosis knowledge from multiple source domains and ap-
ply the knowledge to facilitate new tasks in target domain, Zheng
et al. [29] constructed multiscale transfer symbolic dynamic entropy
(MTSDE). Li et al. [30] used local Fisher discriminant analysis (LFDA)
and Grassmann manifold to reduce the risk of negative transfer con-
sidering multiple source domains. Shen et al. [31] proposed a new
penalty domain selection machine (PDSM) transfer learning model for
gearbox fault recognition. Tong et al. [32] proposed Fault Sensitivity
Assessment Model (FSAM) based on the Maximum Mean Difference
(MMD) to transmit the most sensitive data stream, and then analyze
the fault.

Combining the feature adaptation extraction ability of deep learn-
ing, the scene adaptability of feature transfer method is further im-
proved. To achieve sufficient generalization performance, Zheng et al.
[33] proposed a cross-domain diagnosis scheme combining the priori
diagnosis knowledge and deep domain generalization network. Ragab
et al. [34] designed a deep learning architecture for adversarial unsu-
pervised domain adaptation to address the single-source multiple-target
(1SmT) problem. Li et al. [35] introduced a domain adversarial net-
work to project the data collected from different sensors into a shared
subspace, which can provide better generalization of fault diagnostic
knowledge in different feature spaces. Guo et al. [36] constructed a
deep convolution transfer learning network (DCTLN) by combining the
deep convolution network and the MMD, and used unlabeled samples
from the target domain for intelligent identification of bearing faults.

Considering that the time–frequency characteristics of the vibration
signal contain the mechanism of bearing damage, on the basis of
the above researches, this paper combines the time–frequency anal-
ysis method with the deep transfer learning method to improve the
performance of the diagnostic model. As mentioned above, the Max-
imum Mean Difference (MMD) method is a commonly used method to
evaluate the distribution difference between two domains in transfer
learning [37–39]. However, as the choice of kernel function is crucial
to the metric distance of MMD, the parameter selection of each kernel
drastically affects the final performance of domain adaptation. To solve
this problem, this paper chooses the Multi-Kernel Maximum Mean Dif-
ference (MK-MMD) to provide an effective estimation of the mapping
multi-kernel space.

Different from previous studies, this paper devises a distinctive
WPT-based time–frequency feature map construction method to pro-
vide more effective fault time–frequency feature information for deep
feature extraction networks. Meanwhile, a lightweight ResNet is struc-
ture and a deep transfer learning method for fault diagnosis is estab-
lished with MK-MMD. The primary contributions of this paper are as
follows.

(1) It devises a distinctive WPT time–frequency feature map (WPT-
TFFM) construction method to extract preliminary features for state
expression and noise immunity.

(2) It establishes a lightweight ResNet and structures a modified
multi group Resnet (MGRN) framework to extract the depth features
2

of WPT-TFFM in multi-scale and multi-resolution. 𝐹
(3) It then proposes a novel roller bearing fault diagnosis model
termed as WMGRNMM. MK-MMD is employed to evaluate the distri-
bution difference between the source and target domain data depth
features.

(4) The experiment results demonstrate that the proposed WM-
GRNMM model offers excellent transfer diagnosis capability in variable
working mode, including fault diagnosis accuracy, scene adaptation
and noise resistance capability.

The remainder of this paper is organized as follows. Section 2
introduces the fundamentals in WPT, ResNet and MK-MMD. Section 3
focuses on the proposed deep transfer diagnosis model WMGRNMM.
In Section 4, multiple sets of experiments are carried out through
two bearing failure test rigs and the experimental results are analyzed
Finally, the conclusion is drawn in the fifth section.

2. Fundamentals

This section briefly states the preliminaries about WPT, ResNet and
MK-MMD, which will be used to construct the proposed WMGRNMM
model.

2.1. WPT

Wavelet analysis is a multi-scale time–frequency analysis method,
which is a powerful tool for nonlinear non-smooth vibration signal
analysis. However, wavelet transform has several limitations: it only
decomposes the low-frequency components of the signal and does not
decompose the high-frequency component, and is insensitive to the fea-
tures of the high-frequency components of the signal. The WPT, which
is proposed based on wavelet transform, is able to decompose the high-
frequency part of the signal in detail, has better local characteristics,
and extracts the high-frequency features of the signal [40].

In wavelet packet analysis, the Hilbert space 𝐿2(𝑅) can be divided
into an orthogonal sum of all subspaces 𝑊𝑗 (𝑗 ∈ 𝑍) according to
ifferent scale factors 𝑗, i.e., 𝐿2(𝑅) = ⊕

j∈𝑍
𝑊𝑗 , where 𝑊𝑗 is the wavelet

ubspace of the wavelet function 𝛹 (𝑡). To improve the frequency
esolution, the wavelet packet further subdivides the wavelet subspace
𝑗 according to the binary system. The orthogonal basis of this space

s 𝑢𝑛𝑗,𝑘 (𝑡) = 2−𝑗∕2𝑢𝑛(2−𝑗 𝑡 − 𝑘), where 𝑈𝑛
𝑗 denotes the 𝑗 first wavelet n

ubspace of the scale (𝑛 = 0, 1, 2, 3,… , 2𝑗−1, called the frequency factor)
nd 𝑘 is the translation factor. The orthogonal basis𝑈𝑛

𝑗.𝑘 satisfies the
ollowing two-scale equation:
𝑛
𝑗,0 =

∑

𝑘
𝑔0 (𝑘) 𝑢𝑖𝑗−1,𝑘 (n is even) (1)

𝑛
𝑗,0 =

∑

𝑘
𝑔1 (𝑘) 𝑢𝑖𝑗−1,𝑘 (n is odd) (2)

where, 𝑗, 𝑘 ∈ 𝑍, 𝑛 = 1, 2, 3,… , 2𝑗 − 1, 𝑔0 (𝑘), 𝑔1 (𝑘) are a pair of
orthogonal filters that satisfy 𝑔1 (𝑘) = (−1)1−𝑘𝑔0 (1 − 𝑘).

After performing the layer WPT decomposition 𝑗, the Unj frequency
band corresponding to each subspace of the first 𝑗 layer is:

{[

0, 𝑓𝑠
2𝑗+1

]

;
[

𝑓𝑠
2𝑗+1 ,

2𝑓𝑠
2𝑗+1

]

;
[

2𝑓𝑠
2𝑗+1 ,

3𝑓𝑠
2𝑗+1

]

;… ;
[ (2𝑗−1)𝑓𝑠

2𝑗+1 , 𝑓𝑠2
]}

, where 𝑓𝑠 is
he sampling frequency.

.2. Deep residual network (ResNet)

As the depth of the network increases, CNN model training becomes
ore and more difficult, thus causing gradient dispersion or explosion,

eading to a decrease in the classification accuracy of the model classi-
ication. To solve this problem, K.He et al. proposed the deep residual
esNet model in 2015. The basic unit of ResNet is the residual block, as
hown in Fig. 1, which uses a shortcut connection method to connect
he input 𝑥 with the 𝐹 (𝑥) obtained after stacking weight layers across
ayers to obtain the output 𝐻(𝑥) = 𝐹 (𝑥)+𝑥. At this point 𝐹 (𝑥) = 𝐻(𝑥)−𝑥
s the residual. The formula is as follows:

( )
= 𝑊2𝜎 𝑊1𝑥 (3)
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Fig. 1. Residual learning module.

Where 𝐹 is the residual function, 𝜎 is the Relu activation function,
𝑊 1, 𝑊 2 is the weight layer.

After the cross-layer connection operation of ResNet, the gradient
does not disappear with the increase of network depth, which can
effectively solve the problem of model degradation caused by too deep
CNN network.

2.3. Multi-kernel maximum mean discrepancy (MK-MMD)

In the intelligent diagnostic models for rotating machine compo-
nents, changes in operating conditions such as speed and load can easily
lead to distribution differences between the source domain data and the
target domain data, which in turn affects the classification accuracy of
the diagnostic model. For the known working conditions with labels
(source domain data set 𝑠) and the unknown working conditions
without labels (target domain data set 𝑡), the goal of feature transfer
learning is to make the feature space distribution of 𝑠 and with the 𝑡
as consistent as possible through the distance measurement criterion,
so as to improve the adaptability of the diagnostic model to the variable
working condition scenarios.

Maximum Mean discrepancy (MMD) is the most used distance
measure in transfer learning, which measures the distance between
two distributions in regenerated Hilbert space. The choice of kernel
function is crucial to the metric distance of MMD, and the choice of
parameters of each kernel affects the final performance of the mapping.
To address the influence of kernel functions on the final performance
of the mapping, this paper used the MK-MMD [39] method proposed
by Gretton [4], which maximizes the two-sample testing capability
and minimizes the type II error. Reconstructing the MK-MMD distance
defined in the regenerated Hilbert space, i.e., the Euclidean distance
between the edge distribution 𝑃 (𝑋𝑠) and the kernel 𝑄(𝑋𝑡) embedding,
the Euclidean distance formula of MK-MMD is defined as follows.

𝑑2𝑘(𝑃 ,𝑄) ≜ ‖

‖

‖

E𝑃
[

𝜙
(

Xs)] − E𝑄
[

𝜙
(

Xt)]‖
‖

‖

2

𝐻𝑘
(4)

where 𝐸 represents the mathematical expectation, 𝜙 represents the
mapping of the regenerated Hilbert space, and 𝐻𝑘 represents the re-
generated kernel Hilbert space with characteristic kernel 𝑘.

3. The proposed fault diagnosis algorithm

In this section, it presents the details of the proposed WMGRNMM
model, a bearing fault depth features transfer diagnosis model based
on WPT, ResNet and MK-MMD methods. It first extract the time–
frequency features of vibration signals at different scales using WPT.
Then, it constructs the time–frequency maps based on the leaflet node
coefficients of WPT in layers 4, 5 and 6 of vibration signals to obtain
the time–frequency features of vibration signals at different scales
and resolutions. Moreover, a parallel ResNet depth features extraction
network, denoted as multi group Resnet (MGRN), is established to
separately extract the depth features of the 4, 5 and 6-layer wavelet
3

packet time–frequency maps and generate the combined depth features
for the final state identification. To solve the transfer diagnosis problem
under different operating conditions (the experiments contain different
speeds or loads), MK-MMD is further applied in WMGRNMM to evalu-
ate the distribution differences between the source and target domain
depth features. The domain adaptation capability and state classifica-
tion capability of the depth features will be optimized to improve the
generalization capability of the diagnostic model to transfer working
conditions.

For the illustration purpose, this section will first present the time–
frequency map construction based on WPT, then give the details of
ResNet-based deep feature extraction network and the MK-MMD-based
transfer diagnosis model, and finally present the detailed steps of the
proposed WMGRNMM model.

3.1. WPT time–frequency feature map construction

Typically, the vibration signal is nonlinear and non-stationary, and
if the vibration signal is directly converted into a 2D matrix form,
the fault time–frequency information of the signal will be scattered
throughout the 2D matrix, which will increase the difficulty of fault
feature extraction of vibration signal by 2D convolutional kernels in
ResNet. WPT is one of the most commonly used time–frequency analy-
sis methods for non-linear and non-stationary signals [7]. The wavelet
packet space is complete and orthogonal, and the vibration signal can
be decomposed into frequency information under different subbands
that represents the time–frequency features of the vibration signal
without losing information. Therefore, this paper uses WPT to process
the vibration signal and construct the WPT-TFFM to improve the fault
feature extraction ability of the 2D convolutional kernels.

WPT is performed on the vibration signal, and the obtained wavelet
packet node coefficients denote the time–frequency characteristics of
the vibration signal at different scales. Since different wavelet packet
node coefficients have different physical meanings, we propose to con-
struct the coefficient matrix using the coefficients of individual wavelet
packet leaf nodes. To facilitate the subsequent 2D convolution kernel
to extract the depth features of wavelet coefficients, the coefficient
matrices of all leaf nodes are stitched together in a zigzag order to
build a WPT time–frequency feature map of the vibration signal, here
we referred it as WPT-TFFM.

Here, we take 4096 samples of vibration signals as an example and
introduce the construction process of WPT-TFFM, as shown in Fig. 2.

(1) The vibration signal samples are decomposed by 4 layers of
wavelet packets to obtain 16 wavelet packet leaflet nodes with 256
wavelet packet coefficients per wavelet leaflet node.

(2) The wavelet packet coefficients of each leaf node are constructed
into a 16*16 coefficient matrix.

(3) Zigzag stitching of the coefficient matrices of these 16 wavelet
packet leaf nodes by numbers, which gives the WPT-TFFM of the
vibration signal samples.

In existing deep learning fault diagnosis methods, the vibration
signals or their time–frequency spectrograms are often directly used
as input to the deep feature extraction network, while the influence
of the form of signal input on the network is rarely considered. In
this paper, a new input construction method is proposed to obtain
the multi-scale time–frequency information of the vibration signals by
utilizing the multi-scale time–frequency analysis capability of WPT. To
enable the depth feature extraction network to better extract time–
frequency features for fault classification, the coefficient matrix of
wavelet packet leaf node is reordered by Zigzag stitching. As a result,
the perceptual field of components with similar frequency intervals
is more concentrated, so that the depth features can more effectively
reflect the time–frequency response characteristics of different fault
states of rolling bearing.
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Fig. 2. WPT-TFFM construction workflow.
3.2. ResNet-based depth features extraction network

To better analyze the time–frequency characteristics of the vibration
signals at different scales and resolutions, 4, 5 and 6-layer WPT decom-
position are used to decompose the vibration signals, the corresponding
time–frequency feature maps WPT-TFFM (4), WPT-TFFM (5) and WPT-
TFFM (6) are constructed, and the vibration signal WPT-TFFM under
different fault states are shown in Fig. 1. A ResNet-based depth features
extraction network is established to extract the depth features of WPT-
TFFM (4), WPT-TFFM (5), and WPT-TFFM (6) simultaneously. By
analyzing Fig. 3, the ResNet depth features extraction network has the
following problems:

(1) The WPT-TFFM size of the vibration signal is small and the state
features are dispersed in the time–frequency diagram.

(2) The time–frequency feature maps obtained from WPT decom-
position of different layers have their own structural characteristics.

For problem (1), for the small size WPT-TFFM, here we first use 3*3
convolution kernels in the ResNet network for feature extraction, the
convolution step size is set to 1, and the pooling operation in the middle
layer is eliminated. As shown in Fig. 4, unlike the conventional Resnet
by increasing the network depth to improve the feature extraction
ability, the depth of the Resnet network is limited here, To reduce the
impact of small size images and feature scattering on the generalization
ability of the model, we design a 7-layers Resnet Block (here referred
to as RNB-7).

For problem (2), three RNB-7s are designed to form a parallel
network MGRN to extract the feature information of WPT-TFFM of 4,
5, and 6 layers respectively. As shown in Fig. 5 three RNB-7s with the
same structure and independent parameters can extract personalized
structural features of different types of WPT-TFFMs more effectively,
and the depth features extracted by the three RNB-7s are spliced into
4

Fig. 3. WPT-TFFMs of different number of WPT layers. (IRF: inner race fault. ORF:
outer race fault. BF: ball fault).

combined depth features that are fed into the fully connected layer and
finally into the Softmax classifier for classification.

3.3. The MK-MMD-based transfer diagnosis model

The fault diagnosis model in Section 3.2 is trained using source
domain labeled data, which can obtain depth features expressing the
fault states of the source domain data. However, the classification
accuracy of this model in the target domain decreases significantly
when there is a difference in the distribution of depth features between
the source and target domain data. To improve the similarity of the
probability distributions of the depth features of the source domain
data and the target domain data, MK-MMD is used here to perform the



Measurement 201 (2022) 111597X. Yu et al.
Fig. 4. Flowchart of the designed 7-layers ResNet Block.
Fig. 5. Flowchart of the parallel network MGRN.
domain fitness metric on the depth features of the source domain data
and the target domain data. The labeled source domain data and the
unlabeled target domain data are fed into the MGRN in Section 3.2,
respectively, to obtain the depth features of the source and target
domain datasets, denoted as 𝐹𝑠 and 𝐹𝑡, and calculate the MK-MMD loss
between 𝐹𝑡 and 𝐹𝑠, denoted as 𝐿𝑀𝐾−𝑀𝑀𝐷, as shown in Eq. (5).

𝐿 (𝐹 , 𝐹 ) ≜ ‖

‖E
[

𝜙
(

𝐹
)]

− E
[

𝜙
(

𝐹
)]

‖

‖

2
(5)
5

𝑀𝐾−𝑀𝑀𝐷 𝑠 𝑡
‖

𝑠 𝑡
‖𝐻𝑘
where 𝐸 is the mathematical expectation, 𝜙 represents the mapping
of the regenerated Hilbert space, 𝐻𝑘 denotes the regenerated kernel
Hilbert space with characteristic kernel 𝑘.

In addition, after going through the fully connected layer and Soft-
max classifier, we obtain the predicted category information, combined
with the label information, the cross-entropy loss can be calculated,
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denoted as 𝐿𝐶 , as shown in Eq. (6).

𝐿𝑐 =
1
𝑁

∑

𝑖

𝑀
∑

𝑐=1
𝐹𝑠𝑖𝑐 log

(

𝑝𝑖𝑐
)

(6)

here 𝑀 is the number of categories, 𝐹𝑠𝑖𝑐 is the sign function (0 or 1),
nd 𝑃𝑖𝑐 samples the predicted probability of 𝑖 belonging to category 𝑐.

Then, we calculate the overall loss of the transfer classification
odel 𝐿𝑀𝐺𝑅𝑁 , as in Eq. (7):

𝑀𝐺𝑅𝑁 = 𝐿𝑐 + 𝜆𝑀𝐾−𝑀𝑀𝐷𝐿𝑀𝐾−𝑀𝑀𝐷
(

𝐹𝑠, 𝐹𝑡
)

(7)

Where 𝜆𝑀𝐾−𝑀𝑀𝐷 is the trade-off parameter of the total loss.
In this paper, the source and target domains share depth features to

xtract network parameters. The goal is to minimize the total loss, using
ack propagation and gradient descent methods to optimize the depth
etwork as well as fully connected network parameters. The depth
eatures extracted by the MK-MMD-based transfer diagnosis model can
xpress the fault state of the source domain data. At the same time,
educing the difference between the depth features of the source and
arget domain data improves the generalization ability of the model.

.4. Diagnostic steps for bearing faults in transfer tasks

The training process of WMGRNMM model is shown in Fig. 6, and
he main process of bearing fault diagnosis in WMGRNMM-based work
ransfer task is described as follows:
Step 1: We collect the vibration signals of various state bearings

nder different working conditions, the sample working condition vi-
ration signals with labels are used as the training set, and the sample
orking condition vibration signals without labels are used as the test

et.
Step 2: The 4, 5, and 6-layer WPT decomposition is performed on

he vibration signal samples from the training set (source domain) and
he test set (target domain) to obtain the WPT-TFFM (4), WPT-TFFM
5), and WPT-TFFM (6) for each sample.
Step 3: The WPT-TFFMs of the source and target domains are fed

o MGRN and the combined depth features of WPT-TFFM(4), WPT-
FFM(5), and WPT-TFFM(6) are extracted using MGRN.
Step 4: The depth features of the source domain samples are fed into

he fully connected layer FC, which combines the Softmax classifier and
he source domain label information to calculate the cross-entropy loss
𝐶 .
Step 5: The MK-MMD distance of the source and target domain

ample depth features is calculated to obtain the source and target
omain depth features space of 𝐿𝑀𝐾−𝑀𝑀𝐷.
Step 6: The fully connected layer FC is optimized by using 𝐿𝐶

ack propagation, and the 𝐿𝑀𝐺𝑅𝑁 is calculated and back-propagated
o optimize the MGRN.
Step 7: Iterate steps (3)–(6) until 𝐿𝑀𝐺𝑅𝑁 is less than the set value

r the number of iterations reaches the target requirement to obtain
he trained MGRN and FC.
Step 8: The depth features of the target domain sample WPT-TFFM

re extracted using the trained MGRN network, and the depth features
re fed into the trained FC to obtain the category labels of the samples.

. Experimental results

This section conducts extensive experiments on the Case Western
eserve University (CWRU) bearing fault experimental platform and
achinery Fault Simulator and Rotor Dynamics Simulator (MFS-RDS)

xperimental platform to validate the performance of the proposed
MGRNMM model. To demonstrate the superiority of WMGRNMM, we
6

ompare it with several other fault diagnosis models.
.1. Results of the CWRU bearing fault experimental platform

.1.1. Platform description
We first validate the model using the CWRU bearing experimental

latform [41], as shown in Fig. 7. It consists of a 2 HP motor (left),
orque sensor/encoder (center), dynamometer (right), and control elec-
ronics. Vibration data was collected from the drive side and fan side by
ccelerometers placed in the motor housing. In total, four experiments
ere conducted to collect vibration data for different power levels of 0
P, 1 HP, 2 HP, and 3 HP.

In our experiment, vibration data from the drive end with a sam-
ling frequency of 12 kHz were analyzed for a total of 12 different
tates of the bearing: (0) normal, (1) inner race damage with a diameter
f 0.007 inches, (2) outer race damage with a diameter of 0.007 inches,
3) rolling element damage with a diameter 0.007 inches, (4) inner
ace with a diameter of 0.014 inches, (5) outer race damage with a
iameter of 0.014 inches, (6) rolling body damage with a diameter of
.014 inches, (7) inner race damage with a diameter of 0.021 inches,
8) outer race damage with a diameter of 0.021 inches, (9) rolling
ody damage with a diameter of 0.021 inches, (10) inner race damage
ith a diameter of 0.028 inches, and (11) rolling body damage with a
iameter of 0.028 inches.

We take 4096 sampling points of vibration signal sequence as a
ample and obtain 30 vibration signal samples for each state of the
earing under a single power, and the vibration data under four differ-
nt powers are used to establish four datasets for four different working
onditions, which are dataset 0, dataset 1, dataset 2, and dataset 3, each
f which includes 360 vibration signal samples, as shown in Table 1.
ere we performed mutual transfer diagnostic tests for the data sets in

he four working conditions states. There are twelve transfer tasks (0
> 1, 0 -> 2, 0 -> 3, 1 -> 0, 1 -> 2, 1 -> 3, 2 -> 0, 2 -> 1, 2 -> 3, 3 ->

0, 3 -> 1, 3 -> 2), where 0 -> 1 indicates transfer from the training set
(source domain) dataset 0 to the test set (target domain) dataset 1.

4.1.2. Diagnostic results under different transfer tasks
In this section, we evaluate the WMGRNMM model for transfer

diagnosis between different operating states. To verify the effectiveness
of our theoretical analysis and WMGRNMM model in Section 3, we
introduce some models for comparison experiments. The settings of
various comparison models are shown below:

(1) WMGRN model. It has the same network structure as the WM-
GRNMM model, but does not use MK-MMD for domain adaptation
optimization.

(2) WRNMM model. Compared with the WMGRNMM, it changes
the depth features extraction network by using a single RNB-7 network
instead of MGRN, with WP-TFF(4), WP-TFF(5), and WP-TFF(6) as three
channels input into a single RNB-7.

(3) WRN18MM and WRN34MM models. Compared with WRNMM,
it increases the depth of ResNet using classical ResNet18 and ResNet34
networks instead of the proposed RNB-7 network.

Based on the results in Table 2, the following conclusion can be
drawn:

(1) The WMGRN model performs unstably in various transfer task,
reaching a maximum of 97% and a minimum of only 81%, with
excessive differences in accuracy rates. This indicates that the depth
features of the source and target domain data extracted by WPT and
MGRN have certain distribution differences under different working
conditions, resulting in the diagnostic models trained by the source
domain data failing to achieve better classification accuracy in the
target domain. After adding the MK-MMD domain transfer method,
the classification results of WMGRNMM model in various modes are
significantly improved, which achieves an average accuracy of 98%.

(2) The average accuracy of the WRNMM model is lower than
that of the WMGRNMM model, and the classification accuracy under
various transfer tasks is also lower than that of WMGRNMM, which is

consistent with our analysis in Section 3.2. For time–frequency features
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Fig. 6. Flowchart of WMGRNMM for bearing fault diagnosis in working condition transfer task.
Table 1
Experimental datasets of CWRU experimental platform.

HP Normal IRF ORF BF

Damage (in) – – 0.007 0.014 0.021 0.028 0.007 0.014 0.021 0.007 0.014 0.021 0.028
label – 0 1 2 3 4 5 6 7 8 9 10 11
Dataset 0 0 HP 30 30 30 30 30 30 30 30 30 30 30 30
Dataset 1 1 HP 30 30 30 30 30 30 30 30 30 30 30 30
Dataset 2 2 HP 30 30 30 30 30 30 30 30 30 30 30 30
Dataset 3 3 HP 30 30 30 30 30 30 30 30 30 30 30 30
Fig. 7. The CWRU bearing fault experimental setup.

of different resolutions in WP-TFF(4), WP-TFF(5) and WP-TFF(6), a
parallel network with three independent parameters is more effective
than using a single network to extract depth features.

(3) Compared with WRNMM, the WRN18MM and WRN34MM mod-
els increase the network depth, but the classification accuracy of these
two models does not improve significantly, but decreases in many
transfer tasks, which is related to the smaller size of the WPT-TFFM
and the dispersion of the state features mentioned in Section 3.2, and
proves that our design of RNB-7 can more effectively extract the depth
state features in the vibration signal WPT-TFFM.

(4) The classification accuracy of the WMGRNMM model outper-
forms other models in all types of transfer tasks, which proves the
validity and reliability of the proposed WMGRNMM model.
7

Table 2
Classification accuracy of transfer fault diagnosis based on various models.

Transfer task WRN18MM WRN34MM WRNMM WMGRN WMGRNMM

0-> 1 93.61% 94.44% 90.83% 89.72% 97.78%
0-> 2 96.67% 93.06% 94.17% 86.39% 100.00%
0-> 3 93.33% 93.61% 98.33% 81.11% 99.72%
1-> 0 91.11% 88.33% 97.22% 95.00% 97.50%
1-> 2 93.61% 92.78% 99.44% 97.50% 100.00%
1-> 3 94.72% 92.50% 93.89% 84.44% 97.50%
2-> 0 90.83% 93.89% 94.17% 91.67% 97.22%
2-> 1 94.44% 89.17% 96.11% 92.78% 97.50%
2-> 3 97.78% 97.50% 97.22% 95.28% 100.00%
3-> 0 91.39% 88.06% 92.78% 85.00% 98.61%
3-> 1 88.89% 88.61% 92.22% 85.83% 97.22%
3-> 2 96.94% 97.78% 96.39% 90.28% 100.00%
Average 93.61% 92.48% 95.23% 89.58% 98.59%

Fig. 8 shows the variation of the state classification accuracy of
various models with the number of epochs under different transfer
tasks. All models converge after 4200 epochs, and the recognition ac-
curacy is basically stable after 2000 epochs, reaching the optimal level.
In general, the proposed WMGRNMM model outperforms the other
models under various transfer tasks, followed by the WRNMM, and the
results show that the WMGRNMM model is stable. The WRN18MM and
WRN34MM models will outperform the WRNMM model under certain
tasks, but due to the deeper network depth, it can easily lead to the
overfitting problem. The overall performance is not as good as the
WRNMM model.

To compare the adaptive ability of the depth features extracted by
different models, we use the t-SNE method to analyze the depth features
extracted by each model. Fig. 9(a)–(d) show the t-SNE feature analysis
for each diagnostic model under the transfer task 3->1. The t-SNE plots
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Fig. 8. Classification accuracy of each model with epochs in various transfer tasks.
show that, compared with WMGRN, the depth features extracted by the
WMGRNMM model have better class separability after adding the MK-
MMD loss, which improves the distance between different classes of
signal samples. Compared to the WRNMM and WRN18MM, the depth
features of the WMGRNMM model have better category separability.

To verify the effect of WPT in the diagnostic model, we remove
the WPT step, directly convert the original bearing signal into a matrix
and send it to MGRN for deep feature extraction, which is recorded as
the diagnostic model MGRNMM. In contrast to WMGRNMM, MGRNMM
does not have the WPT step. Similarly, several diagnostic models, such
as RNMM, RN18MM, RN34MM, and MGRN, are constructed without
WPT. The diagnostic results of each model are shown in Table 3, from
which it can be seen that the classification accuracies of various models
decrease by an average of 3–5 percentage points. This is consistent
with our theoretical analysis in Section 3.1, further demonstrating that
WPT-TFFM can effectively characterize the time–frequency information
8

of vibrational signals and improve the performance of fault feature
extraction of 2D convolutional kernels in MGRN.

4.1.3. Experimental results of noise immunity
In engineering practice, the bearing vibration signals obtained are

often mixed with noise. As a result, the fault diagnosis model requires
a certain anti-noise capability to verify the anti-noise capability of
WMGRNMM model. Four signal-to-noise ratios of 3 dB, 5 dB, 8 dB and
10 dB are added to the original vibration signal to test the influence of
the noise signal on the vibration model, and the signal-to-noise ratio
SNR is calculated as follows.

𝑆𝑁𝑅 = 10 lg
(𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

)

(8)

Where Psignal is the effective power of the signal and Pnoise is the
effective power of the noise. The WMGRNMM model is used to diagnose
and analyze the data with the addition of various signal to noise ratios.
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Fig. 9. t-SNE plots and confusion matrices in transfer task 3->1.
Table 3
Classification accuracies of diagnostic models without the WPT step on the CWRU
experimental platform.

Transfer task RN18MM RN34MM RNMM MGRN MGRNMM

0–1 90.56% 91.39% 88.89% 85.33% 94.44%
0–2 92.78% 89.72% 90.83% 82.78% 97.22%
0–3 91.11% 90.56% 94.72% 79.72% 96.39%
1–0 87.78% 84.72% 93.06% 91.39% 93.33%
1–2 89.72% 90.28% 96.94% 92.78% 98.06%
1–3 91.94% 86.94% 90.83% 80.28% 94.44%
2–0 88.06% 91.39% 90.56% 87.78% 92.78%
2–1 88.33% 86.39% 92.22% 88.33% 93.61%
2–3 93.06% 94.17% 94.17% 91.67% 97.22%
3–0 87.22% 83.89% 87.78% 81.94% 95.56%
3–1 86.11% 84.72% 88.61% 82.22% 93.33%
3–2 92.22% 93.89% 92.22% 86.94% 96.67%
Average 89.91% 89.01% 91.74% 85.93% 95.25%

Table 4 shows the comparison results without the addition of noise. It
can be seen that there is no significant decrease in the accuracy of the
WMGRNMM model for adding 8 dB and 10 dB of noise data. For 5 dB of
added noise data, there is a slight decrease in the classification accuracy
of the model, but it is still able to maintain an average accuracy of
greater than 97%. For 3 dB of noise-added data, the WMGRNMM model
accuracy was affected to some extent, with an average decrease of 2%.
The results of the noise-added comparison experiments show that the
WMGRNMM model accuracy is less affected by noise when the signal-
to-noise ratio is greater than 5 dB, and the WMGRNMM model has good
noise immunity.

4.1.4. Comparison with other diagnostic methods
We compare the WMGRNMM model proposed in this paper in the

variable working condition environment with the TCA, JDA, and CNN
models in various variable working condition modes. Table 5 shows the
comparison results.
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Table 4
Classification accuracy of WMGRNMM model in various transfer tasks under different
SNR conditions.

Transfer task 3 dB 5 dB 8 dB 10 dB No noise added

0-> 1 94.72% 96.39% 98.33% 95.83% 97.78%
0-> 2 96.94% 100.00% 100.00% 99.72% 100.00%
0-> 3 98.61% 99.44% 100.00% 99.44% 99.72%
1-> 0 95.83% 96.39% 97.50% 97.22% 97.50%
1-> 2 99.17% 99.44% 99.72% 100% 100.00%
1-> 3 95.56% 96.39% 96.94% 96.67% 97.50%
2-> 0 95.28% 95.56% 95.28% 96.67% 97.22%
2-> 1 94.17% 96.39% 97.22% 97.78% 97.50%
2-> 3 98.33% 99.17% 98.89% 99.44% 100.00%
3-> 0 94.17% 96.11% 97.50% 98.06% 98.61%
3-> 1 93.89% 95.83% 96.39% 96.94% 97.22%
3-> 2 98.89% 99.17% 99.72% 99.44% 100.00%
Average 96.30% 97.52% 97.96% 98.12% 98.59%

(1) That the average classification accuracy of the WMGRNMM
model is much higher than that of the TCA, JDA, and CNN models,
with the WMGRNMM model improving the average accuracy by 8%
points over the TCA model, by more than 6% over the JDA models and
by more than 11% over the CNN models.

(2) The average classification accuracy of the WMGRNMM model is
higher than that of DANN, SF+SOF+HKL [42] and CNN-CORAL [43]
models. The generalization ability of the depth features can be im-
proved by introducing time–frequency feature processing of vibration
signal into the deep transfer networks.

(3) In the variable condition mode, combined with WPT and MK-
MMD, WMGRNMM can better extract the depth features reflecting
the time–frequency characteristics of vibration signals and reduce the
differences in the distribution of the depth features of the source
and target domain data to improve the classification accuracy in the
variable condition transfer task.
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Table 5
Classification accuracy of different models in various transfer tasks.

Transfer task TCA JDA CNN DANN SF+SOF+HKL [42] CNN-CORAL [43] WMGR-NMM

0-> 1 88.61% 91.67% 86.39% 97.22% 99.8% 98.5% 97.78%
0-> 2 93.33% 95.28% 85.83% 98.33% 99.86% 98.33% 100.00%
0-> 3 91.39% 93.06% 81.11% 91.94% 87.54% 99.07% 99.72%
1-> 0 92.50% 92.78% 92.50% 96.11% 88.5% 98.40% 97.50%
1-> 2 93.06% 95.28% 93.06% 100.00% 99.7% 99.00% 100.00%
1-> 3 87.50% 88.61% 82.22% 97.22% 100.00% 93.87% 97.50%
2-> 0 87.78% 89.17% 85.83% 89.72% 99.59% 99.53% 97.22%
2-> 1 88.89% 90.56% 86.39% 95.83% 99.23% 97.67% 97.50%
2-> 3 92.78% 94.17% 91.11% 84.72% 95.5% 98.40% 100.00%
3-> 0 91.39% 93.06% 83.33% 88.33% 95.17% 95.20% 98.61%
3-> 1 87.78% 88.33% 83.61% 89.44% 98.16% 98.93% 97.22%
3-> 2 95.28% 96.39% 89.72% 93.89% 97.81% 97.20% 100.00%
Average 90.86% 92.36% 86.76% 93.56% 96.74% 97.85% 98.59%
Table 6
Experimental datasets of MFS-RDS experimental platform.

Rotational speed (r/min) Normal IRF ORF BF

Damage(mm) – – 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
label – 0 1 2 3 4 5 6 7 8 9
Dataset A 900 60 60 60 60 60 60 60 60 60 60
Dataset B 1200 60 60 60 60 60 60 60 60 60 60
Dataset C 1800 60 60 60 60 60 60 60 60 60 60
Fig. 10. Machinery Fault Simulator and Rotor Dynamics Simulator experimental
platform.

4.2. Results of the MFS-RDS experimental platform

4.2.1. Platform description
We further analyze the validity of the model using the MFS-RDS

experimental platform to test the transfer effect of the model at dif-
ferent speeds. As shown in Fig. 10, the bearing vibration signal at the
motor drive end is acquired using a WebDAQ acquisition card with a
signal sampling frequency of 8 kHz. The experimental bearing model is
NSK’s SER205-16, and three different degrees of damage of 0.05 mm,
0.1 mm, and 0.2 mm are engraved on the inner ring, outer ring, and
rolling body of the bearing using a laser. As shown in Table 6, the
experimental bench is set up with three different acquisition speed,
900 r/min, 1200 r/min, 1800 r/min, respectively. According to the
different speed, from low to high set three working condition data
set, they are recorded as A, B, C. Each working condition data set has
normal bearing data and three different damage degree of inner ring,
outer ring, rolling body data, a total of 10 different states of bearing
vibration data.

Similarly, we use the vibration signal sequence of 4096 sampling
points as a sample, and 60 samples of each bearing vibration signal
are obtained for each of the single working condition states. For the
three working condition data sets A, B and C, there are six working
condition transfer task settings (A-> B, A-> C, B-> A, B-> C, C-> A,
C-> B), where A-> B means that the training set (source domain) data
set A is transferred to the test set (target domain) data set B.
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Table 7
Classification accuracy of various network models of MFS-RDS experimental platform.

Transfer task WRN18MM WRN34MM WRNMM WMGRN WMGRNMM

A->B 92.50% 90.17% 94.33% 83.83% 97.83%
A->C 91.17% 91.50% 93.67% 79.50% 97.17%
B->A 89.83% 87.67% 93.17% 81.83% 96.33%
B->C 90.67% 89.33% 92.83% 78.67% 97.50%
C->A 88.67% 86.67% 91.33% 82.17% 95.83%
C->D 94.33% 93.00% 95.17% 85.67% 98.17%
Average 91.20% 89.72% 93.42% 81.95% 97.14%

4.2.2. Results and analysis
The fault transfer diagnosis results of the various fault diagnosis

models described in Section 4.1.2 on the MFS-RDS experimental bench
are shown in Table 7. From the table we can draw the following
conclusions:

(1) In the MFS-RDS bearing data, the WMGRNMM model still
maintains the highest accuracy across the work transfer tasks with
an average accuracy of 97.14%, which is nearly 15% higher than the
lowest WMGRN model. The results illustrate that using MK-MMD to
optimize the depth features extraction network can effectively reduce
the distribution differences between the depth features of the source
and target domain data.

(2) The accuracy of the WMGRNMM model is higher than that of
the WRNMM model in all work transfer tasks, further validating the
advantage of MGRN in extracting the WPT-TFFM depth features of
wavelet packets with different layer numbers.

(3) The transfer classification accuracy of the WMGRNMM model
achieved the expected results on the MFS-RDS experimental bench,
demonstrating the good adaptability and generalization ability of the
WMGRNMM model on different experimental devices.

Fig. 11. shows the t-SNE depth features analysis plots and the
confusion matrix of these models for the transfer task B->C. From the
t-SNE results, we conclude that WMGRNMM can obtain the maximum
inter-class distance and the minimum intra-class distance, resulting
in better state differentiability of the depth features in the target
domain. And the confusion matrix shows that the types and numbers
of misclassifications are significantly reduced in WMGRNMM compared
with other models. The experimental comparison results further show
that WMGRNMM can better reduce the difference in kernel space
distribution between the source and target domain depth features and
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Fig. 11. Depth features t-SNE plots for the four model in work transfer task B->C.
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Table 8
Classification accuracy of the model with different optimizer and learning rates.

Learning rate Ada Delta SGD RMS Prop Adam

0.0001 96.56% 96.67% 96.89% 97.56%
0.001 96.16% 96.38% 96.72% 97.14%
0.01 95.64% 96.19% 96.37% 97.02%
0.05 93.28% 93.53% 94.31% 94.64%
0.1 87.87% 89.72% 91.06% 91.72%.

Table 9
Classification accuracy of the model with different RNB network layers.

Transfer task RNB-3s RNB-5s RNB-7s RNB-9s RNB-11s RNB-13s

A->B 93.83% 96.33% 97.83% 98.00% 95.17% 93.50%
A->C 93.17% 93.83% 97.17% 95.67% 94.67% 92.83%
B->A 92.33% 97.33% 96.33% 95.17% 97.17% 96.67%
B->C 93.33% 97.67% 97.50% 96.33% 94.67% 92.67%
C->A 91.67% 94.33% 95.83% 95.83% 93.33% 91.17%
C->D 93.33% 96.17% 98.17% 95.83% 94.50% 92.67%
Average 92.94% 95.94% 97.14% 96.14% 94.92% 93.25%

has stronger fault diagnosis transfer capability compared with other
models.

The effects of optimizer settings, the number of layers of the RBN
network, and the number of MK-MMD Gaussian kernels on the classi-
fication accuracy of the WMGRNMM model are further analyzed.

(1) Analysis of the network optimizer and its learning rate settings
Adam, SGD, Ada Delta and RMS Pro are set as the optimizers of

the WMGRNMM model respectively, and the classification accuracies
at different learning rates are presented in Table 8. The results show
that the highest accuracy can be obtained when the Adam is set as the
optimizer of the WMGRNMM model. When the learning rate is smaller
than or equal to 0.01, the model can maintain a high classification
accuracy, and when the learning rate is greater than 0.01, the classi-
fication accuracy of the model starts to decrease. Therefore, in model
applications, we should set a learning rate smaller than 0.01.

(2) Analysis of RNB network layer settings
Next, we experimentally analyze the effect of the number of RNB

network layers on the classification accuracy of the model. The RNB
networks with 3, 5, 7, 9, 11, and 13 layers are set for the WMGRNMM
model, respectively, and are denoted as RNB-3s, RNB-5s, RNB-7s, RNB-
9s, RNB-11s, and RNB-13s. As show in Table 9, when the number of
RNB network layers is less than 9, the classification accuracy could be
increased by increasing the number of network layers. On the other
hand, when the number of layers is greater than 9, more layers would
reduce the classification accuracy. This suggests that too many network
layers can lead to a regression in the generalization ability of the model,
which is analyzed in Section 3.2.

(3) Analysis of the number of MK-MMD kernels
To analyze the effect of the number of Gaussian kernels in MK-MMD

on the classification accuracy of the model, 1, 3, 5, 7, and 9 Gaussian
kernels are set for the WMGRNMM model, and the experimental results
are shown in Table 10. The classification accuracy of the model is the
highest when the number of Gaussian kernels is set to 5. This indicates
that although the multi-kernel design of MK-MMD can improve the
recognition accuracy of the model compared with MMD, too many
Gaussian kernels can also lead to a decrease in the generalization ability
of the model.

The depth feature plots are shown in Fig. 12. Fig. 12(a) shows the
WPT-TFFMs for layers 4, 5, and 6 of a source domain sample and a
target domain sample with IRF in transfer task B->C, which are set
as the input of the deep network MGRN. Fig. 12(b) and (c) show the
outputs of the last convolutional layer of the MGRN with Fig. 12(a) as
inputs in the model of WMGRNMM and WMGRN respectively. It can
be found that the depth features plots distribution of source and target
domain are more similar in WMGRNMM model, which is beneficial to
12

the domain adaptation ability of the MK-MMD.
Table 10
Classification accuracy of the model with different number of MK-MMD Gaussian
kernels.

Transfer task Kernel-1 Kernel-3 Kernel-5 Kernel-7 Kernel-9

A->B 94.17% 96.83% 97.83% 97.17% 95.67%
A->C 93.50% 96.33% 97.17% 95.67% 93.83%
B->A 97.33% 97.00% 96.33% 95.67% 95.33%
B->C 93.33% 96.83% 97.50% 96.83% 96.33%
C->A 91.17% 96.00% 95.83% 94.83% 96.67%
C->D 94.33% 97.17% 98.17% 98.33% 96.83%
Average 93.97% 96.69% 97.14% 96.42% 95.78%

Table 11
Classification accuracies of diagnostic models without WPT step on the MFS-RDS
experimental platform.

Transfer task RN18MM RN34MM RNMM MGRN MGRNMM

A->B 87.83% 85.83% 89.67% 77.83% 93.83%
A->C 86.67% 87.17% 90.17% 74.17% 94.17%
B->A 83.83% 82.17% 89.17% 76.83% 92.33%
B->C 85.83% 84.83% 88.33% 73.17% 93.50%
C->A 84.67% 81.83% 86.67% 76.83% 91.83%
C->D 90.17% 89.17% 90.67% 80.83% 94.17%
Average 86.50% 85.17% 89.11% 76.61% 93.31%

Table 12
Classification accuracy of WMGRNMM model in various transfer tasks under different
SNR conditions.

Transfer task 3 dB 5 dB 8 dB 10 dB No noise added

A->B 95.83% 96.83% 97.17% 97.33% 97.83%
A->C 95.50% 96.67% 97.50% 96.83% 97.17%
B->A 94.17% 95.83% 96.17% 96.00% 96.33%
B->C 95.87% 96.17% 97.33% 97.83% 97.50%
C->A 93.50% 95.33% 95.67% 94.83% 95.83%
C->B 96.33% 97.33% 98.00% 98.17% 98.17%
Average 95.20% 96.36% 96.97% 96.83% 97.14%

To analyze the effect of WPT step in the diagnostic model, Ta-
ble 11 presents the classification accuracies of the RNMM, RN18MM,
RN34MM, MGRN, and MGRNMM models, which are 5 percentage
points lower than the results of models using WPT. The experimental
results show that the proposed WPT-TFFM construction method can
achieve effective extraction of the fault depth features of the vibration
signal and improve the generalization ability of the diagnostic model.

To further verify the anti-noise ability of the WMGRNMM model,
the anti-noise experiment is repeated under the MFS-RDS bearing ex-
perimental platform, and the two groups of anti-noise experiments
are controlled under the same conditions. The results are shown in
Table 12. It can be seen that for the 3 dB noise-added data, the
diagnostic accuracy of the model decreases slightly, but the decrease
is less than 2%, and for the 5 dB, 8 dB, 10 dB noise-added data, the
accuracy of the WMGRNMM model does not decrease significantly. The
experimental results show that the WMGRNMM model has good and
stable anti-noise ability.

Table 13 shows the results of the effectiveness comparison between
the WMGRNMM model and the TCA, JDA, CNN and DANN models in
various transfer tasks under the MFS-RDS experimental platform. The
comparison results show that the WMGRNMM model has significantly
higher diagnostic accuracy than that of TCA, JDA, CNN and DANN
models.

5. Conclusions

In this paper, we propose a depth transfer fault diagnosis model
WMGRNMM. We first extract the time–frequency information of the
vibration signal that contains the fault mechanism by WPT to construct
the time–frequency feature map WPT-TFFM. Then a multi-group paral-
lel Resnet network structure MGRN is designed to extract the depth
features of WPT-TFFM. Finally, MK-MDD is introduced to evaluate
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Fig. 12. The depth feature plots of a source domain sample and a target domain sample with IRF in work transfer task B->C.
Table 13
Classification accuracy of different models in various transfer tasks.

Transfer task TCA JDA CNN DANN WMGRNMM

A->B 88.83% 90.17% 81.33% 96.33% 97.83%
A->C 89.17% 89.50% 78.67% 91.94% 97.17%
B->A 86.50% 87.67% 79.17% 92.78% 96.33%
B->C 87.67% 88.17% 80.83% 94.17% 97.50%
C->A 85.33% 86.67% 78.33% 90.83% 95.83%
C->B 91.17% 92.83% 82.17% 95.28% 98.17%
Average 88.11% 89.17% 80.08% 93.56% 97.14%

the distribution differences of the depth features of the source and
target domain data, and the optimization of the MGRN is realized
by combining the classification loss of the source domain. After the-
oretical analysis and experimental results verification, the following
conclusions can be obtained.

(1) The proposed vibration signal construction method, WPT-TFFM,
can effectively extract the time–frequency features reflecting the fault
state from the nonlinear and non-smooth vibration signal with high
noise immunity, which is conducive to the extraction of subsequent
depth features.
13
(2) The proposed ResNet-based depth features extraction network
is able to solve the problems of small WPT-TFFM size and feature
dispersion, and the MGRN network structure can more effectively ex-
tract depth features from multi-scale multi-resolution WPT-TFFM with
different layers.

(3) By introducing MK-MMD to optimize the depth features extrac-
tion network, the classification accuracy of the diagnostic model under
variable working condition scenarios can be significantly improved,
and the experimental results of two bearing failure testbeds show that
the WMGRNMM addresses the working condition transfer diagnosis
problem with strong noise immunity under limited amount of training
data.
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