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Abstract. Training effective models for segmentation or classification
of microscopy images is a hard task, complicated by the scarcity of ade-
quately labeled data sets. In this context, self-supervised learning strate-
gies can be deployed to learn suitable image representations from the avail-
able large quantity of unlabeled data, e.g. the 500k electron microscopy
images that compose the CEM500k data sets.

In this work, we investigate a self-supervised strategy for representa-
tion learning based on a colorization pre-text task on microscopy images.
We integrate the colorization task into the BYOL (Bootstrap your own
latent) self-supervised contrastive pre-training strategy. We train the self-
supervised architecture on the CEM500k data set of electron microscopy
images. As backbone of the BYOL framework, we investigate the use of
Resnet50 and a Stand-alone Self-Attention network, and subsequently test
them as feature extractors for downstream classification and segmentation
tasks.

The Self-Attention encoders pre-trained with the colorization-based
BYOL method are able to learn effective features for segmentation of
microscopy images, achieving higher results than those of encoders, both
Resnet- and Self-Attention-based, trained with the original BYOL. This
shows the effectiveness of colorization as pre-text for a downstream seg-
mentation task on microscopy images. We release the code at https://
github.com/nis-research/selfsup-byol-colorization.

Keywords: BYOL · Colorization · Microscopy images · Pre-training ·
Self-supervised learning

1 Introduction

Deep learning and convolutional networks achieved outstanding results in various
computer vision and image processing tasks, such as image classification [11],
object detection [1,24], semantic segmentation [3,25], place recognition [9,17],
image and video generation [27,30], optical flow [12] and depth estimation [20],
among others. In many cases, these models are trained using labeled samples in
a supervised learning setting. For instance, semantic segmentation models [3,18,
25,29] require images with pixel-wise labels: they are usually trained on data sets
of natural images which contain large amounts of high quality accurately labelled
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images. Examples are Cityscapes [7] or Mapillary Vistas [21], which contain
images taken in cities. Collecting and labeling these images is time consuming,
but it does not require particular expertise. In the case of medical or microscopy
images, instead, acquiring a large number of images is prohibitive and labeling
them requires expert knowledge. In [2], authors reported that experts spent 32
to 36 h annotating a microscopy data-set consisting of 165 images.

Recently, self-supervised learning demonstrated to be able to learn effective
image representations from unlabeled data [4,5]. The self-supervision is created
by defining an artificial pre-text task that exploits intrinsic structures in large
amounts of unlabeled data, e.g. classification of image rotation/orientation, recon-
struction from mosaique-images, etc. Encoder networks pre-trained with these
techniques are then deployed as backbones for various computer vision tasks, and
are either fine-tuned on a small amount of application-specific labeled data samples
or directly used as feature extractors. In some cases, self-supervised pre-trained
networks have achieved results comparable or higher than those of supervised net-
works [8,10].

In this work, we investigate using a colorization pre-text task in the BYOL
pre-training framework to learn representations for microscopy cell image clas-
sification and segmentation in a self-supervised fashion. We exploit a large data
set of unlabeled microscopy images, namely the CEM500k data set [6]. The use
of colorization as pre-text task is motivated by the fact that it relates with
shapes and regions of rather uniform color, that are also at the basis of image
segmentation. It is thus expected that in the context of microscopy image anal-
ysis, this task can help learning some shape priors that could support further
segmentation or classification tasks.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief
overview of related works while, in Sect. 3, we present our approach and model
training strategy. In Sect. 4, we report the results that we achieved and finally
draw conclusions in Sect. 5.

2 Related Works

Self-supervised learning methods leverage the data itself to disentangle data
representation with no need of labels. The self-supervision is guaranteed by the
design of pre-text tasks, which are artificial tasks to be solved by the network. In
order to evaluate the quality of the learned representations, downstream tasks
such as image classification or semantic segmentation are employed [13]. A good
pre-text task is fundamental for self-supervised learning. The choice of the task
determines the performance of the model on the downstream tasks. Some of
the popular pre-text tasks are colorization [16,28], context prediction via image
in-painting [23], jigsaw puzzle [15,22], image generation [31], among others.

The most powerful self-supervised learning methods are based on a pre-text
task formulated as a contrastive learning problem, which consists of training two
networks by forcing the representation of similar input image-pairs to be close
in the latent space, and that of dissimilar input image-pairs to be distant in the
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latent space. SimCLR [4] (Simple framework for Contrastive Learning) learns
self-supervised visual representations by maximizing the loss between dissimilar
images (negative pairs) and minimizing the loss between similar images (positive
pairs). For each image in a training batch, two augmented versions are gener-
ated, which are considered as positive examples. The negative examples are the
2(N − 1) images in the batch. In [8], it was observed that the performance of
SimCLR is influenced by the choice of the augmentation pool for the pre-text
task, and that removing the color distortion would result in a considerable drop
of results. BYOL [8] discards dissimilar images pairs, making the training pro-
cess more efficient. The representations learned in the contrastive architecture are
processed through two different MLP networks, namely the online and the tar-
get network. The encoder in the online network branch is updated via stochastic
gradient descent, while the decoder in the target network branch is updated using
the exponential moving average (EMA) of the weights of the online network. A
ResNet50 pre-trained with BYOL achieved 74% accuracy on ImageNet. Momen-
tum Contrast (MoCo) [10] constructs a dynamic dictionary on-the-fly with a queue
and average-moving encoder to support the learning of contrastive representa-
tions. It achieved competitive results on various computer vision tasks, namely
image classification, detection and segmentation, substantially narrowing the gap
with supervised methods. In [5], the authors explore a simplification of the siamese
learning framework, called SimSiam, that does not rely on negative sample pairs,
large training batches or momentum encoders. They propose a stop-gradient tech-
niques to avoid collapsing solutions.

Self-supervised pre-trained models were deployed in semantic segmentation
downstream tasks. Representations learned with BYOL were demonstrated to
outperform other pre-trained ones by SimCLR and MoCo in semantic segmen-
tation on the Cityscapes data set [7]. A modification of the in-paining pre-text
task was proposed in [26], to overcome some of the limitations of the plain in-
painting, which modifies the overall intensity of the input image by removing
one or more patches. The use of an adversarial network to produce hard patches
to in-paint demonstrated effective for pre-training of good representations for
semantic segmentation, achieving higher performance than other methods on
the Potsdam, SpaceNet and DG Roads datasets.

3 Data and Methods

3.1 Datasets

The CEM500k data set consists of about 500k electron-microscopy images con-
taining structures at cellular-level, taken from different organisms and with dif-
ferent kinds of microscope. In Fig. 2, we show example images of cells from the
organism classes c.elegans, human and mouse. We use images from these three
classes to evaluate the performance of the pre-trained encoders on a downstream
classification task. In Fig. 2, we show the distribution of the images in the data
set, organized according to the type of organisms they are taken from. In total
there are eight known types of organism, while a small portion of the data set
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(a) c.elegans (b) human (c) mouse

Fig. 1. Example images from the CEM500k data set, taken from the classes of organism
(a) c.elegans, (b) human and (c) mouse. We use a subset of these classes to test the
downstream classification task.

Fig. 2. Distribution of the images in different classes of organism in the CEM500k
data set: images from eight known organism classes are present, plus a small portion
of images for which the type of organism is unknown.

contains organisms of an unknown type. We use about 200k images for the self-
supervised learning stage. The exploit the diversity of the images in the data
set a to learn robust visual representations. For the downstream segmentation
task, we use two benchmark data sets, namely the Kasthuri++ and Lucchi++
[2,14,19] data sets. They contain cellular-level images of the mouse brain, with
labeled mitochondria regions. The Lucchi++ data set (a version of the EPFL
Hippocampus dataset reannotated in [2]) contains 165 images with pixel-wise
mitochondria annotations, while the Kasthuri++ data set contains 85 training
and 75 testing images, also with mitochondria annotation. In Fig. 3a, we show
one example image from the Lucchi++ data set, while in Fig. 3b we show the
manually-made available ground truth mask of the same image.
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Fig. 3. An (a) image from the Lucchi++ data set, together with its (b) manual seg-
mentation ground truth map.

3.2 Self-supervised Training

We use the BYOL framework [8] to train an encoder network for classification
and semantic segmentation of microscopy images. We deploy the original BYOL
architecture, see Fig. 4. It consists of 1) two encoders that share their weights,
2) an augmentation procedure and 3) a loss function. In BYOL we modify the
generation of the augmented images for the target network, replacing the set of
augmentation with an image colorization algorithm [28]. We make the code for
experiments publicly available1.

Encoder. The choice of the encoder is an important aspect of this method. In
principle, one can choose any type of encoder architecture. In this work, we use a
Resnet50 network and a Stand-alone Self-Attention network. While Resnet50 is
a well-known convolutional network, the Stand-alone Self-Attention network is
a custom modification of Resnet50. We substituted all the convolutional layers,
except the first one, with self-attention layers. We thus investigate whether a
different type of network, based on the self-attention principle, can be effectively
used for self-supervised pre-training of methods for semantic segmentation and
classification of structures in microscopy images.

Augmentation/Colorization. We use colorization as a pre-text task for the BYOL
self-supervised learning framework. It converts a single-channel gray-scale image
to a three-channel Lab image. We use the pre-trained colorization model pro-
posed in [28] to convert the images in the CEM500k dataset from gray-scale to
the Lab colorspace. A gray-scale and its corresponding color-augmented image
form an input pair for the encoders as shown in Fig. 5. We call BYOL-colorization
the method that we design using the colorization pre-text task, and BYOL-
original the original version of BYOL, with an extended set of augmentations.

1 Github repository: https://github.com/nis-research/selfsup-byol-colorization.

https://github.com/nis-research/selfsup-byol-colorization
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Fig. 4. Architecture of the BYOL framework that we used for self-supervised learning
based on colorization pre-text. The online and target encoders have the same archi-
tecture but different weights. Only the online encoder and projection network O are
trained via back-propagation (see stop gradient on the target network branch).

Fig. 5. An (a) example image from the CEM500k data set and (b) its colorized version
obtained by using the model proposed in [28]

Loss Function and Training. The online and target encoder network in the
BYOL architecture take as input the original gray-scale image and its colorized
version, respectively. They have the same architecture but do not share weights.
The target network provides the regression target to train the online network.
The weights of the online network are optimized by back-propagating the gradi-
ent of an L2 regression loss function that compares the representations computed
by the online and target network. The weights of the target network are updated
as the exponential weighted average of the weights of the online network, accord-
ing to the training scheme proposed in [8].
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3.3 Downstream Tasks

We evaluate the image representation learned in the self-supervised pre-training
on two downstream tasks, namely image classification and segmentation.

Classification. We use the pre-trained encoder as feature extractor in combina-
tion with a logistic regression model, to classify the images into three classes,
namely human cells, mouse cells, and c.elegans cells. We train only the logis-
tic regression model using a subset of the CEM500k dataset, which was not
used for pre-training. In Fig. 6a, we depict the flow diagram of the classification
downstream task.

Semantic Segmentation. We considered semantic segmentation, namely the task
of pixel-wise labeling image regions to belong to one out of a number of classes
of interest, as another interesting downstream task to investigate for microscopy
images. We use the pre-trained encoder as backbone for a UNet-like architecture,
which contains a decoder network that computes a segmentation map of the same
size of the input image. We compared the representation power of different back-
bones, pre-trained using BYOL-original, our BYOL-colorization, U-Net encoder
and ResNet-50 pre-trained on ImageNet. We perform a fine-tuning stage, where
the weights of the encoder stay unchanged while the weights of the decoder only
are updated by back-propagation. In Fig. 6b, we show the flow diagram of the
segmentation downstream task.

4 Experiments and Results

4.1 Experiments

We use the encoders pre-trained on the CEM500k data set as feature extractors
for a classification and a semantic segmentation downstream task. For the classi-
fication task, we deploy our BYOL-colorization pre-trained encoders, namely the
ResNet50 and Self-Attention networks, to extract features from images of a sub-
set of the CEM500k data set. We then use these features together with a logistic
regression classifier. We compare the performance of our encoders with that of
similar encoders pre-trained with the original BYOL algorithm on the CEM500k
dataset, and with a ResNet50 and a Self-Attention network pre-trained on Ima-
geNet. Finally, we also use the encoder trained in [2]. While training the logistic
regression classifier, we freeze the weights of the pre-trained encoders, so that we
can test the effectiveness and quality of the pre-trained representations without
adapting them to the downstream task.

Similarly, we compare the representation capabilities of our pre-trained
encoders with those of BYOl-original pre-trained encoders on the task of seman-
tic segmentation. Also for this experiment, we deploy the Resnet50 and the Self-
Attention encoders as backbones. For evaluation purpose, we use the data sets
proposed in [2,14] and [2,19], which contain segmentation labels. We freeze the
encoder weights, and embed them into a U-Net architecture for segmentation,
of which we fine-tune only the decoder part.
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(a) Classification downstream task

(b) Segmentation downstream task

Fig. 6. Sketch diagram of the (a) classification and (b) segmentation downstream task.
The weights of the pre-trained encoders (yellow boxes) are not updated while tuning
the classifiers (red and blue boxes for classification and segmentation, respectiely) for
the downstream tasks. (Color figure online)

4.2 Metrics

To assess and compare the performance of the pre-trained encoders on the clas-
sification downstream task, we computed the accuracy of classification. For the
semantic segmentation task, instead, we measure the performance in terms of
mean Intersection-over-Union (IoU) over the considered classes.

Table 1. Classification Results on cem500k dataset: The table shows the results of
classification on cem500k dataset.

Encoder Pre-training Accuracy (%)

Resnet50 BYOL-colorization 71.75

Resnet50 BYOL-original 72.3

Resnet50 ImageNet 70.715

Self-Attention BYOL-colorization 59.03

Self-Attention BYOL-original 75.67

Self-Attention ImageNet 55.32

[2] Segmentation 36.83



Self-supervised Learning Through Colorization for Microscopy Images 629

4.3 Results

In Table 1, we report the results that we achieved on the downstream classifica-
tion task. The Stand-alone Self-Attention encoder pre-trained with our BYOL-
colorization achieved an accuracy of 59.03% while that pre-trained with the
original BYOL achieved an accuracy of 75.67%. Our encoder improves upon the
performance of the ImageNet Self-attention encoder by 3.71%. The Resnet50
encoder derived from our BYOL-colorization pre-training achieved an accuracy
of 71.75%, which is slightly less than the performance of the Resnet50 derived
from the BYOL-original pre-training by 0.8%. Our encoder performs better than
the ImageNet pre-trained Resnet50 by 1%. The encoder of the network proposed
in [2] achieved an accuracy of 36.83%, which is much lower than that of our
BYOL-colorization pre-trained ResNet50 by 36.14%.

The BYOL-colorization pre-training allows to learn representations from
unlabeled microscopy images which are more effective for classification than
image representations learned on natural images from ImageNet. However, the
diversity of data augmentation used in the original BYOL self-supervised pre-
training approach allows to disentangle better features that are more effective
for the classification task.

We report the results achieved on the downstream segmentation task in
Table 2. We froze the weights of the pre-trained encoders and only trained
the decoders for semantic segmentation. Self-Attention and Resnet50 encoders
trained with our proposed BYOL-colorization pre-training achieved an mIoU
score equal to 0.7034 and 0.6593 on the Lucchi++ data set, and equal to
0.7167 and 0.6839 on the Kasthuri++ data set. For both data sets, our BYOL-
colorization pre-trained Self-Attention encoders achieved higher results than
those of the BYOL-original pre-trained encoders. The results demonstrate that
the use of colorization in our pre-training strategy contributes to learn suitable
features for semantic segmentation of microscopy images. This is attributable

Table 2. Comparison of our pre-training strategy with BYOL pre-training: The table
shows the results of semantic segmentation when the encoders pre-trained with our
pre-training strategy is compared against the BYOL. The weights of the encoders are
not updated during the training on semantic segmentation dataset.

Dataset Encoder Pre-training mIoU

Lucchi++ Resnet50 BYOL-colorization 0.6593

Self-Attention BYOL-colorization 0.7034

Resnet50 BYOL-original 0.6743

Self-Attention BYOL-original 0.6530

Kasthuri++ Resnet50 BYOL-colorization 0.6839

Self-Attention BYOL-colorization 0.7167

Resnet50 BYOL-original 0.7036

Self-Attention BYOL-original 0.6849
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to the fact that the colorization task induces the network to learn shape and
color-region specific characteristics of the images, which better relate to the seg-
mentation task. The wider range of augmentations learned in the original BYOL
pre-training are not effectively tuned for segmentation.

The performance gap of pre-trained encoders for semantic segmentation of
microscopy images with respect to supervised models is still large. The U-Net
model adapted to the Lucchi++ and Kasthuri++ data sets proposed in [2]
achieved an mIoU score (0.946 and 0.92) higher than that of BYOL-pre-trained
encoder. In [2] the U-Net was trained for 1000 epochs, which is ten times larger
than our 100 epochs fine-tuning of the decoder only, on the very few training
images in the data sets, which may incur in overfitting, indicating that further
investigation in the direction of evaluating the generalization properties of these
networks is needed.

5 Conclusions

We investigated the feasibility of learning microscopy image representations from
a large amount of unlabeled data in a self-supervised fashion. We thus address
the problem of scarcity of unlabeled images, by training several Resnet50 and
Self-Attention encoders using the BYOL self-supervised learning framework.

We demonstrated that using colorization as a pre-text task is effective to
learn robust representations for semantic segmentation, and achieved better seg-
mentation results than those obtained by encoders pre-trained using the set of
augmentations designed for the original BYOL. For a classification downstream
task, instead, the representation learned by the original BYOL showed slightly
superior performance. The promising insights gained from the experiments open
possibilities for further investigations in the direction of filling the performance
gap between self-supervised and supervised methods for microscopy images, the
latter of which may incur in overfitting caused by the long training schedules on
very few labeled images.

References

1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. cite arxiv:2005.12872 (2020)

2. Casser, V., Kang, K., Pfister, H., Haehn, D.: Fast mitochondria detection for con-
nectomics. Nat. Methods 16(12), 1247–1253 (2019)

3. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. CoRR abs/1706.05587 (2017). http://arxiv.org/
abs/1706.05587

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations (2020)

5. Chen, X., He, K.: Exploring simple Siamese representation learning. In: 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 15745–15753 (2021). https://doi.org/10.1109/CVPR46437.2021.01549

http://arxiv.org/abs/2005.12872
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://doi.org/10.1109/CVPR46437.2021.01549


Self-supervised Learning Through Colorization for Microscopy Images 631

6. Conrad, R., Narayan, K.: CEM500k, a large-scale heterogeneous unlabeled cellu-
lar electron microscopy image dataset for deep learning. eLife 10, e65894 (2021).
https://doi.org/10.7554/eLife.65894

7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

8. Grill, J.B., et al.: Bootstrap your own latent: A new approach to self-supervised
learning (2020)

9. Hausler, S., Garg, S., Xu, M., Milford, M., Fischer, T.: Patch-NetVLAD: multi-
scale fusion of locally-global descriptors for place recognition. In: CVPR, pp. 14141–
14152 (2021)

10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsuper-
vised visual representation learning. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020). https://doi.org/
10.1109/CVPR42600.2020.00975

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

12. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0:
evolution of optical flow estimation with deep networks. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017

13. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural net-
works: A survey. CoRR abs/1902.06162 (2019). http://arxiv.org/abs/1902.06162

14. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3),
648–661 (2015). https://doi.org/10.1016/j.cell.2015.06.054

15. Kim, D., Cho, D., Yoo, D., Kweon, I.S.: Learning image representations by com-
pleting damaged jigsaw puzzles (2018)

16. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic
colorization. CoRR abs/1603.06668 (2016). http://arxiv.org/abs/1603.06668

17. Leyva-Vallina, M., Strisciuglio, N., Petkov, N.: Generalized contrastive optimiza-
tion of Siamese networks for place recognition. CoRR abs/2103.06638 (2021).
https://arxiv.org/abs/2103.06638

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. CoRR abs/1411.4038 (2014). http://arxiv.org/abs/1411.4038

19. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmenta-
tion of mitochondria in EM image stacks with learned shape features. IEEE Trans.
Med. Imag. 31(2), 474–486 (2012). https://doi.org/10.1109/TMI.2011.2171705

20. Mayer, N., et al.: A large dataset to train convolutional networks for dispar-
ity, optical flow, and scene flow estimation. In: IEEE CVPR, pp. 4040–4048.
arXiv:1512.02134 (2016)

21. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The Mapillary Vistas
dataset for semantic understanding of street scenes. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV), October 2017

22. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles (2017)
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