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Abstract. While storing documents on the cloud can be attractive, the
question remains whether cloud providers can be trusted with storing pri-
vate documents. Even if trusted, data breaches are ubiquitous. To pre-
vent information leakage one can store documents encrypted. If encrypted
under traditional schemes, one loses the ability to perform simple oper-
ations over the documents, such as searching through them. Searchable
encryption schemes were proposed allowing some search functionality
while documents remain encrypted. Orthogonally, research is done to find
attacks that exploit search and access pattern leakage that most efficient
schemes have. One type of such an attack is the ability to recover plaintext
queries. Passive query-recovery attacks on single-keyword search schemes
have been proposed in literature, however, conjunctive keyword search has
not been considered, although keyword searches with two or three key-
words appear more frequently in online searches.

We introduce a generic extension strategy for existing passive query-
recovery attacks against single-keyword search schemes and explore its
applicability for the attack presented by Damie et al. (USENIX Security
’21). While the original attack achieves up to a recovery rate of 85% against
single-keyword search schemes for an attacker without exact background
knowledge, our experiments show that the generic extension to conjunctive
queries comes with a significant performance decrease achieving recovery
rates of at most 32%. Assuming a stronger attacker with partial knowledge
of the indexed document set boosts the recovery rate to 85% for conjunc-
tive keyword queries with two keywords and achieves similar recovery rates
as previous attacks by Cash et al. (CCS ’15) and Islam et al. (NDSS ’12)
in the same setting for single-keyword search schemes.
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1 Introduction

With increasing number of enterprises storing their documents in the cloud
the question arises how to cope with storing sensitive documents on the cloud
without the cloud provider learning information about the stored documents
or information being leaked when a data breach occurs. One solution for this
problem would be to encrypt the documents to hide its contents to the cloud
provider. However, this prevents users from using the (often available) compu-
tational resources cloud providers offer, since searching through the documents
is no longer possible without first downloading and decrypting it.

Searchable symmetric encryption schemes can be a solution to this problem
that offer constructions for search functionalities over encrypted documents. The
first practical solution towards searchable encryption has been proposed by Song
et al. [22]. Proposers of searchable encryption schemes need to find a trade-off
in efficiency, security, and functionality. With this trade-off in terms of secu-
rity comes information leakage such as possible search pattern leakage (reveal-
ing which queries concerned the same underlying, but unknown, keyword) and
access pattern leakage (revealing the identifiers of all documents matching the
search query). Most of the efficient searchable encryption schemes that allow for
keyword search leak information in the access pattern for efficiency.

Searchable encryption is an active line of research for finding efficient schemes
that allow for search in encrypted documents with well-defined security in terms
of a leakage function. Orthogonally, research is performed on finding attacks
against proposed searchable encryption schemes. One such type of attack is a
query-recovery attack, i.e. the ability for an adversary to recover the plaintexts
from performed queries. In general two kinds of query-recovery attacks exist: (1)
a passive attack where an adversary only has access to the information leaked
by a scheme and (2) an active attack in which an adversary is able to inject
tailored documents into the to-be-searched dataset.

Active query-recovery attacks on conjunctive keyword search do exist [18,
28] which are described as an extension on the proposed single-keyword search
attack. Currently, all existing passive query-recovery attacks against searchable
symmetric encryption that allow for keyword searches only focuses on single-
keyword search schemes. However, these attacks do not reflect a realistic scenario,
since single-keyword searches are limited and statistics show that the number of
keywords used by people online in the US peaks at two keywords [5]. Also, three
keyword searches are still more frequent than searches for a single keyword. The
frequency of searches using seven or more keywords becomes negligible.

Note that the recovery of conjunctive keyword queries is more difficult with
respect to the recovery of single-keyword queries using similar vocabulary sizes.
This difficulty stems from the fact that the space for keyword conjunctions is
combinatorial in the number of conjunction terms compared to single-keywords,
therefore an attacker needs to consider more possible candidates of keyword
conjunctions for each observed query.

In this work, we explore a passive query-recovery attack against secure con-
junctive keyword search (CKWS) schemes. We propose a generic extension
strategy for query-recovery attacks against single-keyword search to recover
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conjunctive queries using the same attack. Our extension strategy is based on the
use of trapdoors created from a keyword-conjunction set as a generalization of
trapdoors created from single-keywords. Replacing keywords with keyword con-
junction sets. Our attack is static and does also work on forward and backward
private schemes [17].

We introduce an adaptation of the query-recovery attack proposed by Damie
et al. [6] to achieve keyword conjunction recovery. We explore the applicability of
the attack in two setups: (1) a similar-documents attack, where the attacker only
has access to a set of documents that is similar, but otherwise different, from the
indexed documents and (2) a known-documents attack, where the attacker has
(partial) knowledge of the indexed documents. In both setups it is assumed the
attacker knows the keyword conjunctions for a small set of queries a priori. We
experimentally show that our attack can work for a relatively small vocabulary
size (500) in an attack setup allowing only conjunctive keyword search using 2
keywords. However, we show that in an attack setup using similar-documents
the attack performs poorly unless many known queries are assumed to be part of
the attacker’s knowledge. Furthermore, we demonstrate limitations of our generic
extension posed by the combinatorial complexity increase for larger conjunctions.

2 Related Work

Most attacks against searchable symmetric encryption that have been described
in the literature are query-recovery attacks. Islam et al. [10] were the first to
propose a passive query-recovery attack in which they are exploiting the access
pattern leakage, i.e. leaked document identifiers from observed queries. In their
attack, the adversary needs to know all the documents indexed on the server to
be successful. They introduced the idea of computing (word-word and trapdoor-
trapdoor) co-occurrences to attack SSE. This idea being reused by other the
passive attacks. The attack works by finding the closest mapping between the
word-word co-occurrence matrix and trapdoor-trapdoor co-occurrence matrix in
which they use meta heuristic simulated annealing. Also, the attack requires a
number of known queries to work, i.e. trapdoors from which the attacker knows
the underlying plaintext value.

Cash et al. [3] proposed another passive query-recovery attack. Their attack
first exploits that keywords with high frequency have unique keyword document
counts to initialize their set of known queries. Then for keywords that do not have
a unique keyword document occurrence count they construct a co-occurrence
matrix of their known documents and observed queries, similar to Islam et al.
They try to recover more queries by constructing for every unknown query their
candidate set (i.e. keywords having the same document occurrence count) and
remove candidates from the set that do not have the same co-occurrence with a
known query in the known queries set. If after iterating over every known query
only one candidate is left, the last candidate is appended to the known queries
set. This process is repeated for all unknown queries until the set of known
queries stops increasing.
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Both [3,10] rely on the attacker knowing a large part of the indexed doc-
uments, where the count attack performs better than the attack by Islam et
al. However, their query recovery rate roughly only increases when the attacker
knows at least 80% of the indexed documents.

The query-recovery attack proposed by Pouliot et al. [21] uses weighted graph
matching where the attacker needs to find mapping of keyword graph G and trap-
door graph H. The attack achieves recovery rates above 90% when the attacker
knows the entire set of indexed documents, but fails as similar-documents attack
unless having a smaller set of documents and vocabulary size. Also, the runtime
of the attack increases rapidly, where for a vocabulary size of 500 the attack runs
in less than one hour, whereas it takes more than 16 h for a vocabulary size of
1000. The attack in [10] has a runtime of a maximum of 14 h, whereas attacks
from [3,6] run in seconds.

Ning et al. [15] introduced a query-recovery attack that works when the
attacker knows a percentage of the indexed documents. Keywords and trapdoors
are represented as a binary string where the i-th bit is 1 if the keyword (resp.
trapdoor) occurs in document i. Recovery is done by converting the bit strings
to integers, where it is considered that a keyword corresponds to a trapdoor if
they have the same integer value.

The proposed attack outperforms the attack by Cash et al. [3], where in their
scenario [3] achieves a recovery rate of roughly 28% and their proposed attack
around 56% when the attacker knows 80% of the indexed documents. However,
they do not report a recovery rate for an attacker having knowledge of more
than 80% of the indexed documents.

Blackstone et al. [2] proposed a “sub-graph” attack requiring much less known
documents to be successful and also works on co-occurrence hiding schemes.
Their experiments show that an attacker only needs to know 20% of the indexed
documents to succeed in her attack.

In [6], Damie et al. proposed their refined score attack that works in a setting
where the attacker only knows a similar, but otherwise different and non-indexed,
set of documents for query-recovery. A mathematical formalization of the simi-
larity is proposed in their paper. In [3] they showed that both the attack proposed
by Islam et al. [10] and their proposed count attack do not work using similar
documents. In [6], the query-recovery attack uses similar techniques as used by
[3,10], i.e. constructing co-occurrence matrices from the document set known by
the attacker and a trapdoor-trapdoor co-occurrence matrix from the assumed
access pattern leakage. By starting with a few known (keyword, trapdoor)-pairs
their attack iteratively recovers queries where previous recovered queries with
high confidence scores are added to the set of known queries. Using this approach
their attack reaches recovery rates around 85%.

Other Types of Attacks. Zhang et al. [28] proposed an effective active doc-
ument injection attack to recover keywords. Furthermore, they proposed an
extension of their attack to a conjunctive keyword search setting which was
experimentally verified for queries with 3 keywords.

In [18], Poddar et al. proposed several attacks that uses volume pattern as
auxiliary information in combination with the attacker’s ability to replay queries
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and inject documents. Moreover, they also gave an extension of their attack for
queries with conjunctive keywords which is based on the extension from [28]
using a document injection approach.

Liu et al. [14] proposed a query-recovery attack which makes use of the search
pattern leakage as auxiliary information. In particular, they exploit the query
frequency. However, they simulated their queries by applying Gaussian noise to
keyword search frequency from Google Trends1 because of the lack of a query
dataset. The attacker has access to the original frequencies.

Another attack introduced by Oya and Kerschbaum [16] combines both vol-
ume information derived from the access pattern leakage and query frequency
information derived from the search pattern leakage as auxiliary information.

Conjunctive Keyword Search Schemes. Passive query-recovery attacks
against single-keyword search schemes already work for some conjunctive key-
word search schemes where the server performs search for each individual key-
word in a query independently and returns the intersection of document identi-
fiers of each single-keyword search, i.e. leaking the full access pattern for each
individual keyword in the conjunction. However, these attacks cannot be applied
on conjunctive keyword search schemes with less or common access pattern leak-
age, where common refers to the scheme only leaking the document identifiers for
the documents containing all keywords from a conjunctive keyword query. Hence,
in this work we explore one extension strategy for conjunctive keywords that can
be applied to most passive query-recovery attacks against single-keyword search
using only common access pattern leakage.

[19,23] both proposed such a conjunctive keyword search scheme that returns
the intersection of document identifiers for each individual keyword in a conjunc-
tive keyword query, thus leaking the full access pattern. However, we would like
to emphasize that in this scenario only an honest-but-curious server that is able
to observe the result set for each intermediate keyword can be considered an
attacker, since an eavesdropper on the communication channel would not be
able to observe the document identifiers for each intermediate single-keyword
search. Furthermore, it should be noted that both schemes also offer more func-
tionality than conjunctive keyword search alone. Where [19] allows for phrase
searches and [23] offers result set verifiability and index updatability.

Other proposed conjunctive keyword search schemes exist [4,7–9,11,13,24,
26,27]. However, all of them leak at least the common access pattern, where
[4,9,25] have more than common access pattern leakage. To the best of our
knowledge there do not exist efficient conjunctive keyword search schemes that
have no access pattern leakage.

3 Preliminaries

We first introduce some notations that are used throughout this work. Let doc-
ument set D consist of documents {D1, ...,Dn}. Let keyword set W consist of

1 https://trends.google.com/trends.

https://trends.google.com/trends
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Table 1. Notation

Notation Meaning Size notation

Q Set of observed trapdoors by the adversary l

RQ Document identifiers for each observed td ∈ Q l

KnownQ Known (td, ckw)-pairs by the adversary k

ckwq Set of distinct keywords used in

a conjunctive keyword query q

d

Cckw ckw-ckw co-occurrence matrix created

from Dsimilar or Dp−known

msimilar ×msimilar or mknown ×mknown

Ctd td-td co-occurrence matrix created from RQ l × l

Dreal Real (indexed) document set nreal

Dsimilar Similar document set nsimilar

Dp−known p-Known document set (0 < p ≤ 1) nknown (= p · nreal)

Wreal Vocabulary of keywords extracted from Dreal vreal

Wsimilar Vocabulary of keywords extracted from Dsimilar vsimilar

Wknown Vocabulary of keywords extracted from Dp−known vknown

Kreal Set containing possible conjunctions of keyword

combinations generated from Wreal

mreal =
(vreal

d

)

Ksimilar Set containing possible conjunctions of keyword

combinations generated from Wsimilar

msimilar =
(vsimilar

d

)

Kknown Set containing possible conjunctions of keyword

combinations generated from Wknown

mknown =
(vknown

d

)

keywords {w1, ...,wm}. Document Di consists of keywords that form a subset of
keyword set W. Let id(Di) = i return the identifier for document Di. We denote
x ∈ Di if keyword x (∈ W) occurs in document Di. A summary of all notations
and their meaning used throughout this work is given in Table 1.

3.1 Searchable Symmetric Encryption

A searchable encryption scheme allows a user to search in encrypted documents
and is often described in a client-server setting. The client can search through
encrypted documents stored on the server, without the server learning informa-
tion about the plaintext documents. Often a searchable encryption scheme can
be divided in four algorithms:

– KeyGen(1k): takes security parameter k and outputs a secret key K.
– BuildIndex(K,D): takes document set D and secret key K and produces an

(inverted) index I.
– Trapdoor(K, q): takes query q and secret key K and outputs a trapdoor tdq.
– Search(I, tdq): takes trapdoor tdq and index I and outputs the documents that

match with query q.

In single-keyword search schemes q corresponds to a keyword w, whereas
in conjunctive keyword search schemes q would correspond to a query for doc-
uments containing d keywords, i.e., the conjunction of keywords w1∧ ... ∧wd

of keywords w1, ..., wd. Then, tdq would correspond to the conjunction of d
keywords.
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3.2 Considered Conjunctive Keyword Search Model

We assume a fixed number of keywords (d) that are allowed to be searched for
in a conjunctive keyword search. For instance if d = 2, only trapdoors with 2
distinct keywords are allowed. We denote such a fixed-d scheme as secure d-
conjunctive keyword search scheme.

For simplicity, we assume a fixed number of d distinct keywords, however one
could consider d as a maximum number of keywords in the conjunctive search
by reusing the same keyword for non-used keyword entries in the conjunction.
For instance, when d = 2, kw∧ kw for the same keyword kw would be equivalent
to a single-keyword search for kw.

We consider ckw to be the set of d different keywords that are used to con-
struct a trapdoor (tdckw). For instance, if we consider a conjunctive keyword
search scheme that allows search for d = 3 conjunctive keywords, we would
create a keyword set ckw for every possible combination of 3 keywords, where
ckw1 = {kw1, kw2, kw3}.2

First, in the BuildIndex algorithm, the client encrypts every document in
the document set locally. Then creates an encrypted index of the document set
(locally). Given a trapdoor tdckw, the server can find the documents containing
keywords in ckw using such a created index. The encrypted document set and
index are then uploaded by the client to the server.

Although in literature different methods for constructing such an index were
proposed, here we do not fix which index is used. We only require the model to
have at least common access pattern leakage, where common refers to the scheme
only leaking the document identifiers for the documents containing all keywords
in a conjunctive keyword query. All conjunctive search schemes described in
Sect. 2 leak at least the common access pattern.

The client can search documents by constructing trapdoors. The client con-
structs a trapdoor by picking d keywords she wants to search for. In our
model, she constructs a trapdoor using the function tdq = Trapdoor(K, ckwi =

{kw1, ..., kwd}), for the keywords she wants to search for. By sending the trap-
door tdq to the server, the server responds with a set of document identifiers
Rtdq for documents that contain all keywords in ckwi.

3.3 Attacker Model

Like in [6], we consider two types of passive attackers which both can observe
trapdoors sent by a user and its response including the document identifiers. The
first type of attacker is an honest-but-curious server. The server is considered
to be an honest entity meaning it follows the protocol. Hence, it always returns
the correct result for each query. However, such curious server tries to learn as
much information as possible using the scheme leakage. Secondly, we consider an
eavesdropper that is able to observe pairs of trapdoor and document identifiers
from the communication channel between client and server as an attacker.

2 Note: d = 1 refers to a single-keyword search scheme.
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For both attackers an observationi is a tuple (tdq, Rtdq ) considering conjunc-
tive keyword queries where trapdoor td corresponds to d conjunctive keywords.

3.4 Attacker Knowledge

It is assumed the attacker knows the number of keywords d that are allowed
to construct trapdoors. Moreover, it can be assumed that an honest-but-curious
attacker knows the byte size of the stored documents and the number of docu-
ments stored (e.g. from the index). However, an eavesdropper does not. In that
case we make use of the proposed formula by [6] that approximates the number
of documents stored on the server (nreal) derived from the attacker’s knowledge.

We consider two types of attack setups, i.e. a similar-documents attack setup
where the attacker has access to a set of similar documents (as formalized in [6])
and a known-documents attack setup where the attacker has (partial) knowledge
of the documents stored on the server.

Similar-Documents Attack. In our similar-documents attack we assume the
attacker has a document set Dsimilar that is ε-similar to the real indexed doc-
ument set Dreal. However, we assume ε-similarity (as formalized in [6]) over
the possible keyword conjunctions rather than keywords, where smaller ε means
more similar. Also, Dsimilar ∩ Dreal = ∅, thus do not have overlapping docu-
ments.

Known-Documents Attack. Like in [3,10], for our known-documents attack
setup we assume that the attacker has a p-known document set Dp−known, where
0 < p ≤ 1 defines the known-documents rate. Meaning, the attacker knows a
fraction p of the real indexed document set Dreal stored on the server.

It should be noted that a similar-documents attack can be considered more
realistic than a known-documents attack as discussed by Damie et al. [6]. Since
a known-documents attack will most likely only be possible on a data breach,
whereas documents that are only similar to the actual indexed documents maybe
even publicly available. Moreover, the user could remove the leaked documents
that are used in a known-documents attack from the index.

The assumption that the attacker knows (a subset of) the documents stored
on the server is rather strong, but is based on what is done in previous work
[3,10].

4 CKWS-Adapted Refined Score Attack

In this section we describe our conjunctive keyword search (CKWS) adaptation
of the refined score attack. Our adaptation builds upon the score attacks that
were introduced by Damie et al. [6]. We have chosen to use their query-recovery
attack against single-keyword search schemes, since it is, to the best of our
knowledge, the most accurate similar-documents attack that has been described
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yet. Furthermore, the matching algorithm used in their attack only has a run-
time of 20 s while considering a vocabulary size of 4000 keywords. Since the
space of possible queries increases combinatorial, we have to consider many pos-
sible keyword conjunctions and thus faster runtimes is desired. Moreover, their
attack can use either known documents or similar documents as adversary’s
knowledge. We describe how one can transform their query-recovery attack to
an attack on conjunctive keyword search schemes, i.e. considering the (abstract)
secure d-conjunctive keyword search scheme described in Sect. 3.2, using similar
terminology as in [6].

In addition, the code for the score attacks has been made publicly available
online by Damie et al. This allowed us to verify their results first before adapting
it to our conjunctive keyword setting.

4.1 Score Attacks

Damie et al. [6] first propose the score attack based on the idea of ranking potential
keyword-trapdoor mappings according to a score function. To run the score attack
an attacker calculates the word-word co-occurrence matrix from its auxiliary docu-
ment set and constructs a trapdoor-trapdoor co-occurrence matrix from observed
queries and their result sets. Assuming some known queries, the attacker removes
the columns from both matrices that do not occur in their set of known queries (i.e.
word-trapdoor pairs) to obtain so-called sub-matrices. Then for every (observed)
trapdoor, it goes through all possible keywords extracted from the auxiliary doc-
ument set and returns the keyword for which their score function is maximized.

Secondly, their proposed refined score attack builds upon previously described
score attack. Instead of returning a prediction for all trapdoors, they define a
certainty function for each prediction and only keep the Re f Speed best predic-
tions according to this certainty function. These predictions are then added to
the set of known queries and the attacker recomputes the co-occurrence sub-
matrices. This procedure is repeated until there are no predictions left to make,
i.e. no unknown queries left.

4.2 Generic Extension

In short, our generic extension proposes to replace single keywords with key-
word conjunction sets. The extension consists of five steps, highlighted by the
next five subsections to adapt a passive query-recovery attack against single-
keyword search to conjunctive keyword search, i.e. attacks that try to find a map-
ping between co-occurrences of keywords and trapdoors to recover queries. We
describe our extension in a similar-documents attack setup using Dsimilar, but
the same steps can be taken in a known-documents attack setup using Dp−known

as the attacker’s auxiliary document set.

Extract Vocabulary. First, the attacker extracts keywords from the set of doc-
uments Dsimilar to vocabulary Wsimilar. As in query-recovery attacks on single-
keyword search [3,6,10], we also assume that the keyword extraction method
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used by the attacker is the same as the one used by the user when she created
the encrypted index.

Construct Set of Possible Keyword Conjunctions. The attacker creates
the set of all possible keyword conjunctions Ksimilar = {ckwi ∈ P(Wsimilar)

�
�

|ckwi | = d}, where msimilar = |Ksimilar | =
(vsimilar

d

)
and P(X) denotes the power set

of set X.

Compute Co-occurrence Matrix for Keyword Conjunctions. From
Dsimilar and derived keyword conjunctions set Ksimilar the attacker creates the
msimilar × msimilar matrix IDsimilar. Here IDsimilar[i, j] = 1 if the i-th document
in Dsimilar contains the keywords that are in keyword conjunction ckwj and
is otherwise 0. Then the attacker computes the ckw-ckw co-occurrence matrix
Cckw = IDT

similar · IDsimilar ·
1

nsimilar
.3

Compute the Trapdoor-Trapdoor Co-occurrence Matrix. We define Q =

{td1, ..., tdl} to be the set of observed queries by the attacker containing trapdoors
that have been queried by the user. These trapdoors were created by the user
from keyword conjunctions in Kreal = {ckwi ∈ P(Wreal)

�
�
|ckwi | = d}. Let Rtd =

{id(D)|(ckw ∈ Kreal) ∧ (td = Trapdoor(K, ckw)) ∧ (D ∈ Dreal) ∧ ∀kwt ∈ckw(kwt ∈ D)}
be the set of document identifiers that were observed by the attacker for trapdoor
td. Then we define the set of document identifiers DocumentIDs =

⋃
td∈Q Rtd

of size s, where s ≤ nreal. Similar to the construction of the matrix IDsimilar,
we construct s × l trapdoor-document matrix IDreal, where IDreal[i, j] = 1 if
i-th document identifier occurs in Rtd j (and tdj refers to j-th trapdoor from
Q). Otherwise, IDreal[i, j] = 0. Then trapdoor-trapdoor co-occurrence matrix
Ctd = IDT

real · IDreal ·
1

nreal
.

Apply Attack. The last step is to apply a passive query-recovery attack using
the set of keyword conjunctions and the co-occurrence matrices.

4.3 Transform Key Steps of Refined Score Attack

As in [3,6,10], our attack also requires the attacker to have knowledge of a set of
known queries. However, our set of known queries is slightly different because of
the keyword conjunctions. In a similar-documents attack setup our set of known
queries KnownQ = {(ckwi, tdknown)|(ckwi ∈ Ksimilar ∩ Kreal) ∧ (tdknown ∈ Q) ∧

(tdknown = Trapdoor(K, ckwi)}. For our known-documents attack setup, KnownQ
is similarly defined by replacing Ksimilar with Kknown.

We recall key steps in the score attack w.r.t. the projection of the keyword-
keyword co-occurrence and trapdoor-trapdoor co-occurrence matrix to sub-
matrices using the set of known queries. These steps are important because they
are different for our CKWS-adapted refined score attack. In short, the projection
is done by only keeping the columns of known queries in Cckw and Ctd.

3 AT denotes the transpose of matrix A.
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Our goal is to generate sub-matrices Cs
ckw

and Cs
td

from Cckw and Ctd respec-
tively. We describe the projection step for Cckw using Ksimilar, but the same
holds for Kknown. Recall that Ksimilar = {ckw1, ..., ckwmsimilar

}.
We define pos(ckw), which returns the position of ckw ∈ Ksimilar . That is,

pos(ckwi) = i. Similarly, pos(td) returns the position of td in Q = {td1, ..., tdl}.
Let Cckw =

(
. . . , �ci, . . .

)
i∈[msimilar]

be the msimilar × msimilar co-occurrence
matrix, where the column vector �ci denotes its i-th column. Then the msimilar× k
sub-matrix Cs

ckw
=

(
. . . , �cpos(ckw j )

, . . .
)
(ckw j,td j )∈KnownQ

, where �cpos(ckw j )
is the

pos(ckw j)-th column vector of Cckw.
Let Ctd =

(
. . . , �ui, . . .

)
i∈[l]

be the l×l trapdoor-trapdoor co-occurrence matrix,
where the column vector �ui denotes its i-th column. Then l × k sub-matrix Cs

td

can be constructed as follows: Cs
td

=
(
. . . , �upos(td j )

, . . .
)
(ckw j,td j )∈KnownQ

, where
upos(td j )

is the pos(tdj)-th column vector of Ctd.
Superscript s emphasizes that Cs

ckw
and Cs

td
are sub-matrices of Cckw and Ctd

respectively. Also, we denote Cs
ckw

[ckwi] to be the i-th row vector for keyword
conjunction set ckwi and Cs

td
[tdj] to be the j-th row vector for trapdoor tdj ,

where |Cs
ckw

[ckwi]| = |Cs
td
[tdj]| = k.

Additionally, we revise the scoring algorithm for which the score is higher if a
trapdoor corresponds to a certain keyword conjunction, i.e. the distance between
two vectors Cs

td
[tdj] and Cs

ckw
[ckwi] is small. Using keyword conjunctions the

score function is defined as: Score(td j, ckwi) = −ln(| |Cs
ckw

[ckwi] − Cs
td
[tdj]| |), for

all ckwi ∈ Ksimilar (or Kknown) and all tdj ∈ Q, where ln(·) is the natural log and
| | · | | is a vector-norm (e.g. L2 norm).

4.4 Revised Algorithm

We substitute Cs
kw

for Cs
ckw

in [6] to transform the refined score attack to the
CKWS-adapted refined score attack. Algorithm 1 contains its pseudocode, where
a step is highlighted blue if it is different from the refined score attack proposed
by Damie et al. [6]. Note that this algorithm is described using Ksimilar, but also
works for Kknown as input.

One iteration of the algorithm can be defined by the three key phases. First
remove known queries from the observed queries set Q. Secondly, find the best
scoring keyword conjunction candidate for each unknown query and compute the
certainty of this candidate. Using keyword conjunctions the certainty of a key-
word conjunction candidate ckwi for trapdoor td is defined by: Certainty(td, ckwi)

= Score(td, ckwi) − maxj�i Score(td, ckwj)

Using this definition the certainty of a correct match of keyword conjunction
with a trapdoor is higher when the score of the match is much higher than all
other possible candidate scores.

The algorithm defines a notion of refinement speed (Re f Speed) which defines
the number of most certain predictions that will be added each iteration of the
algorithm to the set of known queries. Which describes the third and last key step
of an iteration, i.e. adding the most certain predictions to the known queries and
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Algorithm 1: CKWS-adapted refined score attack.
Input: Ksimilar, C

s
ckw

, Q, Cs
td

, KnownQ, Re f Speed
Result: List of keyword conjunctions as predictions for trapdoors with certainty
f inal pred ← [];
unknownQ ← Q;
while unknownQ � ∅ do

// Set remaining unknown queries.

unknownQ ← {td : (td ∈ Q) ∧ (�ckw ∈ Ksimilar : (td, ckw) ∈ KnownQ)};
temp pred ← [];

// Propose a prediction for each unknown query.

forall td ∈ unknownQ do
cand ← [];
forall ckw ∈ Ksimilar do

s ← −ln(| |Cs
ckw

[ckw] − Cs
td
[td]| |);

Append {“kw”: ckw, “score”: s } to cand;
end
Sort cand in descending order according to the score;
certainty ← score(cand[0]) − score(cand[1]);
Append (td , cand[0], certainty) to temp pred;

end

// Stop refining or keep refining.

if |unknownQ | < Re f Speed then
f inal pred ← KnownQ ∪ temp pred;
unknownQ ← ∅;

else
Add Re f Speed most certain predictions temp pred to KnownQ;
Add the columns corresponding to the new known queries to Cs

ckw
and

Cs
td

end

end
return f inal pred

recompute sub-matrices Cs
ckw

and Cs
td

. Thereafter, either start a new iteration
or stop the algorithm if the number of unknown queries is less than Re f Speed.

4.5 Complexity

As in [6], a higher refinement speed will result in a faster runtime, but less accu-
rate predictions. However, due to our use of keyword conjunctions the number
of candidates for a trapdoor increases for larger d. Therefore, the runtime of the
CKWS-adapted refined score attack grows combinatorial. The time complexity
of the attack is given by O( f (v)+ g(v)), where f (v) = v!

d!(v−d)! · (d − 1) corresponds
to the time complexity of the generic extension, where we assume multiplying
two vectors takes constant time. Further, g(v) = |Q |

Ref Speed · |Q| ·

v!
d!(v−d)! · k is the
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time complexity of the attack. For both f and g, input v is either vsimilar or
vknown depending on the attack setup.

Besides the increase in runtime, having d > 1 also the space complexity of
the algorithm increases faster relative to the vocabulary size. Since co-occurrence
matrix Cckw in the similar-documents attack setup is msimilar×msimilar, in terms
of vocabulary size is vsimilar!

d!(vsimilar−d)!
×

vsimilar!
d!(vsimilar−d)!

thus increasing faster with larger
vsimilar.

This increase in time and space complexity led us to first further optimize the
revised algorithm for our implementations. Moreover, we use a GPU to decrease
runtimes through computing expensive matrix operations on it.

5 Experiments

5.1 Setup

Documents. As described previously, in our experiments we simulate our
attack using the publicly available Enron email document set introduced by
Klimt & Yang [12]. We chose this document set since this one is also used in
most attack papers requiring a set of documents. Similarly, we constructed the
same corpus of emails from the folder sent mail which results in a set of 30109
documents.

Keyword Extraction. We extract keywords from solely the contents of the
emails in the dataset, i.e. we do not consider email addresses or email subjects to
be part of the document set. For keyword extraction we use the Porter Stemmer
algorithm [20] to obtain stemmed words, moreover we remove stop words in the
English language like ‘the’ or ‘a’. Using this method results in a total of 62976
unique keywords in our entire considered document set.

Number of Keywords in Conjunction. Throughout our experiments we fix
d, i.e. the number of keywords allowed in one conjunction, to either 1, 2 or 3.
This means that no mixture of number of keywords is allowed in search. For
instance, when the d = 3 only queries with 3 distinct keywords are allowed, i.e.
queries that contain either 1 or 2 keywords are not allowed.

Testing Environment. We implemented the attack on an Ubuntu 20.04 server
with Intel Xeon 20-core processor (64 bits, 2.2 GHz), 512 GB of memory, and
NVIDIA Tesla P100 GPU (16GB). We used Python 3.7 and the Tensorflow
library [1] to accelerate matrix operations on a GPU.4

Limitations. Running experiments with larger vocabulary sizes requires a lot
of memory, since a vocabulary size of 150 and d = 2 means a document-keyword-
conjunction matrix size of 18065 × 11175 (already 1.5 GiB) and a maximum co-
occurrence matrix size of 11175 × 11175 (0.9 GiB) which both have to fit in the
memory of the GPU for fast calculations. Therefore, having similar vocabulary

4 Our code is available at https://github.com/marcowindt/passive-ckws-attack.

https://github.com/marcowindt/passive-ckws-attack
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sizes as used in the score attack is unrealistic in our generic extension strategy
setting without having sufficient resources. However, we propose an extrapolation
strategy to have approximate results for larger vocabularies.

5.2 Results

In our experiments where similar-documents are used as the attacker’s knowl-
edge, we use the same ratio in similar (40%) and real (60%) documents as in
[6]. Similar to [3,6,10], we define the accuracy to be the number of correct pre-
dictions divided by the number of unknown queries excluding the initial known
queries, i.e. the accuracy =

|CorrectPredictions(unknownQ) |

|Q |−|KnownQ |

.
If not specified otherwise, each accuracy result corresponds to the average

accuracy over 50 experiments. Also, the vocabulary used in experiments is always
created from the most frequently occurring keywords in the document set. From
this vocabulary the keyword conjunctions set is generated. In each experiment
it is assumed the attacker has observed 15% of queries that can be performed
by the user, i.e. |Q| = 0.15 ·mreal, where queries are sampled u.a.r. from Kreal to
construct trapdoors.

Fig. 1. Score attack using similar-
documents for varying vocabulary sizes
and initially known queries with d = 2,
|Dreal | = 18K, |Dsimilar | = 12K, |Q| =

0.15 · mreal.

Fig. 2. Frequency of keyword conjunc-
tions ordered from most frequent to least
frequent occurring keyword conjunction
in Dsimilar.

Result Extrapolation
Figure 1 shows the accuracy of the score attack from [6] where the attacker has
access to similar-documents for varying vocabulary size and d = 2. We show
these results to highlight that we can extrapolate the accuracy of the attack in
a similar-documents setting closely, where the extrapolation is depicted by the
dashed line and measured results are the solid line. We obtain this extrapolation
by first transforming the accuracies using the logit5 function. Using this trans-
formation, we obtain a space in which we seem to have a linear relationship such
that logit(acc) = b · vsimilar + a. We then perform a linear regression to obtain

5 logit(x) = log( x
1−x ).
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these coefficients using our experimental results. Lastly, we use the inverse logit
function to transform it back to the original scale. We make use of this extrapola-
tion where running experiments becomes infeasible (i.e. experiments with d = 2
and vreal > 500) to extrapolate the accuracy for larger vocabulary sizes.

In our linear regressions, we do not provide the coefficient of determination
R2 and the p-value since they are based on the assumption that results are
independent which is not true in our experiments as they all use the same doc-
ument set. Hence, these values should not be used to evaluate the quality of the
model even if they are high (e.g. R2

≈ 0.95 in Fig. 1) but the linear regression
is still valid. Although there may exist more precise extrapolation techniques,
our intention is to have a simple yet realistic approximation of the accuracy for
larger vocabularies for the sake of our discussion.

Frequency of Keyword Conjunctions. Figure 2 shows the frequency of a
keyword conjunction occurring in Dsimilar for d ∈ {1, 2, 3}, where keyword con-
junction rank is lowest for the most frequent keyword conjunction. We observe
the behavior of using keyword conjunctions instead of a single-keyword, i.e. the
frequency of the most frequent keyword conjunction becomes smaller with higher
d and the frequency of the least frequent keyword conjunction reaches almost
zero. This is to be expected, since the larger vocabulary size the higher the prob-
ability that certain keywords from a keyword conjunction do not appear in any
document together, i.e. considering the vocabulary is generated with the most
frequent keywords first. Note however, that the frequency for rank between 200
and 3600 part is higher for d = 2 relative to d = 1, which is due to the fact that
obtaining 4000 keyword conjunctions requires a smaller vocabulary size of 90 for
d = 2, and it is still the case that the most frequent keywords occur together.
Nevertheless, the same does not hold for d = 3 relative to d = 2, where we actu-
ally observe a decrease in keyword conjunction frequency. Here it already is the
case that the most frequent keywords used to create a keyword conjunction of 3
keywords do not have to necessarily occur together in a document.

Fig. 3. Accuracy plot of the CKWS-
adapted refined score attack with d =

2 extrapolated and varying vocabulary
size. With |Dreal | = 18K, |Dsimilar | =

12K, |Q| = 0.15 · mreal.

Fig. 4. Accuracy plot of the CKWS-
adapted refined score attack with d = 2
and varying number of known queries.
With |Dreal | = 18K, |Dsimilar | = 12K,
|Q| = 0.15 · mreal .
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CKWS-Adapted Refined Score Attack Using Similar-Documents.
Figure 3 shows the accuracy of the CKWS-adapted refined score attack using
similar-documents with d = 2 and varying vocabulary size. Also, the plot shows
an extrapolation of the accuracies for vocabulary sizes larger than 130 (and
smaller than 50). From the extrapolation of the accuracies for varying vocab-
ulary sizes we clearly see a rapid decrease in accuracy with larger vocabulary
sizes. We conclude that, when we consider the results with 30 known queries we
can still reach a reasonable recovery rate above 50% for vocabulary size 300 to
400 keywords. However, the results are far from the single-keyword search set up
presented in [6] achieving up to 85% recovery rate for vocabulary size of 1000.

In [6], they discussed how the ‘quality’ of a known query influences the accu-
racy. A known query is more qualitative if the underlying keyword occurs more
frequently. We remind that in the CKWS-adapted setting, it is a way to reduce
the number of known queries needed. A lower rank of a keyword conjunction in
Fig. 2 the query for the keyword-conjunction is considered more qualitative.

Figure 4 shows the accuracy of the CKWS-adapted refined score attack using
similar-documents with d = 2 and varying number of known queries. The plot
shows that the standard deviation of the accuracy, assuming 5 or 10 known
queries, is relatively high compared to the standard deviation for 15, 30, or 60
known queries. For 5 known queries the standard deviation is 0.15, which is at
least 3 times higher than the standard deviation for 15 known queries (≈0.05).
The accuracy increases and standard deviation decreases with a higher number
of known queries, since it becomes more likely to pick more qualitative queries
(u.a.r.). This also explains why we observe this noisy behavior of the accuracy
in the plot.

Fig. 5. Accuracy of the CKWS-adapted
refined score attack using known-data for
varying known-data rates p with d = 2
and vknown = vreal = 130.

Fig. 6. Accuracy of the extended refined
score known-documents attack with d =

2 and p = 0.7, i.e. nknown = p · nreal.

CKWS-Adapted Refined Score Attack Using p-Known-Documents.
Since we have shown in Sect. 5.2 that the CKWS-adapted refined score attack
does provide limited scaling with having d > 1, we explore how well the attack
performs assuming known-documents as the attacker’s knowledge. Figure 5
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shows the accuracy of the attack using known-documents with varying known-
documents rates of 0.05 ≤ p ≤ 0.8 and steps of 0.05. We observe that with the ini-
tial |KnownQ | = 10 setting the attack achieves higher accuracies faster for lower
known-documents rates compared to an attack setting having |KnownQ | = 5
initially. Also, with known-documents rates p ≥ 0.7 the accuracy of the attack
becomes constant and reaches near 100% accuracy for both 5 and 10 known
queries. However, we do note that having a vocabulary size of vreal = 130 is a
rather limited setting. In the next section we explore the attack using known-
documents with larger vocabularies.

CKWS-Adapted Refined Score Attack Using 0.7-Known-Documents.
In the previous result with varying known-documents rates we observed that the
accuracy of the attack using known-documents reaches near 100% for known-
documents rate p = 0.7 for both 5 and 10 known queries. Here we explore
the accuracy of the attack by fixing the known-documents rate to p = 0.7 with
vocabulary sizes 250 and 500. Figure 6 shows a bar plot for both these results with
error bar describing the standard deviation of the accuracy over 50 experiments.
We observe that for vocabulary size 250 the difference with an attack using
5 known queries compared to 10 known queries is small. Also, the standard
deviation in both settings is small. However, for the 500 keyword setting we
clearly see a decrease in accuracy using 5 known queries and a large standard
deviation. Whereas for 10 known queries the attack still reaches above 93%
accuracy and standard deviation is small. We do note however that in this case
an attacker has great advantage, since it knows at least 70% of the whole indexed
dataset and 10 known queries. In comparison, previous passive query-recovery
attacks [3,10] on single-keyword search did not exceed 40% accuracy assuming
known-documents rate of 0.8.

Fig. 7. Runtime of the CKWS-adapted refined score attack using known-documents
w.r.t. to vocabulary size, with d = 2 and p = 0.7.

Runtime and Memory Usage. Figure 7 describes the average runtime of the
attack using known-documents over 50 repetitions in function of vreal for d = 2.
We observe that the runtime is high for considerably small vocabulary sizes,
which is to be expected considering the time complexity described in Sect. 4.5.
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We only show the runtime of the attack using known-documents, however, run-
time of the attack using similar-documents is similar. Although our runtime can
further benefit from using multiple GPUs and even our code is written in such
fashion, we found that using two GPUs does not necessarily speed up our attack
due to large overhead.

The overall memory usage is dominated by the size of co-occurrence matrices
Cckw and Ctd. Therefore, we can define the main memory usage of the attack by
the size of these two matrices as a function of the vocabulary size and the number
of queries observed. In our experiments we always assume the attacker observes
|Q| = 0.15 · mreal queries. As a result an accurate estimation of the bytes used
by one experiment is given by numberOfBytes(vreal, d) = 2 · (0.15+ 0.152) ·

(vreal
d

)2
·

sizeof(float), where sizeof(·) returns the number of bytes used by the system to
store a certain data type. Filling in for vreal = 500, d = 2 and using 64 bit float,
numberOfBytes(500, 2) ≈ 40 GiB, whereas the GPU used in our experiments fits
at most 16 GB, meaning batching intermediate results is already required.

6 Discussion

Runtime. Although requiring large co-occurrence matrices for the extended
refined score attack is cumbersome, if the adversary has sufficient memory
resources these large matrices will not be her only concern. Her main concern
will be the runtime of the attack because without being able to parallelize our
attack to multiple GPUs our attack is difficult to run for vocabulary sizes > 500
and becomes infeasible for vocabulary sizes > 1000, whereas the added time
complexity using our extension strategy is relatively small.

Observed Queries. Furthermore, the question arises whether it is realistic for
an attacker to observe 15% of all possible queries. With only single-keyword
search we believe this can be achieved. However, with d = 2 the number of key-
word conjunctions to be observed is big, i.e. 0.15 ·

(vreal
d

)
. Although a smaller per-

centage could be considered more realistic and would even decrease the runtime
of the attack, larger |Q| is still desired, since it will result in better estimators
for prediction and thus higher accuracies.

Query Distribution. In our experiments we only sampled queries using a
uniform distribution. However, it is likely that this is unrealistic for keyword
conjunctions, since certain keywords might be more likely to be used in a query
together whereas other possible conjunctions might not be queried at all. Having
knowledge of whether certain keywords are more likely to be searched for in
conjunction would decrease the complexity of the attack, since one can then
only consider the top most likely keyword conjunctions.

Countermeasure. Previous query-recovery attacks on single-keyword search
also describe a countermeasure against their attack. In our work we focus on
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the question if a generic extension is possible. However, because of our generic
extension strategy, countermeasures tested in [6] will be applicable but were
not explored. Also, most introduced countermeasures do not actually leak less
information, they make the leakage unusable by the attack proposed in the
corresponding work (e.g. adding false positives in the result set).

Generic Extension. Although we described an adapted version of the refined
score attack by [6] to a conjunctive keyword setting since it is good perform-
ing with low runtimes for single-keywords, our generic extension strategy using
keyword conjunction sets is also valid for other attacks [2,3,10] and even other
types of attacks (e.g. attacks using query frequency [14,16]). However, we expect
similar runtime issues due to the large query space. Blackstone et al. [2] has a
particular algorithm using cross-filtering that could be helpful to be an attack
specifically against conjunctive keyword search.

7 Conclusion

In this work we presented a generic extension strategy to adapt any passive
query-recovery attack to a conjunctive keyword search setting. We specifically
explored its applicability using the refined score attack proposed by Damie et
al. [6] to a conjunctive keyword search setting. It is the first study of passive
query-recovery attacks in the conjunctive keyword search setting. We showed
that our attack using documents that are similar, but otherwise different from
the indexed documents on the server, does only achieve accuracy of 32% as
attack on conjunctive keyword search. However, applying the adapted attack
using known-documents can still perform with a low number of known queries
and vocabulary size of 500 and achieves a recovery rate similar to previous passive
query-recovery attacks [3,10,15] against single-keyword search.

Further, we discussed that the time complexity of the adapted attack grows
combinatorial with the number of keywords in the conjunctive search query.
Also, the storage required to perform the attack is dominated by the size of
the co-occurrence matrices computed from the attacker’s knowledge which also
increases combinatorial.
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