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Programmable optical circuits form a key part of quantum technologies today, ranging from
transceivers for quantum communication to integrated photonic chips for quantum information pro-
cessing. As the size of such circuits is increased, maintaining precise control over every individual
component becomes challenging, leading to a reduction in the quality of the operations performed. In
parallel, minor imperfections in circuit fabrication are amplified in this regime, dramatically inhibit-
ing their performance. Here we show how embedding an optical circuit in the higher-dimensional
space of a large, ambient mode-mixer using inverse-design techniques allows us to forgo control over
each individual circuit element, while retaining a high degree of programmability over the circuit. Us-
ing this approach, we implement high-dimensional linear optical circuits within a complex scattering
medium consisting of a commercial multi-mode fibre placed between two controllable phase planes.
We employ these circuits to manipulate high-dimensional spatial-mode entanglement in up to seven
dimensions, demonstrating their application as fully programmable quantum gates. Furthermore,
we show how their programmability allows us to turn the multi-mode fibre itself into a generalised
multi-outcome measurement device, allowing us to both transport and certify entanglement within
the transmission channel. Finally, we discuss the scalability of our approach, numerically showing
how a high circuit fidelity can be achieved with a low circuit depth by harnessing the resource
of a high-dimensional mode-mixer. Our work serves as an alternative yet powerful approach for
realising precise control over high-dimensional quantum states of light, with clear applications in
next-generation quantum communication and computing technologies.

A programmable optical circuit is an essential ele-
ment for applications in fields as diverse as sensing,
communication, neuromorphic computing, artificial in-
telligence, and quantum information processing [1–3].
The production of large, reprogrammable circuits is of
paramount importance for coherently processing infor-
mation encoded in light. However, there remain many
challenges associated with the design, manufacture, and
control of such circuits, which normally require a sophis-
ticated mesh of interferometers constructed with bulk
or integrated optics [2, 4]. Conventional construction
of these circuits exploits universal programmability on
two-dimensional unitary spaces to construct arbitrary
high-dimensional unitary transformations [5–8], herein
referred to as the “bottom-up” technique (Fig.1a). Over
the past two decades, the technological development of
integrated programmable circuits has enabled universal
programmability in up to 20 path-encoded modes, con-
taining a few hundreds of optical components on the same
chip [9–12].

Imperfections in optical circuits such as scattering loss,
unbalanced mode-mixing, and undesired cross-talk be-
tween modes are problematic as they reduce the accuracy
and success probability of the implemented circuit [13–
17]. These issues become increasingly challenging in large
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dimensions, as the number of optical elements grows
quadratically with the size of the circuit [2, 4]. Such im-
perfections can be addressed to some extent by increasing
the depth of the circuit through the introduction of ad-
ditional phase shifters and beamsplitters [13–15, 18, 19].
However, these additional components necessitate addi-
tional control, further increasing the demands associated
with circuit complexity. In this work, we present an alter-
native solution where the optical circuit is embedded in a
higher-dimensional space of a large ambient mode-mixer
such as a random scattering medium, placed between re-
programmable phase planes (Fig.1b). This “top-down”
approach harnesses the complicated scattering process
within a large mode-mixer to forgo control over each in-
dividual circuit element. Instead, an inverse-design ap-
proach is used that employs algorithmic techniques to
program an optical circuit with a desired functionality
within the random scattering medium [20, 21]. Simi-
lar approaches based on inverse-design have been used
in multi-plane light converters (MPLC) for spatial-mode
manipulation [22–24], where free-space propagation is
commonly used in place of a random scattering medium
(Fig.1c). Furthermore, inverse-design techniques have
also enabled a variety of optical circuits tailored towards
specific functionalities, ranging from designs of on-chip
photonic devices [25] to arrangements of bulk optical el-
ements for fundamental quantum experiments [26–29].

The capability to manipulate quantum states of light
using large-scale programmable circuits promises a myr-
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Figure 1. Designing programmable optical circuits: A general linear transformation T can be implemented via (a) the
conventional “bottom-up” approach, where the circuit is constructed from units consisting of beamsplitters (BS) and phase
shifters (P), or (b) the herein proposed “top-down” approach, where a target d-dimensional linear circuit is implemented within
a large ambient mode-mixer with dimension n > d, where n− d auxiliary modes serve as an additional resource. The technique
harnesses random unitaries Uj (such as a complex scattering system) interspersed with controllable phase planes Pj implemented
via spatial light modulators (SLMs), which provide programmability over the target circuit. A similar approach is used in (c)
multi-plane light converters, where the random unitaries are replaced with free-space propagation F .

iad of applications in quantum information science, rang-
ing from the demonstration of computational advan-
tage [30] to the realisation of quantum networks [31].
In this regard, high-dimensional quantum systems of-
fer significant advantages in terms of increased infor-
mation capacity and noise-resistance in quantum com-
munication [32–34], while also enabling more practical
tests of quantum nonlocality [35, 36]. While methods for
the transport [37, 38] and certification [39–41] of high-
dimensional entanglement have seen rapid progress over
the past few years, scalable techniques for its precise
manipulation and measurement are still lacking. As an
alternative to the bottom-up approach normally imple-
mented on integrated platforms [10], inverse-design tech-
niques have been used for realising quantum gates in di-
mensions up to d = 4 using bulk optical interferometers
[42, 43] and in d = 5 with multi-plane light conversion
[44, 45]. In parallel, recent advances in control over light
scattering in complex media [46, 47] have enabled linear
optical circuits for classical light [48, 49] and demonstra-
tions of programmable two-photon quantum interference
[50–52], showing their clear potential to serve as a high-
dimensional quantum photonics platform.

In this article, we harness light scattering through
an off-the-shelf multi-mode fibre to program generalised
quantum circuits for transverse spatial photonic modes
in dimensions up to seven. We apply these circuits for
the manipulation of high-dimensional entangled states of
light in multiple spatial-mode bases, demonstrating high-
dimensional Pauli-Z and X gates, discrete Fourier trans-
forms, and random unitaries in the macro-pixel and OAM
spatial-mode bases [41, 53]. Furthermore, in contrast
with single-outcome projective measurements that are
inherently inefficient [54], our technique realises gener-
alised transformations to a spatially localised “pixel” ba-

sis, effectively turning the channel itself into a generalised
multi-outcome measurement device. By harnessing this
functionality, we show how the on-demand programma-
bility of our gates enables us to both transport and certify
entanglement within the same complex medium. Such
multi-outcome measurements can be easily integrated
with next-generation single-photon-detector arrays [55]
and provide a key functionality in many quantum infor-
mation applications, such as allowing one to overcome
fair-sampling assumptions [56].

I. Top-Down Programmable Circuits: Concept and
Experimental Implementation

An optical circuit is described by a linear transforma-
tion T that maps a set of input optical modes onto a set of
output modes [57, 58]. The linear circuit T of dimension
d is built from a cascade of optical mode mixers U , and
phase shifters P . A deterministic construction can be
based on a cascade of reconfigurable Mach–Zehnder in-
terferometers, wherein Uj represents the embedded bal-
anced two-mode mixer, i.e. a 50:50 beam splitter, and
the Pj are phase shifters (Fig.1a) [5, 7]. As an alter-
native to this deterministic bottom-up construction, the
top-down design presented here relies on the capability to
harness large, complex, inter-modal mode mixers Uj of
dimension n (Uj ∈ U(n)) and reconfigurable phase planes

Pj = diag(eiθ) to construct a programmable target circuit
T of a smaller size (d ⩽ n) embedded within the larger
mode-mixers (Fig.1b). The decomposition of a top-down
programmable circuit is represented as

T ≈

L⩽O(d)
∏
j=1

UjPj , (1)
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Figure 2. Experimental setup: A high-dimensional spatially entangled two-photon state is generated via Type-II spontaneous
parametric downconversion (SPDC) in a periodically poled Potassium Titanyl Phosphate (ppKTP) crystal. The two photons
are spatially separated by a polarising beamsplitter (PBS) and sent to two parties, Alice and Bob. Alice performs single-
outcome projective measurements Π̂

µ
a that measure whether a photon is carrying spatial mode a from modal basis µ. These

are performed by a combination of a spatial light modulator (SLM3), single-mode fibre (SMF), and a single-photon avalanche
photodiode (APD). Bob implements a top-down programmable circuit that is constructed from a multi-mode optical fibre
(MMF) placed between two programmable spatial light modulators (SLM1,2). The circuit is used to program a variety of high-
dimensional quantum gates and serves as a generalised multi-outcome device. (Circular insert) A coincidence image depicting
a five-outcome measurement in basis µ = 1 performed with the Fourier F gate at Bob. The image is obtained by scanning a
detector across the output of the circuit, conditioned on a measurement of Π̂µ=1

a=0 at Alice, and shows a large intensity in mode
0 due to strong spatial-mode correlations. Coincidence detection events between Alice and Bob are registered by time-tagging
electronics. (L: lens, F: filter, HWP: half-wave plate)

where L is the depth of the circuit (the number of layers),
and the target circuit T is embedded in the total transfer
matrix of the system T. Optimal choices for the large
mode-mixer dimension (n) and the circuit depth (L) for a
given target circuit dimension (d) are discussed in Section
III.

We experimentally construct the programmable opti-
cal circuit with a 2-metre-long multi-mode fibre (MMF)
positioned between two programmable phase planes, P1

and P2, implemented on spatial light modulators (SLMs)
as depicted in Fig. 2. The MMF serves as a large,
complex mode-mixer with dimension n ≈ 200 that pro-
vides complicated inter-modal coupling [59–61], while
the SLMs provide programmability over the circuit to
be implemented. The circuit can be decomposed as
T = U2P2U1P1, where U1 represents the transfer matrix
of the optical system consisting of the MMF and the as-
sociated coupling optics and U2 is the 2f lens system. To
construct the circuit, we begin by characterising U1 in a
referenceless manner via our developed technique. Ran-
dom phase patterns are displayed on the planes P1 and P2

and the resulting intensity speckle images are measured

at the output. The data set is then used to optimise the
machine learning model that describes the optical system
of our experiment using the gradient descent method (see
Supplementary Information S.2). Once we have com-
plete knowledge of the mode-mixer U1, a given target
circuit is then programmed using a solution of phase pat-
terns obtained from the wavefront-matching (WFM) al-
gorithm [25, 62, 63]. The WFM algorithm is an inverse-
design technique that calculates the reconfigurable phase
planes by iterating though each of them in order to max-
imise the overlap between a set of input fields with the
desired output ones, and repeating this procedure several
times (see Supplementary Information S.5 for details).

II. Applications of Quantum Gates: Manipulation
and Certification of High-Dimensional

Entanglement

We utilise the programmable circuit to manipulate spa-
tially entangled two-photon states in a range of dimen-
sions, d ∈ {2,3,5,7} (see S.1 for details of the generated
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Figure 3. Manipulation and certification of high-dimensional entanglement: Normalised two-photon coincidence
counts (top row) and reconstructed density matrices (bottom row) corresponding to the output state obtained after local
operation of the Identity I, Pauli-Z, Pauli-X, Fourier F, and random unitary R gates on an input two-photon, five-dimensional
entangled state in the macro-pixel basis. The two-photon coincidences are measured in all six mutually unbiased bases (MUBs
µ ∈ {0...5}) via projective measurements at Alice and Bob. Due to state-channel duality, tomography of the output two-photon
state is equivalent to performing ancilla-assisted process tomography of the gates themselves [37, 64]. The fidelities of the
reconstructed density matrices are reported in Table I. The Identity and Fourier gates enable our circuit to be used as a
multi-outcome measurement device in MUBs µ ∈ {0,1} (red squares). By applying a two-basis entanglement witness on these
data [39], we are able to certify four-dimensional entanglement using the channel itself as a measurement device.

states). As shown in Fig. 2, the two photons are gen-
erated via the process of spontaneous parametric down-
conversion (SPDC) and sent to two parties, Alice and
Bob. Bob’s photon is locally manipulated by the pro-
grammable circuit T, while Alice’s photon is detected
via single-outcome projective measurements Π̂µ

a . These
measurements project the photon in a particular mode a
in basis µ via the combination of a holographic spatial
light modulator (SLM3) and single mode fibre [54, 65].
These single-outcome measurements require one to per-
form d projections to realise a complete measurement,
giving them a maximum effective efficiency of 1/d, which
is normally lower due to loss. In contrast, our pro-
grammable circuit T performs generalised basis trans-
formations to a localised “pixel” basis with a maximum
theoretical efficiency of unity (see Section III), enabling
multi-outcome measurements in any given basis. The
circuit is programmed to operate on two different input
bases, the macro-pixel basis [41] and the orbital-angular-
momentum (OAM) basis [53], while the target output
modes are randomly selected from the set of all possible
foci at the output of the circuit. We then implement a
variety of different target gates including the identity-I,
Pauli-Z, Pauli-X, Fourier-F, and random unitaries-R by
programming the circuit using the wavefront-matching
algorithm.

In order to verify that these gates preserve quantum co-
herence, we apply them on the input high-dimensionally
entangled states and reconstruct the resulting output

state via quantum state tomography (S.4). Due to state-
channel duality, tomography of the output two-photon
state is equivalent to performing ancilla-assisted process
tomography of the gates themselves [37, 64]. In this man-
ner, we can quantify how close to ideal these gates are,
while also verifying that they preserve high-dimensional
entanglement. To showcase the versatility of our plat-
form, we program 296 instances of all gates, sampling
from different output foci in different dimensions and in-
put bases. Fig. 3 (top row) shows examples of normalised
two-photon coincidence count data in all mutually unbi-
ased bases (MUBs) for five-dimensional I, Z, X, F, and R

gates programmed for the macro-pixel basis. Fig. 3 (bot-
tom row) shows density matrices of the manipulated two-
photon states reconstructed from these data, presenting a
clear agreement with theoretical prediction (insets). This
can be quantified via their fidelity (S.6) to the ideal out-
put states, which is reported in Table I for all dimensions
in the macro-pixel basis. Our fidelity calculation takes
into account the non-maximally entangled nature of the
input entangled state. Results for gates implemented in
the LG basis are presented in S.7. It is noteworthy that
the five-dimensional reconstructed state after the identity
gate I has a fidelity of F(ρo, ∣Φ+⟩⟨Φ+∣) = 83.8 ± 1.5% to
the maximally entangled state, which exceeds the bound
necessary to certify five-dimensional entanglement.

While we have verified that these gates are able to ma-
nipulate and preserve high-dimensional entanglement, we
now demonstrate how they can be used for the certifica-
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tion of entanglement using the channel itself. Entan-
glement certification requires correlation measurements
in at least two MUBs [39], which are normally per-
formed with SLM-based projective single-outcome mea-
surements (as done at Alice). Our programmable cir-
cuit functions as a generalised multi-outcome measure-
ment device, allowing measurements to be made both in
the pixel basis µ = 0 (via the identity gate I), as well
as the first MUB µ = 1 (via the Fourier gate F) with
an appropriate single-photon detector array. An exam-
ple of the five-outcome MUB measurement is shown in
Fig. 2 (insert) that depicts the output of the F gate, con-

ditioned on a MUB measurement Π̂µ=1
a=0 at Alice. The im-

age is obtained by tilting wavefronts using SLM2, which
is equivalent to scanning a detector across the output
(as shown in the illustration). The increased coincidence
counts observed in mode 0 are due to the strong two-
photon spatial-mode correlations exhibited by the en-
tangled state. The coincidence count data correspond-
ing to a two-basis measurement obtained by program-
ming the circuit in this manner are highlighted in Fig. 3
(red squares). Using these data, we obtain a fidelity of
68.9 ± 3.2% to a five-dimensional maximally entangled
state, certifying the presence of four-dimensional entan-
glement. In this manner, the multi-mode optical fibre
can be used to both transport as well as certify high-
dimensional entanglement. It is important to note that
while we have used two MUBs for entanglement certifica-
tion, the programmability of our circuit in general allows
for measurements in multiple or even “tilted” MUBs [39],
which would lead to increased fidelities and robustness
to noise.

The coincidence image in Fig. 2 also provides informa-
tion about scattering loss outside the output modes of
interest. This allows us to measure the success probabil-
ity of the gate operation, which is defined as the ratio of
coincidence counts in the target output modes over the
total coincidence counts integrated over all outputs in one
polarisation channel. We perform this measurement on
three randomly chosen implementations of the F gates in
2,3 and 5 dimensions and measure a success probability
of 0.36 ± 0.01, 0.27 ± 0.03, and 0.18 ± 0.04, respectively.
Additional information about the success probability and
optical transmittance of the device is provided in S.6. It
is worth noting that for this proof-of-concept demonstra-
tion, we only control a single polarisation channel of the
multi-mode fibre, thus reducing the success probability
by about half. Controlling both polarisation channels of
the multi-mode fibre can increase the success probability
by almost a factor two as well as improve the fidelity of
the implemented circuits. In addition, the results in Ta-
ble I report the circuits with the highest achieved fideli-
ties. While in theory using random-unitary as a mode-
mixer, this is statistically expected to be the same for
all types of implemented circuits at a given dimension,
experimental imperfections in the characterisation and
properties of U1 result in a spread of fidelities with a
lower average (please see Supplementary Information S.7

Table I: Quantum process fidelities of inverse-
designed gates in the macro-pixel basis. Due to
state-channel duality, these are equivalent to the
fidelities of the two-photon entangled states ma-
nipulated by these gates.

Gate d = 2 d = 3 d = 5 d = 7

I 97.3 ± 0.3% 94.4 ± 0.2% 84.7 ± 0.4% 73.1 ± 0.4%

Z 97.7 ± 0.4% 93.5 ± 0.3% 77.7 ± 0.4% 61.4 ± 0.4%

X 97.1 ± 0.4% 92.6 ± 0.2% 78.8 ± 0.5% 58.8 ± 0.5%

F 96.0 ± 0.6% 89.4 ± 0.4% 75.9 ± 0.4% 57.5 ± 0.4%

R 96.5 ± 0.5% 90.2 ± 0.2% 81.1 ± 0.4% 63.6 ± 0.4%

for details).

III. Programmability and Scalability

We have successfully demonstrated the ability to per-
form various gates in multiple spatial-mode bases in di-
mensions 2,3,5 and 7. However, as the dimension of the
target gate increases, maintaining high fidelities and suc-
cess probabilities becomes increasingly challenging. It
is thus imperative to examine the programmability and
scalablility of our design and address ways to improve its
performance and target practical experimental regimes
to work in. We investigate these numerically by imple-
menting a circuit based on Eq. 1 and varying three major
design parameters—the dimension of the mode mixers, n,
the dimension of the target gate, d, and the depth of the
circuit, L. Multiple implementations of the I, X, Z, F,
and R gates are simulated for specific values of the de-
sign parameters by changing the random-unitary mode
mixers and the sets of input and output modes for each
instance. For each gate, we calculate the fidelity with re-
spect to the ideal target gate and the success probability.

The key design considerations we address are: what di-
mension of mode mixers (n) should be chosen? And how
many layers (L) is it practical to use, given the optical
losses usually present at interfaces, and the experimental
overhead involved? Figs. 4a-d depict simulation results
showing how the fidelity and success probability of the
top-down design (n > d) scale as a function of either the
dimension of mode mixers (n) or the depth of circuit (L),
while keeping other design parameters constant. The first
observation is that increasing the size of the mode mixers
(n) increases the circuit fidelity (Fig. 4a). This demon-
strates that even when implementing practical low depth
circuits, such as we have presented here, high fidelities
can be reached, with high-dimensional mode mixers serv-
ing as a key resource for this behaviour. Furthermore, for
d/n < 0.1 the success probability is approximately con-
stant with n (Fig. 4b), allowing high-dimensional mode
mixers to be employed without affecting the success prob-
ability.
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Figure 4. Programmability and Scalability of top-down optical circuits: (a-b) Fidelity (F) and success probability
(S) of a d-dimensional quantum optical circuit as a function of the dimension of mode-mixers (n) for a circuit depth of L = 2.
(c-d) F and S as a function of L for n = 200. (e) A plot of Fidelity versus the parameter nL/d2 in the regime where d/n < 0.1.
The plot shows a converging trend towards unit Fidelity (F = 1), demonstrating that full programmability can be achieved
by increasing either the mode-mixer dimension n or the circuit depth L. (Insert) A plot of Success probability versus the
parameter L/d shows convergence to unity when the number of phase planes approaches L ≈ O(d).

Alongside this, we observe that increasing the depth of
the circuit (L) increases both fidelity and success prob-
ability (Figs. 4c-d), generalising recent results into the
n > d regime [66, 67]. In practise, however, scaling up
the circuit depth introduces experimental overheads in
the form of propagation and interface losses and accumu-
lation of errors. In general, we observe that the fidelity
increases and converges to unity (Fig. 4e for d/n < 0.1)
when the total number of reconfigurable elements nL ex-
ceeds the requirement for parameterising a d-dimensional
unitary transform O(d2), thereby showing a high level of
programmability of the top-down design. Furthermore,
the convergence of the success probability to unity oc-
curs when the circuit depth is on the order of the circuit
dimension L ≈ O(d). This is because there are d(n − d)
amplitudes in the transformation which correspond to
scattering from the target input modes, to modes out-
side of the target output modes, and to achieve unit suc-
cess probability these must all vanish requiring at least
this many controllable parameters. The top-down ap-
proach thus presents a powerful route towards realising
high-fidelity circuits by harnessing the resource of a high-
dimensional mode-mixing space (n > d), while operating
in a practical, low circuit depth regime (L ⩽ O(d)). Full
details of these simulations are presented in Supplemen-
tary Information S.8.

IV. Conclusion and Outlook

We have demonstrated that programmable optical
circuits in the transverse-spatial domain can be reli-
ably implemented using the top-down approach that
incorporates complex scattering processes between re-
configurable phase planes. Using our technique, we
programmed high-dimensional quantum gates within a
multi-mode fibre and used them to manipulate high-
dimensional entangled states of light in two different
spatial-mode bases. We verified that these gates preserve
quantum coherence by certifying that high-dimensional
entanglement persists after gate operations. We demon-
strated how our gates function as a generalised multi-
outcome measurement device, enabling the MMF chan-
nel to both transport, manipulate, and certify high-
dimensional entanglement. Finally, we performed ex-
tensive numerical investigations studying the scalability
of our approach, concluding that high circuit fidelities
can be reached by harnessing the resource of a high-
dimensional mode-mixer, while staying within the prac-
tical regime of low circuit depth. Fundamental aspects
of circuit design still present important open challenges,
such as proving that the technique can be used for the
universal implementation of unitary transformations, de-
terministic calculations for setting phase shifters, and op-
timising these circuits for better performance.

Beyond the transverse spatial degree-of-freedom, our
methods readily generalise to other platforms where
phase shifters and mode-mixers can be realised. For
instance, implementations of top-down designs in in-
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tegrated optics will be forthcoming as random-mixed
waveguides develop and low-loss reconfigurable phase
shifters become available [68–70]. Further developments
must also address practical issues including modal dis-
persion and spatio-temporal mixing that are present in
long multi-mode fibres and thick scattering media. These
obstacles, however, enable the extension of the top-down
circuit design into the spectral-temporal domain [71–74].
By demonstrating the practical realisation of high-
dimensional programmable optical circuits—within the
transmission channel itself—our work overcomes a sig-
nificant hurdle facing the adoption of high-dimensional
encoding in quantum communication systems, and paves
the way for practical implementations of programmable

optical circuits in various near-term photonic and quan-
tum technologies including sensing and computation.
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Supplementary information for: Inverse-design of high-dimensional quantum optical

circuits in a complex medium

The following supplementary information is provided: Details of the high-dimensionally entangled two-photon
source (S.1), acquisition of transfer matrix (S.2), projective measurements and detection efficiency (S.3), quantum
state tomography (S.4), construction of linear circuits (S.5), and analysis of fidelity, success probability and optical
losses (S.6). The supplementary results on manipulation of the high-dimensional entangled states using various types
of gates in the macro-pixel and the orbital-angular-momentum (OAM) bases are presented in (S.7). Finally, numerical
results on the programmability and scalability of our gates are reported in (S.8).

S.1. High-dimensional two-photon entanglement source

The high-dimensional spatially entangled two-photon state is generated via degenerate Type-II spontaneous para-
metric downconversion (SPDC) by pumping a 15-mm long periodically poled Potassium Titanyl Phosphate (ppKTP)
crystal with a 405nm continuous-wave laser. After passing through the long-pass dichroic filter and the band-pass
filter, the signal and idler photons are separated using a polarising-beam-splitter (PBS) and are mapped on to the
liquid-crystal-on-silicon-based spatial light modulators (SLM) (P1 and P3) which are placed in the Fourier plane of
the ppKTP crystal. The main characteristics of the entanglement source, i.e., the strength of transverse-momentum
correlation, generated beam waist, and the position of the beams, are determined by using our developed 2Dπ-
measurement [76] which is the joint coincidence measurement of local π-phase step knife-edge scans across the SLMs
at each party. The two-photon state is then characterised via quantum state tomography (S.4) and the entanglement
dimensionality is certified [77] using a high-dimensional entanglement witness in two discrete spatial-mode bases—the
Macro-pixel basis [41] and the orbital-angular-momentum (OAM) basis [78]. We utilise these two bases as the set of
input target modes for constructing the programmable circuits. For the macro-pixel basis, the size of pixels and their
spacing are determined by the joint transverse momentum amplitude (JTMA) [76]. For the OAM basis, the set of
modes are {∣−ℓ ⟩ , . . . , ∣0 ⟩ , . . . , ∣ℓ ⟩} when the dimension of the circuit d is odd, otherwise {∣−ℓ ⟩ , . . . , ∣−1 ⟩ , ∣1 ⟩ , . . . , ∣ℓ ⟩}.
The measured quantifiers of the generated high-dimensionally entangled two-photon states are reported in Table S.1
and the reconstructed density matrices are depicted in Fig. S.1 and Fig. S.2 for the macro-pixel and OAM bases,
respectively.

Table S.1: Generated high-dimensionally entangled two-photon states: State purity P, Entanglement di-
mensionality dent, Fidelity to maximally entangled state F , Entanglement of Formation (EoF ). Errors are
calculated as 3 standard deviations assuming Poisson statistics in photon counts.

Basis Dimension (d) P dent F(ρi, ∣Φ+ ⟩ ⟨Φ+ ∣) EoF (ebits)

M
ac

ro
-P

ix
el 2 96.7 ± 0.7 % 2 96.8 ± 0.4 % 0.80 ± 0.02

3 92.6 ± 0.4 % 3 95.3 ± 0.2 % 1.23 ± 0.01

5 88.8 ± 0.3 % 5 91.6 ± 0.2 % 1.51 ± 0.02

7 75.1 ± 0.3 % 6 83.0 ± 0.2 % 1.19 ± 0.01

O
A

M

2 97.7 ± 0.2 % 2 97.5 ± 0.1 % 0.81 ± 0.01

3 85.9 ± 0.2 % 3 90.8 ± 0.1 % 1.11 ± 0.01

5 83.2 ± 0.2 % 5 86.5 ± 0.1 % 1.19 ± 0.01

7 80.0 ± 0.1 % 6 80.6 ± 0.1 % 1.11 ± 0.01

S.2. Acquisition of transfer matrix

To construct the circuits, the optical apparatus is described by the transfer matrix: T = U2P2U1P1, where U2

is a 2f lens system and Pj is the j-th phase plane displayed on the SLMj . The transfer matrix U1 of the 2m-long
graded-index multi-mode fiber (Thorlabs-M116L02) and associated coupling optics between the first and second phase
planes (P1 and P2) in a single linear-polarisation channel is measured without using an external reference field. To
do so, we search for the transfer matrix U1 by optimising

min ∣Ii − ∣U2P2U1P1∣2∣2 . (S.2.1)
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Figure S.1. Generated high-dimensional entangled two-photon states in the macro-pixel basis. Measured coin-
cidence counts in all mutually unbiased bases (MUBs) and reconstructed density matrices via quantum state tomography in
dimensions, d = [2,3,5,7].

The optimisation is based on the gradient descent method fitting the acquired characterisation data consisting of
random phase patterns displayed on SLM1 and SLM2 and the corresponding measured output speckle intensity
images {Ii}i. The model of the optical apparatus is implemented in Keras using Tensorflow2 and complex-number
layers developed in [79]. The data set is prepared in three parts. In the first part, each input mode in a given basis
that is supported by the fiber is displayed on SLM1. This data provides accurate information of ∣U1∣. In the second
part, random superpositions of these input modes are prepared on SLM1 and sent through the fibre. The output
intensity speckles in this part allow for recovery of the relative phase and amplitude of transmission coefficient for a
particular output mode. Finally, both SLMs are used for displaying random superpositions of the input modes and
output modes. This final part of the data set allows for accurate reconstruction of U1, including calibration of the
unknown relative phases across the output modes.

S.3. Projective measurements and detection efficiency

The characterisation of the entangled light source both before and after manipulation by the circuits is performed
by local projective measurements. The computer-generated hologram (CGH) [80] for a particular spatial mode is
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Figure S.2. Generated high-dimensionally entangled two-photon states in the OAM basis. Measured coincidence
counts in all mutually unbiased bases (MUBs) and reconstructed density matrices via quantum state tomography in dimensions,
d = [2,3,5,7].

displayed on the SLM at each party. If the incident spatial mode is the complex conjugate of the hologram mode,
it is converted into a Gaussian mode, which couples efficiently into a single-mode fiber (SMF) positioned in the 1st-
order diffraction spot. Coincidence events between the detection of signal and idler photons in the selected modes is
registered by the coincidence logic within a coincidence window of 0.2 ns. The detection efficiency ηµa of measuring a
particular spatial mode, ∣ψµ

a ⟩ (corresponding to the a-th element of the µ-th basis), is estimated and the performed

measurements are then related to ideal projections by ˆ̃
Πµ

a = η
µ
a Π̂

µ
a , where Π̂µ

a = ∣ψµ
a ⟩⟨ψµ

a ∣ is the ideal projector.

S.4. Quantum state tomography

Quantum state tomography (QST) is performed through the measurement of an informationally complete set
of measurements and numeric inversion of the data, subject to physical constraints. It provides full characteristic
information about a state, and via performing QST on both the input and output states we can characterise the
implemented optical circuit. We perform QST via semidefinite programming (SDP) on both input and output states
after manipulation by the optical circuits. The SDP imposes data fitting of the non-normalised measurements subject
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to positive semi-definitness of the state ρ, and unit trace, and reads as

min
ρ,R

∣Cµν
ab
−RTr( ˆ̃Πµ

a ⊗
ˆ̃
Πν

bρ)∣2

s.t. ρ ≥ 0 , Tr[ρ] = 1,
(S.4.1)

where Cµν
ab

is the frequency of the outcome (coincidence count rate) and R is the count rate per integration window. Our
local measurement bases are complete sets of mutually unbiased bases (MUBs) [81], which are informationally complete

for QST [82], and constructed as : Π̂µ
a = ∣Mµ

a ⟩⟨Mµ
a ∣ and Π̂ν

b = ∣Mν
b
∗⟩⟨Mν

b
∗∣, where ∣Mµ

a ⟩ = 1√
d
∑d−1

m=0 ω
am+µm2

d
∣m ⟩ on

the basis of each implemented circuit, and ωd = exp(2πi/d) is a d-th root of unity. All SDPs are implemented in CVX,
running the commercial solver MOSEK.

S.5. Construction of linear circuits

Primarily, programming a circuit T is achieved by calculating the phase solutions {Pj}Lj=1 at each phase plane. The
wavefront matching algorithm (WFM) can do so by iteratively matching the wavefronts of target input and output
optical modes propagating through the device across all phase planes [25, 62, 63]. First, input arguments that contain
a set of input spatial modes {∣ψa(q)⟩}d−1a=0 labelled in the logical basis by {∣a ⟩in}d−1a=0, a corresponding set of output

spatial modes {∣φa(q)⟩}d−1a=0 that is related to the inputs via ∣aout ⟩ = T ∣ain ⟩, and a set of transfer functions {Uj}
between phase planes are provided to the WFM algorithm.

For each i-th iteration, a phase solution at the p-th plane is updated in a cyclic manner starting from the first to
the last L-th plane and then back from the last plane to the first. At a particular reconfigurable phase plane Pp, the
transfer matrix of the optical device T represented in the spatial q basis is decomposed into two sections:

T ∶=
L

∏
j=1

UjPj = BpPpFp, (S.5.1)

where Bp = ∏L
j=p Pj+1Uj and Fp = ∏p−1

j=1 UjPj such that the forward-propagating input mode onto the p-th phase

plane is represented by ∣ψa,(p) ⟩ = Fp ∣ψa ⟩ and the backward-propagating output mode onto the p-th phase plane is∣φa,(p) ⟩ = B†
p ∣φa ⟩. The phase mismatch between these input and output modes can then be adjusted by Pp:

∣φa ⟩ = BpPpFp ∣ψa ⟩ Ô⇒ ∣φa,(p) ⟩ = Pp ∣ψa,(p) ⟩ . (S.5.2)

Considering all d-target modes of interest, the matching matrix: Mp ∶= ∑d−1
a,a′=0 ⟨φa′,(p) ∣Pp ∣ψa,(p) ⟩ ∣a′ ⟩ ⟨a ∣ captures

the mode mixing at each phase plane. The WFM algorithm maximise Tr (Mp) by calculating a phase solution P
[i]
p

from the weighed average of overlapped fields over all d-target modes as follows:

P [i]p (q) = exp(iarg(d−1∑
a=0

φ
[latest]
a,(p) (q)⊙ψ∗[latest]a,(p) (q))) , (S.5.3)

where ⊙ is an element-wise multiplication on the q coordinate (SLM pixels) and φ
[latest]

a,(p) (q) and ψ
∗[latest]

a,(p) (q) is the

latest update of output and input optical fields at the p-th phase plane taking into account all other previous updated

phase planes {P [i]p } in the current iteration in both forward and backward directions. The algorithm is iterated until
an appropriate value of gate fidelity (Eq. S.6.2) is achieved or saturated.

In our experiment, the following gates T are implemented and defined as:

I =

d−1

∑
a=0

∣a ⟩ ⟨a ∣ , Z =

d−1

∑
a=0

∣a ⟩ωa
d ⟨a ∣ , X =

d−1

∑
a=0

∣a⊕ 1 ⟩ ⟨a ∣ , F =
1√
d

d−1

∑
a,b=0

∣b ⟩ωab
d ⟨a ∣ , (S.5.4)

where ωd = exp(2πi/d) and a⊕ 1 ∶= (a+ 1) mod d. R is the random unitary which is sampled from the Haar measure
for each implementation.
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S.6. Fidelity, success probability and optical losses

We use two figures of merit to characterise the implemented circuits—fidelity F and success probability S. The
first is the Uhlmann-Josza fidelity between two density matrices:

F(ρ, ρo) ∶= (Tr(√√ρρo
√
ρ))2 , (S.6.1)

where ρo is the experimental density matrix of the manipulated state supported on the space of the circuit and ρ is
the output density matrix of initial state ρi manipulated by theoretical ideal target circuit T: ρ = (I ⊗ T)ρi(I ⊗ T

†).
The fidelity thus implies an accuracy of the implemented circuits. Noting that, in the case that the initial maximally
entangled state is pure (P ∶= Tr (ρ2i ) = 1) and the implemented circuit can be represented by a rank-one Kraus operator

T̃, the fidelity reduces to:

F =
(Tr (T̃†

T))2
Tr (T̃†T̃)Tr (T†T) , (S.6.2)

which is normalised by the transmittance due to the scattering from the d-dimensional space of a circuit into other
optical modes. The transmittance is quantified by the second figure of merit, the success probability, S, of an
implemented circuit:

S ∶=
Tr (T̃†

T̃)
Tr (T†T) , (S.6.3)

The implemented d-dimensional circuit T̃ is embedded in T which lives in the n-dimensional space of the apparatus
such that: T̃ = PoTPi, where Po is the output dimensional reduction and Pi is the input dimensional expansion,
which map the circuit from d inputs of interest to n inputs of the optical device and from n outputs of the optical
device to the d output modes of circuit, respectively. We aim to use S to measure the scattering loss which stems
from the effect of the top-down circuit design, whereas another optical loss of the apparatus is analysed in the last
part of this section. Experimentally, the success probability S (Eq. S.6.3) is estimated on the output x space as

S =
1

d

d−1

∑
a=0
∫ d2x ∣d−1∑

b=0

t̃abφb(x)∣
2

=
1

d

d−1

∑
a=0
∫ d2x

d−1

∑
b=0

Iab

Ia
∣φb(x)∣2 , (S.6.4)

where t̃ab is a transmission coefficient given that T̃ = ∑d−1
a,b=0 t̃ab ∣b ⟩ ⟨a ∣ and φb(x) is the b-th standard output optical

field of circuit on the output x space. The normalisation of t̃ab is measured by the ratio of optical flux inside the b-th
output mode of a circuit, Iab ∝ ∣̃tab∣2, to total output optical flux transmitting through the system given the a-th input
mode, Ia ∶= ∫ d2xIa(x) where Ia(x) ∝ ∣∑n−1

b=0 t̃abφb(x)∣2. Noting that the optical flux Iab can be moved outside the
bracket because the target outputs are foci which are spatially separated and conveniently detected using a coherent
light source. For a two-photon entangled state, the success probability is then calculated in a similar way yet using
the outcomes of joint measurements between Alice and Bob who has a circuit and performs the measurements via
ˆ̃
Π(x) ∶= η(x) ∣x ⟩ ⟨x ∣ across the output spatial x space:

S
µ
=
1

d

d−1

∑
a=0
∫ d2x

d−1

∑
b=0

C
µ,ν=0

ab

C
µ
a (x) ∣φb(x)∣

2
, (S.6.5)

where the coincidence counts (Cµ,ν=0
ab

and Cµa (x)) are calibrated by the detection efficiencies for both parties as described
in S.3. And, Cµa (x) is defined as

C
µ
a (x) = R 1

η
µ
aη(x)Tr( ˆ̃Πµ

a ⊗
ˆ̃
Π(x)ρo). (S.6.6)

Noting that we perform the experiment on all input bases and the success probability is thus averaged over all input
bases, S = ∑d

µ=0 S
µ/(d + 1). Moreover, one can show that Eq. S.6.5 can be reformulated back as Eq. S.6.3 in the case

that the input maximally entangled state and process (circuit) are pure.
Finally, the overall transmittance T of a circuit is measured using the two-photon entangled state at the input and

output of a circuit,

T
µ
a =

d−1

∑
b=0

C
µ,ν=0

ab

C∗
µ,ν=0

ab

, (S.6.7)
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where C∗µ,ν=0ab is the coincidence counts at the initial state. The overall transmittance, T = S ×To, includes the success
probability, S, of a circuit and other optical transmittance of the apparatus, To.

In experiment, the measurements of success probability and overall transmittance are performed in the macro-pixel
input basis. The results are shown in Fig. S.3 where the averaged optical transmittance is 0.051± 0.008, 0.04± 0.006,
0.026 ± 0.004 and 0.028 ± 0.003 for 2, 3, 5 and 7-dimensional gates respectively. We performed the measurement
of the success probability for 3 randomly chosen implementations of Fourier-F gates in 2,3 and 5 dimensions and
observe S of 0.36 ± 0.014, 0.27 ± 0.03 and 0.18 ± 0.04, respectively. We thus infer an average optical transmittance of
To = 0.14 ± 0.02 which is attributed to the optical insertion and propagation losses, diffraction efficiency of the two
SLMs, and other interface losses at the lenses and mirrors. We note that the main contribution to the loss is due to
the success probability arising from control of only a single polarisation channel of the multi-mode fiber, which can
be further improved when all polarisation-spatial modes of the optical system are controlled.

Figure S.3. Success probability (left) and optical transmittance (right) in macro-pixel input basis.

S.7. Manipulation of high-dimensional spatially entangled states

To study the programmabiltiy of our quantum circuits, we program many types of unitary gates, namely, identity-
I, Pauli-Z, Pauli-X, Fourier-F, and random unitaries-R, in 2,3,5, and 7 dimensions in both the macro-pixel and
OAM input bases. For each implementation, we randomly appoint a set of target output foci to encode the circuit
with. We then use circuits to locally transform the d-dimensional spatially entangled two-photon state, which is then
characterised by performing quantum state tomography.

Table. S.7 provides the average fidelities and purities of the reconstructed states for various types of gate and bases
sampled over different sets of output foci. The histogram of fidelities of all the implemented gates are shown in Fig. S.7.
Examples of the best-case measured tomography data and reconstructed density matrices of these manipulated states
are shown in Fig. S.5 and Fig. S.6 for macro-pixel and OAM bases, respectively whose corresponding fidelities and
purities are tabulated in Table. S.7.
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Table S.2: Average fidelity F and purity P of output states ρo manipulated by a gate T in d dimensions in
the macro-pixel and OAM bases. The standard deviation is calculated from an ensemble of implemented
gates with different output foci, and for many realisations for the R gates.

Basis T
F(ρ, ρo) P(ρo)

d = 2 d = 3 d = 5 d = 7 d = 2 d = 3 d = 5 d = 7

M
a
cr

o
-P

ix
el

I 91.6 ± 4.7 % 87.9 ± 4.7 % 77.8 ± 5.2 % 70.2 %⋆ 95.2 ± 1.4 % 96.0 ± 3.3 % 87.7 ± 2.9 % 73.3 %⋆

Z 92.1 ± 3.8 % 89.9 ± 3.8 % 73.7 ± 3.6 % 61.4 %⋆ 95.5 ± 2.0 % 95.9 ± 2.0 % 87.8 ± 2.5 % 68.0 %⋆

X 91.7 ± 3.5 % 88.7 ± 4.0 % 73.3 ± 4.7 % 57.2 %⋆ 95.3 ± 2.1 % 96.1 ± 2.7 % 86.6 ± 3.8 % 72.3 %⋆

F 89.1 ± 3.7 % 86.9 ± 2.0 % 69.9 ± 3.6 % 57.5 %⋆ 88.9 ± 2.0 % 85.6 ± 1.8 % 78.4 ± 1.5 % 69.5 %⋆

R 89.4 ± 6.2 % 85.4 ± 2.7 % 73.2 ± 4.0 % 63.6 %⋆ 92.3 ± 2.2 % 86.9 ± 1.5 % 80.8 ± 1.4 % 70.8 %⋆

O
A

M

I 90.9 ± 2.2 % 86.7 ± 4.5 % 71.3 ± 3.7 % 60.3 ± 4.8 % 90.9 ± 0.4 % 82.2 ± 1.8 % 75.8 ± 1.9 % 68.9 ± 1.9 %

Z 91.6 ± 3.6 % 87.3 ± 2.9 % 73.8 ± 7.0 % 55.7 ± 9.3 % 90.1 ± 1.0 % 82.2 ± 1.1 % 76.0 ± 2.0 % 69.6 ± 1.5 %

X 94.1 ± 2.3 % 86.0 ± 4.1 % 74.3 ± 3.0 % 51.4 ± 6.5 % 92.6 ± 1.0 % 81.5 ± 2.3 % 76.5 ± 1.9 % 71.1 ± 2.8 %

F 91.0 ± 2.2 % 83.7 ± 4.4 % 70.7 ± 2.6 % 59.0 ± 5.8 % 92.2 ± 1.0 % 79.0 ± 1.4 % 75.5 ± 1.9 % 71.2 ± 0.7 %

R 91.2 ± 1.9 % 83.9 ± 3.0 % 72.4 ± 2.7 % 54.4 ± 6.7 % 91.0 ± 1.1 % 83.5 ± 4.7 % 76.3 ± 2.1 % 73.8 ± 0.9 %

⋆The standard deviation is not reported.

Figure S.4. Histogram of fidelities of optical circuits implemented in different dimensions
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Table S.3: Fidelity F and purity P of output states ρo manipulated a gate T in d dimensions in the macro-
pixel and OAM bases corresponding to the results presented in Fig. S.5 and S.6. The standard deviation
is calculated using error propagation assuming Poisson statistics in photon counts.

Basis T
F(ρ, ρo) P(ρo)

d = 2 d = 3 d = 5 d = 7 d = 2 d = 3 d = 5 d = 7

M
a
cr

o
-P

ix
el

I 97.3 ± 0.3 % 94.4 ± 0.2 % 84.7 ± 0.4 % 73.1 ± 0.4 % 96.4 ± 0.8 % 97.8 ± 0.7 % 88.5 ± 0.9 % 70.3 ± 0.5 %

Z 97.7 ± 0.4 % 93.5 ± 0.3 % 77.7 ± 0.4 % 61.4 ± 0.4 % 97.9 ± 0.9 % 96.3 ± 0.9 % 90.3 ± 0.8 % 68.0 ± 0.6 %

X 97.1 ± 0.4 % 92.6 ± 0.2 % 78.8 ± 0.5 % 58.8 ± 0.5 % 96.5 ± 0.7 % 97.1 ± 0.7 % 91.3 ± 0.9 % 74.7 ± 0.4 %

F 96.0 ± 0.6 % 89.4 ± 0.4 % 75.9 ± 0.4 % 57.5 ± 0.4 % 92.2 ± 0.6 % 85.4 ± 0.7 % 80.4 ± 0.7 % 69.5 ± 0.5 %

R 96.5 ± 0.5 % 90.2 ± 0.2 % 81.1 ± 0.4 % 63.6 ± 0.4 % 92.9 ± 0.7 % 88.7 ± 0.5 % 83.1 ± 0.8 % 70.8 ± 0.6 %

O
A

M

I 94.0 ± 0.1 % 94.6 ± 0.2 % 78.4 ± 0.3 % 65.7 ± 0.2 % 91.4 ± 0.3 % 81.5 ± 0.4 % 77.5 ± 0.4 % 70.8 ± 0.3 %

Z 94.3 ± 0.2 % 92.0 ± 0.1 % 81.2 ± 0.2 % 63.0 ± 0.2 % 89.2 ± 0.3 % 81.1 ± 0.3 % 78.5 ± 0.4 % 68.0 ± 0.3 %

X 96.8 ± 0.2 % 91.3 ± 0.2 % 77.5 ± 0.2 % 60.6 ± 0.2 % 92.4 ± 0.4 % 84.1 ± 0.3 % 79.1 ± 0.3 % 74.5 ± 0.3 %

F 93.8 ± 0.3 % 88.9 ± 0.3 % 75.5 ± 0.2 % 67.0 ± 0.2 % 93.5 ± 0.5 % 79.3 ± 0.4 % 77.5 ± 0.4 % 71.6 ± 0.3 %

R 93.0 ± 0.3 % 87.6 ± 0.2 % 75.4 ± 0.2 % 62.2 ± 0.2 % 91.6 ± 0.5 % 80.8 ± 0.3 % 76.8 ± 0.3 % 74.6 ± 0.3 %
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Figure S.5. Manipulation of 2, 3 and 7-dimensional spatially entangled two-photon states in the macro-pixel basis using the
I, Pauli-Z, Pauli-X, Fourier F and random unitary R gates. In each panel, the upper part shows the two-photon coincidence
counts in all MUBs and the lower part depicts reconstructed density matrices.
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Figure S.6. Manipulation of 2, 3, 5 and 7-dimensional spatially entangled two-photon states in the OAM basis using the I,
Pauli-Z, Pauli-X, Fourier F and random unitary R gates. In each panel, the upper part shows the two-photon coincidence
counts in all MUBs and the lower part depicts reconstructed density matrices.

S.8. Programmability and scalability of top-down designed circuits

To investigate the programmability and scalability of our approach, we numerically construct many instances of the
high-dimensional circuits by varying our design parameters, i.e., dimension of circuit n, dimension of mode mixers d,
depth of circuit L, using the model

T ∶= UL+1

L

∏
j=1

PjUj , (S.8.1)

where the n reconfigurable phase elements at each Pj are found using the wavefront-matching algorithm as explained
in S.5 given a set of n × n unitary matrices {Uj}j and a set of d input and output modes of interest. The codes for
these simulations are available in [83]. Once a circuit is implemented, we classify its performance by measuring fidelity
(Eq. S.6.2) and success probability (Eq. S.6.3). For a given set of design parameters n, L and d, we implement at least
100 realisations of the Identity I, Pauli-X, Pauli-Z, Fourier-F, and random unitary R gates (Eq. S.5.4), by varying
the set of d input and output modes of interest which can be randomly selected or specifically assigned. We simulate
these circuits by treating the mode-mixers {Uj}j as either a set of random unitaries, or discrete Fourier transforms
(DFT).

As presented in the main text, when the dimension of the circuit d is less than the dimension of mode mixers n
(d/n < 0.1), both fidelity and success probability reduce as the circuit dimension, d, increases. Fig. S.7 conveys these
trends in detail. For all these realisations, all mode mixers {Uj} correspond to the same random unitary matrix,
and the positions of input/output modes of interest are randomly selected for each implementation. The behaviour
reported in Fig. S.7 is also observed either when different random mode-mixers are used in each layer, or input/output
modes are specifically assigned to the first d modes of the Uj .

For a device described by Eq. S.8.1, the total number of degrees of freedom is given by the number of reconfigurable
elements nL. On the other hand, the constraints to program a d-dimensional circuit T is O(d2) [6, 84]. A larger d
leads to loss of performance because the number of constraints required to program the circuit increases. Thus, as d
increases, the number of reconfigurable elements does not change. Improving the figures of merit of a d-dimensional
circuit can therefore be addressed in two primary ways: increasing the dimension of mode mixers, n, or the depth
of circuit, L. As shown in Fig.S.8a, the fidelity will rise to unity when the total number of reconfigurable elements
exceeds the number required to program a unitary operation (O(d2)). The point at which F = 1 depends on the ratio
of d/n. In the case where d = n, the number of reconfigurable elements required is optimal, whereas in the cases where
d/n < 1, the number of reconfigurable elements necessary for the full programmability increases as d/n decreases.

With respect to the success probability, we observe that it increases as a function of the circuit depth and reaches
unity when L ≈ O(d) in all cases of d ≤ n (Fig.S.8b). In this regime, full programmability is achieved and is seen to
be independent of d/n.
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These results imply that in order to achieve both high fidelity and success probability, one does not need to solely
rely on the number of reconfigurable elements, but also on their distribution across the circuit. Ideally, one would want
to implement a fully programmable circuit using the full dimension of mode mixers (d = n) constructed from 2×2 beam
splitters or n × n mode mixers, since this achieves the minimum number of reconfigurable elements [5, 7]. However,
it is known that in the presence of imperfections, an increase in the depth of the circuit is required to improve the
fidelity in such schemes [13–15]. Scaling the depth of circuit in practice may nonetheless not be the most viable option
due to a variety of experimental reasons, namely, propagation and interface losses and accumulation of errors. Instead
of considering errors and scattering losses as a problem, the top-down approach presents a reasonable alternative
(d < n and L ≲ O(d)) where randomness is exploited to implement a circuit with a low depth. Here, both fidelity
and success probability are acceptably high while n can increase to improve the fidelity without reducing the success
probability from unity when L > 2d, or with a trade-off on the success probability when L ≤ 2d. Many optical devices,
for instance, computer-generated holograms and MPLC device [22, 85], can be considered to be in this category where
mode-mixing can be implemented by free-space propagation, a 2f lens system, or another transformation such as a
circulant matrix [86, 87].

Finally, while the deterministic construction of programmable circuits from discrete Fourier transforms is known
for d = n [88, 89], a proof of universal programmability of unitary circuits using random-unitary mode mixers remains
open to the best of our knowledge, and the deterministic construction of such circuits is yet to be discovered.
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Figure S.7. Simulated fidelity F and success probability S for all gates implemented in a circuit with random
unitary mode mixers: (a-c) F and S as a function of the dimension of mode-mixers, n, with a circuit depth L = 2 and (d-f)
F and S as function of circuit depth L while using mode-mixers with dimension n = 200.
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