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Intensifying the spatial resolution of 3D thermal models
from aerial imagery using deep learning-based image
super-resolution
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aSchool of Surveying and Geospatial Engineering, College of Engineering, University of Tehran,
Tehran, Iran; bDepartment of Geo-Information Science and Earth Observation (ITC), University of
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ABSTRACT
Nowadays, 3D thermalmodels can play an important role in buildings’
energy management while acquiring multisource data to generate a
high-resolution 3D thermal model. Consequently, in this article, a
method for intensifying 3D thermal model using deep learning-based
image super-resolution is presented. In the proposed method, first,
the enhanced deep residual super-resolution (EDSR) deep network is
re-trained based on thermal aerial images. Second, the resolution of
low-resolution thermal images is enhanced using the newly trained
network. Finally, the state-of-the-art structures from motion (SfM),
semi global matching (SGM) and space intersection are utilized to
generate intensified 3D thermal model from the resolution enhanced
thermal images. Spatial evaluations indicate a 5% increase in edge-
based image fusion metric (EFM) for the intensified 3D model.
Besides, the evaluations show that the modulation transfer function
(MTF) curves of the intensified 3D thermal model are closer to a refer-
encemodel against the original 3D thermalmodel.

HIGHLIGHTS

� A 3D thermal model intensification solution using EDSR is pro-
posed which is independent of hardware techniques and multi-
source data.

� Considering the importance of edge sharpness in the intensi-
fied 3D thermal model, the quality of edges is assessed using
MTF curves and the EFM metric.

� In comparison to the original 3D thermal model, the MTF
curves of the intensified 3D thermal model are closer to the
MTF curve of the high-resolution 3D model.

� The EFM metric shows higher values for MTF curves of the
intensified 3D thermal model against MTF curves of the original
3D thermal model.
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1. Introduction

Nowadays, the use of a 3D thermal model generated from aerial thermal images, in which
the digital number (DN) values from thermal images are mapped, are more commonly
applied. These models are mainly used in building inspections which helps in detecting of
heat losses, incomplete insulation in roofs, cracks, air and moisture leakages, etc. Also,
detecting areas with energy leaks to reduce energy consumption plays an important role
in buildings energy management (Rakha et al. 2018). Thus, it seems necessary to have
accurate and precise information about the surface temperature and its spatial pattern
(Mandanici et al. 2019). In this regard, 3D thermal models that present thermal informa-
tion and provide 3D building roofs information can be used to detect, interpret and
measure thermal anomalies in building and roof inspections (Borrmann et al. 2013).

One of the challenges of having such a 3D thermal model is its spatial resolution. In
fact, because of the need for larger IFOVs in thermal cameras (to ensure that enough
energy reaches the detector), the spatial resolution of thermal images is usually fairly
coarse. Consequently, the 3D thermal model generated only based on thermal images pro-
vides a low spatial resolution and few details that may challenge the process of detecting,
interpreting and measuring thermal anomalies (Khodaei et al. 2015).

The proposed methods to generate a high-quality 3D thermal model can be divided
into two main groups as multi-source and single-source methods. In multi-source meth-
ods, researchers use thermal images and information from other resources such as laser
scanners data and RGB images or panchromatic images simultaneously (Oreifej et al.
2014; Borrmann et al. 2013; Ant�on and Amaro-Mellado 2021) . That is while in single
source methods, only thermal images are used and attempt to improve the quality of the
final product.

The multi-source methods are classified into two categories of methods that focus on
image space and those works that on object space. Research that increases thermal image
resolution by fusing it with RGB or panchromatic images falls into the first category (Ma
et al. 2019). In the methods focus on object space, researchers have used fusion-based
techniques for enhancing the accuracy of 3D thermal models. As an instance, in some
studies the 3D model is generated using RGB images or laser scanner data and then, the
thermal information is mapped onto the 3D model (Ham and Golparvar-Fard 2013; Yang
et al. 2018; Javadnejad et al. 2020; Alba et al. 2011; Borrmann et al. 2013). In other stud-
ies, 3D models from thermal and RGB images have been generated separately and regis-
tered by different methods to enhance the resolution of the 3D thermal model (Maset
et al. 2017; Javan and Savadkouhi 2019; Dahaghin et al. 2021).

Obviously, the multi-source methods are not applicable in the cases where only ther-
mal images are available. Acquiring multisource data and registering data from various
data sources are the challenging process because different sensors are concentrated on dif-
ferent operating ranges and environmental conditions (Zhang et al. 2019). In addition,
regarding the simultaneous use of visible and thermal sensors, it seems necessary to men-
tion these points that first dual sensors that capture thermal and RGB images at the same
time are normally too expensive and not cost-effective for lots of projects. Second, ther-
mal images should be taken at night and when there is no light reflection, while RGB
images should be taken during the day and when enough light exists. Simultaneous cap-
turing of these two images is used mainly in cases related to interpretation application. In
the 3D information extraction projects, it is mostly recommended not to take RGB and
thermal images at the same time.

In the single source methods, an attempt is made to increase the 3D thermal model
resolution only by increasing the thermal image resolution. One way to achieve this is the
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resolution enhancement of thermal images through ‘hardware’ techniques, which entails
high costs and many limitations (Yue et al. 2016). Therefore, resolution enhancement of
thermal images independent of hardware techniques can be more practical for generating
high-quality 3D thermal models.

As another solution in the single source methods, super-resolution (SR) techniques
that use images of just one sensor have become a potential way for obtaining high reso-
lution images (Yue et al. 2016) and, then, high-quality 3D model. Indeed, SR is a tech-
nique that reconstructs a higher-resolution image or sequence from the given low
resolution images (Yue et al. 2016; Dong et al. 2016).

Against various methods of producing super-resolution images, single-image super-
resolution (SISR) techniques that use limited low-resolution information from a single
image to estimate the mapping from low-resolution to high-resolution space have been
used in many studies (Kim and Kwon 2010). The SISR methods are classified into three
groups including interpolation-based methods that suffer from accuracy deficiency (for
example, bi-cubic interpolation), reconstruction-based methods that are usually time-con-
suming and learning-based methods (Yang et al. 2019). Among the learning-based meth-
ods, deep learning (DL) solutions, particularly convolutional neural networks (CNNs), are
superior to other methods because they are actually able to enhance the data in an infor-
mation-theoretical sense (Kansal and Nathan 2020; Liebel and K€orner 2016).

Nowadays, researchers have focused on providing networks that can produce better
high-resolution images against simple up-sampling methods such as bi-cubic interpol-
ation. Some of these networks are CNN-based SR (SR-CNN)(Dong et al. 2016), very deep
super-resolution (VDSR) (Kim et al. 2016), enhanced deep residual super-resolution
(EDSR) (Lim et al. 2017), super-resolution network for multiple degradations (SRMD)
(Zhang et al. 2018), very deep residual channel attention networks (RCAN) (Dai et al.
2019), etc.

Researchers have also used SR techniques in the 3D information extraction from RGB
images. For example, Zhang et al. (2019) generated high-quality DSMs by improving the
quality of images using super-resolution methods. They applied various super-resolution
methods to the RGB images and compared the quality of the resulting DSMs. In another
work, Burdziakowski (2020) utilized SR algorithms to increase the geometric and inter-
pretative quality of the final photogrammetric products. They concluded the photogram-
metric products generated from high-altitude images processed by the SR algorithm
showed a similar quality to the reference products generated from low-altitude images
and, in some cases, even improved their quality. In Pashaei et al. (2020), the ability of a
DCNN-based SISR model, named enhanced super-resolution generative adversarial net-
work (ESRGAN), to predict the spatial information degraded or lost in a hyper-spatial
resolution unmanned aerial system (UAS) RGB image set was studied. Results showed the
accurate extraction of interior and exterior imaging geometry from a super-resolved image
set.

Although the super-resolution of RGB and panchromatic images has been extensively
studied, the DL-based enhancement of thermal images is a newer field of research. In
some research for thermal images enhancement, network training is done based on
images from the visible spectrum at different colour space representations (Choi et al.
2016; Almasri and Debeir 2018). In contrast to these methods, a number of studies in
recent years have focused on the production of high-resolution thermal images through
network training using low-resolution thermal images (Rivadeneira et al. 2019; Kansal
and Nathan 2020).
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This research proposes to generate a high-resolution 3D thermal model from lower
resolution aerial thermal imagery captured by a low-cost camera mounted a low weight
drone. For this purpose, super-resolution thermal images are generated based on training
a deep network while quality of aerial thermal images and the information content is
lower in thermal imagery than RGB images. This research aims also to investigate how
much this enhancement can improve the spatial resolution of the final 3D thermal model
generated based on low quality aerial thermal images. For the purpose, a DL-based super-
resolution network is trained and applied to generate intensified 3D thermal model. To
evaluate the capability of the proposed methodology, the effect of SISR algorithm on 3D
thermal model intensification is investigated by measuring spatial resolution evaluation
criteria and answer to the question whether this low-cost solution can help to improve
the quality of 3D models generated by low quality and cost images.

The remainder of this article is organized as follows: Section 2 describes the method-
ology, the quality assessment metrics for evaluating the intensified 3D thermal model and
dataset that is used in this article. In Section 3, the results of generating a 3D thermal
model based on the proposed solution are presented and discussed in detail. Lastly,
Section 4 provides a conclusion and future perspective.

2. Materials and methods

2.1. Methodology

Given the importance of producing high-quality 3D thermal the problems of conventional
solutions, increasing the spatial resolution of aerial thermal images using DL-based SISR
seems to be a practical solution for producing intensified 3D thermal models. In Figure 1
the proposed method to generate an intensified 3D thermal model is presented.
Accordingly, after training the selected deep network, the spatial resolution of each ther-
mal image extracted from the thermal video will be increased, then, intensified 3D model
is generated from generated high-resolution aerial thermal images. Afterwards, the DN
values of high-resolution aerial thermal images are mapped onto the intensified 3D model
and the intensified 3D thermal model is generated. It is noteworthy mentioning that con-
verting thermal image DN values into absolute temperature values is not in the scope of
this article. If needed, radiometric calibration and conversion of thermal DN value into
temperature could be implemented.

Figure 1. Proposed method for generating high-resolution 3D thermal model from low-resolution aerial ther-
mal images.
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2.1.1. Pre-processing
This step includes two basic phases of thermal image extraction from captured string
video frames and the thermal camera calibration. The thermal camera captures the video
which is converted into images. The size of extracted image frames is 640� 480 pixels.

One of the main photogrammetric parts here is camera calibration, which intends to
calculate the parameters of camera model from 2D images (Peng and Li 2010). Currently,
the techniques for camera calibration are classified into two main groups: the traditional
camera pre-calibration and the self-calibration strategies. The traditional camera calibra-
tion methods are performed before using the photogrammetric procedure and solve the
camera parameters based on accurate scene information, such as points or lines with pre-
cise coordinates. Thus, these methods normally result in more accurate camera calibration
(Yan et al. 2016). To this end, an appropriate test field must be designed. Many effective
factors such as simple structure, material, shape, and target dimensions should be consid-
ered in test field designing. The features of the test field, as well as their coordinates,
should be easily identified as well. The projection between image location of features and
their object coordinates are then employed to conclude the camera calibration parameters.

In a study conducted by Usamentiaga et al. (2017), the camera calibration process was
done using both chessboards and circular patterns. Comparing the obtained results
revealed better accuracy for the circular pattern. Consequently, for the proposed method,
a planar circular test field is designed and images are captured from several directions
and orientations based on Zhang’s method (Zhang 2000). The test field is a rectangular
calibration board (with 13� 17 hollow circles). The diameter of circles is 12mm and the
distances between their centres are 24mm. Also, six coded targets are embedded on the
calibration board to identify the position of targets in each of images (Figure 2a). Due to
the limitation of the wavelength detectable by thermal cameras, the calibration board is
heated for better detection and higher contrast, followed by imaging from multiple views
(Figure 2b). After imaging, adaptive thresholding is used to generate binary images
(Prakash and Karam 2012). In the next step, the geometric centres of the circles are iden-
tified (Ouellet and H�ebert 2009) (Figure 2c).

Figure 2. Thermal camera calibration. Calibration target (a), Camera positions (b), Detection of centres of circles based
on Ouellet method (c), and mean re-projection error chart (d).
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After determining the geometric centre of targets in all images, each point is re-pro-
jected from object space to image space by collinearity equations (Equations (1) and (2))
(Javan and Savadkouhi 2019):

x ¼ � c
r11 X � X0ð Þ þ r21 Y � Y0ð Þ þ r31 Z � Z0ð Þ
r13 X � X0ð Þ þ r23 Y � Y0ð Þ þ r33 Z � Z0ð Þ (1)

y ¼ � c
r12 X � X0ð Þ þ r22 Y � Y0ð Þ þ r32 Z � Z0ð Þ
r13 X � X0ð Þ þ r23 Y � Y0ð Þ þ r33 Z � Z0ð Þ (2)

In the above equations, x and y are image coordinates, c is focal length,
X0, Y0, and Z0 are coordinates of projection center, X, Y , and Z are object coordinates,
and r denotes elements of the rotation matrix. To determine lens distortion parameters,
Brown model equations are used (Equation (3) and (4)) (Brown 1971):

x
0 ¼ xð1þ k1r

2 þ k2r
4 þ k3r

6 þ p2ðr2 þ 2x2 þ 2p1xyÞÞ (3)

y
0 ¼ yð1þ k1r

2 þ k2r
4 þ k3r

6 þ p1ðr2 þ 2y2 þ 2p2xyÞÞ (4)

where x
0
and y

0
show image coordinates that have no distortion, ki represents the lens

radial distortion parameter, pi is lens decentring distortion factor, and r is the radial dis-
tance from the perspective point projected on the image plane.

In geometric calibration, the mathematical model converting from the target coordin-
ate system and the corresponding coordinates in the image space is also computed.
Therefore, the accuracy of the calibration algorithm can be estimated based on the mean
re-projection error. Figure 2d presents the mean re-projection error per image. As it is
obvious from the figure, the average value of 0.315 pixels is estimated over 13 images and
221 calibration points.

2.1.2. 3D thermal model intensification
As shown in Figure 1, this phase consists of two main steps. In the first step, the process
of producing a high-resolution thermal image from a low-resolution one is done by train-
ing a DL-based SISR model. In the next step, the process of producing the intensified 3D
thermal model is performed based on the outputs of the previous steps. Details of these
two steps are given in the followings.

2.1.2.1. Image resolution enhancement. To enhance the thermal image resolution, the
EDSR network, which is a convolutional neural network (CNN), is used to apply SISR
(Lim et al. 2017). Since in this study showing the efficiency of SISR methods in 3D ther-
mal model intensification is important, the EDSR network is chosen due to its simplicity
of implementation and acceptable reported performance in recent research (Yang et al.
2019). The network structure of EDSR is presented in Figure 3. The EDSR network has

Figure 3. Network structure of EDSR.
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not yet been trained for thermal aerial imagery and for the first time, its capability in pro-
ducing an aerial thermal super-resolved image is investigated here.

The main difference between low-resolution and high-resolution images is in high-fre-
quency details such that the EDSR network can learn the mapping between low- and
high-resolution images. Due to the necessity of reference high-resolution images for deep
network training, in this step, original thermal images are down-sampled by the bi-cubic
method to generate low-resolution thermal images as the network input (Lim et al. 2017).
This makes it possible to compare the output of the EDSR network with the reference
high-resolution image (actually original thermal images).

Consider ThLR as a low-resolution thermal image, ThHR as a high-resolution thermal
image and cThHR as the estimated high-resolution thermal image, the goal is to train
model f, which holds in Equation (5).

cThHR ¼ f ðThLRÞ (5)

In other words, the EDSR network generates a resolution enhanced image cThHR by
minimizing the distance between f ThLRð Þ and ThHR:

The EDSR network is trained using the mean absolute error loss function (L1 loss)
instead of L2. Lim et al. (2017) found that L1 loss results in better convergence than L2.
The L1 loss function that should be minimized is presented in Equation (6). In this equa-
tion, m is the number of the rows of the images, i represents the index of each row, n is
the number of columns of the image and j represents the index of the column.

e ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

|ThHR i, jð Þ � f ðThLRði, jÞÞ| (6)

In selecting the images for training, an attempt is made to include a variety of features
(such as buildings, roads, trees, land) in the training dataset. The extracted frames are first
converted into low-resolution images by the bi-cubic interpolation method with the scale
factor of 2; then 70% of these images are used for the training process and the remaining
30% images are used for validating the accuracy of the training process. It should be
noted that the use of down-sampled images and original images for deep network training
is a common a technique in this field and research by (Shermeyer and Van Etten 2019;
Lim et al. 2017) show that the network learns to produce the super-resolved image inde-
pendent of the spatial resolution of the input image.

The training set of low-resolution images and their corresponding original thermal
images are entered into the EDSR network for training. It is important to note that in
order to prepare a thermal image similar to the RGB image and to allow entry into the
EDSR network for training; the thermal image DN values are repeated in three channels.
The standard network parameters as set in the original paper (Lim et al. 2017) are used.
The patch size of 48� 48 pixels is chosen and augmented by random horizontal flips and
90 rotations per patch. The use of image patches and augmentation of the data during
the training process effectively increase the amount of available training data and ensure
the production of a robust model. Moreover, a variety of features in the images selected
for training help to more robustness of the trained model. Since the EDSR network is not
been used before for high resolution aerial thermal images, for this study it is developed
in C þþ.

After the training process, the map for predicting high-resolution image from the input
low-resolution image is determined. In this way, any low-resolution image can be super-
resolved and the high-resolution image can be produced. Thus, each of another original
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thermal images are extracted from the video of the study area is separately converted into
high-resolution thermal images using the trained model and scale factor 2. These
enhanced images are used to generate the intensified 3D thermal model in the next steps.

2.1.2.2. Intensified 3D thermal model generation. For generating an intensified 3D ther-
mal model from a set of high-resolution thermal images, the first state-of-the-art SfM
algorithm is used to compute exterior orientation parameters of images. Thus, the key
points are detected and matched using Scale Invariant Feature Transform (SIFT) method.
These matched points are used in a sequential bundle adjustment to determine the exter-
ior orientation of input images and then to generate a sparse 3D point cloud (Truong
et al. 2017).

Second, the semi-global matching (SGM) algorithm is applied to high-resolution ther-
mal images for generating a disparity map (Hirschm€uller 2011). SGM estimates a dense
disparity map from a rectified stereo image pairs. In this method, the stereo matching
problem is formulated to determine the disparity image D for energy E(D) minimization
using Equation (7).

E Dð Þ ¼
X

p
ðC p,Dpð Þ þ

X
q2Np

P1T Dp � Dq

�� �� ¼ 1
h i

þ
X

q2Np
P2T Dp � Dq

�� �� > 1
h i

(7)

where the first term is sum of the matching costs of all pixels for the disparity values in
D. In the second term, the P1 parameter is a constant penalty that is added to all pixels q
in the neighbourhood Np of p, for which the disparity varies a little (i.e. 1 pixel). The
third term in all greater disparity differences adds a larger constant penalty
P2 Satisfactory outcomes of the SGM have made it appropriate for dense stereo matching
applications and thus encouraged many researchers to use it (Hirschm€uller 2011). Then,
consistency check and peak removal are used to eliminate errors and blunders caused by
conditions like spectral discontinuities and hidden areas from the generated disparity
maps (Mohammadi et al. 2019). Nevertheless, some blunders still stay in purified disparity
maps due to the incompleteness of these two algorithms (Mohammadi et al. 2019).

Afterwards, the generated disparity maps from all the stereo pairs of images and com-
puted exterior orientation parameters are utilized to generate a dense point cloud of the
scene by applying space intersection. After generating a dense point cloud, the intensified
3D model is produced by data gridding.

Finally, thermal image DN values from the high-resolution thermal images are mapped
onto the intensified 3D model for producing an intensified 3D thermal model. It should
be noted that although the DNs do not refer to absolute temperature in the thermal
image, their differences indicate relative temperature differences. Darker radiometric
information infers less heat reflection in the area than in areas with lighter radiometric
information.

2.2. Quality assessment

In this study, by considering the fact that the produced intensified 3D thermal model con-
sists of two elements of intensified 3D model and the texture (orthophoto) which is
mapped onto the intensified 3D model; both the 3D model and the orthophoto are eval-
uated separately.

First, the intensified 3D model is evaluated using two statistical criteria, i.e. the Root
Mean Square Error (RMSE) and Mean Relative Error (MRE), to compare the low-reso-
lution 3D model (3D model generated from original thermal images) and the intensified
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3D model against the reference 3D model. Here, the reference 3D model is considered as
R and the generated 3D model from thermal images as G. Equations (8) and (9) represent
RMSE and MRE, respectively.

RMSE G,Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xi¼n, j¼n

i¼1, j¼1

ðGij�RijÞ2
vuut (8)

MRE G,Rð Þ ¼ 1
N

Xi¼n, j¼n

i¼1, j¼1

Gij � Rij

�� ��
Rij

(9)

where N is the total number of pixels in 3D model, and (i, j) represents the position at ith

row and jth column. The lower values for RMSE and MRE indicate more similarity of the
produced 3D model to the reference 3D model (Zhang et al. 2019). It should be noted
that due to the use of control points in the 3D model production process, the generated
and reference 3D models are registered planimetrically and vertically; only the Z accuracy
is checked using the RMSE and MRE criteria.

The criteria such as RMSE and MRE cannot examine the geometric quality of pro-
duced 3D thermal models. Considering the importance of edge information in 3D ther-
mal model quality, especially in building boundaries, the Modulation Transfer Function
(MTF) as an edge-based quality metric is used for evaluating the geometric quality of gen-
erated 3D thermal model. The main idea of this method is to extract the appropriate
edges in the reference and produce models and compare their MTF curves based on the
Line Spread Function (LSF).

To calculate MTF, first, the high-contrast edges should be extracted to evaluate the
spatial resolution of the produced models. Therefore, step edges, which are defined using
Equation (10), are considered as appropriate targets for evaluation.

step xð Þ ¼ 1
0

if x � 0
if x<0

�
(10)

After extracting edge locations, edge profiles are extracted. For each point on the edge,
straight lines are created perpendicular to the edge and crossing the edge. The resulted
Edge Spread Function (ESF) is introduced to the LSF calculation after smoothing and
consistency checks. This is done to avoid noise in final MTF and prevent the algorithm
from selecting weak or unsteady edges (Javan et al. 2013). To calculate LSF, differentiation
is applied to the ESF profile. Next, the generated LSF curve is smoothed and its noises are
removed by a Gaussian function. Equation (11) shows the LSF calculation equation:

LSF xð Þ ¼ d
dx

ESF ðxÞ½ � (11)

Discrete Fourier transform from the generated LSF function leads to MTF (Equation
(12)). The normalized MTF is computed by dividing the absolute transformed function
values by the first absolute value.

MTF ¼
ð
LSF xð Þe2pixdx

����
���� (12)

After calculating MTF for the extracted edges in the reference and produced models,
the model quality assessment is performed by comparing the calculated MTF curves. This
assessment is based on the idea that any edge in the reference model should appear in the
produced models with similar MTF curves. The lower degradation of the MTF curve
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shows better spatial quality of the produced models. For the numerical comparison of
MTF curves, the statistical variance index is used. In this way, it is possible to measure
the distance between MTF curves using the edge-based image fusion metric (EFM) intro-
duced in (Javan et al. 2013) (Equation(13)):

Vi ¼ MTFgeneratedi �MTFreferencei

Var ¼ 1
N

XN
i¼1

ðVi�ViÞ2 Where V ¼
XN

i¼1
Vi=N

EFM ¼ 1�Var

(13)

whereMTFi denotes the MTF value at spatial frequency i. V is the mean of the variable Vi: Also,
N is the total number of spatial sample frequencies. To be compatible with other measures, the
EFM will be defined in such a way that a higher value indicates less distinction between the pro-
duced and the reference models, suggesting a higher spatial quality and a higher similarity.

2.3. Dataset

The study is carried out in Charmshahr industrial area in the southern part of
Tehran, Iran.

2.3.1. Sensor and platform
In this study, thermal videos are captured using an uncooled focal plane array camera
Keii HL-640S mounted on a lightweight multi-rotor Unmanned Aerial Vehicle (UAV)
that has the roll and pitch axis stabilizer. This camera detects the Thermal InfraRed (TIR)
region of InfraRed (IR), which covers middle and longwave part of IR spectrum.
Moreover, for generating the reference 3D model a high-resolution RGB Sony a6000
24MP camera equipped with a 35mm lens is used to collect RGB images. These RGB
images are only used to generate a reference 3D model and evaluate the enhanced spatial
resolution of the intensified 3D model. Figure 4 shows the thermal and RGB cameras as
well as UAV platform used in this study.

More details about the sensors and platform are provided in Table 1.

2.3.2. Study area and flight plan
Flight planning for the Charmshahr region with the area of approximately 123,000 m2 is
done using Mission planner as a UAV ground control station software. Figure 5 shows the
studied area and the flight plan. Table 2 provides some information over the flight plan.

Figure 4. Thermal camera (a) RGB camera (b) and UAV platform (c) used in study.
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3. Results and discussion

3.1. Results

As mentioned in the methodology, for generating an intensified 3D thermal model, using
the proposed algorithm, the spatial and radiometric resolution of the images is enhanced.
In the training phase, 620 frames are extracted from the thermal video are used. 70% of
these images (434 images) are used for the training process. The accuracy of the deter-
mined trained model is validated by other 186 images and the peak signal-to-noise ratio
(PSNR)(Zhang et al. 2019) and structural similarity index (SSIM) (Zhang et al. 2019) val-
ues are obtained as 36.72 and 0.9401, respectively.

After the training model generation, each all of another the 669 original thermal
images extracted from the video are separately converted into high-resolution thermal

Table 1. The technical specifications of applied UAV Platform and sensors.

Thermal camera RGB camera UAV platform

Sensor Uncooled FPA Sensor CMOS Maximum flight
altitude (m)

400

Pixel size (mm) 17 Pixel size(mm) 4.04 Number
of motors

8

Video frame
size (pixels)

640�480 Image size (pixels) 6000�4000 Maximum flight
time without
camera (minutes)

35

Focal
length (mm)

25 Focal length (mm) 35

Thermal
sensitivity (�C)

0.05

Temperature
range (�C)

�20 to þ150

Figure 5. Study area (a) and the flight plan (b).

Table 2. Flight plan information.

Parameter Value

Flight height (m) 300
Flight speed(km/h) 60
Flight duration (minutes) 20
Number of strips 17
Overlap (%) 70
Sidelap (%) 70
Total extractable frames 12000
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images using the trained model and scale factor 2. The size of the original images is
640� 480 pixels and their pixel size is 17 mm. The size of the enhanced images is
1280� 960 and their pixel size is 8.5 mm. These enhanced images are used to generate the
intensified 3D thermal model in the next steps.

Figure 6 illustrates the overall view of some samples for visual comparison between
original images extracted from the thermal video and their corresponding high-resolution
images resulted from DL-based SISR.

In Figure 7, for each sample of Figure 6, a magnified view of the original image and its
corresponding high-resolution image is compared.

After image resolution enhancement step, the resolution-enhanced images are used to
generate intensified 3D thermal model of about 11 cm resolution. Also, the low-resolution
3D thermal model (generated from original thermal images) has a resolution of 22 cm.

Figure 6. Overall view of some samples for visual comparison between original images extracted from the thermal
video and their corresponding high-resolution images.

Figure 7. visual comparison between original images and their corresponding generated high-resolution images.
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Figure 8 presents the low-resolution 3D model and intensified low-resolution 3D
model. Also, 3D views of these two 3D models and their corresponding 3D thermal mod-
els are represented in Figure 9.

Figure 8. Generated 3D models. Low-resolution 3D model (a) and intensified 3D model (b).

Figure 9. 3D view of generated 3D models. Low-resolution 3D model and its 3D thermal model(a) and intensified 3D
model and its 3D thermal model(b).

Figure 10. Visual comparison of objects details in low-resolution and intensified 3D models and in low-resolution and
intensified orthophoto.
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3.2. Discussion

In this section, the quality of the low-resolution and intensified 3D thermal models is
compared against the reference 3D model by resolution of four cm which is generated
from RGB images captured using a high-resolution RGB camera.

To compare low-resolution 3D thermal model and intensified 3D thermal model
against the reference 3D model, the produced 3D thermal models are interpolated to the
same resolution as the reference 3D model by the bi-cubic interpolation method. Figure
10 shows a visual comparison of low-resolution 3D model and intensified 3D model
against the reference 3D model and their corresponding orthophotos. Figure 11 shows a
visual comparison of 3D view of object edges of low-resolution 3D model and intensified
3D model. The visual comparison illustrates that objects in intensified 3D model provide
more details than the low-resolution 3D model. Moreover, the edges on the intensified
3D model are sharper than those of the low-resolution 3D model.

In Figure 10, two objects in 3D models and orthophotos are visually compared. As can
be seen, the intensified 3D model has more details. In the highlighted regions, small
objects in the intensified 3D model are more distinctive than the low-resolution 3D

Figure 11. Visual comparison of 3D view of objects edges.
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model, which is due to the higher quality of spatially enhanced images using SISR. On
the other hand, it is clear that the intensified 3D model, compared to the reference 3D
model, still has shortcomings in the details and quality of the edges. Although the spatial
resolution of the reference 3D model is three times better, Shermeyer and Van Etten
(2019) showed that even if the spatial resolution of the super-resolved images is improved
by a higher scale factor, SISR methods cannot achieve the quality of original images at
the same spatial resolution. In addition, these studies demonstrate that increasing the
scale factor to produce spatially enhanced images can reduce the quality of the results
against lower scale factors and can cause artificial structures in the outputs, which is
not acceptable.

In Figure 11, three objects are shown in the 3D view to compare the sharpness of the
edges visually. For each object, a magnified view is represented. The edges of the objects
are obviously sharper in the intensified 3D model than low-resolution 3D model.
However, as before, there are still shortcomings compared to the reference 3D model.

In addition to the visual evaluation, quantitative assessment of produced 3D models is
of particular importance. As mentioned before, the 3D thermal model is a 3D model,
onto which the texture (orthophoto) is mapped, so in this part, the spatial accuracy of the
intensified 3D model and the orthophoto is evaluated separately. To measure the effect of
SISR on the quality of the intensified 3D model, the RMSE and MRE metrics once are
calculated between low-resolution 3D model and reference 3D model and again between
the intensified 3D model and reference 3D model (Table 3).

Besides, considering the importance of sharpness of the edges in 3D models, the qual-
ity of edges is evaluated based on MTF curves and EFM metric. For this purpose, proper
edges are extracted from 3D models using Canny edge extraction operators. Then, the
line segments are detected from the edges using the direct Hough transform
(Mukhopadhyay and Chaudhuri 2015). Finally, those that are too long, too short, or
slanted are eliminated by calculating the length and slope of the extracted lines. Figure 12
shows the suitable edges to MTF curves and EFM metric calculation extracted from 3D
model. The mean values of the EFM metric for all the extracted edges are 0.928 and

Table 3. RMSE and MRE metrics calculated for low-resolution 3D model and intensified 3D model.

Metric Low-resolution 3D model Intensified 3D model

RMSE(m) 0.55 0.29
MRE (%) 0.092 0.062

Figure 12. Suitable edges to MTF curves and EFM metric calculation extracted from 3D models.
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0.979 for low-resolution and intensified 3D models, respectively. The higher mean value
of EFM metric for the intensified 3D model than that of low-resolution 3D model shows
the closeness of the intensified 3D model to the reference 3D model.

For more analysis, eight edges with suitable distribution in the study area are selected
for evaluation. The overall view of these samples is provided in Figure 13.

The edges in Figure 13 are magnified and compared in Figure 14. Each edge in the ref-
erence 3D model, Low-resolution 3D model, and intensified 3D model is shown and the
MTF curves are presented.

As can be seen in Figure 14, the MTF curves of the intensified 3D model are closer to
the MTF curves of the reference 3D model compared to the low-resolution 3D model
and, suggesting that the proposed method improves the geometric quality of the 3D
model. Moreover, it is obvious that although the edges are spatially enhanced in the
intensified 3D model, there are still some distortions on the edges.

Finally, the EFM metric is computed to compare MTF curves with respect to the refer-
ence 3D model (Table 4).

As can be seen in Table 4, the results for the intensified 3D model that are generated
based on the proposed method have higher closeness values, indicating the higher spatial
quality of the intensified 3D model than the low-resolution 3D model.

Also, for evaluating the spatial accuracy of the orthophotos generated from high-reso-
lution thermal images, the MTF curve is plotted for each selected edge from 3D model in
low-resolution, enhanced and reference orthophotos. Then, the average MTF curves are
calculated. As can be seen in Figure 15, MTF curve of the enhanced orthophoto has lower
degradation; therefore, the spatial resolution of the enhanced orthophoto is better than
the low-resolution orthophoto.

It is noteworthy that if the interpolation-based SISR methods (such as bi-cubic) are
used instead of the EDSR to enhance the resolution of the images, although a dense 3D
model is produced, the accuracy of the produced 3D model would be lower than the
intensified 3D model generated using the proposed method. This is because although this
method is simple, the high-frequency details of the image are not restored (Ooi and
Ibrahim 2021).

To illustrate this point, a bi-cubic dense 3D model is produced and compared with the
intensified 3D model. Therefore, the MTF curve is plotted for 20 edges of the proposed
intensified 3D model and bi-cubic dense 3D model. Finally, the average MTF curve is cal-
culated. As shown in Figure 16, the average MTF curve of the intensified 3D model has

Figure 13. Overall view of 8 selected samples in study area for MTF and EFM analysis.
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Figure 14. Magnified representation of the selected edges and their MTF curves. In MTF curve diagram, the blue
curve represents the MTF of the reference 3D model, the red curve represents the MTF of the Low-resolution 3D
model and, the green curve represents the MTF of the intensified 3D model.
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Table 4. EFM values

3D model Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7 Edge 8

Low-resolution 3D model 0.959 0.913 0.948 0.901 0.946 0.936 0.926 0.950
Intensified 3D model 0.988 0.963 0.969 0.953 0.981 0.960 0.972 0.987

Closeness of low-resolution 3D model and intensified 3D model to Reference 3D model.

Figure 15. The average MTF curve for selected edges in low-resolution orthophoto (red curve), intensified orthophoto
(green curve) and reference orthophoto (blue curve).

Figure 16. Comparison between the average MTF curves for some edges in intensified 3D model (blue curve) and bi-
cubic dense 3D model (pink curve).
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lower degradation and the spatial resolution of the intensified 3D model is better than the
bi-cubic dense 3D model.

4. Conclusions

Nowadays, 3D thermal model that presents thermal information and provides 3D building
roofs information can play an important role in energy management of urban area. By
considering the challenges of acquiring multisource data and registering data from various
data sources and using hardware techniques to generate a high-resolution 3D thermal
model, in this article, a method is presented for intensifying 3D thermal model using
SISR algorithm. The effect of SISR algorithm on 3D thermal model intensification is
investigated by measuring spatial resolution evaluation criteria.

The efficiency of the proposed method was evaluated from two criteria, i.e. RMSE and
MRE, to compare the low-resolution 3D model and intensified 3D model against the ref-
erence 3D model. Evaluations indicate 47% improvement in RMSE and 0.03% improve-
ment in MRE for the intensified 3D model that indicates an increase in the quality of the
result. In addition, for spatial evaluation, considering the importance of edge information
in 3D model quality, especially in building boundaries, the sharpness of the edge informa-
tion in the intensified 3D model is computed using MTF curves and EFM metric. The
results show that the MTF curves of the intensified 3D model are closer to the MTF curve
of the reference 3D model. Moreover, the EFM metric shows higher values for MTF
curves of the intensified 3D model against MTF curves of the low-resolution 3D model.
In addition, investigating MTF curves of orthophotos shows MTF curve of enhanced
orthophoto has lower degradation and the spatial resolution of the enhanced orthophoto
is better than the low-resolution orthophoto. In addition, although the evaluation shows
the efficiency of the proposed method to generate 3D thermal models with higher spatial
resolution, further studies should be concentrated on producing better results in the
boundaries of the objects. Also, it is necessary to investigate the possible incensement in
spatial resolution and the use of different methods of DL-based SISR and their effect on
the quality of 3D thermal models. In addition, with the aim of using the intensified 3D
thermal model for the interpretation purposes, the radiometric calibration of the thermal
sensor is suggested in order to determine the absolute temperature.
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