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ABSTRACT   

Noise texture in CT images, commonly characterized by using the noise power spectrum (NPS), is mainly dictated by the 

shape of the reconstruction kernel. The peak frequency of the NPS (fpeak) is often used as a one-parameter metric for 

characterizing noise texture. However, if the downslope of the NPS beyond the fpeak influences noise texture visibly, then 

fpeak is insufficient as a single descriptor. Therefore, we investigated the human-detectable differences in NPSs having 

different fpeak and/or downslope parameters.  

NPSs were estimated using various reconstruction kernels on a commercial CT scanner. To quantify NPS downslope, half 

of a Gaussian function was fit through the NPS portion that lies beyond fpeak. The σ of this Gaussian was used as the 

downslope descriptor of the NPS. A two alternative forced choice observer study was performed to determine the just-

noticeable-differences (JND) in fpeak only, σ only, and both simultaneously. Visibility thresholds for these changes were 

determined and an elliptical limiting detectability boundary was determined. 

The JND threshold ellipse is centered on the reference values and has a major and minor radius of 0.47 lp/cm and 0.12 

lp/cm, respectively. The major radius makes an angle of 143° with the x-axis. A change in only fpeak of 0.2 lp/cm is below 

the detection threshold. This number changes if the apodization part of the NPS changes simultaneously. 

In conclusion, both the peak frequency and the apodization section of the NPS influence the detectability of changes in 

image noise texture. 
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1. INTRODUCTION  

The noise texture in CT images is mainly dictated by the shape of the reconstruction kernel and can be quantified by the 

noise power spectrum (NPS). The NPS of CT images reflects a ramp that dominates the lower spatial frequencies, and an 

apodization dominating the higher spatial frequencies1. Currently, it is common for the peak frequency (fpeak) to be used 

as a one-parameter descriptor of the NPS2,3. Since the first section of the NPS, up to the fpeak, is generally monotonically 

increasing, fpeak can be assumed to sufficiently describe this portion of the NPS. However, the shape of the downslope of 

the NPS, past fpeak, can vary considerably, independent of the value of fpeak. Therefore, if the shape and extent of the NPS 

downslope have a significant influence on the perception of noise texture, then fpeak is not a sufficient descriptor of it.  

Furthermore, using newly developed, deep-learning based, reconstruction algorithms, it seems possible to decouple 

resolution and noise texture from each other to a larger extent than in current reconstruction algorithms. This may allow 

for additional manipulation of the noise texture during reconstruction, which could be of interest since noise texture 

influences detectability of lesions. Therefore, as a first step before such noise texture optimization can take place, it 

would be of interest to know what changes in noise texture are perceptible by a human observer. Therefore, the purpose 

of this study was to investigate the just-noticeable differences (JNDs) in noise texture, as described by the shape of the 

downslope and the fpeak of the NPS. In addition, for this, a method to more completely parameterize the NPS was 

developed. 

 

2. METHODS 

An observer study was performed to investigate the JNDs of noise texture in CT images. For this, during the study image 

patches with various noise textures, created in real time from a possibly large number of NPS were needed. Therefore, a 
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method was first needed to generate a continuous distribution of NPSs at will, in order to be able to apply these to image 

patches of white noise. To be able to generate this distribution, a parametrized model of the NPS was developed that 

sufficiently describes the NPS of real CT images, based on the fpeak and a downslope descriptor. 

 
2.1 NPS parameterization 

An empirical model was created based on the concept that the NPS in a CT image reflects a ramp that dominates the 

lower spatial frequencies, and an apodization dominating the higher spatial frequencies. Both of these components are 

determined by the convolution kernel applied prior to reconstruction1. To represent this mathematically, we defined the 

NPS as a multiplication of a linear function and a Gaussian: 

 

 𝑁𝑃𝑆(𝑓) = 𝑎 ∙ 𝑓 ∙ 𝑒
−
(𝑓−𝛼)2

2𝛽2  (1) 
 

where f is the spatial frequency and a determines the amplitude of the peak frequency. The fit parameters α and β 

determine the peak frequency and the roll-off of the function. The peak frequency can be derived from (1) by: 

  

 𝑓𝑝𝑒𝑎𝑘 =
𝛼+√𝛼2+4𝛽2

2
 (2) 

 

We tested the applicability of this fit using the NPS resulting from the scan of a 320 mm water phantom acquired on a 

multi-detector CT (Aquilion One PRISM Edition, Canon Medical Systems Corporation, Otawara, Japan) for eight 

different kernels. The kernels used were cardiac and abdomen kernels of the hybrid iterative reconstruction (Hybrid-IR) 

(FC11-FC15, FC17-FC19, AIDR 3D, Canon Medical Systems Corporation, Otawara, Japan) 

In this work, the fpeak is used as descriptor for the upslope of the NPS. The downslope present at frequencies beyond the 

fpeak is approximated by fitting a half of a Gaussian function to the NPS for frequencies equal to or higher than fpeak: 

 

 𝑔(𝑓) = 𝑎′ ∙ 𝑒
−
(𝑓−𝑓𝑝𝑒𝑎𝑘)

2

2𝜎2  𝑓 ≥ 𝑓𝑝𝑒𝑎𝑘 (3) 
 

Therefore, in this work, σ is used to describe the downslope of the NPS. So, two parameters, fpeak and σ, are used to fully 

describe the NPS. A graph explaining the various parameters and functions is shown in Figure 1.  

 

 

Figure 1. Example of NPS parameterization. The original NPS (grey) is fit (in dark blue). The peak frequency (fpeak) is used 

as the parameter to describe the first section of the NPS (light blue). The section beyond fpeak is fit with half a Gaussian 

(dashed red). The σ of the Gaussian is used as the parameter to describe the section of the NPS beyond fpeak (light grey). 
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2.2 NPS generation 

Based on fpeak and the downslope descriptor σ, a continuous NPS distribution can be generated using equation 1, 2, and 3. 

For this, a procedure in Python was created using the curve_fit and minimize_scalar functions from the scipy.optimize 

package. These functions are used to find the most suitable values for α and β in equation 1, given a specific value for fpeak 

and σ using a non-linear least squares method for fitting. 

2.3 Observer study 

To investigate the detectability of changes in noise texture due to changes in the NPS, a two alternative forced choice (2-

AFC) observer study was performed. Noise patches of 256x256 pixels were dynamically generated based on realizations 

of white noise colored by NPS with a specific fpeak and σ. During one trial of the 2-AFC study, the observer was shown 

three noise patches; one indicated as the reference and two alternative noise patterns. One of the alternative patterns was 

another noise realization with the same NPS as those of the reference, while the other had a different NPS. The noise 

patches were shown using a window level equal to the mean value of the noise patch, while the window width was ten 

times the standard deviation. The task for the observer was to select the alternative pattern that was most similar to the 

reference pattern (Figure 2). After the observer entered a decision, the correct pattern was highlighted for 1 s, and then 

the software continued to the next trial. 

 

 
Figure 2. Screenshot of a trial shown to the observer. The refence image and Option 1 (in this case) are different realizations 

of noise with the same NPS, Option 2 is a realization with a different NPS. 

The reference NPS (using eq. (1)) was obtained from the image of a 320 mm diameter water phantom. The phantom was 

imaged on a Canon Aquilion One PRISM edition (Canon Medical Systems Corporation, Otawara, Japan) at the dose 

determined by the system when using abdominal settings. Reconstruction was performed using a Hybrid-IR method 

(AIDR 3D Enhanced, body kernel; FC18).  

A staircase method was applied using starting values that resulted in what was deemed by one of the study investigators 

to be a clear visible difference between the two noise patterns4. The step size used was 15% of the distance between the 

reference values (for fpeak and σ) and the alternative values. The difference between the reference and alternative 

parameters was decreased by the step size after three correct responses and increased after one incorrect response. The 

procedure was stopped after twelve reversals and repeated six times. The values of the last eight reversals of the last five 

repetitions were used to calculate the geometrical mean of the parameter value. In this way, the geometrical mean should 

represent the 80% point on the psychometric curve5. The average parameter values from all five observers were 

calculated. 

Eight directions in parameter changes were evaluated (Figure 3): change in fpeak only, change in σ only, and changes in 

both fpeak and σ in the diagonal directions (setting the slopes for these directions were based on the resulting thresholds 

from the single-parameter variation results). All directions were studied from both sides. An elliptical “limiting 

detectability boundary” was fit through the average limiting values from all directions.  
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Figure 3. Directions in which the visibility was studied: fpeak only, σ only, and 2 diagonal directions. All directions were 

studied from both sides. 

2.4 Results 

All measured NPSs could be fit well using equation (1) (R2 > 0.99).  

 

Figure 4 shows the threshold values for each observer, the average thresholds, and an ellipse fitted through the average 

thresholds. The center of the ellipse is (1.86, 1.30) lp/cm, in accordance with the reference values, and with a major and 

minor radius of 0.46 lp/cm and 0.12 lp/cm, respectively. The major radius makes an angle of 143° with the x-axis. 

Based on the elliptical boundary, a change of 0.2 lp/cm in peak frequency is below the detection threshold. This number 

changes if the apodization part (σ) of the NPS changes simultaneously. 

Figure 4. Results from the observer study. the reference values for fpeak and σ are shown, as well as the limiting values of 

these parameters for the eight directions that were investigated. The numbers at the average values are the differences of the 

parameter values to those of the reference (Δfpeak, Δσ).  An elliptical “limiting detectability boundary” was fit through the 

average limiting values.  

Note: some observer results coincide and therefore some observer symbols overlap and are not visible. 
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3. DISCUSSION 

The NPS can be fitted well using equation 1 and parametrized using equations 2 and 3. In addition, describing the NPS 

only by fpeak is insufficient, since the apodization part of the NPS influences the perception of the noise texture 

substantially.  

 

Since noise texture influences the detectability of lesions, and new CT reconstruction methods can more easily change 

noise texture with less influence on the resolution, it is of interest to determine what effect noise texture changes have on 

detectability. As a first step, we investigated what changes in noise texture in CT images are visible for a human 

observer. We hypothesize that changes within the JND boundaries don’t affect the detectability. However, depending on 

the direction of the change in noise texture on the fpeak-σ plane, the inter-observer variability can be quite large. 

Especially in the direction of the major axis of the detectability ellipse, the variability seems to be larger than in other 

directions. In this direction the fpeak and σ work in opposite frequency-content directions. In other words, it is more 

difficult for some observers to detect changes in noise texture when fpeak is decreasing, and thus making the overall NPS 

content move to lower frequencies, while σ increases and therefore it is moving NPS content to higher frequencies, and 

vice-versa. 

 

This study has a number of limitations. First, the fitting of equation 1 to the real NPSs was only performed on the kernels 

of one manufacturer and only on kernels used for imaging of two body parts. We anticipate that the equation can also be 

fitted well on other CT-related NPSs, but this needs to be verified. Second, for the observer study, we only used one 

reference NPS, and only five observers. For more thorough research, more reference NPSs, sampling the clinically-

observed NPS range, should be performed, potentially using more observers. Finally, this study was performed by 

applying an NPS onto patches of Gaussian noise. However, it is known that especially model-based iterative 

reconstruction and potentially also deep-learning based reconstruction can result in non-gaussian noise distributions6. 

  

4. CONCLUSIONS 

In conclusion, describing the NPS using fpeak alone is insufficient as changes in the apodization part, that are not reflected 

in fpeak, influence noise texture perception significantly. Furthermore, the NPSs resulting from the created reconstructions 

can be approximated well using equation 1 and parameterized using equations 2 and 3. both the peak frequency and the 

apodization section of the NPS influence the detectability of changes in image noise texture. 
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