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Abstract: Achieving an adequate resection margin during breast-conserving surgery remains
challenging due to the lack of intraoperative feedback. Here, we evaluated the use of hyperspectral
imaging to discriminate healthy tissue from tumor tissue in lumpectomy specimens. We first used
a dataset obtained on tissue slices to develop and evaluate three convolutional neural networks.
Second, we fine-tuned the networks with lumpectomy data to predict the tissue percentages of the
lumpectomy resection surface. A MCC of 0.92 was achieved on the tissue slices and an RMSE
of 9% on the lumpectomy resection surface. This shows the potential of hyperspectral imaging
to classify the resection margins of lumpectomy specimens.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Breast cancer is the most common cancer among women worldwide with nearly 2.3 million new
cases diagnosed in 2020 [1]. The standard treatment for early-stage breast cancer is surgical
resection of malignant tumor tissue by breast-conserving surgery (BCS) [2,3]. With a BCS the
surgeon aims to remove the tumor entirely with a small margin of healthy tissue while preserving
the breast as much as possible.

After surgery, the margins of the resected tissue are investigated to assess whether the tumor
was completely removed. This is done by histopathologic analysis (Fig. 1), which is currently the
gold standard for assessing surgical tissue. According to guidelines of the Society of Surgical
Oncology (SSO) and the American Society for Radiation Oncology (ASTRO) a margin is defined
as tumor-positive when there is invasive carcinoma (IC) on the resection surface (i.e. ink on
tumor) or ductal carcinoma in situ (DCIS) within a 2 mm distance from the surface [4]. Patients
with an incomplete tumor removal (i.e. a positive resection margin) often require a re-excision or
boost radiotherapy to clear residual malignant tissue and to prevent cancer recurrence. According
to the eusomaDB database, a re-excision was needed in 27% of the surgeries to achieve adequate
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margins [3]. Such additional treatments increase the medical cost, negatively affect the cosmetic
outcome and the patients’ quality of life [5].

Fig. 1. The upper pipeline shows the conventional histopathologic analysis, which takes 3
to 5 days to process the resected breast tissue into hematoxylin and eosin (H&E) stained
sections and to assess the resection margins. The lower pipeline demonstrates our envisaged
method for real-time intraoperative feedback during breast-conserving surgery by means of
hyperspectral imaging, deep neural networks and a projection mapping system.

Despite the dramatic improvement in preoperative imaging in healthcare made over the last
decade, the surgeon still has to rely on visual and tactile feedback to distinguish malignant
tumor tissue from healthy tissue during BCS. On top of that, histopathological assessment of the
resection margins requires 3 to 5 days. Consequently, no feedback can be given to the surgeon
during surgery and therefore there is a need for a margin assessment technique that can provide
accurate intraoperative feedback about the entire resection margin in a limited amount of time. In
this way, immediate action can be taken by the surgeon to still guarantee complete tumor removal.

The margin assessment techniques that are currently available in the clinic are frozen section
analysis, imprint cytology and specimen radiography. However, these techniques either exhibit a
low accuracy or are too time-consuming to examine the entire resection surface during surgery
[6].

Due to these disadvantages, a variety of imaging and spectroscopy methods were proposed:
ultrasound [7], radiofrequency spectroscopy [8], Raman spectroscopy [9], diffuse reflectance
spectroscopy [10] and optical coherence tomography [11]. Studies showed that these techniques
achieve a sensitivity from 70 to 100% and specificity from 67 to 93%. Despite the potential,
these techniques have various practical drawbacks, such as a small field-of-view and an excessive
time to analyze the entire resection surface.

In this work, we aim to develop an innovative method for tumor detection in the resection plain
during surgery that overcomes all the limitations of the current technologies (Fig. 1). To this end,
we investigated hyperspectral (HS) imaging as an intraoperative margin assessment technique on
the removed tissue immediately after resection. HS imaging is a novel optical imaging technique
that can image the spectral properties of a large surface in a short time without requiring any
contact or the administration of contrast agents. By imaging the diffuse reflected light over a
broad wavelength range, the intrinsic optical properties of the tissue’s entire resection surface
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can be measured and stored in a 3D hypercube, containing both the spectral and spatial data of
the tissue. Since the optical properties depend on the tissue’s composition and morphology, they
are characteristic for each tissue type and can be therefore used to discriminate malignant tumor
from healthy tissue [12–14]. HS imaging will be performed in the OR so that real-time results
can be shown to the surgeon during surgery. This enables immediate surgical re-excision when
indicated.

In previous studies at the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, an
extensive dataset is created on optical properties of breast tissues slices using HS imaging [15,16].
In the paper of Kho et al. [16] two different classifications are used for the discrimination of
tissue types. The first classification is only based on spectral information using a Fisher’s linear
discriminant analysis (LDA) classifier and the second one is a deep learning-based technique
using both spectral and spatial information [16]. Both methods can distinguish the tissue types
on the inked and gross-sectioned breast tissue slices with a sensitivity and specificity higher than
76%. However, using both spectral and spatial information resulted in a better performance.

With the high potential of HS imaging in discriminating tumor from healthy tissue shown in
breast tissue slices, we are now aiming to image unprocessed whole surgical resection specimens,
also called "lumpectomy specimens", instead of tissue slices. This is necessary to be able to
assess the resection margins of the excised breast tissue in real-time. With the tissue slices we
could only image the inside of the breast tissue after being sliced at the pathology department.
However, with the lumpectomy specimens on the other hand, we would be able to image the
original resection plain within the surgical workflow in the operation theatre. By analyzing
the HS images with convolutional neural networks and incorporating both spectral and spatial
information, we could thus provide real-time feedback on the margin assessment and tissue type
classification of such lumpectomy specimens (Fig. 1).

Machine learning algorithms are proposed as a technique for HS imaging classification, for
example, Support Vector Machine, logistic regression, and k-Nearest neighbors [17]. However,
these methods require preprocessing of the raw data to extract hand-crafted features, thus expertise
of the raw data is necessary. In contrast, deep learning models can automatically extract an
effective feature representation of the raw input data, which is the main advantage of this machine
learning subcategory. The models have a hierarchical structure, where the bottom layers can
extract low-level features. Those low-level features are used as input for the top layers to create
high-level features that are more abstract and discriminative [18]. Deep learning models that
are proposed for analyzing HS images include stacked autoencoders, deep belief networks and
convolutional neural networks [17].

In particular, convolutional neural networks (CNNs) have shown great classification perfor-
mance on HS imaging [19–27]. Compared to stacked autoencoders or deep belief networks, the
CNNs can extract features from images without resizing them into a 1D vector and thus both
spectral and spatial information will be retained. Li et al. [23] proposed a 3D-CNN framework
for HS imaging land cover classification, and compared this method with other deep learning
methods, such as stacked autoencoder, deep brief network and 2D-CNN. Results show that
their 3D-CNN model achieved a higher performance. Similar work on geoscience and remote
sensing was performed by Chen et al. [19]. The authors applied a 3D-CNN-based network
to extract spectral-spatial features and compared this network with a 1D-CNN and 2D-CNN,
where respectively only spectral or spatial features were extracted. Results indicated that the
network achieved a better performance using both spectral and spatial features. In addition,
the authors investigated some methods to reduce overfitting, including L2 regularization and
dropout. A dual-channel network for land cover classification was proposed by Yang et al. [26]
that exploits the spectral and spatial information in two separate channels. The first channel used
1D convolution to extract spectral features from the pixel spectrum and the second channel used
2D convolution to extract spatial features from the average of the spectral bands. Both features
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were concatenated and subsequently fed into the fully connected layers to extract spectral-spatial
features for classification. Although the recently proposed CNNs have shown good performance
for the classification of HS images, they were used for non-medical applications. When applying
to medical HS data, one major challenge will be the limited number of labeled samples for
training a similar classification algorithm. In particular, by using CNNs to make the ultimate step
towards HS imaging analysis of lumpectomy specimens, we expect to encounter the following
main challenges:

• For a "lumpectomy dataset", the samples are imaged immediately after resection, and due
to logistical reasons as set by the histopathological protocol, only up to three locations
can be marked with black histopathology ink, which remains visible on the H&E sections
under the microscope. These selected three locations only cover a small fraction of the
entire surface that is measured with HS imaging, and are in strong contrast to the breast
tissue slices analysis where the whole HS image can be registered to the H&E section. So,
due to this histopathological protocol which has to be followed to comply with clinical
standards, it is difficult to correlate histopathology results with corresponding acquired HS
images from the surface of lumpectomy specimens for each pixel. Consequently, we can
only obtain the ground truth label for the center pixel of each of the three locations per
specimen (patient).

• Since this approach only allows a limited number of labeled lumpectomy data, it is unlikely
that we can adequately train a supervised classification method, in particular a deep neural
network, on the current dataset. On the other hand, the trained classifiers on the breast
tissue slices can also not be directly used on the lumpectomy dataset. Although both the
breast tissue slices and lumpectomy datasets have a similar domain, they differ in terms of
tissue thickness, freshness, surface structure, blood saturation and cauterization. Hence,
we can not expect a high performance from the currently developed tissue classifier, which
is trained on slices and thus less suitable for analyzing the lumpectomy dataset. Kho et al.
[28] reported a significantly lower performance when a LDA classifier, trained on a breast
tissue slices dataset, was applied on a lumpectomy dataset.

• The ground truth (labels) at tissue transition areas are less reliable than on the breast tissue
slices since the lumpectomy specimens are even more deformed during histopathological
assessment which leads to registration inaccuracies of the H&E sections and HS images
[29]. Besides that, the pixels at the transition areas may contain a mixture of different
tissue types and thus the diffuse reflectance spectra of these pixels might not represent a
single tissue type as is assumed by the ground truth labels.

To address the mentioned challenges, a neural network should be trained while exploiting both
the data of breast tissue slices as a source domain and lumpectomy specimens with a sufficient
number of malignant tumor as a target domain. One feasible way is to use domain adaptation
(DA) which is a specific scenario of transfer learning. DA techniques use labeled data of a source
domain for training a network that can be applied to classify the data of a target domain [30].
Due to differences between the domains, a network trained on the source domain likely has a
lower performance on the target domain. Hence, over the past few years several methods, also
for HS imaging classification in particular, have been proposed to overcome this problem [31].
Instance-based methods are applied in combination with active learning to iteratively select the
most informative data with a query function to define a training set, as done by Tuia et al. [32].
The feature-based methods rely on feature extraction or feature selection. In [33,34], the authors
used a transfer component analysis and canonical correlation analysis to extract features that
minimize the differences between the domains. Therefore, the extracted features of both domains
could be used by the same classifier.
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In this work, we propose a deep learning method for the classification of HS images on breast
lumpectomy specimens. The novel contributions of this paper can be summarized as follows:

• We developed one spectral and two spectral-spatial convolutional neural networks for the
discrimination of healthy and tumor tissue in breast tissue slices, and to build a framework
for the classification of lumpectomy specimens (section 2.2.5).

• We introduced a new loss function to account for label uncertainty at tissue transition areas
where the ground truth labels were less reliable due to tissue deformations and mixtures of
different tissue types (section 2.2.2). The effectivity on the classification performance is
demonstrated in section 3.3.1.

• We acquired a labeled dataset of lumpectomy specimens that were measured immediately
after surgery. By inking up to three locations on the lumpectomy surface we could make a
direct correlation with histopathology, which allowed us to determine the ground truth
labels for the measured locations.

• The main contribution of this paper is the introduction of a fine-tuning based domain
adaptation approach to classify the HS images of breast lumpectomy specimens. This
approach allowed us to retrain the previously developed neural networks on breast tissue
slices and fine-tune the top layers with lumpectomy data so that we could predict the tissue
percentages of the lumpectomy resection surface with HS imaging.

The remainder of this paper is organized as follows: Section 2 describes the data collection,
data preparation and the proposed classification methods. Section 3 presents the experimental
results, followed by the discussion and conclusion in Section 4 and 5, respectively.

2. Materials and methods

2.1. Materials

2.1.1. Hyperspectral imaging setup

HS data were acquired with two pushbroom hyperspectral imaging cameras (Specim, Spectral
Imaging Ltd., Finland) in the visible (VIS: PFD-CL-65-V10E, CMOS sensor 1312 × 384 pixels,
∼400-1000 nm, 384 wavelength bands, 3 nm increments) and near-infrared range (NIR: VLNIR
CL-350-N17E, InGaAs sensor 320 × 256 pixels ∼900-1700 nm, 256 wavelength bands, 5 nm
increments). The spatial resolutions were 0.16 mm/pixel and 0.5 mm/pixel for the VIS camera
and NIR camera respectively. The tissue samples were illuminated by three halogen light sources
(2900 K) mounted under identical 35-degree angles, and imaged line-by-line creating a 3D
data structure or hypercube of which the first two dimensions represent the sample’s spatial
information and the third dimension the sample’s spectral information, as shown in Fig. 2.

Data analysis was performed on the diffuse reflectance spectra of both systems, thus the raw
data was first normalized into diffuse reflectance as described in [16]. Hereafter, the HS images
of both systems were spatially matched using an affine transformation to resize the images and
match the resolutions (0.5 mm/pixel). This resulted in one hyperspectral image with the size of
320 × 256 pixels and 640 wavelength bands.

2.1.2. Study design

The datasets were acquired on the excised breast tissue of female patients that had primary
BCS in the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital in the period
from 2017 to 2020. These ex vivo studies were approved by the Institutional Review Board
of the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital and complied with the
Declaration of Helsinki. No written consent from the patients was required according to the
Dutch medical research involving human subjects act (WMO).
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Fig. 2. HS data acquisition and HS data. The tissue samples were imaged line-by-line
with the HS imaging systems, creating a 3D data structure which is also called a hypercube.
The x and y dimensions of this hypercube contain the spatial information, while each pixel
contains one spectrum in the z dimension. Each pixel in spatial domain contains spectral
information along all wavelengths as shown in the plot.

2.1.3. Data acquisition

In this study, we used two datasets for the development and testing of the deep neural networks:
a breast tissue slices dataset and a lumpectomy dataset. The acquisition and histopathology
correlation of these datasets were performed in a similar approach as described in [16]. An
overview of the acquisition method can be found in Fig. 3 and can be summarized as follows:

2.1.4. Breast tissue slices dataset

After surgery, the resected specimen was inked and gross-sectioned in tissue slices at the pathology
department. To perform the optical measurements, one slice was selected which contained both
healthy and tumor tissue. Both sides of this slice were imaged with the two HS imaging systems
of which the total acquisition time included 2 minutes (each side: 40 seconds VIS camera and 20
seconds NIR camera). After the measurements, the tissue slice was processed into hematoxylin
and eosin (H&E) stained sections and analyzed by a pathologist to annotate the surface with four
tissue classes: invasive carcinoma (IC), ductal carcinoma in situ (DCIS), connective tissue, and
fat tissue. The H&E section was registered with the HS image to determine the ground truth
label for each pixel of the HS image.

2.1.5. Lumpectomy dataset

The lumpectomy specimen was measured immediately after surgery. First, the tissue was regarded
as a cube with six resection sides. These sides were analyzed to select one side which was most
likely to have a tumor-positive margin (only one side could be selected to obtain a high correlation
with histopathology). This was performed by imaging the sides with initially the VIS camera
only, to reduce the optical measurement time (each side: 40 seconds VIS camera and in total for
six sides: 4 minutes), and subsequently classifying the images with a LDA algorithm that was
previously trained on the breast tissue slices dataset [16,28]. The most suspicious side, according
to the classifier, was selected and imaged again with both cameras (40 seconds VIS camera and
20 seconds NIR camera). This side was imaged two times: with and without black ink marks.
The black ink marks are necessary to obtain the ground truth of the tissue but the ink affects
the diffuse reflectance spectra. Therefore, also an image was taken prior to inking the locations.
Subsequently, the lumpectomy specimen was processed according to standard procedure and the
corresponding H&E sections, which contained the ink mark locations, were annotated with the
aforementioned tissue classes (section 2.1.4) in a similar approach as described in [28]. Areas
with IC and DCIS were annotated by a pathologist (Fig. 3) whereas areas with connective and
fat tissue could be identified based on their color appearance in the H&E sections (i.e. pink
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Fig. 3. Overview of the acquisition of the breast tissue slices dataset and lumpectomy
dataset [28]. For the lumpectomy dataset, the specimen was imaged directly after surgery as
described in Section 2.1.5. Subsequently, up to three locations on the lumpectomy surface
were marked with black ink to enable correlation with histopathology. After data acquisition,
the lumpectomy was further processed according to standard procedure including inking
and slicing of the tissue. For the breast tissue slices dataset, the lumpectomy specimen was
first inked and gross-sectioned in tissue slices at the pathology department. One tissue slice
was selected for the hyperspectral measurements that consisted of both healthy and tumor
tissue. Hereafter, along with the remaining tissue slices, this measured slice was further
processed into hematoxylin and eosin (H&E) stained sections and analyzed by a pathologist.
The H&E sections were used to obtain the ground truth of both datasets. For the lumpectomy
dataset, the tissue up to 2 mm underneath the ink mark locations was analyzed using the
H&E sections to obtain the percentage of invasive carcinoma (IC), ductal carcinoma in
situ (DCIS), connective tissue and fat tissue. For the breast tissue slices dataset, the H&E
sections were used to annotate the entire tissue slice as IC, DCIS, connective or fat tissue
[28].
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and white respectively). Hence, these tissue classes were annotated by thresholding the green
channel of the corresponding H&E section at a value of 0.9. Lastly, the annotated H&E sections
were used to determine the percentage of each tissue class up to 2 mm underneath the ink mark
locations. These ground truth percentages corresponded to the center pixels of the black spots on
the HS image.

2.2. Methodology

This subsection will first explain the steps that were taken to preprocess the HS images in order
to deal with the noisy wavelengths, oblique illumination and rough tissue surface. Hereafter,
a new loss function is introduced to account for label uncertainty in the breast tissue slices
dataset, followed by a description of the networks used for the classification of the breast tissue
slices dataset. At last, the domain adaptation methods will be explained that are used for the
classification of the lumpectomy dataset. The classifications were performed in Python 3.7 on a
machine with an NVIDIA GeForce GTX 1080 Ti.

2.2.1. Data preprocessing

Prior to tissue classification, HS images were first normalized into diffuse reflectance [16]. Both
cameras have a low sensitivity at their spectral range’s extremities. Therefore, these wavelengths
were excluded from the analysis and only the wavelengths between 450-951 nm (318 wavelength
bands) and 954-1650 nm (210 wavelength bands) were used for the VIS and NIR camera,
respectively. The last step was standardizing the spectra using standard normal variate (SNV) to
eliminate the spectral variability of each tissue type. The variability of the spectra was caused by
the oblique illumination during scanning and the rough tissue surface [16].

2.2.2. Label uncertainty at tissue transition

The histopathology results (H&E sections) were registered with the HS images of the breast
tissue slices dataset to annotate the HS images with the four tissue classes. These annotations
were used as ground truth labels for each pixel of the breast tissue slices images. However, the
labels at tissue transition areas are less reliable since the tissue will be deformed during the
histopathological assessment which leads to registration inaccuracies of the H&E sections and
HS images. Besides that, the pixels at the transition areas may contain a mixture of different
tissue types and thus the diffuse reflectance spectra of these pixels might not represent a single
tissue type as is assumed by the ground truth labels.

Therefore, we defined two different loss functions: 1) a Balanced Categorical Cross-Entropy
(BCCE) loss function that includes all pixels, and 2) a Pixel Distance Excluding (PDE) loss
function that excludes pixels based on their distance to the transition border to reduce the effect
of label uncertainty.

The BCCE loss function is defined as:

LBCCE(y, ŷ) = −

NC∑︂
nc

wcync log (ŷnc) (1)

where ync is the ground truth value and ŷnc is the output of the network for each pixel n of each
class c. To correct for the imbalanced tissue types in the dataset, the weights wc were included in
the loss function and are defined as:

wc =
N

C
∑︁N

n ync
(2)

where N is the number of pixels and C the total number of classes.
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The proposed PDE loss function is a categorical cross-entropy loss including distance weights
(DW) for each pixel and is defined as:

LPDE(y, ŷ) = −

NC∑︂
nc

DWnwcync log (ŷnc) (3)

A pixel was either excluded with a DWn of 0 or included with a DWn of 1. Pixels within a
distance of 1 mm from the tissue transition border were recommended to be excluded by Kho et
al. [16]. However, this results in a more imbalanced dataset containing a small number of DCIS
pixels and a high number of fat pixels compared with IC and connective tissue. Therefore, the
exclusion distance criterion was defined for each tissue type separately. For IC, DCIS, connective,
and fat pixels with a distance from the tissue transition border lower or equal to 1 mm, 0.5 mm, 1
mm, and 3 mm respectively were excluded by the PDE loss function. By excluding pixels at the
transition border of the HS image using the same distance criterion, a "CERTAIN" test set was
prepared, while the "ALL" test set contained all pixels of the HS image.

2.2.3. Tissue classification in breast tissue slices using deep learning neural networks

In this study, we developed three different CNNs for the classification of breast tissue slices
which included one spectral and two spectral-spatial networks. To enable a good comparison
between the different networks, the breast tissue slices dataset was split into the same training set
(55% of the patients), validation set (15% of the patients), and test set (30% of the patients) while
keeping the images from one patient together. The training and validation sets were used to train
the networks and to allow hyperparameter tuning, whereas the test set was used to evaluate the
classification performance. In addition, a 5-fold cross-validation was performed to verify that the
test set represented the whole dataset.

1D-CNN-based spectral network
First, we developed a spectral network to classify the tissue types considering only their

spectral information. Figure 4(a) shows the architecture of this 1D-CNN-based network. The
SNV normalized spectrum sn of the nth pixel can directly be fed as input to the network. The
model consists of three layers including 1D convolution to extract the spectral features followed
by a nonlinear activation function (ReLU) and afterward a max-pooling operator to reduce the
spectra size. The spectral features were flattened into a 1D feature vector and fed into the fully
connected layers. A four-class softmax classifier was used to obtain the final classification results.

Double-channel spectral-spatial network
HS images contain, besides spectral information, also spatial information. Therefore, we

developed a double-channel CNN (DC-CNN) similar to the one proposed by Yang et al. [26]
which incorporates both spectral and spatial features for the classification. The DC-CNN includes
two separated channels for the spectral and spatial feature extractions, as shown in Fig. 4(b). The
spectral channel takes the SNV normalized spectrum sn of the nth pixel as input. This channel
has the same layers as the 1D-CNN where the softmax classifier is replaced by a fully connected
layer. After the convolution and max-pooling operations, the spectral features were obtained.

The spatial channel takes a patch Pn with neighboring pixels of the nth pixel as input. Before
extracting the patch, the whole image was first prepossessed using principal component analysis
(PCA) on the SNV normalized image. The patch size was fixed to 31 × 31. Several layers of 2D
convolution including a ReLU activation function and max-pooling operations were applied to
the spatial patch to extract the spatial features.

The network contains a high number of parameters due to the large size of the input which
increases the likelihood of overfitting. Therefore, L2 regularization was applied to all convolutional
layers. The spectral and spatial features were concatenated and simultaneously fed to two fully
connected layers to extract joint-spectral-spatial features. The last fully connected layer was



Research Article Vol. 13, No. 5 / 1 May 2022 / Biomedical Optics Express 2590

Fig. 4. The architecture of neural networks for tissue classification. (a) the 1D-CNN-based
spectral network, (b) Dual-channel network incorporating spectral and spatial information,
(c) 3D-CNN-based spectral-spatial network.



Research Article Vol. 13, No. 5 / 1 May 2022 / Biomedical Optics Express 2591

followed by a four-class softmax classifier to predict the probability distribution for each tissue
type.

3D-CNN-based spectral-spatial network
The DC-CNN involves 1D and 2D convolutional layers to obtain the spectral and spatial

features, respectively. However, 3D convolution can also be used to incorporate both spectral
and spatial information. Therefore, we developed the 3D-CNN-based spectral-spatial network to
extract the spectral and spatial features simultaneously. First, a hyperspectral patch HPn with
neighboring pixels of the nth pixel was extracted from the SNV normalized image. The patch
size was fixed to 31 × 31 × 528. Second, the input was fed to multiple layers of 3D convolution
and max-pooling, as shown in Fig. 4(c). Dropout and L2 regularization were used to handle
overfitting caused by the large number of parameters. At last, a four-class softmax layer was used
for the final prediction.

2.2.4. Training and hyperparameter tuning

During training, the BCCE or PDE loss functions (as described in Section 2.2.2) were minimized
by optimizing the trainable parameters using stochastic gradient descent during 50 epochs. The
learning rate and momentum were set to 0.001, 0.0009, 0.0003, and 0.95, 0.96, 0.98 for the
1D-CNN, DC-CNN, 3D-CNN, respectively.

Bayesian optimization was performed to tune the hyperparameters of the network. The
hyperparameters include the variables that determine the network structure and how the network
is trained (i.e. learning rate and momentum) [35]. A hypermodel has to be defined with the
search space of the hyperparameters that need to be tuned. The search spaces based on the
researches of Li et al. [23] and Chen et al. [19] are shown in Table 1. The Matthews Correlation
Coefficient was chosen as the objective function since it can handle the imbalanced dataset. This
will be further explained in Section 2.2.6.

Table 1. Search range for hyperparameters tuning for 1D-CNN, DC-CNN and 3D-CNN networks

Parameters 1D-CNN DC-CNN 3D-CNN

Number of hidden layers [1,2,3] [1,2,3] -

Number of filters per spectral conv. layers [10,20,40] [10,20,40] [8,16,32]

Number of filters per spatial conv. layers [15,30,60] -

Number of fully connected layers [0,1,2,3] [1,2,3] [1]

Number of neurons per fully connected layers [200,400,600] [200,400,600] -

Learning rate [1e-5 ; 1e-3] [1e-5 ; 1e-3] [1e-4 ; 1e-2]

Momentum [0.9 ; 0.99] [0.9 ; 0.99] [0.9 ; 0.99]

Dropout rate in conv. layers - - [0 ; 0.5]

First, a few combinations of hyperparameters were randomly chosen to evaluate the objective
function. Second, A Gaussian process model was fitted through this observed data for approxi-
mating the objective function. Lastly, the acquisition function was used to determine the next
combination of hyperparameters given the evaluation results. When the next combination was
evaluated, the Gaussian process model was updated and the steps were repeated until the best
model was found or the maximum of 100 trials was reached.

2.2.5. Tissue classification in lumpectomy specimens using domain adaptation techniques

To use HS imaging as a margin assessment technique, a deep learning network should achieve a
high classification performance on the lumpectomy dataset. However, obtaining sufficient labeled
training samples in the lumpectomy dataset is challenging. Firstly, not every measured side of the
resection surface contains tumorous tissue. Secondly, the ground truth cannot be obtained for the
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whole surface since the histopathological margin assessment only covers a small fraction. As a
result, the number of labeled training samples of the lumpectomy was insufficient for developing
a reliable classification algorithm.

One solution is to use a domain adaptation strategy which applies the knowledge from the
source domain to train a network for the target domain. Since the breast tissue slices dataset
contains sufficient labeled data, we used this dataset as the source domain. The lumpectomy
dataset was intended as the target domain. The lumpectomy dataset was split into a training,
validation and test set using similar ratios as used for splitting the breast tissue slices dataset.

In this study, we used a fine-tuning based domain adaptation method to predict the tissue
percentages of the lumpectomy resection surface. The bottom layers of this neural network
extract low-level features, which are more generic than the high-level features, and could be
transferred to the target domain. The top layers extract high-level features, thus those layers
need to be trained on the target domain. First, the neural network was pre-trained on the breast
tissue slices dataset using the PDE loss function defined in Eq. (3). Then, the top layers, i.e.
fully connected layer and classification layer, were retrained during 100 epochs on the labeled
lumpectomy dataset using the BCCE loss function defined in Eq. (1). Bayesian optimization
was used to determine the optimal learning rate and momentum for the fine-tuning (1D-CNN:
Learning rate=0.0002, Momentum=0.9; DC-CNN: Learning rate=0.0008, Momentum=0.9).

Since the lumpectomy locations contain a mixture of tissue types, fine-tuning was also
performed with the percentages of each tissue type as ground truth label for each location
rather than one single tissue type label. The learning rate and momentum were also tuned with
Bayesian optimization (1D-CNN: Learning rate=0.001, Momentum=0.93; DC-CNN: Learning
rate=0.0002, Momentum=0.99). The root mean square error was chosen as the objective
function since the error between the ground truth percentages and predicted percentages should
be minimized.

2.2.6. Performance metrics and statistical analyses

The test sets of the breast tissue slices and lumpectomy specimens were used to evaluate the
classification performance of the networks. Since it is clinically relevant to differentiate between
healthy (connective tissue & fat) and tumor tissue (IC & DCIS), we evaluated the recall values
to determine the percentages of pixels that were correctly classified as either tumor or healthy
tissue. Furthermore, the Matthews Correlation Coefficient (MCC), sensitivity, specificity, and
accuracy were calculated. The true positive (TP) rate was defined as the percentage of IC and
DCIS pixels that were correctly classified as tumor tissue whereas the true negative (TN) rate
was the percentage of connective and fat pixels correctly classified as healthy tissue. The false
negative (FN) rate indicated the percentage of IC and DCIS pixels that were classified as healthy
tissue, and the false positive (FP) rate the percentage of connective and fat pixels classified as
tumor tissue. We used the MCC instead of the accuracy because it is regarded as a more robust
metric for imbalanced sample sizes in the dataset. The MCC was calculated as follows:

MCC =
TP · TN − FP · FN√︁

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

The values range between -1 and 1, with 1 showing a perfect correlation, -1 no correlation,
and 0 showing that the results were uncorrelated with the ground truth [36]. During training of
the networks, this performance metric was evaluated for the validation set to determine the best
model and to avoid overfitting.

We evaluated the predicted tissue percentages of the lumpectomy locations by calculating the
root mean square error (RMSE). The RMSE represents the distance between the true percentages
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on the H&E sections and the predicted percentages and can be calculated by

RMSE =

⌜⃓⎷ C∑︂
c

N∑︂
n

(p̂nc − pcn)2

NC
(5)

where pnc is the ground truth percentage and p̂nc is the predicted percentage by the network
for each sample n of each class c. N and C represent the total number of samples and classes,
respectively.

For comparison of the classification performance, the paired nonparametric McNemar’s test
was used to evaluate whether the networks differ significantly in terms of performance. The
McNemar’s test is based on a Chi-square statistics applied to a 2x2 contingency table. The null
hypothesis states that the proportion of correctly classified pixels is similar for the two networks
[37]. When the p value was smaller or equal to 0.05, the null hypothesis was rejected.

3. Results

3.1. Data description

Tables 2 and 3 give an overview of the number of patients and pixels used per tissue type in
the breast tissue slices and lumpectomy dataset. From these tables several differences can be
observed: the breast tissue slices contain more labeled data than the lumpectomy specimens
since the ground truth label could be obtained for each pixel in the HS image, whereas for the
lumpectomy specimens the ground truth label could only be determined for up to three locations
in the HS image (i.e. by using the black ink marks on the H&E sections). Thus, the remaining
pixels were used as unlabeled data. In addition, for the breast tissue slices dataset, pixels that
likely contained a mixture of different tissue types could be excluded by the PDE loss function
during training. For the lumpectomy dataset, the three locations on each specimen had to be
marked blindly before the H&E sections were obtained, so no information about the distribution
of the tissue types was known. As a result, all marked locations in the lumpectomy dataset reflect
a mixture of different tissue types. However, a location was labeled as tumor (i.e. IC or DCIS)
if some percentage of tumor tissue was found underneath the black spot even if the percentage
was lower than the healthy tissue. Therefore, no distinctive tissue labels were available for these
marked locations.

Table 2. Data description of the breast tissue slices

Tissue class Training set Test set

#patients (#pixels) ALL CERTAIN

IC 11 (7,616) 11 (6,792) 10 (2,936)

DCIS 24 (9,024) 6 (852) 1 (212)

Connective 29 (39,792) 13 (7,952) 6 (1,206)

Fat 29 (65,930) 13 (26,176) 7 (4,008)

Total 29 (122,362) 13 (41,772) 13 (8,362)

3.2. Exclusion based on the distance to tissue transition

For the breast tissue slices dataset, the labels at tissue transition areas are less reliable. Figure 5
shows a representative example of a tissue transition and its corresponding spectrum: this
spectrum (green) was neither equal to the spectrum taken in IC tissue (red) nor the spectrum
taken in fat tissue (cyan). Instead, the spectrum represents a mixture of the two tissue types.
Hence, to account for the label uncertainty, we defined the PDE loss function to exclude those
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Table 3. Data description of the lumpectomy specimens

Tissue class Training set Test set

#patients (#locations) labeled Unlabeled labeled

> 1% IC 18 (24) - 5 (6)

> 1% DCIS 11 (14) - 1 (2)

> 50% Connective 59 (94) - 11 (17)

> 50% Fat 70 (94) - 20 (32)

Total 96 (226) 96 (49,220) 25 (57)

pixels at tissue transitions from the training set. Figure 6 shows that a larger distance to the tissue
transition increases the accuracy and MCC values for the pixels in the ALL test set.

Fig. 5. Example of a tissue slice with an IC-fat tissue transition. The three locations (a) were
taken in the middle of IC (red), in the middle of fat (cyan), and at the IC-fat tissue transition
(green) as indicated by the corresponding H&E images. The three diffuse reflectance spectra
(b) represent these locations.

Fig. 6. Classification performance vs distance to tissue transition. The accuracy in
percentage (a) and MCC (b) with respect to the distance in pixels to the tissue transition for
the 1D-CNN (blue dots), DC-CNN (red dots) and 3D-CNN (yellow dots).

After hyperparameter tuning, the networks were trained twice using the BCCE loss function
including all samples as well as the PDE loss function to account for label uncertainty. Figure 7
shows the MCC values for all three networks evaluated on both the ALL and CERTAIN test sets.
The highest MCC was achieved when the networks were trained with the PDE loss function and
tested on the CERTAIN test set.
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Fig. 7. Evaluation of the classification algorithms trained using the BCCE or PDE loss
functions and tested on the ALL and CERTAIN dataset.

3.3. Classification results on breast tissue slices

In Tables 4 and 5 the performance metrics for the discrimination of tumor from healthy tissue
and the recall values per tissue type are shown for each network respectively. The networks were
trained twice using the BCCE loss function without accounting for label uncertainty, and the
PDE loss function with accounting for label uncertainty.

Table 4. Performance metrics for the discrimination of tumor tissue from healthy tissue for 3
different networks trained using the BCCE and PDE loss functions

Training using BCCE Loss Training using PDE loss

Test set 1D-CNN DC-CNN 3D-CNN 1D-CNN DC-CNN 3D-CNN

ALL

MCC 0.71 0.62 -0.03 0.70 0.70 0.49

Sensitivity 0.67 0.62 0.00 0.87 0.78 0.72

Specificity 0.97 0.95 0.36 0.90 0.94 0.84

Accuracy 0.92 0.89 0.80 0.90 0.91 0.82

CERTAIN

MCC 0.70 0.87 −0.10 0.89 0.92 0.61

Sensitivity 0.60 0.83 0.00 0.91 0.91 0.68

Specificity 1.00 1.00 0.97 0.97 1.00 0.91

Accuracy 0.85 0.94 0.61 0.95 0.96 0.82

Table 5. Classification results for 3 different networks Training using the BCCE or PDE loss
function: recall values for each tissue type

Training using BCCE Loss Training using PDE loss

Test set 1D-CNN DC-CNN 3D-CNN 1D-CNN DC-CNN 3D-CNN

ALL

IC 73% 64% 1% 92% 81% 70%

DCIS 23% 51% 0% 46% 60% 83%

Connective 95% 92% 98% 83% 87% 66%

Fat 98% 96% 98% 93% 96% 89%

CERTAIN

IC 62% 84% 0% 94% 92% 66%

DCIS 29% 67% 0% 45% 67% 97%

Connective 100% 100% 100% 89% 100% 61%

Fat 100% 100% 96% 100% 100% 100%
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3.3.1. Accounting for label uncertainty improves tumor classification

In general, the classification performance (Table 4) improved when the algorithms were trained
with the PDE loss function. The McNemar’s tests show that the networks differ significantly in
terms of performance when trained with the PDE loss function than with the BCCE loss function
(1D-CNN: p<0.0001; DC-CNN: p<0.05; 3D-CNN: p<0.02). A higher sensitivity (Table 4) and
recall for IC and DCIS (Table 5) were achieved with the PDE loss function. This is also illustrated
in Fig. 8, which shows the classification results of the DC-CNN using the BCCE and PDE loss
function for one breast tissue slice. In this slice more tumor pixels were correctly classified with
the PDE loss function than with the BCCE loss function. However, with the BCCE loss function,
a higher recall was achieved for connective tissue. The recall value for fat was similar for both
loss functions.

Fig. 8. Classification results of tumor tissue (red pixels) and healthy tissue (green pixels)
for one breast tissue slice using the DC-CNN. Left) the ground truth. Middle) classification
results using the BCCE loss function (without accounting for label uncertainty). Right)
classification results using the PDE loss function (with accounting for label certainty). The
black pixels in the slice indicate pixels without a ground truth label.

3.3.2. DC-CNN outperforms 1D-CNN and 3D-CNN

For both loss functions the highest classification performance was achieved with the DC-CNN.
This is shown in Table 4 where the performance metrics were either similar or higher compared
to the 1D-CNN and 3D-CNN. Based on McNemar’s test, the performance of the DC-CNN was
significantly different from the other networks (1D-CNN: p<0.0001; 3D-CNN: p<0.01).

With regard to the PDE loss, differences were observed between the 1D-CNN and DC-CNN
in the recall of DCIS and connective tissue. For both tissue classes, the DC-CNN achieved
a higher recall (DCIS: 67%, Connective: 100%) than the 1D-CNN (DCIS: 45%, Connective:
89%). Comparing the DC-CNN and 3D-CNN, the recall values show that the DC-CNN was
more capable of discriminating IC (92%) and connective tissue (100%) than the 3D-CNN (IC:
66%, connective: 61%). However, the 3D-CNN has a better performance on the discrimination
of DCIS with a recall of 97%, whereas the DC-CNN achieved a recall of 67%. The recall value
for fat was similar for all networks.

The results in Table 4 were compared using a single training and test set. Hence, 5-fold
cross-validation was performed to confirm that the results represented the whole dataset. For
the DC-CNN using the PDE loss function, the cross-validation shows a MCC, sensitivity and
specificity range of respectively 0.72 ± 0.17, 0.82 ± 0.13 and 0.89 ± 0.14, which are thus
comparable to the results in Table 4.

In summary, the results show that accounting for label uncertainty by using the PDE loss
function improved the discrimination of tumor tissue (i.e. IC & DCIS) and healthy tissue. Adding
spatial information to the classification algorithm using PCA (i.e. the DC-CNN) generally
increased the classification performance.
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3.4. Classification results on lumpectomy dataset

The 1D-CNN and DC-CNN were fine-tuned to predict the tissue percentages in the lumpectomy
specimens. Since the classification results of the 3D-CNN on the breast tissue slices were
insufficient, this algorithm was excluded for the classification of the lumpectomy specimens. To
fine-tune the networks, we used the 1D-CNN and DC-CNN that were trained with the PDE loss
function on the breast tissue slices, and retrained the top layers with the BCCE loss function on
the labeled lumpectomy training set. Subsequently, we evaluated the networks with the RMSE by
using the labeled lumpectomy test set. The RMSE indicates the error of the predicted percentages
of tumor and healthy tissue with respect to the ground truth percentages based on the H&E
sections. The fine-tuned 1D-CNN and DC-CNN achieved an RMSE of respectively 9% and 11%.
Figure 9 shows the predicted percentages of tumor and healthy tissue on the test set versus the
ground truth percentages on the H&E sections.

Fig. 9. Predicted percentages by the 1D-CNN (a) and DC-CNN (b) vs. ground truth tissue
percentages based on H&E sections of labeled lumpectomy locations. The tumor percentages
are marked with red color and the healthy percentages with blue color.

These networks can be used to predict the tissue percentages for each pixel in the HS images
of the lumpectomy. The prediction can support the surgeon in the decision to remove some
additional tissue to ensure a complete excision. Figure 10 shows an example of the predicted
tumor percentage for one side of the lumpectomy. In the middle, a high percentage of tumor
tissue is predicted, so in this case the surgeon could decide to remove some extra tissue during
surgery.
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Fig. 10. Predicted tumor percentage of one side of the lumpectomy surface versus ground
truth. In the middle of the lumpectomy surface (a) a tumor percentage of 60% is predicted
(b). To verify this prediction with the ground truth, the suspected location (c) is marked
with black ink (red arrow) and sliced (yellow rectangle). The corresponding ground truth
cross-section (d) shows a tumor-positive area (red delineation) within 2 mm distance from
the surface and thus confirms the tumor prediction.

4. Discussion

Achieving a tumor-negative resection margin is crucial to minimize the risk of tumor recurrence
after breast-conserving surgery. However, this remains difficult as there is currently no margin
assessment technique to provide real-time feedback during surgery. With the ability to image the
entire resection surface in a rapid amount of time, HS imaging has the potential to overcome
current limitations. Nevertheless, the development of an accurate deep classification network
remains challenging because it is difficult to create a large dataset with ground truth labels on
lumpectomy specimens.

In this study, we therefore used an extensive dataset on breast tissue slices to develop three
convolutional neural networks for evaluating the classification performance of HS imaging.
To make the step towards HS imaging analysis of lumpectomy specimens, we used a domain
adaptation method to fine-tune these networks with lumpectomy data. Despite the use of a smaller
labeled lumpectomy dataset, we were able to predict the tissue percentages on the lumpectomy
resection surface.

4.1. Tissue classification in breast tissue slices

We expected a higher classification performance on the spectral-spatial networks since it was
previously shown that adding spatial information to the network improved the classification
performance [16,19]. Comparing the spectral 1D-CNN to the spectral-spatial DC-CNN, the
performance of the DC-CNN was indeed higher than the 1D-CNN. However, we achieved a
lower performance with the spectral-spatial 3D-CNN. This may be explained by the fact that
the 3D-CNN contained a high number of trainable parameters, which increased the chance of
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overfitting and generalization [38]. Since it is challenging to expand the data, several approaches
were investigated to address the problem of overfitting: dropout, L2 regularization, and decreasing
the number of layers. Nevertheless, the classification performance of the 3D-CNN remained
lower than of the 1D-CNN and DC-CNN.

During the development of the classification algorithms on the breast tissue slices, we used
the BCCE loss function to include all pixels as well as the PDE loss function to account for
label uncertainty. Our results show that the highest classification performance was achieved
when the networks were trained using the proposed PDE loss function. Besides the fact that
excluding pixels with unreliable tissue labels improved the classification performance, also the
use of hyperparameter tuning, with the PDE loss function rather than the BCCE loss function,
resulted in a higher performance of the networks.

Using the PDE loss function, McNemar’s test showed that the performance of the DC-CNN
was significantly different from the 1D-CNN and the 3D-CNN. However, this test does not report
which network performs significantly better. On top of that, McNemar’s test does not measure
the variability of the algorithms due to the choice of the training dataset. The algorithms were
only compared using a single training and test set [39].

4.2. Tissue classification in lumpectomy specimens

Domain adaptation techniques assume that the task is similar between the domains, while the
domains are different. In this study, the task for both breast tissue slices and lumpectomy domain
is similar since the HS images need to be classified with the same four tissue types. Concerning
the domains, we expect that the feature space would be the same for both datasets since the same
tissue types were imaged. However, we expect a spectral shift due to the difference in penetration
depth of light, cutting method, and surface flatness which leads to different reflection values for
each feature.

For the domain adaptation method, we used the PDE loss function for the breast tissue slices
classification since this approach achieved the highest results on the CERTAIN test set. However,
all locations in the lumpectomy dataset contain a mixture of different tissue types with no
distinctive label. Therefore, it is possible that training using the BCCE loss function which
includes all pixels of the breast tissue slices dataset improves the classification of the lumpectomy
compared to the PDE loss function.

4.3. Limitations

4.3.1. Limited tumor in the lumpectomy data

In only 8 of the 57 locations of the test set, tumor tissue was found within 2 mm underneath the
resection surface. These locations contained less than 40% tumor and thus, in this study the
performance of the networks could not be evaluated for locations with higher tumor percentages.
During data acquisition, the resection sides of the lumpectomy were evaluated using observation
and palpation as well as a LDA classification algorithm to increase the likelihood of selecting
tumor-positive locations. Nevertheless, the number of tumor locations remained insufficient to
create a representative training and test set.

4.3.2. No optimal threshold for tissue percentages

During labeling of the lumpectomy dataset, a location was labeled as tumor-positive if the ground
truth percentage of tumor tissue was higher than 1%. However, no optimal threshold could be
selected with regard to these percentages since a higher threshold increased the number of false
negatives whereas a lower threshold increased the number of false positives. On top that, these
ground truth percentages were based on a region of 2 mm underneath the resection surface. Since
definitions on positive resection margins vary per country [40], the predicted tissue percentages
should only be considered as an approach to identifying tumor suspicious areas rather than
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detecting positive resection margins. Nevertheless, they can support the surgeon in the decision
to remove some additional tissue to ensure a complete excision.

4.4. Comparison to similar work

4.4.1. Classification methods

This is the first study in which a domain adaptation method was used to improve the tissue
classification of breast lumpectomy HS images. However, in literature different methodologies
are used for classifying HS images of breast tissue specimens [16,28,41–43].

Panasyuk et al. [41] were one of the first pioneers who performed an in vivo HS imaging
study on 56 rats with induced mammary tumors. Different from our study, the authors used a
liquid crystal tunable filter-based HS system in the visual range (450-700 nm, 34 wavelength
bands) to acquire the data of 339 individual sample locations and developed a classification
algorithm on the corresponding absorption spectra. Several tissue types such as tumor, muscle,
connective tissue (including fat) and even blood vessels could be clearly detected on the classified
HS images. On top of that, they achieved a performance of 89% sensitivity and 94% specificity
to detect residual tumor tissue using histopathology as the gold standard. Since these results
were only demonstrated in animal models, no definite conclusions on human subjects could be
drawn. Therefore, it is not possible to make a comparison with our study.

In a study of Pourreza-Shahri et al. [42] the authors performed an ex vivo study on 19 human
breast tissue specimens. A digital light processing-based HS system was used between 380 and
780 nm at 101 different wavelengths. Subsequently, the most important features were extracted
with a Fourier Coefficient Selection features approach followed by a Minimum Redundancy
Maximum Relevance method to reduce spectral dimensionality. Hereafter, the authors used a
SVM classifier with a radial basis kernel function to distinguish healthy from tumor tissue with a
sensitivity of 98% and specificity of 99%. Despite these high performance results, this study only
evaluated tumor, fat and connective tissue whereas we also included DCIS in the classification
because this type of tissue significantly adds to the number of positive resection margins [3].
Since DCIS is the precursor of tumor tissue (IC), these small premalignant cells are usually
difficult to detect with HS imaging [16]. Hence, this explains a lower sensitivity (91%) on the
test set.

Similar to our study, Aboughaleb et al. [43] used a pushbroom HS system to discriminate ex
vivo healthy from tumor tissue in human breast specimens. However, the data were acquired over
a smaller wavelength range between 420 and 620 nm and six bands. For the classification of the
ten included specimens, the authors applied a moving average filter and subsequently a K-mean
clustering algorithm. A sensitivity and specificity of respectively 95% and 96% were obtained,
which are in line with our results. Nevertheless, there is a major difference with our study: per
patient the tumor and healthy data were acquired on different tissue samples whereas we obtained
the data on the same sample. In other words, the authors used the resected breast specimens as
tumor tissue and removed another part of the breast (at 5-10 cm distance from the tumor) to use
it as healthy tissue. These samples consisted of pure tissue only while we particularly included
mixtures of tissue.

Compared to the previous publications, Kho et al. [16] acquired one of the most extensive
datasets on breast tissue slices. This dataset consisted of 42 patients with over 300.000 spectra,
and was obtained with two pushbroom HS systems in both the visual and near-infrared range
(450-1650 nm, 528 bands). By using a Fisher’s Linear Discriminant Analysis classifier, the
authors could discriminate healthy (connective tissue, fat) from tumor tissue (invasive carcinoma,
ductal carcinoma in situ) with a very high performance of 98% sensitivity and 99% specificity. In
a follow-up study [28], the authors made the step towards classification of lumpectomy specimens
but due to a small lumpectomy dataset, they were not able to develop a new classifier. Therefore,
the authors examined whether they could directly apply the classification algorithm that was
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developed on the breast tissue slices, to the data of the lumpectomy specimens but found this to
be insufficient for obtaining adequate classification results.

4.4.2. Margin assessment techniques

Comparing our results on the lumpectomy specimens with the performances of other margin
assessment techniques (Section 1.), the classification performance of HS imaging has been on
the low side.

For ultrasound imaging, a sensitivity of 86% and specificity of 100% were reported [7].
Although promising, the performance of this technique mainly depends on the operator who
should be highly experienced given that the outcome of the images is prone to interpretation
errors. With HS imaging there is no need for an experienced operator as the performance rather
depends on the outcome of the classification algorithm.

For optical coherence tomography, the reported sensitivity and specificity were 100% and 82%
respectively [11], which outperforms our results on the lumpectomy specimens. Nevertheless,
this technique has a small field-of-view that only covers approximately a region of 1 cm2, making
it less effective than HS imaging to image the entire resection surface quickly.

Also frozen section analysis has high sensitivity and specificity of 83% and 95% respectively
[6,44]. However, this method adds on average 27 minutes to the operation time. With HS
imaging, the entire resection surface can be analyzed in less than two minutes including 1 minute
for imaging the lumpectomy with the HS cameras, 20 seconds for preprocessing and 1 second for
classifying the image with the DC-CNN. The classification performance of HS imaging on the
breast tissue slices was comparable with frozen section analysis which shows potential for the
classification of the lumpectomy specimens when more tumor data is available.

Besides HS imaging, there are also other spectroscopy methods (e.g. Raman spectroscopy)
that have the potential of detecting cancer cells with a high performance [8–10]. However, in
contrast to HS imaging, most of these methods only allow single-point measurements. Hence,
to analyze the entire resection surface, multiple sites have to be measured which makes these
methods rather laborious and time-consuming for use during surgery.

4.5. Future research

In future research, multiple directions can be pursued. In short, the results on the lumpectomy
dataset can be improved by extending the amount of tumor data or using a different methodology
for analyzing the data.

4.5.1. Data acquisition

To improve the results, more data should be available on the lumpectomy specimen with a reliable
tissue label. Training and testing of the network on spectra with a representative label should
increase the classification performance. Therefore, more data should be acquired on locations
containing a higher percentage of tumor tissue than healthy tissue. It might also be helpful to
redefine the percentages and tissue labels for the H&E section with tumor delineations including
healthy tissue.

4.5.2. Methodological improvements

The lumpectomy dataset contains more unlabeled data compared with labeled data. Therefore,
the performance could be improved by exploiting this unlabeled data using weakly supervised or
unsupervised learning methods.

Thereby, the method of determining the tumor percentages should incorporate the penetration
depth of light. One disadvantage of HS imaging is that the penetration depth varies both with
wavelength and tissue types, thus it is not similar for all diffuse reflectance spectra. Since the
percentages in this study were calculated for a fixed depth, the obtained spectra might not represent
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the same area underneath the tissue surface due to a different penetration depth. Consequently,
the tissue labels for the lumpectomy specimen might be inaccurate when not accounting for
the penetration depth of light for each wavelength. This can be solved by either performing
wavelength selection to ensure that only wavelengths with the desired penetration depth are
included [45], or by training a deep learning model to recognize different penetration depths
based on the intensity of the reflection spectra [46].

Furthermore, since the optical resolution of the light is lower than the spatial resolution of the
HS cameras, it is also important to consider that the obtained spectrum from one pixel covers a
larger sampling volume than solely the size of the pixel. In other words, one pixel might represent
a mixture of surrounding tissue types rather than a single tissue type. In our study, we accounted
for this by using tissue percentages instead of distinctive labels, and including neighboring pixels
as input for the DC-CNN and 3D-CNN. However, hyperspectral unmixing could be another
potential solution to distinguish the spectra from each other when no pure pixels exist [47].

5. Conclusion

In this study, we have demonstrated that the resection margins of breast lumpectomy specimens
can be classified with HS imaging through a domain adaptation approach. Our results showed
that the classification performance of the algorithm can be improved by exploiting HS images of
both the breast tissue slices and the lumpectomy datasets using the proposed PDE loss function to
account for label uncertainty. In particular, the discrimination of connective and fat tissue from
tumor tissue was improved. Since the data represented a mixture of different tissue types, the
lumpectomy resection surface was predicted with tissue percentages rather than distinctive labels.
The prediction of the tissue percentages on the lumpectomy resection surface shows potential
as an RMSE of 9% was achieved with the fine-tuned 1D-CNN. For further improvements, the
lumpectomy dataset should be either expanded with locations that contain more tumor than
healthy tissue or more reliable tissue percentages should be calculated based on the H&E sections
and penetration depth of light.
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