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A B S T R A C T   

Artificial intelligence and machine learning are ubiquitous in the domain of Earth Observation (EO) and Remote 
Sensing. Congruent to their success in the domain of computer vision, they have proven to obtain high accuracies 
for EO applications. Yet experts of EO should also consider the weaknesses of complex, machine-learning models 
before adopting them for specific applications. One such weakness is the lack of explainability of complex deep 
learning models. This paper reviews published examples of explainable ML or explainable AI in the field of Earth 
Observation. Explainability methods are classified as: intrinsic versus post-hoc, model-specific versus model- 
agnostic, and global versus local explanations and examples of each type are provided. This paper also iden
tifies key explainability requirements identified the social sciences and upcoming regulatory recommendations 
from UNESCO Ethics of Artificial Intelligence and requirements from the EU draft Artificial Intelligence Act and 
analyzes whether these limitations are sufficiently addressed in the field of EO. 

The findings indicate that there is a lack of clarity regarding which models can be considered interpretable or 
not. EO applications often utilize Random Forests as an “interpretable” benchmark algorithm to compare to 
complex deep-learning models even though social sciences clearly argue that large Random Forests cannot be 
considered as such. Secondly, most explanations target domain experts and not possible users of the algorithm, 
regulatory bodies, or those who might be affected by an algorithm’s decisions. Finally, publications tend to 
simply provide explanations without testing the usefulness of the explanation by the intended audience. In light 
of these societal and regulatory considerations, a framework is provided to guide the selection of an appropriate 
machine learning algorithm based on the availability of simpler algorithms with a high predictive accuracy as 
well as the purpose and intended audience of the explanation.   

1. Introduction 

The past ten years have seen an incredible rise in the usage of Ma
chine Learning (ML) and Artificial Intelligence (AI) in the domain of 
Earth Observation (EO) and Remote Sensing (RS). Indeed, there are now 
more than 1000 publications in the field (Camps-Valls et al., 2021; Zhu 
et al., 2017). Given the influence of these algorithms from the field of 
Computer Science on the domain of Earth Observation, it is perhaps wise 
to also consider their limitations. Indeed, increasing awareness of the 
fallacies of data-driven ML methods is calling for ethical guidelines for 
AI so society can responsibly utilize the great potential of these tech
nologies. By 2020, the concepts of explainability and transparency were 
included in most guidelines on Responsible AI (Fjeld et al., 2020) as well 
as legislation. For example, the General Data Protection Regulation 
(GDPR) in Europe already demands a “right to explanation” (GDPR, 
2016, Recital 71; Goodman and Flaxman, 2016) and the European 

Commission’s draft Artificial Intelligence Act will implement trans
parency and explainability requirements for high-risk AI applications on 
the European Market (European Commission, 2021). Also in the geo
sciences, there is a clear call for evaluation frameworks to move away 
from assessing merely the performance of algorithms, but to also 
consider on the quality of the AI algorithms (Craglia, 2018). 

The concept of explainability of machine learning (ML) models is not 
new. “Interpretable AI/ML” seems to be more prominent in the scientific 
community whereas “explainable AI/ML” is used more in a public 
setting (Adadi and Berrada, 2018). Research on the explainability of 
machine learning systems started as far back as the 1990s (Freitas, 2014; 
Holte, 1993). “Parsimony” in statistics and “simplification” in philoso
phy also describe the innate tension between increased accuracy of 
complex, data-driven models versus the interpretability and sometimes 
generalization capacity of simpler models (Herman, 2017). Still, since 
2017 the terms of explainable and interpretable AI have gained 
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momentum in published research (Arrieta et al., 2019). 
If explainable ML is so important, then why is it not being imple

mented already? Burrell (2016) describes three main barriers for 
explainability: (1) intentional concealment of algorithms by institution 
(2) gaps in technical literacy, e.g. simply sharing the code isn’t a suffi
cient explanation for most users, and (3) the mismatch between high- 
dimensional mathematical operations of state-of-the-art algorithms vs 
human-scale reasoning and styles of interpretation. I.e., it is extremely 
difficult for humans to understand the inner workings of very complex 
models, such as the popular deep learning models. Assuming they go 
coupled with adequate enforcement mechanisms, emerging regulatory 
frameworks may help overcome the first challenge. The field of 
explainable ML aims to overcome the second and third challenges. For 
example, by not only assessing the predictive accuracy of a ML model, 
but also the descriptive accuracy of the explainability method and the 
relevance of the explanation for the user Murdoch et al. (2019). Expla
nations of complex models don’t replicate the exact reasoning of the 
model (Rudin, 2018), but rather attempt to distill the most influential 
factors behind the reasoning. Persuasive explanations can be distilled to 
be more convincing to the user (Herman, 2017) though increased 
abstraction comes at the cost of a loss of fidelity to the original model. 
Finding the balance between the complexity of deep learning models 
and how to simplify the inner workings to explanations understandable 
by humans is a tricky task which touches the fields of computer sciences 
and social sciences. The domain of Earth Observation is not escaping this 
drive for explainability. Developments in the field of Computer Science 
been successfully applied to the domain of Earth Observation, and it is to 
be expected that the drive for explainable algorithms will follow the 
same path. Indeed, explainability is highlighted as one of the six main 
research directions in the field (Tuia et al., 2021). 

The objective of this paper is to consider the progress of explainable 
ML in the field of Earth Observation and highlight avenues for further 
research given the context of emerging regulatory requirements and 
known limitations of explainable ML methods from a social science 
perspective. It is not simply a review of explainable ML applications in 
Earth Observation, like Roscher et al., (2020a), but rather considers 
these developments in the broader societal context presented by social 
sciences and regulatory frameworks such as the UNESCO recommen
dations and draft European Artificial Intelligence Act. 

The scope of this paper focusses on ML applications in Earth 
Observation and Remote Sensing. Typical tasks in this domain include 
the identification of objects in remotely sensed imagery or the classifi
cation of each pixel in the image (Ma et al., 2019; Zhu et al., 2017). As 
such, many of the ML tasks in this paper will be inspired by classification 
and semantic segmentation tasks in Computer Vision. This manuscript 
doesn’t specifically consider other geospatial tasks which utilize other 
data types and may have specific data peculiarities, although there are 
likely to be many overlaps. 

More specifically, this paper considers:  

• Which explainable ML methods are being applied in the field of Earth 
Observation? 

• Which key limitations of explainable ML are raised by the (up
coming) regulatory environment and social sciences? 

• How can Earth Observation experts take these societal and regula
tory concerns regarding explainable ML into account, to make sure 
they utilize and develop algorithms that align with these needs? 

The paper is organized as follows. Section 2 addresses the ambiguity 
of the terms transparency, explainability, and interpretability and pro
vides definitions and Section 3 provides an overview of the types of 
explainable ML methods. Section 4 describes the regulatory context 
regarding explainable ML and Section 5 describes concerns from the 
social sciences. This typology, regulatory context, and societal concerns 
are used as a frame to review the published research on explainable ML 
in the field of Earth Observation in Section 6. Section 7 discusses the 

findings and suggests a framework for Earth Observation scientists to 
use and Section 8 presents the conclusions. 

2. Definitions 

Interpretability doesn’t have a formal technical meaning (Lipton, 
2016), and there is much discrepancy in the use of terms such as 
transparency, interpretability and explainability in literature (Arrieta 
et al., 2019; Doshi-Velez et al., 2017; Hamon et al., 2020; Herman, 2017; 
Roscher et al., 2020b; Rudin, 2018; Sovrano et al., 2022). Transparency, 
usually refers to the model itself and how straightforward it is to access 
model parameters and motivate model decisions (Lipton, 2016; Roscher 
et al., 2020b; Tuia et al., 2021). As we will discuss below, regulatory 
frameworks often consider transparency to include the broader context 
of the ML system including the context, the availability of the code or 
datasets for auditing, and whether efforts were made to mitigate biases 
and ensure human rights (European Commission, 2021; UNESCO, 
2021). 

Many researchers opt to utilize the terms explainability and inter
pretability interchangeably (Du et al., 2018; Miller, 2019; Molnar, 2022) 
to signify “the degree to which an observer can understand the cause of a 
decision” (Biran and Cotton, 2017; Miller, 2019) or “how models are 
able to present reasonings in a way understandable to humans” (Du 
et al., 2018). However, others present a distinction where interpretability 
refers to the ability to understand how models reach certain predictions 
while explainability links such interpretations to domain knowledge 
(Roscher et al., 2020b; Tuia et al., 2021; Zhang et al., 2022). The main 
arguments for this distinction, which is prominent in the literature in the 
field of Earth Observation, is that this domain-specific contextual 
knowledge is required in order to interpret a model and that the goal of 
the user should be considered (Roscher et al., 2020b). For example, 
interpretability may help identify which features are more influential on 
a model’s prediction, but explainability may incorporate domain 
knowledge to reason why these features are influential. 

Finally, an explanation refers to how a model obtained a prediction 
for a single input sample (Miller, 2019; Molnar, 2022). The importance 
of domain knowledge on top of interpretability in order to achieve 
explainability is underscored by (Hamon et al., 2020), who state “just 
because the output of a model is interpretable doesn’t mean that this 
interpretation is sufficient as an explanation, either considering the 
domain of application of the systems or from a legal point of view”. Note 
that in an effort to reach human interpretability, explanations, explain
ability and interpretability often add components or simplifications to the 
system and it is therefore important to distinguish the results of these 
models from the original ML system (Doshi-Velez et al., 2017). The 
degree to which an explanation represents the full complexity of the 
predictive model is referred to as model fidelity. 

3. Types of Explainable ML methods 

Model transparency can be described at different levels. Roscher 
et al. (2020b) identify model transparency (similar to simulatability as 
described by (Lipton, 2016)), design transparency, and algorithmic trans
parency. Lipton, (2016) does not recognize design transparency but 
rather recognizes decomposability which refers to transparency at a 
parameter level. Interestingly, Roscher et al., (2020b) argue that trans
parency doesn’t depend on the specific data, yet when considering the 
algorithm as a system and deployability to a new study area, the training 
data is very influential and indeed many regulatory frameworks 
consider a broader definition of transparency. We will come back to the 
consequences of neglecting this component later. 

Interpretability and explainability methods can be grouped along 
different axes: intrinsic vs post-hoc, global vs local, and model-specific 
vs model-agnostic (Adadi and Berrada, 2018; Hamon et al., 2020; Lip
ton, 2016; Molnar, 2022; Murdoch et al., 2019; Schorr et al., 2021). 
Table 1 provides an overview of these categories. Note that intrinsic 
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explanation models are model-specific by nature (Adadi and Berrada, 
2018). The boundaries between categories can be vague and also depend 
on how a model is applied. For example, ranking the most important 
features contributing the prediction of a model is generally a post-hoc 
explanation, but if the most important features from the ranking are 
utilized to retrain the model than this manuscript considers that 
explainability is intrinsically integrated into the ML workflow. 

4. Regulatory context 

The UNESCO Recommendation on the Ethics of Artificial Intelli
gence and the European Commission Draft Artificial Intelligence Act 
(AIA) are used to represent the regulatory context of explainable ML. 
The UNESCO Recommendations are selected for its global representa
tiveness and emphasis on the context of Low- to Middle Income Coun
tries (LMICs). The AIA is selected because the framework goes beyond 
recommendations and provides a legislative framework which enforces 
adherence. Moreover, if it follows the footsteps of the GDPR, it has the 
potential to form a global inspiration for other ML frameworks. 

4.1. UNESCO 

UNESCO adopted its “Recommendation on The Ethics of Artificial 
Intelligence” in November 2021 (UNESCO, 2021). It included an 
extensive peer-review process, with more than 800 responses for the 
online consultation and more than 500 participants at organized 
workshops. These Recommendations emphasize the importance of in
clusion of LMICs and addressing digital and knowledge divides 
throughout the ML lifecycle. The Recommendation is non-binding, 
though UNESCO recommends Member States enforce these Recom
mendations and ensure the relevant parties, including the private sector, 
assume their responsibilities. 

The Recommendations define values and principles that should 
guide the development and usage of ML systems. “Transparency and 
Explainability” is one of these principles. Transparency should promote 
the understanding of the ML system including the context, sensitivity, 
and any assurances to ensure safety or fairness. Explainability refers to 
“the understandability of the input, output and behavior of each algo
rithmic building block and how it contributes to the outcome of the 
systems”. To ensure adherence to this principle, Member States are 
recommended to set requirements involving “the design and imple
mentation of impact mechanisms” that consider the application, inten
ded use, target audience and feasibility. 

4.2. European Commission Artificial Intelligence Act 

The European Commission goes beyond recommendations, and is 
drafting a binding Regulation for an Artificial Intelligence Act (European 
Commission, 2021) with the aim to ensure “the development, use and 
uptake of artificial intelligence in the internal market that at the same 
time meets a high level of protection of public interests, such as health 
and safety and the protection of fundamental rights” (page 19). This 
proposal takes after the General Data Protection Regulation (GDPR) 
approach of the EU – where strict regulations at first met opposition but 
turned into global inspiration (Craglia, 2018) – and embodies the EU’s 
vision for “human-centric AI” (Digital Future Society, 2021). Note that 
the GDPR already contained a “right to explanation” (Doshi-Velez et al., 
2017; Goodman and Flaxman, 2016. Although the precise wording of 
the AIA is likely to change before it’s ratification, we assume there will 
be no significant changes to it’s spirit and the draft regulation can be 
used to frame the regulatory context in which ML systems developed or 
deployed in Europe will need to adhere to. 

The AIA Article 13 on transparency and prevision to users states: 
“high-risk AI systems shall be designed and developed in such a way to 
ensure that their operation is sufficiently transparent to enable users to 
interpret the system’s output and use it appropriately”. High-risk sys
tems are required to document the usage of the system which contains 
instructions including possible limitations and “the technical measures 
put in place to facilitate the interpretation of the outputs of AI systems 
by the users” (European Commission, 2021). 

As to be expected, the emergence of these guidelines has led to many 
reactions from scholars involved in explainable AI methods. The main 
observation and consensus is that there is a gap between the explic
ability and transparency stipulated by the AIA and the capabilities of 
current technological explainable AI methods (Hamon et al., 2020; 
Sovrano et al., 2022). The use of ambiguous terms such as ‘sufficiently’ 
transparent and ‘appropriate’ types of transparency methods (Fink, 
2021; Smuha et al., 2021) may lead to ethics washing. Yet the estab
lishment of application-specific standards over the coming years may 
provide a stronger framework for conformity assessments before the AIA 
is expected to be adopted in 2024–2025 (Veale and Borgesius, 2021). 
For example the CEN-CENELEC is looking into “research-based metrics” 
and ISO/IEC TR 24028:2020(E) describes key metrics for explanations 
(Sovrano et al, 2022). Interestingly, it was observed that the draft AIA 
addresses the explainability of models but does not require the use of 
interpretable models (Sovrano et al., 2022). Finally, a common criticism 
of the AIA is that explainability is user-focused but does not consider 
explainability to the persons affected by the outputs of the algorithm 
(Fink, 2021; Smuha et al., 2021). 

The definition of transparency in literature on explainable ML (see 
Section 2) generally considers the transparency of the ML model and it’s 
parameters. Indeed, Roscher et al. (2020b) specifically state that the 
data itself is not considered in their conceptualization of transparency. 
Yet transparency has a broader definition in policy contexts, including a 
description of the input data and its distribution as well as how the 
output of the model actually leads to the decision (Hamon et al., 2020). 

Sovrano et al., (2022) observe that the concept of explainability in 
AIA is user-empowering (i.e. empowering the user to interpret the sys
tem’s output and use it appropriately) and compliance oriented. The ML 
system must therefore be sufficiently explainable to third-party auditors 
to demonstrate compliance (to-be-developed) standards before being 
released to the market. According to their review of the AIA, explain
ability metrics specifically for regulatory conformity assessments 
should: (i) be able to assess the risks to the fundamental rights of persons 
affected by the system’s output, (ii) be model-agnostic and applicable to 
the wide range of methods falling under the AIA, (iii) flexible to the 
needs of the questioner, and (iv) intelligible and accessible. 

The regulatory context, as evident from the UNESCO recommenda
tions and the AIA, put a different nuance on explainable ML than the 
definitions provided above. Firstly, the regulatory context considers the 

Table 1 
Overview of categories of explainability methods.  

Design Intrinsic methods (I) 
(a.k.a. model-based 
explanations) 
Explainability is integrated into 
the design of the algorithm and 
influence model predictions. 
‘Interpretable’ or ‘transparent’ 
models fall into this category. 

Post-hoc methods (H)  

Explanations are sought after 
the model has been trained and 
don’t influence the model 
prediction.  

Application Model-specific methods (MS)  

The explainability method is 
tied to a specific type of ML 
model (e.g. neural networks). 
Intrinsic explanation methods 
are always model-specific. 

Model-agnostic methods (MA)  

The explainability method can 
be relevant for many ML 
models. 

Scope Global methods (G)  

Describes the logic of the entire 
model. 

Local methods (L)  

Provides an explanation for a 
single prediction.  
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entire workflow of a decision-making train including data collection, the 
AI algorithm itself, and how the predictions are used for decision- 
making. This is a broader focus than only the algorithmic input and 
output as often considered in Earth Observation applications. Secondly, 
there are clearly different audiences for ML applications. Explanations 
are particularly important for model users to consider whether they can 
use a trained model for their application, auditors to consider whether a 
model meets the requirements of conformity assessments, and those 
affected to request an explanation on why a decision was taken. Espe
cially for these applications, it is important that explanations are goal- 
aware and can be understood by users without expert domain 
knowledge. 

5. Problems identified by social sciences 

Miller (2019) makes a sharp critique of research on explainable 
machine learning by emphasizing that there is a gap between the tech
niques being developed and research from philosophy, psychology and 
cognitive science on human decision-making. Three main gaps are 
identified as human explanations tend to be: contrastive, selective by 
focusing on one or two reasonings for the outcome rather than all, and 
part of a social interaction to transfer knowledge. He also observes that 
stating causes of predictions is more useful for human understanding 
than providing statistical probabilities. 

A second main critique on the field of explainable ML is that publi
cation bias is driving research towards complex models with a high 
predictive accuracy while omitting simpler models with comparable 
predictive accuracy but lower descriptive accuracies (Rudin, 2018). 
Indeed, the published works on explainable ML in EO presented below 
indicates that the vast majority of works only present an explainability 
method without actually testing how useful the explanations are for the 
understanding of the system. 

Thirdly, research tends to present innovative explainability methods 
without actually focusing on the utility of these new methods to foster 
explainability for real-world problems and users (Murdoch et al., 2019; 
J. Zhu et al., 2018). Researchers often present cherry-picked “reason
able” explanations, without rigorously testing the descriptive accuracy 
of the interpretation method (Murdoch et al., 2019). For example, 
published works tend to show saliency maps of the predicted class label 
and not of incorrect labels. This obfuscates the phenomenon that sa
liency maps for differing labels may highlight the same part of the image 
(Rudin, 2018) – a great limitation of using saliency maps for explana
tion. The limitations of saliency maps will be discussed in more detail 
below. 

Some recent works attempt to quantify the descriptive accuracy of an 
explainable ML model, thereby enabling the trade-off between predic
tive accuracy and descriptive accuracy to be measured and providing 
some guidance to which is more appropriate. Three examples will be 
discussed in more detail. Firstly, desiderata of good explainability 
models can be defined. For example, Sovrano et al. (2022) refer to 
Carnap’s central criteria of explanation accuracy (Leitgeb and Carus, 
2021). Their first desiderata is similarity, which refers to how similar the 
explanation is to the workings of the model. This is similar to the concept 
of model fidelity described previously. Secondly, exactness, which refers 
to how clear the information is in terms of pertinence and syntax. 
Finally, fruitfulness refers to how useful a certain piece of information is 
to generate explanations. Note that none of the desiderata actually refer 
to the truthfulness of the explanation model. 

Murdoch et al. (2019) describe a framework which consists of: pre
dictive accuracy, descriptive accuracy, and relevance. The predictive 
accuracy refers to how accurate a model prediction is compared to 
reference data. I.e. the accuracy which is traditionally reported by ML 
algorithms. The descriptive accuracy refers to “the degree to which an 
interpretation method objectively captures the relationships learned by 
machine-learning models” and relevancy refers to explanations that 
“provide insight for a particular audience into a chosen domain 

problem” (Murdoch et al., 2019). 
Rosenfeld (2021) presents a framework for quantifying the tradeoff 

between prediction accuracy and descriptive accuracy for different 
models. She presents four metrics, based on: (1) the difference between 
the predictive accuracy of the interpretable model and the predictive 
accuracy of the less interpretable model; (2) the number of rules in the 
explanation; (3) the number of features used to construct the explana
tion; and (4) the stability of the agent’s explanation. She argues that in 
some cases, a very great increase in the predictive accuracy of a unin
terpretable model over that obtainable through interpretable methods 
can make the loss of descriptive accuracy acceptable. This is somewhat 
at odds with the arguments by Rudin (2018) that uninterpretable models 
are unsuitable for high-stakes applications. 

In conclusion, observations from the social sciences describe a 
number of key limitations of data-science driven explainability metrics 
up to now. Firstly, there is a discord between explainability models 
being developed and types of reasonings typically used by humans in 
explanations. Secondly, publications on ML topics tend to focus on new, 
complex methods with a high predictive accuracy without bench
marking them against simpler, more interpretable models. Thirdly, 
many new explainability methods are simply presented without showing 
the utility of their explanations through user testing. These limitations 
have inspired a number of frameworks to quantify the utility of 
explainability methods and potential trade-offs between predictive ac
curacy and descriptive accuracy. 

6. Explainable ML methods in Remote Sensing and Earth 
Observation 

Current trends in explainable ML for Remote Sensing and Earth 
Observation were analyzed by conducting a Scopus query: (“explainable 
AI” OR “XAI” OR “interpretability” OR “explainable” OR “interpretable” 
OR “explainability”) AND (“remote sensing” OR “earth observation”) 
AND (“artificial intelligence” OR “machine learning”) and augmented 
through snowballing to obtain a list of 77 publications. Twenty-four 
papers were removed because they could not be located or they did 
not fit the scope of the intended literature analysis. Eight more consisted 
of high-level papers describing, e.g. the general need of explainability in 
Earth Observation applications. Of the remaining 45 works, only 8 were 
published before 2020. These 45 studies were analyzed to identify: the 
specific motivation of incorporating explainability into the ML work
flow, the type of explanation method utilized, the intended audience of 
the explainability method, and whether or not the explainability method 
was actually evaluated. 

6.1. Why explainability 

Adadi and Berrada (2018) identify four underlying motivations for 
explainable ML: (1) explain to justify, (2) explain to control, (3) explain 
to improve, and (4) explain to discover. Explain to justify is set in the 
societal context of increased concern of the black-box nature of algo
rithms and addresses the need to investigate the reasonings behind the 
algorithms in order to justify why the model obtained a certain output 
prediction. This is closely linked with belief that an increased inter
pretability of ML models will lead to increased trust in their predictions 
(Doshi-Velez et al., 2017; Lipton, 2016; Miller, 2019) and the awareness 
that many ML applications demand accountability and therefore 
amenable to scrutiny (Camps-Valls et al., 2020; Doshi-Velez et al., 2017; 
Lipton, 2016; Roscher et al., 2020b; Tuia et al., 2021). Indeed a 
convincing argument for the use of ML methods to support decision- 
making is that algorithms are impartial to cognitive biases that plague 
humans and therefore using algorithmic explainability mechanisms may 
support more impartial decision-making (Arrieta et al., 2019; Doshi- 
Velez et al., 2017). 

Explain to control implies that explainability can help identify 
possibly erroneous system behavior and speed up error debugging and 
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removal of flaws (Doshi-Velez et al., 2017; Lapuschkin et al., 2019). 
Simply understanding how models work is a cited motivation for 
explainability (Miller, 2019; Roscher et al., 2020a, 2020b). Similarly, 
explain to improve hypothesizes that an improved understanding of how 
models make predictions will accelerate the development of better 
models. For example models that are more robust (Arrieta et al., 2019; 
Doshi-Velez et al., 2017; Roscher et al., 2020a, 2020b) and have 
improved transferability (Lipton, 2016). Another common motivation 
for explainability along this vein is the belief that explainability can help 
develop more meaningful models (Lipton, 2016). In the context of Earth 
Observation this often means models that are loyal to the underlying 
physical principles that guide the natural processes that are being 
modelled (Camps-Valls et al., 2020; Roscher et al., 2020a, 2020b; Tuia 
et al., 2021). 

Finally, explain to discover refers to the potential of explainable 
methods to help scientists discover new linkages and knowledge 
(Roscher et al., 2020a, 2020b). For example, identifying the features 
driving the model to a certain prediction can identify which features 
should be further analyzed for causal relationships (Lipton, 2016). 

The reviewed publications on explainable ML in EO often report 
more than one of these four reasons to explain (Fig. 1). By far the most 
prominent motivation in these published works is explain to control. 
Often simply referred to as model interpretability, the authors describe 
how explainable ML methods can be used to find important factors and 
investigate whether the most relevant features identified by a model can 
be confirmed by domain knowledge. Explain to improve was relevant 
when, for example, the most important features were selected to train a 
new, sparser model while retaining a high accuracy. Explain to discover 
was the second most prominent motivation underlying the incorpora
tion of explainable ML methods and explain to justify was only identified 
by three publications. 

6.2. Explainability methods 

Published methods to incorporate explainability into ML workflows 
in the domain of Earth Observation can be divided into four categories: 
interpretable models, incorporating domain knowledge, feature selec
tion, and saliency maps (Fig. 2, Table 2). The first two categories consist 
of predominantly intrinsic, model-specific, global methods. Feature se
lection methods can be intrinsic or post-hoc depending on whether the 
selected features are actually utilized to change the model or the feature 
importance is only influenced in a post-hoc manner. Saliency maps are a 
type of explanation method specifically designed for CNNs and are 
generally post-hoc and local. 

6.2.1. Interpretable models 
Some researchers explicitly opt for the use of models that are more 

easily interpretable. This includes the use of Gaussian processes to es
timate crop yield (Martinez-Ferrer et al., 2021; Mateo-Sanchis et al., 
2021), the use of fuzzy logic to estimate the severity of disasters 
(Rodríguez et al., 2011), Generalized Linear Models to model dengue 

vector populations (Mudele et al., 2021), unsupervised clustering to 
forecast river sedimentation (N. Ahmed et al., 2019), Ordinary Differ
ential Equations to estimate bioclimactic variables (Adsuara et al., 
2020), and Logical Analysis of Data for hyperspectral image classifica
tion (A.M. Ahmed et al., 2019). 

Other researchers aim at modifying ‘black-box’ methods such as 
CNNs to make them more interpretable. Dechesne et al., (2021) utilize 
Monte Carlo drop-out during the training phase to obtain a Bayesian 
deep learner a semantic segmentation task of identifying buildings in 
satellite imagery, thereby adding a level of confidence to the output 
prediction map. Stomberg et al., (2021) perform a clustering on inter
mediate steps of the CNN to identify the main ‘concepts’ that the 
network identifies as relating to the predicted variable of ‘wilderness’. 
Levering et al., (2020) introduce semantic bottlenecks into the network 
architecture in order to classify images that are aesthetically pleasing, i. 
e. have a high ‘scenicness’. Based on domain knowledge, they Fig. 1. Motivations underlying the integration of explainability into ML 

workflows for Earth Observation as perceived by published works. 

Fig. 2. Types of explanation methods in published works on explainable ML in 
Earth Observation. 

Table 2 
Categorization of explainable ML methods identified in Earth Observation 
publications according to the type of explanation method and the category it 
pertains to, where I = Intrinsic, H = Post-hoc, MS = Model-specific, AG = Model- 
agnostic, L = Local and G = Global. See Table 1 for more details on the different 
categories.  

Type of explanation 
method 

Category N References 

Interpretable model I-MS-G 14 (Adsuara et al., 2020; A. M. Ahmed et al., 
2019; N. Ahmed et al., 2019; Dechesne 
et al., 2021; Dinc & Parra, 2021; Feng 
et al., 2021; Ghosh et al., 2020; Lacoste 
et al., 2011; Martinez-Ferrer et al., 2021; 
Mateo-Sanchis et al., 2021; Mudele et al., 
2021; Rodríguez et al., 2011; Stomberg 
et al., 2021; Yan et al., 2021) 

I-MS-L 1 (Levering et al., 2020) 
Incorporate domain 

knowledge 
I-MS-G 2 (Kraft et al., 2020; Svendsen et al., 2021) 

Feature selection I-MS-G 3 (Mudele et al., 2020; Paudel et al., 2021; 
Stroppiana et al., 2021) 

H-MS-G 7 (Browne et al., 2021; Kirkwood et al., 
2016; Murray et al., 2020, 2021; 
Newman & Furbank, 2021; Taconet et al., 
2021; Upadhyaya et al., 2021) 

H-AG-G 5 (Duro et al., 2012; Fu et al., 2020; Guidici 
& Clark, 2017; Orynbaikyzy et al., 2020; 
Tian et al., 2021) 

H-AG-L/ 
G 

7 (Abdollahi & Pradhan, 2021; Chen et al., 
2020; Ebrahimi-Khusfi et al., 2021; Han 
et al., 2022; Islam et al., 2020; Matin & 
Pradhan, 2021; Xing & Sieber, 2021) 

Saliency maps H-MS-L 5 (Huang et al., 2022; Hung et al., 2021; 
Kakogeorgiou & Karantzalos, 2021; 
Maddy & Boukabara, 2021; Wolanin 
et al., 2020)  
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hypothesize that the ‘scenicness’ score assigned to an image by volun
teers will be related to the land-cover that is contained in that image. So 
they design a CNN that first classifies the land cover classes present in 
satellite imagery, and then performs a regression task to estimate the 
‘scenicness’. The landcover classes thereby form the semantic bottleneck 
that can be used to explain why the deep learning architecture identifies 
some scenes as being more aesthetic than others. 

Utilizing ML models that are interpretable-by-design has a clear 
advantage for more explainable ML. The use of interpretable models can 
sometimes achieve higher (Mudele et al., 2021) or comparable (A.M. 
Ahmed et al., 2019) predictive accuracies than less interpretable models. 
However, intrinsic explanations methods are, by definition, model- 
specific and may be more difficult to evaluate than model-agnostic 
methods. Intrinsic explainability methods tend to be global. One 
notable exceptions in the list of reviewed works are the use of semantic 
bottlenecks (Levering et al., 2020), which provides local explanations. 

Furthermore, there is no clear distinction between which models can 
be considered as explainable and which are not. For example, a decision 
tree is interpretable, but as decision trees grow or Random Forests are 
used, the relations become so complex that it can be questioned whether 
a human is still able to understand the decision-making process (Mur
doch et al., 2019). This questions interpretability assumptions in the 
domain of EO, where Random Forests are commonly considered to be 
more interpretable than deep learning or SVM alternatives. For example, 
Browne et al., (2021) use Random Forests with 2000 trees to predict 
poverty and malnutrition using openly available spatial data; Kirkwood 
et al., (2016) utilized a Regression orest with 1001 trees for geochemical 
mapping; and Newman and Furbank, (2021) combine thousands of 
variables in Random Forests to predict crop traits. All of these studies 
assert the usage of Random Forests as interpretable models, though the 
complexity of the resulting model limits the actual interpretability to 
understanding the global importance of input variables. 

6.2.2. Incorporating domain knowledge 
Another group of intrinsic explanation methods specifically aim to 

incorporate domain knowledge into the machine learning workflow. 
These hybrid methods aim to strike a balance between the high 
explainability but often low accuracy of traditional frameworks based 
on expert knowledge vs. the high accuracy but low explainability of 
data-driven machine learning methods (Svendsen et al., 2021). Kraft 
et al., (2020) provide a hybrid modeling framework to global hydro
logical modelling. It combines a neural network with a water balance 
model which adds restraints based on the natural processes such as 
evapotranspiration and run-off. Svendsen et al., 2021 provide another 
hybrid model which utilizes latent force models to incorporate natural 
relations in soil moisture and biophysical parameters over time series. 

Incorporating domain knowledge into ML using the strategies 
described here result in intrinsic, global, model-specific methods. Con
straining ML algorithms by the restraints defined by natural processes 
will likely result in more reliable ML algorithms. The importance of 
multi-disciplinary teams in the design of these models is key to ensure 
their veracity as well as to investigate whether patterns learned by the 
ML models can further domain knowledge. 

6.2.3. Feature selection and importance 
Feature selection can be used to induce sparsity and enhance the 

explainability of models (Murdoch et al., 2019). Similarly, ranking the 
importance of features can identify the importance of underlying 
physical processes (e.g. Martinez-Ferrer et al., 2021; Mateo-Sanchis 
et al., 2021) or which features were key to the model outcome for one 
specific sample (e.g. Matin and Pradhan, 2021). Feature selection was 
the most common type of explainable ML method identified in the 
literature review, representing 22 out of 45 publications. For the pur
poses of the current review, feature selection methods were considered 
as post-hoc when used to rank feature importance after the modelling of 
the classifier (19 out of 22). If, however, feature selection was conducted 

before training a model in order to enforce sparsity, then it was labelled 
as an intrinsic part of the ML workflow (3 out of 22). Feature selection 
for machine learning techniques is well established in the field of Earth 
Observation (Belgiu and Drăguţ, 2016; Bruzzone and Serpico, 2000; 
Camps-Valls, 2009), though perhaps not connected to the terms 
“explainability” and “interpretability” until more recently. This obser
vation is supported by the recency of the articles on explainable ML and 
EO reviewed in this work (e.g. Fu et al., 2020; Orynbaikyzy et al., 2020). 

However, the appearance of Shapely Additive exPlanations (SHAP) 
(Lundberg et al., 2017) in the domain of Earth Observation is relatively 
new. Seven of the reviewed publications use SHAP. This method was 
developed in the computer science community and utilizes game theory 
to identify relevant features in a model-agnostic manner. It can be used 
to identify important features for the model in general (i.e. global ex
planations) or for a specific prediction (i.e. local explanations) (Molnar, 
2022). Publications in the field of EO have shown that SHAP can be used 
to gain insights to urban vegetation mapping (Abdollahi and Pradhan, 
2021), land cover classification (Xing and Sieber, 2021), understand 
factors driving housing prices (Chen et al., 2020), determine environ
mental variables driving dust pollution (Ebrahimi-Khusfi et al., 2021), 
and assessing building damage after earthquakes (Matin and Pradhan, 
2021). These developments should encourage researchers in the Earth 
Observation domain to keep an eye on emerging explainability tech
niques from computer science, though more research is also needed to 
understand whether and how these feature selection techniques 
compare with those already integrated in the domain of Earth 
Observation. 

6.2.4. Pixel attribution maps 
Pixel attribution maps, also known as saliency maps or heat maps, is 

a family of explanation maps specifically designed for convolutional 
neural networks. These maps visualize the influence of different sections 
of the image on the model’s prediction for that image (Molnar, 2022). 
They can be used by model developers to find obvious errors in the 
model, for example Ribeiro et al., (2016) describe how a CNN-classifier 
trained to discriminate huskies from wolves actually focused on the 
snow in the background of the images rather than the facial character
istics of the animals themselves. Pixel attribution maps have gained 
much attention from the domain of computer vision as a possible way to 
visualize the workings of ‘black-box’ deep CNNs and some methods 
specifically tailored for earth observation imagery have recently been 
proposed (Huang et al., 2022; Hung et al., 2021). 

Kakogeorgiou and Karantzalos (2021) conducted a comprehensive 
study comparing saliency map methods for remote sensing applications. 
The authors compared the results of 12 documented saliency map 
methods on two RS benchmark datasets for the classification of satellite 
imagery. The methods were compared using five metrics: the sensitivity 
of the output map to small input perturbations, how quickly prediction 
decreases as ‘salient’ pixels are removed, the file size (i.e. complexity) of 
the output map, and computation time. The best interpretability was 
reported for Occlusion (Zeiler and Fergus, 2014), Grad-CAM (Selvaraju 
et al., 2017), and Lime (Ribeiro et al., 2016), whereas Guided Back
propagation (Springenberg et al., 2014) had the lowest reliability. 

However, these studies do not consider the limitations of using sa
liency maps in general to provide explanations of black-box models. 
Trained models have been shown to produce similar saliency maps to 
randomly initialized models (Adebayo et al., 2018) and 
backpropagation-based visualizations have been shown to perform 
image recovery rather than providing information on network decisions 
(Nie et al., 2018). Saliency maps for different classes may also highlight 
the same part of the image (Rudin, 2018), thereby limiting their 
explanatory value. That is to say, if a saliency map for labelling an image 
as “husky” and a saliency map for labelling the same image as “flute” 
highlight the same area of the image then what is the added value of a 
saliency map? 

Stomberg et al., (2021) developed a method to actually integrate 

C.M. Gevaert                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102869

7

pixel attribution maps into a deep learning workflow for classifying 
wilderness areas from satellite imagery. A classification task is set-up to 
identify ‘wilderness’ areas, but as the concept of wilderness in satellite 
imagery is difficult to describe, the activation maps of the bottleneck of a 
U-NET architecture are clustered to identify ‘concepts’ that distinguish 
wilderness from non-wilderness areas. They thereby transform a typical 
post-hoc explainability method into an intrinsic explainability method 
with the underlying motivation of generating new knowledge. 

6.3. Intended audience & validation of the explainability method 

Finally, the list of publications on explainable ML in EO were 
analyzed to find the intended audience of the explanation and whether 
the provided explanations were tested in practice. The audience for the 
explanations provided by almost all publications were experts and re
searchers. The exceptions are (Murray et al., 2020), who provided lin
guistic explanations comparing land cover class performance of different 
deep learning models for non-fusion experts; and Rodríguez et al., 
(2011) who utilized fuzzy rules and linguistic labels to help decision- 
makers understand the severity of a natural disaster. 

Similarly, most publications simply presented the results of the 
explainable ML method without testing the usefulness of these expla
nations in practice. Kakogeorgiou and Karantzalos, (2021) rigorously 
compare the performance of different saliency map algorithms and 
Wolanin et al., (2020) compare regression activation maps to physical 
variables. Yet no study assessed to which degree the use of explainability 
methods actually helps users understand the algorithm or how such 
explanations can speed up and improve the development of ML 
workflows. 

7. Discussion 

7.1. Explainable ML in Earth Observation and the regulatory context 

The regulatory context considers transparency in a broader context 
than that considered in the EO publications reviewed above. This im
plies that more work is needed to understand how to document input 
data and help users understand the applicability of the model for a 
specific application. Hamon et al. (2020) points out that this can be done 
through the development of fixed dataset descriptions (Gebru et al., 
2021) and model cards (Mitchell et al., 2018). However these would still 
need to be developed in the domain of EO. 

Secondly, the regulatory context implies that explanations should be 
goal-aware. Specific goals include conformity assessments, users of 
algorithmic workflows, and appeals to specific decisions. Yet the review 
of EO literature above indicated that only two out of the 45 publications 
utilized an explanation that was developed for someone without specific 
domain knowledge. This is a clear gap for ML explanations that are 
suitable for non-experts. Furthermore, there is a particular consideration 
for conformity assessments. Sovrano et al. (2022) points out that 
explainability methods for conformity assessments should be model- 
agnostic. However, it has been shown that common explainable ML 
methods from Computer Vision need to be adapted to the unique char
acteristics of EO data (e.g. Camps-Valls et al., 2021; Xing and Sieber, 
2021). Once the standards are developed, research should therefore be 
conducted to ensure that these model-agnostic methods are also suitable 
for EO data. 

Recognizing that EO data may require different workflows, main 
players in the geospatial industry are calling for companies to contribute 
to the development of best-practices which could be used as examples 
for the developments of standards (WGIC, 2021). Although it is 
applaudable that companies personally take responsibility for the 
ethical usage and development of ML systems, it is important that these 
best-practices are subject to wider debate to prevent best-practices from 
turning into cherry-picked shortcuts (e.g. Borsci et al., 2022). 

7.2. Explainable ML in Earth Observation and concerns from the social 
sciences 

Section 5 identified three shortcomings of explainable ML methods 
that were identified by social sciences. Firstly, that explainability 
mechanisms developed by explainable ML differ from the types of ex
planations that humans use tend to focus on, i.e. contrastive explana
tions and the selection of a few key examples to explain. Yet the 
explainability methods presented in the Earth Observation domain are 
much more complex and depend on many different features. This is not 
surprising as Earth Observation is similar to Computer Vision, which is 
typically a difficult domain for interpretability (Rudin, 2018). Still, the 
integration of explainable ML methods that imitate human decision 
making should be investigated. For example, counterfactuals, which aim 
to describe the minimal change to the input that would result in a 
different prediction is one such example (Rudin, 2018) and case-based 
explanations which look for similar examples in the training data to 
justify the recommendations (Nugent et al., 2009). 

The second shortcoming was the publication bias which focusses on 
complex models with a high predictive accuracy without benchmarking 
them against simpler, more interpretable methods. The review of Earth 
Observation literature indicated that 34% of the publications bench
marked a less explainable model against a simpler, more explainable 
model. However, this could also mean comparing a deep CNN against 
Random Forests or SVM classifiers. Although these publications describe 
Random Forests as an interpretable method, they are generally not 
accepted as interpretable by the social sciences as their workings are too 
complex for humans to easily understand (Murdoch et al., 2019). 
Assessment frameworks that specifically assess the predictive accuracy 
and descriptive accuracy together can help quantify the trade-off and 
define which criteria a model should fit in order to be considered 
interpretable (e.g. Murdoch et al., 2019; Rosenfeld, 2021). 

The third shortcoming of explainable ML was the lack of consider
ation of whether the explainable methods actually work in context. This 
issue extends to the domain of Earth Observation as almost all the 
explainability methods in the reviewed works targeted domain experts 
and model developers; and there is a tendency to simply present “ex
planations” without assessing whether these explanations are actually 
helpful for the intended audience. 

7.3. Which type of explanation do we want? 

Given the known fallacies of explainable ML methods and upcoming 
regulatory frameworks, researchers in the EO field should carefully 
consider which types of explanations they intend to use. It is recom
mended to consider of the intended purpose and audience of the 
explanation when selecting which explainability method to use. Fig. 3 
provides an example flow chart to support this selection. 

First, verify that whether ML methods with intrinsic explainability 
have the same predictive accuracy as ‘black-box’ methods. Use simpler 
models with intrinsic explainability if they achieve similar accuracies. 
Note, that contrary to the statements of many publications in the domain 
of Earth Observation, very complex Random Forests should not be 
considered explainable. Frameworks such as Rosenfeld (2021) and 
Murdoch et al., (2019) can help quantify and guide this trade-off be
tween predictive and descriptive accuracy. 

However, if complex models have a significantly higher predictive 
accuracy, then incorporate a post-hoc explainability method into the ML 
workflow. The type of post-hoc explainability method will depend on 
the intended purpose and audience of the explanation. Researchers 
interested in obtaining new domain knowledge will be interested in the 
model-agnostic relationship between natural phenomena in the real 
world rather than the outcomes of one specific model. Model developers 
will use both global explanations to understand the general workings of 
the model as well as local explanations to debug it. For example, the use 
of saliency maps can help check for obvious errors in the model, but they 
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will not help to fully understand how a prediction was made. Users of a 
model developed by a third party will need to have a sufficient under
standing of the general strengths and weaknesses of a model in order to 
judge whether they are able to confidently deploy the model in their 
specific context. Regulatory bodies developing conformity assessments, 
such as the EU, will require model-agnostic, global methods (Sovrano 
et al., 2022). The users of ML models developed by a third party will 
need to have a sufficient understanding of the global strengths and 
weaknesses of a specific model to ensure that they use the model 
correctly. Finally, in situations where someone affected by the output of an 
algorithm would like to appeal to the prediction and understand the 
model behavior that led to a the prediction outcome of that particular 
case (i.e. explain to justify), then a model-specific method with a local 
explanation should be selected. Note that Fig. 3 is of course a general 
overview of common cases, and specific preferences will depend heavily 
on the specific application and user. 

An alarming gap is revealed when comparing the types of explana
tions required in Fig. 3 with the list of methods utilized in EO in Table 2. 
For example, Fig. 3 indicates that local, model-specific explanations are 
required in order to justify the result of a ML model to a person affected 
by it. Yet the only post-hoc model-specific methods utilized in EO are 
saliency maps, which, as discussed above, are not easily interpretable. 
Similarly, the only other type of post-hoc method identified in Table 2 is 
feature-selection. So at the moment, feature selection and saliency maps 
are the only published types of post-hoc explanations in the EO com
munity which could be applied to the use cases in the bottom row of 
Fig. 3 (researchers, model developers, users, regulatory bodies, and 
appeals). As the domain of EO starts adopting explainability techniques, 
it is important to consider the purpose and audience of the explanation 
and critically select which type of explanation would be suitable. 

Similarly, almost all of the reviewed publications focused on devel
oping explanations for expert users. Yet remote sensing is increasingly 
being used to distribute aid for humanitarian (Lang et al., 2020) or 
disaster risk reduction (Deparday et al., 2019) purposes in LMICs. For 
these applications, it becomes paramount to develop explainability 
mechanisms that can justify why some households should receive more 

aid than others and communicate the uncertainties of these reasonings 
to humanitarian actors. 

8. Conclusions and recommendations 

Although understanding ML models has been part of domain of Earth 
Observation for some time, the new wave of explainable ML driven by 
societal implications and regulatory frameworks is just starting. Rather 
than blindly copying explainability methods developed in the domain of 
computer science, experts in the domain of Earth Observation should be 
critical of the weaknesses of these methods and aim to correct them 
rather than copy them. This insinuates critically assessing the usefulness 
of explanations produced by explainability methods and whether they 
are appropriate for the intended audience and application. 

This review of existing methods for explainability in ML resulted in a 
series of recommendations on how to select a relevant explainability 
method depending on the context of the issue. In case of similar pre
dictive accuracies, always use the simpler, interpretable model rather 
than an uninterpretable comparison (Murdoch et al., 2019; Rudin, 
2018). Use complex networks when the accuracy achieved through 
complexity trumps the explainability, and does not fundamental risk for 
infringement of human rights. If complex networks are utilized, safe- 
guard explainability by clearly describing and specifications of the 
training dataset, training procedure, and accuracies (Hamon et al., 
2020) and choosing a suitable goal-aware explainability mechanism. 
The overview in Fig. 3 can support the latter. 

In particular, the domain of Earth Observation shows limitations 
regarding: which algorithms are considered interpretable; the avail
ability of post-hoc methods suitable for different purposes and audiences 
of explanations; the development of explainability methods for non- 
experts; and the lack of rigorous testing of the quality of the produced 
explanations. As we move forward to tackle these challenges, keeping an 
eye on other domains such as social sciences and emerging regulatory 
requirements can help ensure that the methods we develop are suitable 
for a broader range of stakeholders. And that thus earth observation and 
machine learning can be more responsibly deployed to tackle the 

Fig. 3. Flowchart to help select a type of explainability method based on the intended user. The recommended methods can be intrinsic or post-Hoc (I/H), model 
specific or model agnostic (MS/AG), and global or local (G/L). In green, explainability methods appearing in published works in the domain of EO are listed. See 
Table 2 for more details on the EO methods and the text for discussions regarding the limitations of these methods for the various explanation purposes 
and audiences. 
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humanitarian and sustainability issues of our time. 
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