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Abstract
The large quantity of movement data collected from vari-
ous sources can be inherently uncertain and heterogene-
ous. In the movement data analysis and mining spectrum, 
computing the similarity of trajectories while consider-
ing the uncertainty and heterogeneity has been less ad-
dressed. Generally, two factors of sampling and positioning 
error cause uncertainty in trajectory databases. Therefore, 
in this research, a method based on the longest common 
subsequence (LCSS), named FLCSS, is proposed that uses 
fuzzy theory and the bead model to consider the uncer-
tainty of trajectories originated from positioning and 
sampling errors. The performance of FLCSS is evaluated 
by implementations on real and synthetic datasets, and 
compared with six important and commonly used similar-
ity measurement methods, namely, LCSS, edit distance on 
real sequence (EDR), dynamic time warping (DTW), edit 
distance with real penalty (ERP), Hausdorff distance (HD), 
and Fréchet distance (FD). The results show that FLCSS has 
a better performance compared to other methods, in terms 
of sensitivity to point displacement, noise, and different 
sampling rates. Furthermore, the high correlation between 
FLCSS and LCSS (ρ = 0.91) confirms the robustness of the 
proposed method in considering uncertainty in the trajec-
tory databases.
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1  | INTRODUC TION

The history of each moving point object can be recorded in the form of a sequence of locations for each step, 
called a trajectory (Miller & Han, 2009). Several approaches have been introduced to extract information and 
discover geographic knowledge from large sizes and highly complex trajectory datasets (Mennis & Guo, 2009). 
One of the most fundamental issues in geographic knowledge discovery from trajectory datasets is similarity mea-
surement (Xie et al., 2017). This procedure identifies the commonalities in the behaviors of moving objects and 
extracts the similarity degrees among them. The results of similarity measurement can be employed in movement 
prediction, pattern recognition, trajectory classification, and trajectory clustering of moving entities (Alizadeh 
et al., 2021a). Due to the complex nature of the movement, various methods for measuring trajectory similarity 
have been proposed to date (Dodge et al., 2012).

Owing to the progress in navigation and tracking technologies, large numbers of trajectory datasets are being 
collected in various domains. In many cases, the Global Positioning System (GPS) is used to track moving objects, 
such as humans (Goudarzi et al., 2022), cars (Lehmann et al., 2019), airplanes (Sharif & Alesheikh, 2017), bicycles 
(Sharif et al., 2019), and animals (Buchin et al., 2014). Other means of collecting trajectory data include Radio 
Frequency Identification (RFID), Automatic Identification System (AIS) for tracking vessels (Alizadeh et al., 2021b), 
satellite images for tracking hurricanes (Dodge et al., 2012), video tracking to record pedestrians movement (Zaki 
& Sayed, 2018), and Location-Based Social Networks (LBSNs) to record users' activities in a sequence of check-
ins (Karami & Malek, 2021). Consequently, movement data are heterogeneous and uncertain because they are 
collected by various devices and from sources with different accuracies in different domains (Kaffash-Charandabi 
et al., 2019; Sharif & Alesheikh, 2018).

Generally, uncertainty refers to any aspect of the problem that cannot be confidently commented on. 
Uncertainty, therefore, includes independent concepts such as imprecision, incompleteness, and ambiguity 
(Motro, 1993). In the study of moving objects, uncertainty is commonly related to imprecision in the acquisition 
and presentation of movement in the form of trajectories (Pfoser & Jensen, 1999). In this sense, uncertainty in 
collecting movement data leads to uncertainty in similarity measurement of trajectories and other possible sub-
sequent processes.

According to Pfoser and Jensen (1999), the factors that cause uncertainty in trajectories can be divided into 
two main categories. (1) Positioning error: determining the position of a moving object is always accompanied by 
error due to the limitations of positioning systems. For example, the location provided by GPS, as the most widely 
used positioning system, is associated with many error sources, such as multi-path error, atmospheric effect, and 
hardware delay to name a few. All these factors lead to a difference between the observed object location and 
its actual location, which ranges from several centimeters to meters based on the type of positioning system. 
Therefore, these factors are classified into a single category entitled positioning error. Furthermore, because 
of the presence of obstacles or weak signals in some areas, positioning errors may vary over time. This prob-
lem increases uncertainty in methods such as longest common subsequence (LCSS) that use a fixed threshold.  
(2) Sampling error: movement is a continuous phenomenon that is modeled discretely in the form of a trajectory. 
Therefore, the way the object moves between the corresponding sampling points is not acquired. To represent a 
trajectory, the gap between sampling points is filled by linear interpolation (Guo et al., 2019). Accordingly, lower 
sampling rate results in larger gap areas. Changing the sampling rate changes the shape of the trajectory, which 
increases the uncertainty in representing a trajectory, and thus in the measurement of similarity between trajecto-
ries. In trajectory similarity measurement, both aspects have been less considered, while uncertainty is inevitable 
in movement studies (Laube & Purves, 2011).

A robust solution to manage uncertainty is fuzzy logic. It provides the ability to represent human knowledge 
about uncertain situations in a unified manner (Yager,  2002). Meanwhile, it does not require complex mathe-
matical models and exact values of input parameters (Zadeh, 2011). Accordingly, the main contribution of this 
research is to present a method based on fuzzy logic to manage both positioning and sampling errors in measuring 
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trajectories similarity. To consider the positioning error, the matching degree of points is determined using a fuzzy 
membership function. To consider the sampling error, the bead model is applied on the trajectories.

The remainder of this article is organized as follows: In Section 2, basic concepts and prerequisites are ex-
plained. Moreover, a review of some existing works related to the subject of this article is provided. In Section 3, 
the proposed similarity measure is introduced. Section 4 presents the evaluation experiments, results, and discus-
sion. Section 5 concludes the article and outlines potential future works.

2  | PRELIMINARIES AND RE VIE W OF LITER ATURE

2.1 | Uncertainty management in trajectory databases

There are multiple models that consider uncertainty in trajectory databases, including bead, cylindrical, grid, 
network-based, and probability-based models. In the bead model, also known as a space–time prism, a trajectory 
is represented as a chain of ellipses (Kuijpers & Othman, 2010). The dimensions of each ellipse are determined 
according to different features of the object movement, such as speed, acceleration, and direction of the moving 
object (Guo et al., 2019). The reason for using this type of geometry is that the movement of the object between 
each pair of consecutive points of the trajectory is restricted by its maximum speed. As a result, the maximum dis-
tance of the object to the two consecutive points of the trajectory cannot exceed a limit, which is reminiscent of 
an ellipse in two dimensions and a bead in three dimensions (Hornsby & Egenhofer, 2002). Indeed, each ellipse or 
bead expresses all possible positions that the moving object may have passed through (Kuijpers et al., 2017). The 
disadvantage of this model is that it only considers the uncertainty caused by a low sampling rate. The dimensions 
of the ellipses are also affected by the error of observation and are uncertain. Shi et al. (2021) proposed models 
based on error ellipses that take into account the uncertainty caused by both sampling and measurement errors. 
To quantify the size of uncertainty ellipses, the Minkowski distance metric was applied. However, the models do 
not apply to trajectories with large temporal granularity. In the cylindrical model, trajectories are represented as a 
cylindrical volume and the radius is defined using a threshold by the user (Trajcevski et al., 2004). The advantage 
of the cylindrical model over the elliptical model is that it is suitable for the uncertainty caused by the positioning 
error (Frentzos et al., 2009). However, the primary defect of this model is that trajectories are usually collected by 
different people with different tools and in different conditions. Therefore, the accuracy and sampling rate of each 
is different from the other, while the uncertainty threshold in this model has a constant value (Jeung et al., 2014). 
In the grid model, space is divided into a set of cells, and a trajectory is considered as a sequence of cells through 
which it passes (Pelekis et al., 2009). Similar to the cylindrical model, the main problems in this model are the 
constant size of the cells and finding the optimum cell size. In the network-based models, the main idea is that the 
movement of objects is limited to the network space. Therefore, the position of the moving object can be deter-
mined any time if it moves at a constant speed between the two sample points (Chen et al., 2015; Zheng et al., 
2011). The limitation of these models is that they are only applicable to objects moving in the network space, such 
as cars and trains. The Evolving density trajectory (Jeung et al., 2014), as a Probability-based model, uses Gaussian 
distribution to represent an uncertain trajectory, where the mean value and standard deviation are, respectively, 
considered as the real position and the degree of uncertainty. The fact that each point needs different parameters 
for the Gaussian distribution—which is not trivial to determine—complicates the Evolving density model.

2.2 | Trajectory similarity measures

A trajectory is a kind of time series. The methods for measuring the similarity of time series such as dynamic time 
warping (DTW; Berndt & Clifford, 1994), edit distance with real penalty (ERP; Chen & Ng, 2004), edit distance on real 
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sequence (EDR; Chen et al., 2005), and longest common subsequence (LCSS; Vlachos et al., 2002) have been used 
to measure the similarity between trajectories. Fréchet distance (FD; Eiter & Mannila, 1994) and Hausdorff distance 
(HD; Alt & Guibas, 2000) are among common geometric similarity measures that are extended for trajectories.

It is evident that none of these methods is completely superior to the other ones. All the methods men-
tioned above can be used for trajectories of different lengths and support local time shifting. Although DTW, ERP, 
Fréchet, and Hausdorff distances are said to be noise sensitive (Alt & Guibas, 2000; Kurbalija et al., 2014), LCSS 
and EDR perform better due to the use of a threshold to determine whether two points match or not (Toohey & 
Duckham, 2015). On the other hand, setting the appropriate threshold is difficult and application dependent. In 
addition, LCSS does not consider the distance between two matching points (Chen et al., 2005). Most importantly, 
none of these methods take into account the uncertainty of the trajectories. More details of the above-mentioned 
methods are presented in the Appendix.

2.3 | Uncertainty management in trajectory similarity measures

Methods have been developed to overcome the inherent uncertainty in the trajectory datasets and consequently 
in trajectory similarity results. Wang et al. (2015) have introduced the expected Euclidean distance (EE distance) 
to estimate the similarity between two uncertain trajectories. EE distance is based on the Euclidean distance and 
Evolving density model. Implementing the Euclidean distance is simple and has low computational complexity. 
However, it can only measure the similarity of trajectories of the same length and does not support local time 
shifting. Naderivesal et al. (2019) proposed the trajectory interval distance estimation (TIDE) method for measur-
ing the similarity of trajectories using maximum estimated velocity. TIDE describes the similarity of two trajec-
tories using an interval instead of a number. However, it only addresses the uncertainty caused by the sampling 
error. In other research, Furtado et al. (2018) introduced the uncertain movement similarity (UMS) method that 
uses a modified elliptical model. Unlike the original model based on maximum velocity to determine the size of el-
lipses, UMS proposes an approximate upper bound distance to determine the size of ellipses. Finally, the similarity 
is calculated based on three criteria of alikeness, sharpness, and continuity of two elliptical trajectories. Similarly, 
the uncertain trajectory similarity measure (UTMS) method uses a modified elliptical model called the Amended 
Ellipse model. In addition to sampling error, UTMS considers positioning error, but it relies on a constant value for 
positional error (Guo et al., 2019). In another attempt, Sharif et al. (2019) proposed a hierarchal fuzzy inference 
system, named CaFIRST, to measure the similarity between trajectories enriched by contextual information. This 
method is able to include both quantitative and qualitative contextual information. However, it suffers from con-
sidering uncertainties due to the sampling error.

From all the aforementioned methods, different approaches have been adopted to model uncertainty in tra-
jectory similarity measurement. However, they are unable to simultaneously consider the uncertainty caused by 
both positioning and sampling errors. In this article, we have alleviated the drawbacks of the previous methods 
using the fuzzy approach.

3  | FUZZ Y-BA SED LONGEST COMMON SUBSEQUENCE METHOD

Our methodology consists of three main stages as shown in Figure  1: (1) Data preparation; (2) the proposed 
fuzzy-based longest common subsequence method (FLCSS); and (3) experimental evaluation of FLCSS on real and 
synthetic datasets.

In the following, the calculation of trajectories similarity using LCSS is initially explained. Then, in two steps, 
the drawbacks of LCSS in coping with uncertainty and the procedure of FLCSS for considering the uncertainties 
caused by both positioning and sampling errors are explained in detail.
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The reason why the LCSS is chosen for development is that, first, it can be easily implemented using dynamic 
programming. Second, some points can stay unmatched, which makes the LCSS more accurate and much more 
robust to outliers compared with methods like DTW. However, this feature increases the uncertainty caused by 
sampling error. Therefore, seemingly after some modifications in the LCSS method, it can overcome the com-
peting methods. The LCSS between two trajectories A and B with lengths m and n and with the threshold ε is 
calculated by Equation (1), where Head(A) = {a1, a2, …, am−1} and |am − bn| is the Euclidean distance between am of 
trajectory A and bn of trajectory B (Vlachos et al., 2002).

3.1 | Step 1: Considering positioning error

Positioning error can lead to vagueness when comparing the points of two trajectories using the LCSS method. 
The problem is determining whether the two points are matched or not. Figure 2 shows the situations of four 
points b1, b2, b3, b4 ∈ B compared to a1 ∈ A. In LCSS (Figure 2a) that uses the threshold, two points can have three 
situations with respect to each other. (1) The distance from a1 to b4 is very high, and it is clear that these two points 
do not match; therefore, they have no effect on the similarity size of two trajectories. (2) b3 is ambiguous with 
respect to a1 because the distance between them is approximately equal to the threshold, and considering the 
positioning error, it is not possible to say whether the two points a1 and b3 match or not. (3) The distance between 
both b1 and b2 to a1 is less than the threshold and the situation of both of them is considered the same with respect 
to a1. Although the distance between a1 and b1 is less than the distance between a1 and b2, both points have the 
same effect on the similarity of the two trajectories.

In the FLCSS (Figure 2b), instead of using the threshold, the matching degree of two points is defined using 
a fuzzy membership function. The advantage of using the fuzzy membership function over the threshold is that, 
first, the points can match to some extent; therefore, the status of all points in relation to each other can be 
defined based on the application. Second, due to the continuous nature of the fuzzy membership function, the 

(1)LCSS𝜀 (A,B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 m=0 or n=0

1+LCSS𝜀 (Head(A), Head(B))
��am−bn

�� ≤ 𝜀

max

⎧⎪⎨⎪⎩

LCSS𝜀 (Head(A), B)

LCSS𝜀 (A, Head(B))

��am−bn
�� > 𝜀

F I G U R E  1 Research workflow
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positioning error will have little effect on the matching degree of the points and the overall similarity of the 
two trajectories. FLCSS is calculated by Equation (2) where the threshold with the fuzzy membership function  
(μ[|am − bn|]) is replaced.

3.2 | Step 2: Considering sampling error

For each sampling point in the LCSS, a maximum of one corresponding point is considered. Therefore, due to the 
difference in sampling rates between two trajectories, some points may have no corresponding points (Vlachos 
et al., 2002). From now on, we refer to such points as non-sampled points (NSPs). This feature makes LCSS less 
sensitive to noise compared with DTW where all points must be matched. On the other hand, this feature increases 
its sensitivity to the sampling rate. To overcome this problem, the proposed method is inspired by the bead model.

The question is “how much each NSP affects the similarity of the two trajectories?” According to UTMS 
method, if the point is placed inside the ellipse, that point is a matching point and its degree of matching is 
equal to one (Guo et al., 2019). According to the first step, due to the positioning error, determining whether 
the desired point is inside the ellipse or not is accompanied by uncertainty. In addition, the ellipse dimensions 
are determined based on the movement parameters of the object, such as the maximum velocity, which is less 
accurate. Therefore, a fuzzy membership function can be used to calculate the degree of matching of the NSPs 
(see Figure 3). Equation (3) shows how to calculate the matching degree of a NSP, where bi is considered as NSP.

Finally, the overall similarity of two trajectories is calculated using Equation 4. In this respect, FLCSS adds only one 
unit to the similarity for two points that match. However, for each NSP that matches, a unit is added to the similarity. 

(2)FLCSS� (A,B)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 m=0 or n=0

max

⎧
⎪⎪⎨⎪⎪⎩

�
���am−bn

��
�
+FLCSS� (Head(A), Head(B))

FLCSS� (Head(A), B)

FLCSS� (A, Head(B))

otherwise

(3)Match
(
A,bi

)
= �

(|||bi − aj
||| +

|||bi − aj+1
||| −

|||aj+1 − aj
|||
)

F I G U R E  2 The probable position of the sampling points of two trajectories A and B relative to each other:  
(a) using a threshold; and (b) using a fuzzy membership function
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Therefore, FLCSS is multiplied by two, and finally the overall similarity is normalized to the sum of lengths of two 
trajectories to be independent of the lengths.

The performance of FLCSS is compared with six important and commonly used similarity measurement methods 
including LCSS, EDR, DTW, ERP, FD, and HD. It should be noted that the results of different methods except FLCSS, 
FD, and HD are normalized using larger trajectory length to be independent of size. In addition, to make a uniform 
comparison, the values obtained from DTW, ERP, FD, and HD are converted into similarities using the equation  
S  =  1 – e−1/D (Guo et al.,  2019), and the results of EDR are reported based on the equation S  =  1 − D (Vlachos  
et al., 2002). In these two equations, D is the calculated distance using the desired method and S is the similarity value.

To evaluate the validity of the FLCSS results, the Pearson correlation coefficient is calculated between sets of 
similarity results obtained from different methods (Equation 5). ρ is the Pearson correlation coefficient, xi and yi 
are the calculated similarities, and x and y are the means of similarity sets from two methods.

4  | RESULTS AND DISCUSSION

To evaluate the proposed method and investigate its effectiveness in measuring the similarity of trajectories, two 
series of experiments are implemented on synthetic and real datasets. The first series of experiments on the syn-
thetic data evaluate the FLCSS's sensitivity to noise, displacement, and different sampling rate values. The second 
series of the experiments are conducted using real data that compare the correctness and efficiency of FLCSS 
with other similarity measurement methods. All methods are implemented in Java (JDK 15.0.1) and the experi-
ments were carried out on an Intel(R) Core(TM) i7-4710HQ CPU @ 2.50 GHz with 16 GB RAM and Windows 10 
operating system.

(4)FLCSS (A,B)=

(
2∗ FLCSS� (A,B)+

NSP∈B∑
i

Match
(
A, NSPi

)
+

NSP∈A∑
j

Match
(
B, NSPj

))
∕(m+n)

(5)� =

∑�
xi − x

��
yi − y

�
� ∑�

xi−x
�2 ∑�

yi−y
�2

F I G U R E  3 Example of calculating the degree of matching of a NSP
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4.1 | Dataset

The Beijing GPS trajectory dataset collected by the Geolife Microsoft Project (Zheng et al., 2009) is a rich move-
ment dataset (Figure 4). It contains 18,670 trajectories recorded over 5 years and includes different life routines 
and entertainment activities of 182 users (e.g., walking, cycling, and driving). The heterogeneity in the trajectories 
makes it a suitable source for our experiments. In all, 743 trajectories composed of 1,111,175 sampling points are 
selected for evaluation. In addition, the sampling rate for selected trajectories is between 1 and 5 s. Pre-processing 
steps such as outlier detection and map matching reduce the amount of error and uncertainty. Therefore, they are 
avoided in the performance evaluation of the proposed and competing methods.

Similar to the approach proposed by Su et al. (2020), a real trajectory is selected from the Geolife dataset as 
the reference trajectory to create synthetic trajectories. The reference trajectory should be long enough and with 
a relatively high sampling rate. The synthetic trajectories are then generated by changing the reference trajectory 
using four transformation functions introduced as follows. Finally, the similarities of the synthetic trajectories to 
the reference trajectory are calculated. In this scenario, the changes applied to the reference trajectory can be 
controlled using the parameters of the transformation functions. Therefore, the sensitivity of the methods to the 
changes can be measured in a controlled way (Furtado et al., 2016). These four functions are:

1.	 Displacement: In this transformation, several reference sampling points are randomly selected and each, 
as determined by the distance (d) parameter, moves in a random direction. The number of points moved 
in this transformation is determined using the change rate (r) parameter.

2.	 Noise addition: In this transformation, new points, the number of which is determined using the change rate, are 
added to the reference trajectory. The gap between these points and reference trajectory ones is determined 
using the distance parameter.

3.	 Sampling rate increase: In this transformation, using the change rate parameter, the required number of points 
is determined and added to the reference trajectory. Unlike the noise addition, new points are placed between 
the reference trajectory points in this transformation.

4.	 Sampling rate decrease: This transformation is similar to the sampling rate increase, except that the selected 
points are removed.

To show the methods' sensitivities to any change applied to the reference trajectory, we have defined two 
criteria α and β in Equations (6) and (7). The first criterion indicate sensitivity to the rate of changes and the second 

F I G U R E  4 Study area: Selected Geolife trajectories in Beijing metropolitan area
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one indicates sensitivity to the distance of changes. Larger α and β values indicate higher sensitivity. In these 
equations, S1 is the similarity between the reference trajectory and a transformed trajectory, which is created 
according to a set of parameters. S2 is the similarity between the reference trajectory and another transformed 
trajectory, which is created according to another set of parameters. r1 and r2 are, respectively, the rates of changes 
in the first and second transformed trajectories. Similarly, d1 and d2 are the distance of changes in those trajecto-
ries. For example, if we add 20% noise to the reference trajectory with a constant distance, and the similarity is 
reduced by 30% in the first method and 10% in the second method, the α values for the first and second methods 
are 1.5 and 0.5, respectively. This result indicates that the first method is more sensitive to noise.

 

4.2 | Implementation

4.2.1 | Experiment 1: Synthetic dataset

This experiment aims at the evaluation of the FLCSS and competing methods in terms of sensitivity to point dis-
placement, noise addition, and changing the sampling rate. In this experiment, synthetic trajectories are created 
using the above-mentioned transformation functions, and their similarities to the reference trajectory are calcu-
lated. The reference trajectory is 412 points long, and the sampling rate is 5 s (Figure 5). For each transformation 
and series of parameters, 100 new trajectories are created. The parameters used for these transformations are 
listed in Table 1.

A challenging issue in the FLCSS is determining the relationship between the distance of points and their 
matching degree, which depends on the dataset and application. However, it can be mentioned that the 
smaller the distance between the points, the higher the matching degree, and vice versa. Accordingly, differ-
ent types of membership functions can be used. FLCSS was tested with three commonly used fuzzy mem-
bership functions including trapezoidal, parabolic, and reversed parabolic. The results show that there is no 
particular priority in choosing the type of membership function. Accordingly, the trapezoidal membership 
function (Figure 6) is selected, which is simple and fast to calculate. Parameters a and b were set to 5 and 100 
m, respectively.

Although selecting thresholds for the LCSS and EDR are application dependent, a radius of 100 m or less 
is a common choice for these methods (Furtado et al., 2018). After experimenting with several values, the 
average distance between the points of the trajectories was selected as the threshold, which is approximately 
50 m.

To assess the sensitivity to displacement, the reference trajectory points are shifted at different distances 
and rates, and the similarities between the reference trajectory and the transformed trajectories are calculated. 
Figures 7 and 8 show the results of similarity with different distances and rates, respectively. In addition, α and β 
values were calculated for every two consecutive sets of parameters (e.g., r1 = 0.1 and r2 = 0.2), and their averages 
for each method are reported in Table 2.

As illustrated in Figure 7, in the LCSS and EDR that use a threshold, the similarity does not change as long as 
the distance is less than the threshold. Only when the distance is larger than the threshold, the similarity dropped 
off a bit and then it remains constant. For this reason, LCSS and EDR have the least β (0.25 and 0.27, respectively). 
In addition, in the DTW, ERP, FD, and HD, the similarity decreases with a large slope as the distance increases and 
it makes them have a larger value for β. Furthermore, even when the displacement distance is small (e.g., 10 m), the 

(6)� =

(
S2 − S1

)
∕S1(

r2 − r1
)
∕ r1

(7)� =

(
S2 − S1

)
∕S1(

d2 − d1
)
∕d1
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similarity is also too small that shows high sensitivity to point displacement. Unlike other methods, in the FLCSS, 
first, the similarity decreases in proportion to the increase in distance with a medium slope (β = 0.60), and then, 
because the displaced points are converted to NSP and shifted in random directions, the similarity increases to 
some extent. Moreover, it is shown in Figure 8 that in HD and FD, by increasing the rate of displacement, the simi-
larity remains constant (α = 0). However, both have the lowest values of similarity. In other methods, the similarity 

F I G U R E  5 Reference trajectory

TA B L E  1 List of transformation types and values of parameters used in experiment 1

Transformation type Distance (m) Rate

Displacement {10, 20, 30, …, 110} 0.5

Displacement 60 {0.1, 0.2, …, 0.9}

Noise addition {10, 20, 30, …, 110} 0.5

Noise addition 60 {0.1, 0.2, …, 0.9}

Sampling rate increase – {0.1, 0.2, …, 0.9}

Sampling rate decrease – {0.1, 0.2, …, 0.9}

F I G U R E  6 Fuzzy membership function used in the FLCSS
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decreases by increasing the rate of change, among which FLCSS has the lowest slope (α = 0.37), followed by the 
LCSS, EDR, DTW, and ERP, respectively.

In the HD and FD shape-based functions, the displacement of only one point can cause a decrease in similarity. 
That is why in these methods the rate of displacement has no effect on similarity and instead, the distance of dis-
placement causes a sharp drop in similarity. This indicates the high sensitivity of these methods to the uncertainty 

F I G U R E  7 The similarity of trajectories resulting from the displacement of points with different distances

F I G U R E  8 The similarity of trajectories resulting from the displacement of points with different rates
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and positioning error. The DTW and ERP are also very sensitive to rate and distance of displacement. Therefore, 
it can be concluded that they are sensitive to the positioning error. The LCSS and EDR perform well only when 
the positioning error is smaller than the threshold, which indicates the importance and difficulty of selecting an 
appropriate threshold. In contrast to other methods, FLCSS shows reasonable behavior in rate and distance incre-
ment, which is confirmed by the α and β values. It proves the effectiveness of FLCSS when considering uncertainty 
caused by the positioning error.

In this step, noise is added to the reference trajectory at different rates and distances according to the values 
in Table 1. The results of similarity measurement between the reference trajectory and the transformed trajecto-
ries with different distances and rates are shown in Figures 9 and 10, respectively. In addition, the average values 
of α and β are reported in Table 3.

From the figures, it can be seen that with different distances and rates of adding noise, the similarities calcu-
lated by ERP are approximately equal to 0. The reason is that a cost is considered for NSPs in this method which 
is calculated based on the distance of these points to a fixed point. The effect of noise on DTW is also significant. 
Given that α < β, it can be concluded that sensitivity to increasing distance is more than sensitivity to increasing 
rate of adding noise. FD and HD are susceptible to noise too. Similar to DTW, the effect of increasing distance is 
greater than increasing rate. The results of LCSS and EDR are almost the same and they have better performance 
than previous methods. In these two methods, for each point of the first trajectory, a maximum of one corre-
sponding point in the second trajectory is considered. Therefore, increasing the distance of noise-contaminated 
points does not affect the similarity of the two trajectories (β = 0). However, an increase in the number of points 

TA B L E  2 Average values of α and β for the displacement of points

LCSS EDR DTW ERP FD HD FLCSS

α 0.57 0.76 0.70 0.70 0.00 0.00 0.37

β 0.25 0.27 0.71 0.73 0.76 0.76 0.60

F I G U R E  9 The similarity of trajectories resulting from adding noise with different distances
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reduces the similarity. In contrast to the LCSS and EDR, in the FLCSS, the points that are added to the reference 
trajectory can match to some degree. Therefore, the similarity decreases with a slight slope as the distance and 
rate of noise increase (α = 0.12 and β = 0.08).

To simulate different sampling rates, a number of points are added to the reference trajectory or some points 
are removed through sampling rate increase and decrease transformations. The number of points is determined 
according to the rate of changes mentioned in Table 1. The results are shown in Figures 11 and 12, respectively. 
Since these two functions are only dependent on the rate, only α value is calculated as reported in Table 4.

Increasing the sampling rate is similar to adding noise, except that the new points are located between the 
reference trajectory points and not in random directions. Therefore, the shape of the transformed trajectory does 
not change and FD and HD are expected to perform well. However, it is shown in Figure 11 that the similarity is 
very low (about 0.1) and it remains almost constant. This is because discrete versions of FD and HD are used for 
trajectories, and the greatest distance between the nearest points is considered as the similarity of the two tra-
jectories. The performance of the other competing methods is similar to theirs against noise addition. Conversely, 
FLCSS obtains a similarity equal to 1 for all rates which demonstrates the robustness of the proposed method 
against the sampling error.

In the sampling rate increase transformation, the number of NSPs increases due to the increase in mis-
matched points. In contrast, in the sampling rate decrease transformation, the number of NSPs increases due 
to deleting the matching points. Accordingly, in this transformation, the decrease in similarities calculated by 
LCSS and EDR occurs with a greater slope as the rate of change increases (α = 1.29). In addition, according 

F I G U R E  1 0 The similarity of trajectories resulting from adding noise with different rates

TA B L E  3 Average values of α and β for adding noise

LCSS EDR DTW ERP FD HD FLCSS

α 0.27 0.27 0.50 0.53 0.24 0.25 0.12

β 0.00 0.00 0.63 0.00 0.75 0.75 0.08
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F I G U R E  11 Similarity of trajectories resulting from increasing sampling rate

F I G U R E  1 2 Similarity of trajectories resulting from decreasing sampling rate

TA B L E  4 Average values of α for increasing and decreasing sampling rate

LCSS EDR DTW ERP FD HD FLCSS

Sampling rate increase 0.27 0.27 0.34 0.53 0.01 0.01 0

Sampling rate decrease 1.29 1.29 1.63 0.77 1.35 1.35 0.11
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to higher values of α, something similar but more intense than what occurred in adding noise and increasing 
sampling rate occurs for DTW and ERP. Furthermore, in this transformation, which greatly changes the shape 
of the reference trajectory, FD and HD show poor performance. In contrast, FLCSS shows high robustness 
against increasing the rate of change, and the similarity decreases only when the rate of change grows to 
about 0.7.

4.2.2 | Experiment 2: Real dataset

This experiment aims to verify the validity and computational efficiency of FLCSS. For this purpose, the relation-
ship between similarity values calculated by different methods is investigated using the Pearson correlation coef-
ficient. In this experiment, the Geolife dataset is used, and the fuzzy membership function for the FLCSS and the 
thresholds for the LCSS and EDR are set similar to Experiment 1.

Table 5 shows the correlation coefficients between different methods. The high correlation between FLCSS 
and LCSS (0.91) confirms the validity and correctness of the results of FLCSS. In addition, a slightly lower correla-
tion is seen between FLCSS and EDR. However, there are low correlations between FLCSS and DTW, ERP, FD, and 
HD. This is because FLCSS, LCSS, and EDR are limited by the number of points in the two trajectories. Although 
DTW, ERP, FD, and HD were normalized, they are unbounded.

To evaluate the efficiency of FLCSS, the similarities between a randomly selected trajectory and all other 
trajectories are calculated using FLCSS and LCSS, and their execution times are recorded. The results show 
that on average, FLCSS is four times slower than LCSS. However, similar to LCSS, as the length of trajectories 
increases, the execution time of FLCSS also increases up to 1  s. The relationship between execution time 
and the length of trajectories was clear. However, another parameter affects the execution time in FLCSS. 
By comparing the steps of LCSS and FLCSS, it can be noticed that this parameter is related to the number of 
NSPs. Because NSPs must be identified first, then the matching degree must be recalculated for each NSP. 
It indicates that the execution time of FLCSS is also related to the uncertainty and sampling error of the 
trajectories.

Considering the results, it can be noticed that the robustness of trajectory similarity methods to sampling error 
is related to how they consider NSPs. For example, in the ERP, which has the weakest performance, a fixed point is 
used to manage the NSPs, and the distances between this point and the points added to the reference trajectory 
are very long. In the DTW, the smallest distance to each NSP is used in calculating the similarity, which can be a 
relatively large and reduce the similarity. NSPs that are added in random directions and distances to the reference 
trajectory cause it to deform. Consequently, for the shape-based FD and HD, a sharp drop in similarity occurs 
even when the distance or rate of changes is small. Furthermore, LCSS and EDR perform relatively weak against 
sampling error due to the use of the threshold for determining the matching points and neglecting the NSPs. 

TA B L E  5 The correlation coefficient (ρ) between different methods

FLCSS LCSS EDR DTW ERP FD HD

FLCSS – – – – – – –

LCSS 0.91 – – – – – –

EDR 0.83 0.93 – – – – –

DTW 0.33 0.37 0.43 – – – –

ERP 0.17 0.20 0.24 0.78 – – –

FD 0.13 0.16 0.20 0.67 0.81 – –

HD 0.17 0.19 0.23 0.76 0.86 0.97 –
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Eventually, FLCSS is the most robust against sampling error among studied methods, which is mainly because of 
the use of the bead model to consider NSPs in similarity measurement.

As mentioned in the experiments, FLCSS is four times slower than LCSS due to more complex calculations 
to take into account the uncertainty in trajectory datasets. Thereby, FLCSS may not be suitable for applications 
that require real-time computations, which is the most important drawback of this method. In addition, unlike a 
parameter-free method, such as DTW, FLCSS requires the relationship between matching degree and distance to 
be defined through a fuzzy membership function which is application dependent and sometimes hard to define.

5  | CONCLUSION AND FUTURE WORK

In this article, a fuzzy version of LCSS, named FLCSS, was developed to measure the similarity between trajecto-
ries of uncertain values. In this method, fuzzy theory and the bead model were used to consider the uncertainty of 
movement data caused by positioning and sampling errors. Two experiments were implemented on synthetic and 
real trajectories to evaluate FLCSS. The first experiment examined FLCSS from sensitivity to the displacement of 
sampling points, adding noise, and increasing and decreasing the sampling rate aspects. The second experiment 
was carried out to prove the validity and correctness of FLCSS. The results clearly show that FLCSS has a better 
performance than LCSS, EDR, DTW, FD, and HD.

There are a variety of paths for future research. FLCSS can be developed for trajectories that are enriched and 
annotated by semantic and context information and consider the underlying uncertainty in these datasets. In ad-
dition, the results of similarity searches can be employed in movement prediction, pattern recognition, trajectory 
classification, and trajectory clustering of moving entities while taking the uncertainty in the dataset into account.
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APPENDIX A
This section provides the definitions of the comparative methods mentioned in Section 2.2.

EDIT DISTANCE ON REAL SEQUENCE (EDR)
For trajectories A and B, EDR distance is equal to the number of operations required to convert A to B (Chen  
et al., 2005). This operation involves deleting, adding, and replacing points. The EDR distance between trajecto-
ries A and B with lengths m and i and a threshold of ε is defined using Equation (A1).

where subcost�
(
am, bn

)
= 1 if the distance between am and bn is greater than threshold, and subcost�

(
am, bn

)
= 0 

otherwise (Toohey & Duckham, 2015).

(A1)EDR�(A,B)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m if n=0

n if m = 0

min

⎧⎪⎪⎨⎪⎪⎩

subcost�
�
am, bn

�
+EDR�(Head(A), Head(B))

1+EDR�(Head(A), B)

1+EDR�(A, Head(B))

otherwise
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DYNAMIC TIME WARPING (DTW)
DTW uses local time shifting to find the shortest distance between two trajectories. It means the trajectories are 
warped in a nonlinear way to minimize the distance between the trajectories. DTW distance between trajectories 
A and B with lengths m and n is given by Equation (A2) (Kurbalija et al., 2014).

EDIT DISTANCE WITH REAL PENALTY (ERP)
Equation (A3) represents ERP distance between trajectories A and B with lengths m and n. g is a constant point and 
the cost for non-matching points is calculated based on the distance to this point (Chen & Ng, 2004).

HAUSDORFF DISTANCE (HD)
For trajectories A and B, HD is equal to the largest Euclidean distance among the distances between each point 
of one trajectory to the closest point to them on the other trajectory. For trajectories A and B, the discrete HD is 
given by Equation (A4) (Alt & Guibas, 2000).

where h(A, B) is defined by Equation (A5).

FRÉCHET DISTANCE (FD)
FD is similar to HD except that FD takes into account the order of the points. The discrete FD between A and B 
with lengths m and n is defined by Equation (A6) (Eiter & Mannila, 1994).

where L is a coupling between the points of A and B. Assuming that m > n, a coupling L is a sequence as Equation (A7), 
such that α(1) = 1, β(1) = 1, α(m) = m and β(m) = n.

Eventually, the length of L is calculated by Equation (A8).

(A2)DTW(A,B)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ifm=n=0

∞ if (m=0, n>0) or (m>0, n=0)

��am−bn
��+min

⎧⎪⎪⎨⎪⎪⎩

DTW(Head(A), Head(B))

DTW(Head(A), B)

DTW(A, Head(B))

otherwise

(A3)ERP(A,B) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n�
i=1

��bi−g�� ifm=0

m�
i=1

��ai−g�� if n=0

min

⎧⎪⎪⎨⎪⎪⎩

��am−bn
��+ERP(Head(A), Head(B))

��am−g��+ERP(Head(A), B)

��bn−g��+ERP(A, Head(B))

otherwise

(A4)H(A,B) = max(h(A,B), h(B,A))

(A5)h(A,B) = max
∀ a∈A

(
min
∀ b∈B

(|a − b|)
)

(A6)F(A,B) = min(|L|)

(A7)L = {(A(�(1)), B(�(1))), (A(�(2)), B(�(2))), … , (A(�(m)), B(�(m)))}

(A8)|L| = max
i= 1,… ,m

|A(�(i)) − B(�(i))|
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