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In this paper, we study state synchronization problem for homogeneous networks of multi-agent systems 

subject to unknown, nonuniform and arbitrarily large communication delays. A scale-free design frame- 

work utilizing localized information exchange has been adopted. The protocol design is solely based on 

agent models such that we do not need any information about the communication networks and the 

number of agents. Moreover, the necessary and sufficient solvability conditions are established. 
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. Introduction 

Cooperative control of multi-agent systems (MAS) has become 

 hot topic among researchers because of its broad application in 

arious areas such as biological systems, sensor networks, automo- 

ive vehicle control, robotic cooperation teams and so on. See for 

xample books [13,30,39] and [2] or the survey paper [28] . Two 

lasses of multi-agent systems has been identified: homogeneous 

i.e. agents are identical) and heterogeneous (i.e. agents are non- 

dentical). State synchronization inherently requires homogeneous 

AS. 

In practical applications, the network dynamics are not per- 

ect and may be subject to delays. Time delays may afflict system 

erformance or even lead to instability. As discussed in [3] , two 
� This work is partly supported by the Nature Science Foundation of Liaoning 
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nce Foundation under Grant 1635184. 
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inds of delays have been considered in the literature: input de- 

ays and communication delays. Input delays encapsulate the pro- 

essing time to execute an input for each agent, whereas commu- 

ication delays can be considered as the time it takes to transmit 

nformation from an origin agent to its destination. 

Some research has been done in the case of both con- 

tant and time-varying input delay, specifically with the ob- 

ective of deriving an upper bound on the input delays such 

hat agents can still achieve synchronization; see, for example 

1,15,16,18,21,29,36,41,42] . In the case of communication delay, 

ome research has been done; see [4,8,12,14,22–24,36,40,43] . Time- 

arying communication delays for a general multi-agent system 

ave been considered in [33] . As it is well-known that in order 

o tolerate large communication delays one needs to preserve dif- 

usiveness (namely to ensure the invariance of the synchronization 

anifold) as such, this can be achieved in two ways: 

1. The first method is the standard state/output synchronization 

by regulating the states/outputs to a constant trajectory which 

is hugely utilized in the literature [3] . A notable phenomenon in 

this case is that the final consensus is constant where in many 

practical problems this would be the case; see for example [27] . 
rved. 
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2. The second method for preserving diffusiveness in presence of 

communication delays is to consider delayed state/output syn- 

chronization which is introduced in [4–6,19,25] to allow non 

constant or dynamic desired output/state trajectory. 

In this paper, we have considered state synchronization and as 

uch we have utilized the first method for preserving the diffu- 

iveness of the network by regulating the outputs to a constant 

ynchronized trajectory. 

It is worth to note that all of the existing literature as reviewed 

bove require some knowledge of the communication network, 

ommonly a bound on the spectrum of the Laplacian matrix and 

he number of agents where this data is explicitly utilized in the 

esign of protocols. In particular, most of the existing protocols uti- 

ize the bound on the real part of the second smallest eigenvalue 

f the associated Laplcian matrix of the communication network 

hich means the protocols are not scale-free. There is a current 

ody of research that shows for a certain class of non-exhaustive 

raphs, the algebraic connectivity leads to zero as the size of the 

etwork increase, see [35] . Therefore, for the networks with pro- 

ocols that are not scale-free if the size of the network increases 

he algebraic connectivity of the network tends to zero which leads 

o loss of synchronization (i.e., instability of the disagreement dy- 

amic). 

Recently, we have introduced a new generation of scale-free 

rotocols for synchronization of homogeneous and heterogeneous 

AS where the agents are subject to input saturation and input 

elays, see for example [17,20,26] . The scale-free protocol means 

he design is independent of the information about the associated 

ommunication graph or the size of the network, i.e., the number 

f agents. The main contribution of this paper is designing proto- 

ols for MAS subject to unknown, nonuniform, and arbitrarily large 

ommunication delays in scale-free framework such that: 

• State synchronization is achieved by regulating the outputs of 

the agents to constant trajectories. The sufficient solvability 

condition is provided when the outputs are regulating to any 

arbitrary constant reference trajectory, while necessary and suf- 

ficient solvability conditions are established by restricting the 

constant reference trajectory to a set defined by the agent mod- 

els. 

• The protocol design is independent of any information about 

the associated communication graph and the size of the net- 

work and is designed solely based on the knowledge of the 

agent models. 

• The proposed collaborative dynamic protocols can tolerate any 

unknown, nonuniform, and arbitrarily large communication de- 

lays. 

otations and preliminaries 

We denote the set of real numbers by R , non-negative real 

umbers by R ≥0 = { x ∈ R | x ≥ 0 } and the entire complex plane by

 . We denote the field of rational functions with real coefficients 

y R (s ) . By rank K we denote the rank of a matrix whose en-

ries are in the filed K. We shall write rank only for the case

hen K = R , or K = C . Moreover, we use the term normal rank

or rank K whenever K = R (s ) . Given a matrix A ∈ R 

n ×m , A 

T de-

otes the transpose of A . Let j indicate 
√ −1 . A square matrix A

s said to be Hurwitz stable if all its eigenvalues are in the open

eft half complex plane. We denote by diag{ A 1 , . . . , A N } , a block-

iagonal matrix with A 1 , . . . , A N as its diagonal elements. I n denotes 

he n -dimensional identity matrix and 0 n denotes n × n zero ma- 

rix; sometimes we drop the subscript if the dimension is clear 

rom the context. For Ā ∈ C 

n ×m and B̄ ∈ C 

p×q , the Kronecker prod- 
2 
ct of Ā and B̄ is defined as 

¯
 � B̄ = 

⎛ 

⎝ 

ā 11 ̄B . . . ā 1 m ̄

B 

. . . 
. . . 

. . . 

ā n 1 ̄B . . . ā nm ̄

B 

⎞ 

⎠ 

here [ ̄A ] i j = ā i j . The following properties of the Kronecker prod- 

ct will be particularly useful, 

A � B )(C � D ) = (AC) � (BD ) , 

¯
 � ( ̄B + C̄ ) = Ā � B̄ + Ā � C̄ . 

To describe the information flow among the agents we associate 

 weighted graph G to the communication network. The weighted 

raph G is defined by a triple (V, E, A ) where V = { 1 , . . . , N} is

 node set, E is a set of pairs of nodes indicating connections 

mong nodes, and A = [ a i j ] ∈ R 

N×N is the weighted adjacency ma-

rix with non negative elements a i j . Each pair in E is called an 

dge , where a i j > 0 denotes an edge ( j, i ) ∈ E from node j to node

 with weight a i j . Moreover, a i j = 0 if there is no edge from node j

o node i . We assume there are no self-loops, i.e. we have a ii = 0 .

 path from node i 1 to i k is a sequence of nodes { i 1 , . . . , i k } such

hat (i j , i j+1 ) ∈ E for j = 1 , . . . , k − 1 . A directed tree is a subgraph

subset of nodes and edges) in which every node has exactly one 

arent node except for one node, called the root , which has no par- 

nt node. The root set is the set of root nodes. A directed spanning 

ree is a subgraph which is a directed tree containing all the nodes 

f the original graph. If a directed spanning tree exists, the root 

as a directed path to every other node in the tree. 

For a weighted graph G, the matrix L = [ � i j ] with 

 i j = 

{ ∑ N 
k =1 a ik , i = j, 

−a i j , i � = j, 

s called the Laplacian matrix associated with the graph G. The 

aplacian matrix L has all its eigenvalues in the closed right half 

lane and at least one eigenvalue at zero associated with right 

igenvector 1 [9] . Moreover, if the graph contains a directed span- 

ing tree, the Laplacian matrix L has a single eigenvalue at the 

rigin and all other eigenvalues are located in the open right-half 

omplex plane [30] . 

Next, in the following, we recall the definitions of invariant ze- 

os and right-invertibility of the linear time-invariant system �

: 

{
˙ x (t) = Ax (t) + Bu (t) 

y (t) = Cx (t) 

efinition 1. λ ∈ C is called invariant zero of linear system � if 

ank C 

(
λI − A −B 

C 0 

)
< normal rank 

(
sI − A −B 

C 0 

)
here by normal rank we mean the rank of a matrix with entries 

n the field of rational function R (s ) . 

efinition 2. The linear system � is right-invertible if, given a 

mooth reference output y r (t) , there exists an initial condition 

 (0) and an input u (t) that ensures y (t) = y r (t) for all t ≥ 0 . 

emark 1. The linear system �

• is right-invertible if and only if its transfer function matrix is a 

surjective rational matrix. 

• is right-invertible if and only if the rank of 

(
sI − A −B 

C 0 

)
= 

n + p for all but finitely many s ∈ C . 

Linear system � is at most weakly unstable if all eigenvalues 

f A are in the closed left half plane. It should be noted that the

et of at most weakly unstable agents contains stable agents, neu- 

rally stable agents as well as weakly unstable agents. The related 

efinitions and notations can be found in [10,31,37,38] . 
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. Problem formulation 

Consider the multi-agent system composed of N identical gen- 

ral agents, which are denoted by �i with i ∈ { 1 , . . . , N} , 

i : 

{
˙ x i (t) = Ax i (t) + Bu i (t) 

y i (t) = Cx i (t) 
(1) 

here x i (t) ∈ R 

n , y i (t) ∈ R 

p , and u i (t) ∈ R 

m are the state, output

nd the input of agent i, respectively. 

We need the following assumption. 

ssumption 1. All eigenvalues of A are in closed left half plane, 

hat is agents are at most weakly unstable. 

emark 2. Note that agents, satisfying Assumption 1 , can be poly- 

omially unstable, such as chain of integrators. 

The network provides agent i with the following information 

i (t) = 

N ∑ 

j=1 

a i j (y i (t) − y j (t − τi j )) , (2) 

here τi j ∈ R ≥0 represents an unknown communication delay 

rom agent j to agent i and τii = 0 . In the above a i j ≥ 0 and a ii = 0 .

his communication topology of the network, presented in (2) , can 

e associated to a weighted graph G with each node indicating an 

gent in the network and the weight of an edge is given by the 

oefficient a i j . The communication delay implies that it took τ sec- 

nds for agent j to transfer its state information to agent i . 

emark 3. It is worth to note that in this paper we have utilized

he widely accepted formulation for communication delays which 

an be considered as the time it takes to transmit information from 

n origin agent to its destination [3] . To the authors best knowl- 

dge there are few papers such as [7,34] with another formulation 

or the communication delay where the same delay is imposed on 

gent i and agent j as 

i (t) = 

N ∑ 

j=1 

a i j [ y i (t − τi j ) − y j (t − τi j )] 

hile by modeling the communication delay in this way, namely 

he same delays for agent i and j, the complexity of preserving 

he diffusiveness is removed. 

In terms of the coefficient of the associated Laplacian matrix 

, ζi (t) can be represented as 

i (t) = 

N ∑ 

j=1 

� i j y j (t − τi j ) . (3) 

eanwhile, Laplacian matrix L is expressed as 

 = 

⎛ 

⎜ ⎜ ⎝ 

� 11 � 12 · · · � 1 N 
� 21 � 22 · · · � 2 N 

. . . 
. . . 

. . . 
. . . 

� N1 � N2 · · · � NN 

⎞ 

⎟ ⎟ ⎠ 

. 

Obviously, state synchronization is achieved if 

lim 

→∞ 

(
x i (t) − x j (t) 

)
= 0 for all i, j ∈ { 1 , . . . , N} . (4) 

Our goal is to achieve state synchronization among all agents 

hile the synchronized dynamics is equal to a constant trajectory. 

e assume that a nonempty subset C of the agents have access 

o their own output relative to the reference trajectory y r ∈ R 

p . In

ther words, each agent has access to the quantity 

 i (t) = ιi (y i (t) − y r ) , ιi = 

{
1 , i ∈ C , 

0 , i / ∈ C . 
(5) 
3 
herefore, the information available for agent i ∈ { 1 , . . . , N} , is

iven by 

ī (t) = 

N ∑ 

j=1 

a i j (y i (t) − y j (t − τi j )) + ιi (y i (t) − y r ) . (6)

From now on, we will refer to the node set C as root set. For

ny graph with the Laplacian matrix L, we define the expanded 

aplacian matrix as 

¯
 = L + diag{ ιi } = [ ̄� i j ] N×N (7) 

hich is not a regular Laplacian matrix associated to the graph, 

ince the sum of its rows need not be zero. Meanwhile, it should 

e emphasized that �̄ i j = � i j for i � = j in L̄ . Then, equation (6) can

e rewritten as 

ī (t) = 

N ∑ 

j=1 

�̄ i j (y j (t − τi j ) − y r ) . (8) 

o guarantee that each agent can achieve the required regulation, 

e need to make sure that there exists a pass to each node starting 

ith node from the set C . Therefore, we denote the following set 

f graphs. 

efinition 3. Given a node set C , we denote by G 

N 

C 

the set of

ll directed graphs with N nodes containing the node set C , such 

hat every node of the network graph G ∈ G 

N 

C 

is a member of a 

irected tree which has its root contained in the node set C . Note

hat this definition does not require necessarily the existence of 

irected spanning tree. 

emark 4. From [11, Lemma 7] it follows for any G ∈ G 

N 

C 

defined 

n Definition 3 , the associated expanded Laplacian matrix L̄ as de- 

ned by (7) is invertible and all the eigenvalues of L̄ have positive 

eal parts. 

In this paper, we also introduce a localized information ex- 

hange among agents. In particular, each agent i = 1 , . . . N has ac- 

ess to the following information denoted by ˆ ζi (t) , of the form 

ˆ 
i (t) = 

N ∑ 

j=1 

a i j (ξi (t) − ξ j (t − τi j )) (9) 

here ξ j (t) is a variable produced internally by agent j and to 

e defined in next sections. Given that agents communicate y i (t) 

nd ξi (t) over the same communication networks, the commu- 

ication delays τi j between agent j and agent i are the same in 

quations (8) and (9) . 

We formulate the following problem of state synchronization 

or networks subject to unknown, nonuniform and arbitrarily large 

ommunication delays utilizing linear scale-free collaborative pro- 

ocols as follows. 

roblem 1. Consider a MAS described by (1) and (8) and a given 

onstant reference trajectory y r ∈ R 

p . Let a set of nodes C be given

hich defines the set G 

N 
C 

. Then, the scalable state synchroniza- 

ion problem based on localized information exchange utilizing 

ollaborative protocols for networks subject to unknown, nonuni- 

orm and arbitrarily large communication delays is to find, if pos- 

ible, a linear dynamic protocol for each agent i ∈ { 1 , . . . , N} , using

nly knowledge of agent model, i,e. (A, B, C) , of the form 

˙ x c,i (t) = A c x c,i (t) + B c1 ̄ζi (t) + B c2 ̂
 ζi (t) , 

u i (t) = F c x c,i (t) , 
(10) 

here ˆ ζi (t) is defined in (9) with ξi (t) = H c x c,i (t) and x c,i (t) ∈ R 

n c 

uch that for any N, any graph G ∈ G 

N 

C 

and any communication 

elays τi j ∈ R ≥0 ( i � = j) we achieve 
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Fig. 1. Architecture of scale-free protocols. 
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(i) regulated output synchronization, i.e., 

lim 

t→∞ 

(y i (t) − y r ) = 0 , for i ∈ { 1 , . . . , N} , (11) 

(ii) state synchronization, i.e., 

lim 

t→∞ 

(x i (t) − x j (t)) = 0 , for all i, j ∈ { 1 , . . . , N} . (12) 

. Main results 

Our main results are provided in the following two subsections. 

n the first subsection, we consider solvability of Problem 1 for any 

rbitrary given constant reference trajectory y r ∈ R 

p . We show that 

f agents are right-invertible and have no invariant zeros at the 

rigin Problem 1 is solvable for any arbitrary given constant ref- 

rence trajectory and we provide protocol design for this class of 

gents. In the second subsection, we provide necessary and suf- 

cient conditions for solvability of Problem 1 . We identify a set 

 r ⊆ R 

p and we show that Problem 1 is solvable if and only if we

estrict the constant reference trajectory to this set which obtained 

olely based on the knowledge of the agent models. 

.1. Solvability condition and protocol design for arbitrary constant 

eference trajectory y r ∈ R 

p 

In this subsection, we show that Problem 1 is solvable for any 

iven arbitrary constant trajectory y r ∈ R 

p as long as the agents are 

ight-invertible which has no invariant zeros at the origin. We de- 

ign protocols for this class of agents. The architecture of the pro- 

ocols is shown in Figure 1 . As it is shown in the figure, the design

onsists of two steps. The first step is designing a pre-compensator 

or each agent to be able to regulate the states to a constant value

see [31, Chapter 2] for the classical output regulation problem in 

inear multivariable control). In the second step, we design collab- 

rative protocols for the compensated agents to achieve state syn- 

hronization. 
4 
Step I: First we find an injective matrix V such that 

A BV 

C 0 

)
(13) 

s square and invertible. Such a matrix exists. To show that, we 

bserve agent model described by (A, B, C) is right-invertible and 

as no invariant zeros at the origin, hence we have the matrix 

A B 

C 0 

)
(14) 

s full-row rank. Also, due to the detectability of (A, C) , we have

he first n columns of (14) are linearly independent. Therefore the 

xistence of the injective matrix V is guaranteed. 

Next, we consider the following regulator equations 

A BV 

C 0 

)(


�

)
= 

(
0 

I 

)
. 

ince we have invertibility of (13) , it implies that this equation has 

 unique solution. Meanwhile, invertibility of (13) means that 

ank R 

(
A BV �
C 0 

)
= n + rank R �. 

Then, we design the following precompensator for each agent 

f MAS (1) . 

˙ p i (t) = 

(
I 0 

)
v i (t) , p i (t) ∈ R 

r 

u i (t) = �1 p i (t) + 

(
0 �2 

)
v i (t) , (15) 

where v i (t) is the input of the precompensator i, �1 is in- 
jective and satisfies I mV � = I m �1 with r = rank R �. Moreover, 
�2 is chosen such that (
�1 �2 

)
(16) 

is square and invertible. 
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In order to design collaborative protocols we first obtain the 

ompensated agents by combining (1) and (15) as 

˙ ¯
 i (t) = Ā ̄x i (t) + B̄ v i (t) 

 i (t) = C̄ ̄x i (t) 
(17) 

here 

¯
 i (t) = 

(
x i (t) 
p i (t) 

)
, Ā = 

(
A B �1 

0 0 

)
, B̄ = 

(
0 B �2 

I 0 

)
, C̄ = 

(
C 0 

)
. 

e also need to verify stabilizability of ( ̄A , B̄ ) and detectability of 

 ̄A , C̄ ) . The stabilizability follows immediately from the invertibility 

f (16) and the stabilizability of (A, B ) . For detectability we need to

erify that 

ank C 

( 

sI − A −B �1 

0 sI 
C 0 

) 

= n + r = n + rank R �1 

or all s in the closed right-half complex plane. If s � = 0 , then it

mmediately follows the detectability of (A, C) . When s = 0 , one

ave 

ank R 

( −A −B �1 

0 0 

C 0 

) 

= rank R 

(
−A −BV �
C 0 

)
= n + rank R �1 . 

Step II: In this step, the following linear collaborative protocol 

s designed for the compensated agents (17) as 

⎧ ⎨ 

⎩ 

˙ ˆ x i (t) = Ā ̂

 x i (t) − B̄ K ̂

 ζi (t) + F ( ̄ζi (t) − C̄ ̂  x i (t)) + ιi ̄B v i (t) 

˙ χi (t) = Ā χi (t) + B̄ v i (t) + 

ˆ x i (t) − ˆ ζi (t) − ιi χi (t) 
v i (t) = −Kχi (t) , 

(18) 

where matrices K and F are such that Ā − F C̄ and Ā − B̄ K are 
Hurwitz stable. In this protocol, agents communicate ξi (t) = 

χi (t) , i.e. each agent has access to the localized information 

exchange 

ˆ ζi (t) = 

N ∑ 

j=1 

a i j (χi (t) − χ j (t − τi j )) , (19) 

while ζ̄i (t) is defined via (8) . 

We formulate the following theorem. 

heorem 1. Consider a MAS described by (1) and (8) where (A, B ) is

tabilizable and (A, C) is detectable. Assume Assumption 1 is satisfied. 

et a set of nodes C be given which defines the set G 

N 
C 

. 

Then, the scalable state synchronization problem utilizing local- 

zed information exchange via linear dynamic protocol as stated in 

roblem 1 is solvable for any y r ∈ R 

p if the system represented by

A, B, C) is right-invertible and has no invariant zeros in the origin. 

ore specifically, under these conditions, for any given constant refer- 

nce trajectory y r ∈ R 

p , protocol (18) and (15) achieves scalable state 

ynchronization for any communication delays τi j ∈ R ≥0 ( i � = j) and 

ny graph G ∈ G 

N 
C 

with any size of the network N. 

To obtain the result of Theorem 1 , we need the following lem- 

as where Lemma 1 is a classical result for the stability of linear 

ime-delayed system (see [32,43] ) and Lemma 2 has been used in 

he literature for consensus of MAS in the presence of delay. 

emma 1. Consider a linear time-delay system 

˙ 
 (t) = Ax (t) + 

m ∑ 

i =1 

A i x (t − τi ) , (20) 
5 
here x (t) ∈ R 

n and τi ∈ [0 , τ̄ ] with τ̄ > 0 . Assume that A + 

∑ m 

i =1 A i 

s Hurwitz stable. Then, (20) is asymptotically stable for τ1 , . . . , τN ∈ 

0 , τ̄ ] if 

et 

[ 

j ωI − A −
m ∑ 

i =1 

e −j ωτi A i 

] 

� = 0 , (21) 

or all ω ∈ R , and for all τ1 , . . . , τN ∈ [0 , τ̄ ] . 

emma 2. [43 , Lemma 1] Let α be a lower bound for the eigenvalues 

f L̄ . Then, for all communication delays τi j ∈ R ≥0 , (i, j = 1 , · · · , N)

nd all ω ∈ R , the real part of all eigenvalues of L̄ jω (τ ) will be larger

han or equal to α, where 

¯
 s (τ ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̄ 11 . . . �̄ 1 k e 
−sτ1 k · · · �̄ 1 N e 

−sτ1 N 

. . . 
. . . 

. . . 
. . . 

. . . 

�̄ k 1 e 
−sτk 1 . . . �̄ kk . . . �̄ kN e 

−sτkN 

. . . . . . 
. . . 

. . . 
. . . 

�̄ N1 e 
−sτN1 · · · �̄ Nk e 

−sτNk . . . �̄ NN 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(22) 

s the expanded Laplacian matrix in the frequency domain and τ de- 

otes a vector consisting of all τi j (i � = j) with i ∈ { 1 , . . . , N} . 
roof of Theorem 1.. We need to show that protocol (18) and 

15) solves Problem 1 . First, we show that there exists a 
̄ such 

hat Ā ̄
 = 0 and C̄ 
̄ = I. Let W be such that �1 W = V �, in that

ase it is easy to verify that we can choose 

¯ = 

(


W 

)
. 

et ˜ x i (t) = x̄ i (t) − 
̄y r , we have 

˙ ˜ x i (t) = Ā ̃

 x i (t) + B̄ v i (t) 

y i (t) − y r = C̄ ̃  x i (t) 
(23) 

nd by defining 

˜ 
 (t) = 

⎛ 

⎝ 

˜ x 1 (t) 
. . . 

˜ x N (t) 

⎞ 

⎠ , χ(t) = 

⎛ 

⎝ 

χ1 (t) 
. . . 

χN (t) 

⎞ 

⎠ 

e have the following closed-loop system in frequency domain as: 

 

 

 

s ̃  x = (I � Ā ) ̃  x − (I � B̄ K) χ
s ̂  x = (I � Ā ) ̂  x − ( ̄L s (τ ) � B̄ K) χ + ( ̄L s (τ ) � F C̄ ) ̃  x − (I � F C̄ ) ̂  x 

sχ = (I � ( ̄A − B̄ K)) χ − ( ̄L s (τ ) � I) χ + 

ˆ x 

(24) 

here L̄ s (τ ) is defined in Lemma 2 . Let δ = ˜ x − χ, and δ̄ = 

 ̄L s (τ ) � I) ̃ x − ˆ x , then we have 

 ̄δ = s ( ̄L s (τ ) � I) ̃  x − s ̂  x 

= ( ̄L s (τ ) � Ā ) ̃  x − ( ̄L s (τ ) � B̄ K) χ

− (I � Ā ) ̂  x + ( ̄L s (τ ) � B̄ K) χ − ( ̄L s (τ ) � F C̄ ) ̃  x + (I � F C̄ ) ̂  x 

= (I � Ā )(( ̄L s (τ ) � I) ̃  x − ˆ x ) − (I � F C̄ )(( ̄L s (τ ) � I) ̃  x − ˆ x ) 

= 

(
I � ( ̄A − F C̄ ) 

)
δ̄

nd 

δ = s ̃  x − sχ

= (I � Ā ) ̃  x − (I � B̄ K) χ

− (I � ( ̄A − B̄ K)) χ + ( ̄L s (τ ) � I) χ − (( ̄L s (τ ) � I) ̃  x − δ̄) 

= (I � Ā )( ̃  x − χ) − ( ̄L s (τ ) � I)( ̃  x − χ) + δ̄

= (I � Ā − L̄ s (τ ) � I) δ + δ̄
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Fig. 2. State synchronization of MAS with right-invertible agents and N = 3 . 

⎧⎨
⎩
W

n  

h

a(

I

n

(

 

 

Thus, we obtain 

 

 

 

s ̃  x = (I � ( ̄A − B̄ K)) ̃  x + (I � B̄ K) δ

sδ = (I � Ā − L̄ s (τ ) � I) δ + δ̄

s ̄δ = 

(
I � ( ̄A − F C̄ ) 

)
δ̄

(25) 

e need to show the asymptotic stability of (25) for all commu- 

ication delays τi j ∈ R ≥0 ( i � = j). Since Ā − F C̄ is stable, then we

ave δ̄ is stable. As such asymptotic stability of (25) is implied by 

symptotic stability of the following reduced system. 

s ̃  x 
sδ

)
= 

(
I � ( ̄A − B̄ K) I � B̄ K 

0 I � Ā − L̄ s (τ ) � I 

)(
x̄ 
δ

)
(26) 

Following Lemma 1 , we prove the stability of (26) in two steps. 

n the first step, we prove the stability in the absence of commu- 

ication delays and in the second step we prove the stability of 

26) by checking condition (21) . 

1. When there is no communication delay in the network, the sta- 

bility of system (25) is equivalent to asymptotic stability of the 

matrix (
I � ( ̄A − B̄ K) I � B̄ K 

0 I � Ā − L̄ � I 

)
. (27) 

According to Remark 4 , since eigenvalues λ1 , . . . , λN of L̄ has 

positive real part, we have 

(T � I)(I � Ā − L̄ � I)(T −1 
� I) = I � Ā − J̄ � I (28) 
6 
for a non-singular transformation matrix T , where (28) is upper 

triangular Jordan form with Ā − λi I for i = 1 , · · · , N on the diag- 

onal. Since Ā has all eigenvalues in the closed left half plane, 

Ā − λi I is stable. Therefore, all eigenvalues of I � Ā − L̄ � I have 

negative real part. Then, since we have I � Ā − L̄ � I is Hurwitz 

stable, we just need to prove the stability of 

˙ ˜ x (t) = I � ( ̄A − B̄ K) ̃  x (t) (29) 

which Ā − B̄ K is Hurwitz stable. Therefore, we can obtain the 

asymptotic stability of (25) , i.e., 

lim 

t→∞ 

˜ x i (t) → 0 . 

It implies that x i (t) − 
y r → 0 , i.e. x i (t) → x j (t) . 

2. Next, in the light of Lemma 1 , the closed-loop system (26) is 

asymptotically stable for all communication delays τi j ∈ R ≥0 , 

( i � = j) if 

det 

[
j ωI −

(
I � ( ̄A − B̄ K) I � B̄ K 

0 I � Ā − L̄ j ω (τ ) � I 

)]
� = 0 (30) 

for all ω ∈ R and any communication delays τi j ∈ R ≥0 ( i � = j).

Condition (30) is satisfied if the matrix (
I � ( ̄A − B̄ K) I � B̄ K 

0 I � Ā − L̄ j ω (τ ) � I 

)
(31) 

does not have any eigenvalue on the imaginary axis and any 

communication delays τi j ∈ R ≥0 ( i � = j). In the light of Lemma 2 ,

we have that all eigenvalues of L̄ j ω (τ ) have positive real part 
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Fig. 3. State synchronization of MAS with right-invertible agents and N = 5 . 
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t  

b

p
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i
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a

r

G

l

v(

w  (

I

a

for any τi j . Therefore 

I � Ā − L̄ j ω (τ ) � I 

has all negative real part eigenvalues. It implies that all eigen- 

values of matrix (31) have negative real parts, i.e. matrix 

(31) does not have any eigenvalue on the imaginary axis for all 

ω ∈ R and any communication delays τi j ∈ R ≥0 ( i � = j). Thus we

have 

˜ x i (t) → 0 i.e. x i (t) → 
y r 

which means the synchronization x i (t) → x j (t) is achieved. 

�

.2. Necessary and sufficient solvability conditions and protocol 

esign 

In this subsection, we provide necessary and sufficient condi- 

ions for solvability of Problem 1 . We define a set Y r ⊆ R 

p solely

ased on the knowledge of the agent models and we show that 

roblem 1 is solvable if and only if the constant reference trajec- 

ory belongs to this set. In this case, the agent models can be gen-

ral and non right-invertible. We begin first by defining set Y r as 

ollowing. 

Y r = 

{ 

y ∈ R 

p 

∣∣∣(0 

y 

)
∈ Im 

(
A B 

C 0 

)} 

= { y ∈ R 

p |∃ x ∈ R 

n , u ∈ R 

m : Ax + Bu = 0 , Cx = y } . 
ote that Y r = R 

p if (A, B, C) is right-invertible and without invari-

nt zeros in the origin. 
7

Next, for a given y r ∈ Y r , we provide protocol design which has

he same architecture as the previous subsection. The first step is 

esigning a pre-compensator for each agent and the second step 

s designing collaborative protocols for the compensated agents to 

chieve state synchronization. 

Step I: Let R be an injective matrix such that Y r = ImR . In this

ase, we can find the matrices 
 and � such that: 

0 

R 

)
= 

(
A B 

C 0 

)(


�

)
(32) 

nd 

ank R 

(
A B �
C 0 

)
= n + rank R �. (33) 

iven that (A, C) detectable, the first n columns of 

(
A B �

C 0 

)
are 

inearly independent. If (33) is not satisfied, then there exist x and 

 such that 

A B �
C 0 

)(
x 
v 

)
= 0 

ith B �v � = 0 , v ⊥ ker � and v T v = 1 . On the other hand, we have

A B 

C 0 

)(

 − x v T 

�(I − vv T ) 

)
= 

(
0 

R 

)

t shows that ˜ 
 = 
 − x v T and 

˜ � = �(I − vv T ) also satisfy the 

bove equation but with rank R ̃  � < rank R �. Recursively, we can 
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Fig. 4. State synchronization of MAS with right-invertible agents and N = 10 and communication delays as stated in case (3) (a). 

fi

fi

o

c

x

y

w

x

W

p

t  

t

r

f  

m  

h

r

S

w

c

S

nd a solution of (32) such that the rank condition (33) is satis- 

ed. 

Then, similar to precompensator design in Section 3.1 , with �

btained as above, we have the following precompensator. 

˙ p i (t) = 

(
I 0 

)
v i (t) , p i (t) ∈ R 

r 

u i (t) = �1 p i (t) + 

(
0 �2 

)
v i (t) , (34) 

where �1 and �2 are chosen such that I m �1 = I m � and (
�1 �2 

)
(35) 

is square and invertible. 

In order to design collaborative protocols we first obtain the 

ompensated agents by combining (1) and (34) as 

˙ ¯
 i (t) = Ā ̄x i (t) + B̄ v i (t) 

 i (t) = C̄ ̄x i (t) , 

here 

¯
 i = 

(
x i 
p i 

)
, Ā = 

(
A B �1 

0 0 

)
, B̄ = 

(
0 B �2 

I 0 

)
, C̄ = 

(
C 0 

)
. 

e need to verify the stabilizability and detectability of the com- 

ensated system. The stability follows immediately from (35) and 

he stabilizability of (A, B ) , and for detectability we need to verify
8 
hat 

ank C 

( 

sI − A −B �1 

0 sI 
C 0 

) 

= n + v 

or all s in the closed right-half complex plane. For s � = 0 , this im-

ediately follows form the detectability of (C, A ) . For s = 0 , we

ave 

ank R 

( −A −B �1 

0 0 

C 0 

) 

=rank R 

(
−A −B �
C 0 

)
=n + rank R �1 =n + v . 

ince rank R � = rank R �1 and rank R �1 = r (since �1 is injective), 

e can obtain ( ̄C , Ā ) is detectable. 

Step II: In this step, we design collaborative protocol for the 

ompensated agents similar to collaborative protocol designed in 

ection 3.1 . 

⎧ ⎨ 

⎩ 

˙ ˆ x i (t) = Ā ̂

 x i (t) − B̄ K ̂

 ζi (t) + F ( ̄ζi (t) − C̄ ̂  x i (t)) + ιi ̄B v i (t) 

˙ χi (t) = Ā χi (t) + B̄ v i (t) + 

ˆ x i (t) − ˆ ζi (t) − ιi χi (t) 
v i (t) = −Kχi (t) , 

(36) 

where matrices K and F are such that Ā − F C̄ and Ā − B̄ K
are Hurwitz stable. In this protocol, the agents communicate 
ξi (t) = χi (t) , i.e. each agent has access to localized informa- 

tion exchange ˆ ζi (t) and ζ̄i (t) defined by (19) and (8) , respec- 
tively. 
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Fig. 5. State synchronization of MAS with right-invertible agents and N = 10 and communication delays as stated in case (3) (b). 
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. 
Then, we have the following theorem. 

heorem 2. Consider a MAS described by (1) and (8) where (A, B ) is

tabilizable and (A, C) is detectable. Assume Assumption 1 is satisfied. 

et a set of nodes C be given which defines the set G 

N 
C 

. 

Then, the scalable state synchronization problem with localized in- 

ormation exchange via linear dynamic protocol as stated in Problem 

 is solvable if and only if y r ∈ Y r . More specifically, for any y r ∈ Y r ,

rotocol (36) and (34) achieves scalable state synchronization for any 

ommunication delays τi j ∈ R ≥0 ( i � = j) and any graph G ∈ G 

N 
C 

with

ny size of the network N. 

roof of Theorem 2.. 

1. Necessity: In order agents track a constant reference trajectory 

signal y r , there must exists x 0 and u 0 such that (
A B 

C 0 

)(
x 0 
u 0 

)
= 

(
0 

y r 

)
(37) 

Clearly, such x 0 and u 0 exist only if y r belongs to the set Y r ,

that proves the necessary condition. 

2. Sufficiency: For the sufficiency, we need to show that protocol 

(36) and (34) solves Problem 1 . The proof is exactly the same 

as proof of Theorem 1 except for the choice of 
̄ and ˜ x . In this

case, we choose ˜ x i (t) = x̄ i (t) − ˜ 
z where z is such that y r = Rz. 

Moreover, we set 


̄ = 

(


W 

)
where W is such that �1 W = �. It is then easily seen that Ā ̄
 =

¯ ¯
0 and C 
 = R . 

9 
�

. Numerical examples 

The aim of this section is to show the scalability and effective- 

ess of our protocol design via numerical examples. To show the 

calability, we consider three networks with different communi- 

ation graphs, different number of agents and will show that we 

an achieve state synchronization with our one-shot-designed pro- 

ocol. We also illustrate that our protocol can tolerate arbitrarily 

arge communication delays. 

Consider the agents model (1) as 
 

 

 

˙ x i (t) = 

(
0 1 

0 0 

)
x i (t) + 

(
0 

1 

)
u i (t) , 

y i (t) = 

(
1 0 

)
x i (t) 

Since our agents include eigenvalues at the origin, we do not 

eed to design pre-compensators. By choosing matrix K and F as 

 = F T = 

(
3 2 

)
, we have the following protocol, 

 

 

 

 

 

 

 

 

 

 

 

˙ ˆ x i (t) = 

(
−3 1 

−2 0 

)
ˆ x i (t) −

(
0 0 

3 2 

)
ˆ ζi (t) + 

(
3 

2 

)
ζ̄i (t) + ιi 

(
0 

1 

)
u i (t)

˙ χi (t) = 

(
0 1 

0 0 

)
χi (t) + 

(
0 

1 

)
u i (t) + 

ˆ x i (t) − ˆ ζi (t) − ιi χi (t) 

u i (t) = −
(
3 2 

)
χi (t) 

(38) 
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Given that agent models are right-invertible, we can regulate 

he states to any arbitrary constant trajectory. In all the following 

ases we choose y r = 3 . 

1. Firstly, we consider a MAS with 3 agents, N = 3 and com- 

munication network with associated adjacency matrix A 1 , 

where a 21 = a 32 = 1 . Communication delays are chosen as τ32 = 

2 sec and the rest are equal to zero. The results of state syn- 

chronization via protocol (38) are presented in Fig. 2 . 

2. Next, we consider a MAS with 5 agents, N = 5 , and commu-

nication network with associated adjacency matrix A 2 , where 

a 13 = a 21 = a 25 = a 32 = a 35 = a 43 = a 54 = 1 . Communication de-

lays are chosen as τ13 = 0 . 2 sec , τ32 = 1 sec , τ35 = 0 . 5 sec and

the rest are equal to zero. The simulation results are shown in 

Fig. 3 . 

3. Finally, we consider a MAS with 10 agents and communi- 

cation network with associated adjacency matrix A 3 , where 

a 21 = a 5 , 10 = a 32 = a 43 = a 54 = a 65 = a 76 = a 87 = a 98 = a 10 , 9 = 

a 15 = 1 . In this case, we also show that we can achieve state

synchronization for any unknown, nonuniform and arbitrarily 

large communication delays. Therefore, we consider two cases 

as following. 

(a) The simulation results in the case that communication de- 

lays are τ54 = 2 . 5 , τ65 = 1 sec , τ98 = 3 sec and the rest are

equal to zero, are presented in Fig. 4 . 

(b) In the second case, we consider the 10 nodes MAS when 

the delays are equal τ54 = 4 , τ65 = 6 sec , τ98 = 8 sec and the

rest are equal to zero. The simulation results are shown in 

Fig. 5 . 

According to Figs. 4 and 5 , we observe that state synchroniza- 

tion is achieved regardless of values of the communication de- 

lays. 

. Conclusion 

In this paper we have proposed scale-free protocol design uti- 

izing localized information exchange for state synchronization of 

omogeneous networks subject to unknown, nonuniform and ar- 

itrarily large communication delays. The necessary and sufficient 

olvability conditions also has been provided. The proposed scale- 

ree protocols were designed solely based on agent models without 

tilizing any information about the communication network such 

s bounds on the Laplacian matrix associated to the communica- 

ion graph and the size of the network. It is worth noting that con- 

idering the arbitrarily time-varying communication delay in the 

cale-free framework is the subject matter of our future work. 
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