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ABSTRACT: 
 
Flooding is one of the most destructive natural hazards, accounting for over a third of all disaster damage worldwide. In particular in 
less developed countries (LDCs) this is typically attributed to poor planning, lack of warning systems and limited awareness of the 
hazard. A number of flood risk models have been developed, but have as yet contributed little to mapping and quantifying the risk in 
LDCs, for several reasons. In addition to limited human and technical capacity, these models require considerable amounts of 
current spatial information that is widely lacking, such as landcover, elevation and elements at risk basedata. Collecting those with 
ground-based methods is difficult, but remote sensing technologies have the potential to acquire them economically. To account for 
the variety of required information, data from different sensors are needed, some of which may not be available or affordable. 
Therefore, data interchangeability needs to be considered. 
 Thus we test the potential of high spatial resolution optical imagery and laser scanning data to provide the information required 
to run such flood risk models as SOBEK. Using segmentation-based analysis in eCognition, Quickbird and laser scanning data were 
used to extract building footprints as well as the boundaries of informal settlements. Additionally, a landcover map to provide 
roughness values for the model was derived from the Quickbird image.  
 These basedata were used in model simulations to assess their actual utility, as well as the sensitivity of the model to variations 
in basedata quality. The project shows that existing remote sensing data and image analysis methods can match the input 
requirements for flood models, and that, given the unavailability of one dataset, alternative images can fill the gap. 
 
 

1. INTRODUCTION 

As one of the most destructive disaster types, flooding accounts 
for over one third of all estimated worldwide disaster damage, 
and over two thirds of all people affected by disasters. In 
particular in less developed countries (LDCs), where over 90% 
of all disaster victims are recorded, the consequences are most 
severe. This is a result of relatively high vulnerability coupled 
with limited preparedness and coping capacity. Globally, the 
number of flooding disasters has been increasing rapidly since 
the 1970s (CRED, 2004). While preparedness and flood 
response capabilities have been growing in developed countries, 
due to better understanding of risks, implementation of early 
warning systems, and incorporation of risk management in 
development plans, the risk in flood-prone areas in LDCs 
remains high. 

While the frequency of flood disasters has grown, so has 
the number and sophistication of tools to model and understand 
flood risk. These 1- to 3-dimensional models allow 
hydrodynamic scenario simulation of non-steady water 
propagation, and thus a detailed assessment of areas to be 
affected by floodwater in a given situation. While some models 
only address the hazard component, i.e. the extent and depth of 
the water, others also incorporate value and vulnerability of 
elements at risk for a more realistic risk assessment. Based on 
such information appropriate planning or protection measures 
can be based, leading to reduced hazard (e.g. creation of special 

flooding zones upstream of urban areas) or lower vulnerability 
(e.g. if dykes are strengthened, populations educated about the 
risk, or vulnerable properties relocated). 
 A common feature of all models is the need for 
parameterisation. To simulate water propagation, flood depths, 
or building inundations, suitably current and accurate data 
layers on topography, roughness, infrastructure type, etc., i.e. 
mostly standard basedata are required. These are expensive to 
acquire and maintain, and are thus typically unavailable in 
LDCs. Historically the majority of data were collected using 
ground-based methods, which are characterised by high 
accuracy and spatial resolution, but also low update frequency 
and high cost. Geoinformatics techniques, in particular remote 
sensing, have steadily improved and matured, and may now 
offer a viable alternative to collect most of the required data 
timely, accurately and economically. 
 
1.1 Modelling approaches to flood hazard assessment 

Predictive models have been applied for flood hazard 
assessment for many years. The approaches range from the very 
simple, such as intersecting a plane representing the water 
surface with a digital elevation model, to very sophisticated 
three dimensional solutions. However, two main approaches in 
fluvial hydraulic modelling are the most popular. The oldest is 
based on the one-dimensional solution of the St. Venant 
equations (see e.g. Fread, 1992), such as the MIKE11 and HEC-



 

RAS models (Brunner, 2002). These models require 
characterization of the topography through a series of cross-
sections perpendicular to the direction of flow to calculate the 
average water depth and flow-velocity. These are typically 
measured in the field. A continuous water surface is then 
constructed though interpolation between the cross-sections. A 
more accurate estimate of the spatial extent of the inundation 
can be obtained by intersecting this surface with a terrain model 
but it should be noted that in 1D-modelling the terrain model is 
not used in the flow computation. This type of modelling is 
often applied for catchment analysis where the research 
question is more focussed on how much water will flow through 
the river and not so much on where it will go. The underlying 
assumption is that all flow is parallel to a predefined river-
network, so it is clear where the water will go. When this 
assumption is not valid, for example due to complex 
topography or to diverging flow at a dike breach or on an 
alluvial plain, models are required that are based on a two-
dimensional solution of the St. Venant equations. These models, 
including the SOBEK model that we used (Hesselink et al. 
2003), but also Telemac 2D (Hervouet and Van Haren, 1996) 
and MIKE21 (Abbott and Price, 1994), require a continuous 
representation of the topography in the form of a digital surface 
model (DSM), that forms the basis of the flow computation. 
The major drawbacks of this approach - the high data demand 
in the form of accurate surface models and high computation 
power - have become less relevant with availability of high 
accuracy surface models obtained with airborne laser scanning 
(LIDAR) and the availability of cheaper and faster computers. 
These DSMs contain all relevant topographical features that 
affect the flow of water over the surface. 
 SOBEK is an integrated 1D-2D software package 
developed at WL|Delft Hydraulics (see e.g. Dhondia and 
Stelling, 2002). The 2-D overland flow component is a 2D grid 
based inundation model based on the finite difference method. 
It is specially designed to simulate overland flow over initially 
dry land and through complex topography. In addition to water 
depth SOBEK also calculates the depth-averaged flow-velocity 
at each time-step. This allows the assessment of the propagation 
characteristics and distribution of kinetic energy for a given 
flood event. 
 
1.2 Objectives 

In a number of studies in recent years remote sensing data were 
used to extract landcover data for flood modelling, primarily for 
use in rural areas (e.g. van der Sande et al., 2003), mainly to get 
a spatial distribution of the variation in roughness coefficients, 
such as Manning’s coefficient. However, critical infrastructure 
and potentially vulnerable populations are concentrated in 
urban settings, and thus more detailed models with 
consequently more detailed data need to be employed. In an 
urban flood the flow of water is also directed by the lay-out of 
the streets and buildings and it is, therefore, important to 
represent these features as accurately as possible in a flood 
model schematisation. 

The purpose of this paper is to assess the utility of recent 
spaceborne optical and airborne laser scanning data to provide 
information on (i) topography, (ii) road and waterway locations, 
(iii) building footprints and height, and (iv) landcover in urban 
areas. Given that image data most suitable for a given purpose 
are not always available, we also investigate the 
interchangeability of alternative data types. In addition to 
topography and physical infrastructure we also use image data 
to map settlement types. This can reveal the location of 
informal housing areas, which are particularly vulnerable due to 

their frequent location in low value and high risk areas, high 
population concentration, substandard building materials, and 
insufficient access to life lines. Furthermore, in formal 
settlements the building type and size data can be used to 
estimate their value, and, if height data are considered, also the 
number of people per building or block. 
 Lastly the extracted data were tested in SOBEK, to assess 
their sufficiency in quality and resolution, i.e. accuracy and 
precision.. Due to computation limitations it is not possible to 
maintain the high resolution of the original surface model. 
Therefore, the DSM was reduced in resolution to 10 meters, 
thus still retaining an accurate representation of the urban 
topography. After the model was run, the results were then 
overlaid with the settlement type map to assess the impact of 
the flood, based on the quality of the constructions, as derived 
from the high resolution imagery. 
 

2. DATA AND METHODOLOGY 

SOBEK requires a detailed DSM, a river and road networks, 
building footprints height, as well as surface roughness values 
(Mannings’ coefficients) that represent hydraulic roughness, the 
resistance to overland water flow. The latter parameter is 
derived from landcover data. To address vulnerability and 
value, settlement types are also extracted. The model also 
requires hydrographical data that define the boundary 
conditions, such as time series of discharge or water levels, or 
the Q(h) relation at the outflow boundary of the model. 
 The hypothesis that image data can be used to provide 
relevant basedata was tested on data from the city of 
Tegucigalpa, Honduras, which suffered extensive flood damage 
during Hurricane Mitch in 1998. The following is a list of the 
data sets used: 
 
(1) High resolution data for detailed urban mapping 

 Quickbird image of March 2000, pan-sharpened and 
resampled to 1m 

 LIDAR gridded Digital Surface Model (DSM) of March 
2001, 1.5 m resolution 

 Contour map, produced in March 2001, scale 1:2,000 
 5, 25, 50 year flood maps, produced in 2001, scale 1:2,000 
 Orthophotos at 1 m resolution as reference 

 
(2) Lower resolution data for modelling of upstream areas 

 Landsat TM scene of March 2000, 15 m Pan, 28.5 m MS 
 
The image processing was done in eCognition, a software 
package that allows advanced segmentation-based analysis, and 
is appropriate given that information is required on objects 
(buildings, rivers, etc.) rather than individual pixels. The 
segmentation can be done at different spatial levels, which 
allows a semantic consideration of the smallest identifiable 
segments (e.g. cards, chimneys, etc.) as well as larger ones, 
such as houses or agricultural fields. The classification can then 
be based on spectral information, spatial data from additional 
sources (e.g. DEMs, vector data), as well as segment 
characteristics such as shape, texture or topology. Specific 
details on the processing are given in the relevant sections 
below, and more can be found in Shamaoma (2005). 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Tegucigalpa testsite for building footprint extraction (a), and three segmentation and 
classification levels (b, close-up area indicated by box in a). Small objects, such as cars are gradually 

removed in the rule-based classification stage, while at level 3 only whole buildings as semantic 
groups remain. Note that no manual editing or correcting is required. 

Figure 2. Original LIDAR Digital Surface Model (DSM, a), Digital Terrain Model (DTM, b), and difference model 
showing only elevations of above-terrain features (nDSM, c) 

Figure 3. LIDAR nDSM classification steps. Separated ground and raised objects (a), buildings 
separated according to number of floors (b), only buildings, with cars, vegetation, flyovers etc. 

removed (c), and legend of different level elements (d). 



 

3. RESULTS  

3.1 Extraction of building footprints from Quickbird and 
laser scanning data 

Buildings can be identified explicitly or implicitly, and many 
approaches have been developed and tested. eCognition uses a 
segmentation-based classification approach, whereby first 
homogenous objects are extracted, which are in turn classified 
based on a nearest-neighbour classifier or membership 
functions. The segmentation itself can be done at different scale 
levels, to allow the semantic incorporation of differently sized 
features. The Tegucigalpa Quickbird image was segmented at 3 
levels; level 1 to discriminate small objects such as cars, level 2 
for large features such as entire buildings or road sections, and 
level 3. This last level only contains building/no building 
classes, and was constructed through semantic grouping of level 
2 elements (Figure 1). For details on the classification and rules 
used see Shamaoma (2005). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the laser data two segmentation levels were sufficient, since 
features were well separated by their height, and because there 
was limited homogeneity in features of the same class. Given 
the absence of spectral information, rules had to be employed to 
separate trees, elevated roads and other features from buildings. 
This was done with texture measures including the grey-level 
co-occurrence matrix (GLCM, Haralick et al., 1973), and shape 
and elevation criteria. Whilst LIDAR data inherently provide 
accurate elevation information, the challenge is to calculate 
only the height of features such as buildings. This in fact means 
to separate two required information layers, (i) the actual terrain 
on which the water will flow, and which is needed for the water 
propagation and depth modelling, and (ii) the above-terrain 
elements that impede water flow and may constitute elements at 
risk. Figure 2 shows the original DSM (a), the actual terrain 
calculated from actual ground heights in between buildings and 
other features (Vosselman et al., 2004, b), and a difference 
nDSM that only contains the height of features above the actual  
ground surface (c). The nDSM was then further processed in 
eCognition to eliminate non-building elements (vegetation, 
cars, 
flyovers, etc.), and to estimate building height and number of 
floors (Figure 3). This is useful to calculate possible inundation 
heights, as well as possible losses if information on the building 
type and value is available. 

3.2 Accuracy assessment of footprint extraction 
 
The results shown in figures 1 and 3 were individually assessed 
against hand-digitised building outlines based on an aerial 
orthophotos of 1m resolution. The comparison, presented in 
Figure 4, shows that the majority of buildings was correctly 
identified (accuracies of 84% and 89% for Quickbird and 
LIDAR, respectively). However, misclassifications are also 
apparent. The small green lines corresponding to building 
outlines are artefacts of digitisation of the reference dataset, but 
also of planimetric inaccuracies, in particular of the Quickbird 
image. It also has to be noted that more than 1 year passed 
between acquisition of the datasets, explaining that some 
buildings have disappeared or been newly constructed. In 
particular for laser data that are not simultaneously acquired 
with multispectral information, it is also difficult to formulate 
rules that separate buildings from all other features. The overall 
good success shown here is also a result of limited vegetation 
cover in the area covered. In regions of extensive and in 
particular high vegetation, a reduced accuracy must be 
expected. For the Tegucigalpa area studied here, however, both 
datasets provide good results for building footprints and are 
largely interchangeable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3. Urban landcover assessment 
 
Although they cannot provide explicit height information, 
Quickbird data are multispectral and thus suitable for detailed 
landcover assessment, the source for roughness information, as 
well as river and road networks. Figure 5 shows the original 
Quickbird and derived landcover map based on multi-level 
segmentation. Extracted were waterways, trees and grass, 
buildings and bareland. The accuracy was assessed using the 
aforementioned orthophoto, leading to an overall accuracy of 
85%, and a kappa coefficient of 78%. Some buildings were 
misclassified as roads/car parks, while some bareland segments 
were incorrectly identified as buildings and roads. The overall 
results are good; however, it has to be realised that additional 
post-processing is needed before such data can be used in flood 
models. For example, because of bridges and occasional low 
water levels, the river is not classified as a continuous segment. 

Figure 5. Quickbird false colour composite (a), and 
segmentation-based landcover classification (b) 

Figure 4. Building footprint classification error for 
Quickbird image (a) and LIDAR nDSM (b). The extent 

corresponds to 1a. 



 

A further limitation of vertical imagery is that only ‘solid’ 
elements are extracted. Thus where buildings may permit 
partial water intrusion, in absence of more detailed information 
here they can only be considered as solids. In  the case of 
bridges special care has to be taken to make sure that they do 
not become false barriers in the riverbed. 
 Airborne laser scanning data are not inherently well suited 
to map landcover. However, it is possible to extract buildings, 
roads and vegetation based on height and texture information, 
as shown above. Furthermore, the runoff directions of water 
surface flow can be calculated from the DTM. The roughness 
coefficients of features other than the above (such as bare land) 
can also be well calculated. 
 
3.4. Detection of settlements types 

Demographic factors are closely linked to the magnitude of 
disaster impacts. This is dictated by the risk equation (risk = 
hazard * value * vulnerability), and can be readily observed in 
any disaster that affects areas composed of both richer and 
poorer neighbourhoods. Informal living space (such as shanty 
towns or squatter settlements) typically comprise of self-
constructed shacks and shelters in high-density arrangements. 
This partly explains their vulnerability, but also leads to 
physical characteristics that allow their detection in remote 
sensing imagery. In addition, such informal settlements have 
important impacts on flooding dynamics (e.g. through change 
of local erosion pattern, by obstructing draining channels, etc.). 
Previous mapping of such areas has focused on individual 
shacks (e.g. Rüther et al., 2002), the detection of their extent 
(e.g. Weber and Puissant, 2003), or on the estimation of 
population numbers in such settlements (Ramala, 2001). 
Besides mapping these parameters, image data also allow the 
monitoring of settlement spreading, and its impact on the 
environment and land cover change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Our mapping of different settlement types is based on size 
and shape of individual housing units, inasfar as they are 
detectable, as well as texture and location of the settlement. The 
ratio of vegetation cover is also a critical attribute. In 
Tegucigalpa, residential areas contain more extensive 
vegetation 
cover than commercially used spaces, although such 
characteristics can vary with location. Figure 6 shows the 
Quickbird image with visually identified settlement types 
outlined. The individual feature classes are either identified 
based on spectral properties (vegetation, roofs), shape (roads), 
size (shacks), or combination of these characteristics. The final 
classification was again based on a 2-level segmentation (level 
1 is shown in Figure 6). 
 Contrary to the optical image, individual shacks were not 
discernable in the 1.5 m gridded LIDAR data. Hence the 
classification was based on feature height and texture, and 
spatial arrangement. Figure 7 outlines the reasoning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both the optical and laser data are suitable to identify formal 
and informal settlements. There are, however, some 
misclassifications, with both dataset showing some limitations 
(Figure 8). The dense vegetation cover made it difficult to 
identify small dwellings in the Quickbird data, while gridded 
laser date were insufficient to resolve individual shacks. Multi-
return pulse laser data would be more useful than the data 
available here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Quickbird false colour composite with settlement 
types shown (DFR – dense formal residential, DI – dense 
informal, NI – new informal, DC – dense commercial, BL 

– bare land), and level 2 classification. In particular the 
density of shacks (yellow) is apparent, which contributed to 

the detection of the NI and DI classes. 

Figure 7. Class hierarchy and features used to separate 
classes at level 2 for the LIDAR DSM

Figure 8. Overview of settlement misclassification. 
Respectively for the Quickbird and LIDAR data, A was 
classified as DI and NI, B as DC and as DFR, and C as 

DFR and BL. 



 

3.5. Extraction of other relevant information  
 
LIDAR data provide explicit height information, which, as 
detailed above, is required for flow modelling over the surface 
and around obstacles. Quickbird images, if acquired in stereo, 
can also provide DSM. However, such data are rarely acquired 
and expensive. For Tegucigalpa we used contour lines from a 
1:2,000 topographic map, which is does not contain building 
information. We interpolated the contours to derive a detailed 
surface, and added building objects using the footprints 
extracted from the Quickbird image (see 3.1). While this does 
not allow to specify the accurate building height, in the absence 
of such data the assumption that any building will be high 
enough to pose a solid obstacle to water surface flow is 
reasonable. It must be stressed again here that high accuracy 
building footprints are critical for successful flow modelling, as 
any misclassification, such as a road section identified as a 
building, may lead to severe errors in the modelled water 
propagation. Detailed check and possibly some manual 
corrections are thus needed.  
 While detailed data are required to model flood risks in 
urban settings, a lower resolution is sufficient for more general 
catchment modelling upstream. Here the use of (generally more 
expensive) high resolution data is not only unnecessary, but 
also impractical, given the smaller aerial coverage and 
processing load. Extracting relevant flood risk information 
based on multispectral analysis has been done frequently. The 
focus of our study was the extraction of detailed flood risk 
basedata for urban areas. However, we also tested the utility of 
degraded Quickbird data against Landsat TM imagery, both 
pan-sharpened (15 m) and at standard 30 m resolution. As 
before, eCognition was used to segment the images before 
classification, using spectral information, shape and topology. 
 It was found that 15 m data are sufficient to map principal 
landcovers, including main rivers. The overall accuracies for 
the degraded Quickbird and enhanced TM were 90% and 82%, 
respectively. Conversely, the 30 m TM data were insufficient.  
 
 

4. SOBEK MODELLING RESULTS 

The hourly water depth and flow velocity maps generated by 
SOBEK were transformed into a flood hazard map, using flood 
hazard thresholds as a function of water depth and flow velocity 
(Smith, 2000 and Smith, 2004). The resulting hourly hazard 
maps were aggregated over the whole flood duration into a final 
flood hazard map that indicates the highest degree of hazard 
during the flood. The hazard thresholds are for objects with 
varying degree of vulnerability, i.e. pedestrians, cars, shanty 
houses, single storey woodframe houses and brick veneer 
buildings. Since the locations of these objects are known, a 
flood risk assessment can be carried out. Figure 9 shows an 
example of the flood hazard map for the centre of Tegucigalpa. 
In this example the terrain model and building outline and 
height were derived from the LIDAR data as explained above. 
It shows clearly how streets funnel the water flow and create 
thus increased hazard for pedestrians and constructions. 
However, the building information extracted from the LIDAR 
DTM does not provide information on the quality of the 
construction, making an actual risk assessment based on 
LIDAR data impossible. For this additional spectral and 
contextual information is required.   
  
 
 
 

 
Figure 9. The centre of Tegucigalpa. Result of building height 

extraction (left, Shamaoma, 2005), and flood hazard map based 
on 2D flood modelling of the 50-year flood event using the 
hazard thresholds method according to Smith (2004, right). 

 
 

5. CONCLUSIONS AND DISCUSSIONS 

The principal objective of this work was to assess the utility of 
different high- and medium resolution optical and laser 
scanning data to provide flood risk related basedata. It was 
found that both Quickbird and LIDAR data are suitable to map 
building footprints, which are required for detailed urban flood 
modelling. LIDAR data can also provide DTMs (with all 
elevated features removed). While this is not possible with 
optical (mono) data, we used 1:2,000 topographic maps to 
extract information on the actual ground surface, and 
intergraded the dataset with the building footprints from 
Quickbird. Although the created building objects have no 
accurate height information, the combined DSM is nevertheless 
suitable to model overland water flow. 
 We further mapped urban landcover from the Quickbird 
image (accuracy of 85%). While laser data are lacking the 
spectral information to map features such as water or vegetation 
(unless combined with a MS camera), they still support the 
extraction of features such as buildings, roads and vegetation, as 
well as general surface roughness if used in a segmentation-
based analysis as presented here. Hence the principal base data 
required to model flood risk can also be provided with laser 
data only as was demonstrated in the small flood hazard 
assessment example presented. 
 Lower-resolution synoptic information for upstream 
catchment modelling can be extracted from Quickbird data as 
well, but also lower resolution imagery such as 15 m enhanced 
TM data. 
 While the overall information extraction was successful, 
some problems need to be pointed out:  
 

• The buildings extracted are treated as solids, even 
though in reality they may not be. A possible solution 
may be to treat buildings as areas of high resistance to 
flow, i.e. to define them in the surface roughness map, 
rather then in the DSM. 

• Given the limited number of spectral bands for 
Quickbird, separating urban objects such as roads, car 
parks or roofs is still difficult. 



 

• Separating vegetation from dwellings with LIDAR 
data based on texture and height alone is difficult. 
Here it would be better to use multi-pulse data or 
integrated multi-spectral information. 

 
This study shows that the combined acquisition of high 
resolution elevation and image data forms a good basis for 
flood hazard and flood risk assessment. The elevation data 
serve to feed the 2D flood models, such as SOBEK, whereas the 
image data can help to distinguish between the varying types of 
buildings and their robustness when it comes to floods. It is also 
concluded that the optimal resolution for urban flood modelling 
is appr. 10 m. This leads to smaller features (such as alleys) to 
be lost in the model, but the overall topography is sufficiently 
retained, and it leads to higher computational efficiency. 
Changing the resolution to 5 m increases the processing time at 
least by a factor of 4. However, for building footprint extraction 
and element at risk mapping from optical data, higher resolution 
imagery is needed. 
 Both LIDAR and Quickbird imagery are expensive. 
Nevertheless, given the rising cost of flood damage, especially 
in LDCs, as well as the price of alternative, i.e. traditional 
ground-based, data collection methods, we argue that image-
based extraction of relevant base data at sufficient accuracy is 
possible. Given the unavailability of one dataset, alternative 
images can fill the gap. We argue that with modest financial 
investments for data and processing infrastructure, adequate 
flood modelling can be performed also in LDCs. 
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