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ABSTRACT:

Deep detection networks trained with a large amount of annotated data achieve high accuracy in detecting various objects, such as
pedestrians, cars, lanes, etc. These models have been deployed and used in many scenarios. A disaster victim detector is very useful
when searching for victims who are partially buried by debris caused by earthquake or building collapse. However, considering that
larger quantities of real images with buried victims are difficult to obtain for training, a deep detector model cannot give full play
to its advantages. In this paper we generate realistic images for training a victim detector. We first randomly cut out human body
parts from an open source human data set and paste them into the ruins background images. Then, we propose an unsupervised
generative adversarial network (GAN) to harmonize the body parts to fit the style (illumination, texture and color characteristics)
of the background. These generated images are finally used to fine-tune a detection network YOLOv5. We evaluate both the
AP (average precision) for IoU (Intersection over Union) 0.5 and for IoU ∈ [0.5:0.05:0.95], which are denoted as AP@0.5 and
AP@[.5 : .95], respectively. The best experimental results show that the YOLOv5l pre-trained on the COCO data set performs
poorly on detecting victims, and the AP@[.5 : .95] is only 19.5%. The model that uses our composite images as fine-tuning data
can effectively detect victims, and increases the AP@[.5 : .95] to 33.6%. The AP@0.5 increases from 32.4% to 53.4%. Our
unsupervised harmonization method further improves the results by 2.1% and 6.1%, respectively.

1. INTRODUCTION

Object detection is an important topic that has been investigated
for nearly 20 years. With the rise of deep learning (DL) and the
availability of massive training data in recent years, DL-based
object detection methods have made outstanding achievements
and have become dominant (Zhao et al., 2019). Large data sets
such as VOC (Everingham et al., 2015), ImageNet (Deng et al.,
2009), and COCO (Lin et al., 2014) enable researchers to train
a common object detector. There are also a lot of annotated
data sets that make it possible to detect specific objects. For
example, Wider Face (Yang et al., 2016) is a data set designed
for face detection. Mappilary (Neuhold et al., 2017) provides
65 classes for object detection in autonomous driving scenes.
Fruit and crop detection data sets are also available (David et
al., 2020; Bargoti and Underwood, 2017). A high-accuracy de-
tector relies heavily on a large number of training images, but in
some special scenes training images are difficult to obtain. For
instance, it is useful to train a victim detector that can be used
by unmanned aerial vehicles (UAVs) in a rescue mission, but it
is difficult to acquire such real images for training. Existing vic-
tim detection networks rely on common object data sets, which
do not contain real victim images (Hoshino et al., 2021). Hart-
awan et al. (2019) trained a detector using INRIA person data
set (Dalal and Triggs, 2005). The performance of these models
on real victim images also needs more verification. Sulistijono
and Risnumawan (2016) used only 19 real victim images to test
their detector, which was not convincing.

As the number of images is a crucial factor in training good
deep learning models, many researchers have studied how to
∗ Corresponding author

generate synthetic data that can be used in training. Dwibedi
et al. (2017) proposed a simple but effective way to augment
data for instance detection of indoor objects. They collected
some object instances and pasted them on random backgrounds
to generate more training images. Wang et al. (2019) used a
similar method that replaced an object instance with another
instance of the same class.

Besides, it is convenient to use advanced computer graphics to
generate a large number of realistically rendered images, which
makes up for the lack of real data for training. In addition
to many rendered data sets in the field of semantic segmenta-
tion (McCormac et al., 2017; Ros et al., 2016; Kirsanov et al.,
2019; Zhang et al., 2021, 2022), researchers also rendered some
synthetic data sets to train better object detection models. Han
et al. (2021) proposed a rendered 3D face data set to study the
relationships between object features and the performance of
face detection. Peng et al. (2015) created 3D synthetic mod-
els to augment the training and outperformed previous methods.
Rozantsev et al. (2015) proposed a method to synthesize unlim-
ited unmanned aerial vehicles (UAVs) images in arbitrary 3D
poses, and improved their UAV detector.

To facilitate first responders’ rescue missions and save more
lives we aim at training a victim detector to search for vic-
tims who are partially buried under ruins after an earthquake
or building collapse. In general, when a person is crushed un-
der the ruins, only part of the body is exposed, and the color
of the body or clothes is similar to the background color due
to dust or soil. A person detector trained on a normal object
detection data set or a specific pedestrian data set might work,
but the performance will likely be poor because these data sets
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Figure 1. Our approach pipeline includes three steps: (i) image composition, (ii) image harmonization, and (iii) fine-tune a detector.

usually contain completely displayed, standing people in nor-
mal scenes. Therefore, in this paper we propose a composite
data set for victim body part detection. We first randomly cut
out human body parts from the open source human parsing data
set LIP (Gong et al., 2017), and paste them into random back-
ground with collapsed structures. Then we use a novel unsuper-
vised Generative Adversarial Network (GAN) to harmonize the
body parts to fit the style of the background. Our contribution
can be summarized as follows:

• We propose a novel framework to generate a data set that
contains harmonious composite images of human body
parts in ruins.

• We use the generated composite images to train a victim
detector, and the experimental results show that our com-
posite data is effective when training a victim detector.
Our source code can be found on our project website ht-
tps://github.com/noahzn/VictimDet.

Our approach pipeline is shown in Figure 1, which consists of
three steps: image composition, image harmonization, and fine-
tuning a victim detector. The rest of this paper is organized as
follows. We present the image composition part in Section 2.
Section 3 introduces the details of our deep harmonization net-
work. Our experiments are elaborated in Section 4. Section 5
concludes the paper.

2. IMAGE COMPOSITION

The first step generates a composite image with simple cut and
paste. Since we focus on victim detection in ruins, we need to
collect both human body parts images as the foreground, and
images with ruins as the background.

2.1 Collect background images

We use search keywords such as earthquake, ruins and col-
lapse to collect background images Ib from Google images. We
check to make sure there are no human beings in these images.

2.2 Collect foreground images

To obtain foreground images If we have two options. The first
option is that, as used by Dwibedi et al. (2017) and Ghiasi et
al. (2021), we can cut out complete human instances from ex-
isting data sets that contains the human class. However, in real
scenarios it could happen that most of a person’s body is buried,
with only one arm or one leg exposed. Therefore, this option is
not flexible enough to make composite images with only limbs
exposed. The second option is to cut out a specific body part
of a person as the foreground, and this option is better than the
first one because in this case even if the detector only detects
one arm or one leg, it can classify it as a potential victim. In
this paper we also use the second option, and we start from an
open-source human parsing data set LIP (Gong et al., 2017).
LIP provides more than 50K human images annotated with 19
semantic classes such as face, left arm, right arm, upper clothes,
etc. We can select and cut out specific semantic body parts from
the foreground. The binary mask of the body parts can be de-
noted as Mf .

As shown in the first row of Figure 2, not all the images in
the LIP data set are suitable for compositing victim images.
Because there is no automatic method to accurately filter out
all black-and-white images, blurred images, low-resolution im-
ages, severely occluded images and images with no exposed
body parts, we manually deleted these images, and some good
image samples are shown in the second row of Figure 2. These
images have higher resolution, and the postures of the charac-
ters in the images are suitable to generate composite images in
rescue scenes.
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Figure 2. Some images in the LIP data set are not suitable to be
used as the foreground, such as (a) black-and-white image; (b)
blurred image; (c) low resolution image; (d) severe occlusion

image, and (e) the image with no body parts exposed. (f)-(i) are
good image samples we keep to generate composite images. We

blur faces for privacy reasons.

2.3 Paste body parts into disaster scenes

For privacy reasons we discard faces in the images. At the same
time we merge 19 semantic classes into five body parts com-
binations: upper limbs, upper limbs + torso, lower limbs, lower
limbs + torso, and full body. For each image we randomly cut
out body parts according to these five combinations. We also
apply data augmentation such as resize, crop, and flip horizont-
ally, to increase the diversity of foreground images. We paste
the body parts at random positions onto the background images.
The composite image Ic can be represented by the background
Ib, the binary mask Mf , and the foreground If as:

Ic = Ib × (1−Mf ) + If ×Mf . (1)

3. IMAGE HARMONIZATION

Different from the tasks of Dwibedi et al. (2017) and Ghiasi
et al. (2021) there are great visual differences between a fore-
ground and a background in our task because of the inconsistent
style (color, illumination, texture). Dwibedi et al. (2017) used
Gaussian blending to smooth edges of the foreground, but this
method cannot change the foreground’s color, illumination, or
texture. To make the composite images look more realistic we
propose an unsupervised image harmonization network to ad-
just the style of the body part. Our proposed framework for
image harmonization is based on the adversarial training. As
shown in Figure 3 it consists of a generator G and two discrim-
inators Dglobal, Dlocal. The generator generates a harmonious
image, and two discriminators discriminate the real images and
the generated harmonious images globally and locally, respect-
ively. Using only one global discriminator will ignore the re-
lationship between small-sized body parts and their surround-
ing background pixels, so we introduce a local discriminator
to realize the harmonization of local illumination, texture and
color characteristics.

3.1 Generator

The structure of our generatorG is a U-Net with 3 attention lay-
ers. DoveNet (Cong et al., 2020) also uses the same generator
structure, but we only use a three-channel composite image as
input instead of using an extra mask channel, because we find

that the combination of using an extra mask and our loss func-
tions yields black artifacts on the output.

Given a composite image Ic we want the network to output
a harmonious image Ih. The network should be trained to
keep the background unchanged and make the foreground have
the same style as the background, while the content does not
change. For each pixel i, whose value is in the range of [0, 1],
we calculate the masked smooth L1 loss:

L1,i =

{
1
2
(Ici − Ihi )2 × (1−Mf

i )
∣∣Ici − Ihi ∣∣ < 1,

(
∣∣Ici − Ihi ∣∣− 1

2
)× (1−Mf

i ) otherwise.
(2)

Then, the loss of the whole image is:

L1 =

I∑
i

L1,i. (3)

Compared with L1 loss smooth L1 loss avoids gradient explo-
sion in some cases (Girshick, 2015).

3.2 Global discriminator

We use a global discriminator Dglobal to discriminate whether
the input image is real or composite. Because we do not have
the corresponding real version of a composite image, we take
the background image Ib used to generate the composite im-
age as the real image. The background image can be seen
as a harmonious image, so the global discriminator can help
the generator to generate harmonious images at a global level.
Dglobal uses a PatchGAN (Isola et al., 2017) structure, and the
adversarial loss function to train the global discriminator can be
defined as:

LDglobal = E[logDglobal(I
b)] + E[log(1−Dglobal(I

h))],

LGglobal = E[log (1−Dglobal(I
h))].

(4)

3.3 Local discriminator

We use another local discriminator Dlocal to focus on the fore-
ground and its surrounding background, and constrain the local
style consistency. The input is P(Ih), a patch centered on the
foreground body parts and expands the neighborhood of the
foreground bounding box by 60 pixels. So the patch contains
both the foreground body part and its surrounding background
pixels. The loss function is defined as:

LDlocal = E[logDlocal(P(Ib))] + E[log(1−Dlocal(P(Ih)))],

LGlocal = E[log (1−Dlocal(P(Ih)))],
(5)

where P(Ib) is the corresponding patch on the background im-
age. The local discriminator focuses on the cropped patches
and is helpful for discriminating small foreground images.
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Figure 3. Our framework consists of a generator G and two five-layers discriminators Dglobal, Dlocal. The generator takes a
composite image as input, and generates a harmonious image. Two discriminators discriminate the real images and the generated

harmonious images globally and locally, respectively.

3.4 Locally constrained perceptual loss

The body parts in the output image should have the same se-
mantic information as that in the input image. Perceptual
loss proposed by Johnson et al. (2016) enforces the similarity
between images at features level, and it has been used in many
tasks (Rad et al., 2019; Yang et al., 2018; Ledig et al., 2017).
The perceptual loss includes the content loss and the style loss.
The content loss constrains the high-level semantic information,
while the style loss makes two images consistent in style, such
as color, illumination and texture. Different from those meth-
ods by computing the perceptual loss between the output image
and the corresponding ground-truth, we propose to compute the
perceptual loss between the input image and the output image.
This is based on our purpose that the image harmonization net-
work should only change the style of the input image, but not
its semantic information. Besides, we compute the content loss
on the same cropped patch P(Ih), as used in the local discrim-
inator. The proposed locally constrained content loss LLCC is
defined as:

LLCC =
1

CjMjNj
‖φj(P(Ih))− φj(P(Ic)))‖22, (6)

where φj denotes the feature map of the j-th convolutional layer
of a pretrained VGG16 model. Cj ×Mj × Nj is the size of
the feature map, and ‖·‖2 computes the l2-norm. The shallow
layers of a CNN model represent low-level style features such
as colors and edges, and the deeper layers represent high-level

semantic and content information (Lee and Tseng, 2019). We
choose j = 8, 11 to compute the content loss.

Similarly, our style loss is also locally constrained and it only
changes the style within the mask. It is defined as:

LLCS =
1

CjMjNj
‖(G(φj(P(Ih)))− G(φj(P(Ib))))‖22, (7)

where G is the Gram matrix proposed in the perceptual
loss (Johnson et al., 2016). We choose j = 3, 5, which are
two shallow layers to compute the style loss. We also use the
total variation loss LTV to smooth the local patch (Rudin et al.,
1992), and it can be expressed as:

LTV =
∑
m,n

∣∣∣P(Ih)m,n − P(Ih)m+1,n

∣∣∣
+
∣∣∣P(Ih)m,n − P(Ih)m,n+1

∣∣∣ , (8)

where P(Ih)m,n denotes the pixel value of the coordinates
(m,n) on the patch P(Ih). The combined loss for training the
generator G can be expressed as:

LG =λ1L1 + λ2LLCC + λ3LLCS

+ λ4LGglobal + λ5LGlocal + λ6LTV .
(9)
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We set λ1 = 80, λ2 = 2, λ3 = 0.2, λ4 = 1, λ5 = 1 to make
each loss part have a close scale. λ6 is set to 10−5 for a slight
regularization.

4. EXPERIMENTS

In this section we evaluate if the images generated by the pro-
posed approach are helpful to train a victim detector. Our goal is
not to improve the accuracy by directly enhancing the detector,
but to fine-tune a pre-trained detector with additional composite
images.

4.1 Data set and implementation details

We generate 1936 composite images, and harmonize them us-
ing the proposed framework. Each image has a size of 512×512
pixels, and we generate the ground-truth of bounding boxes of
body parts. The purpose of generating these composite images
is to use them to train a body parts detector. We also collect 197
real images to test if our generated images help to improve the
accuracy of body parts detection. Some images are collected
from the internet, and the main search keywords are earthquake
rescue and collapse rescue. Most of the victims in these images
are buried under debris, and we can only see part of their bodies.
We also take some pictures by ourselves. All the test images are
annotated. For fine-tuning and inference we use the official im-
plementation of YOLOv51 on an Ubuntu 18.04 system with a
Nvidia Titan XP graphics card.

4.2 Qualitative analysis of harmonized images

Figure 4 shows some samples of composite images (first row)
and the corresponding harmonious version (second row) gen-
erated by our proposed method. The proposed unsupervised
harmonization framework successfully transfer the illumination
and colors of the background images to the foreground body
parts. Further, the arms and legs are automatically added with
some gray colors, making them look realistic, because in real
images the body parts of victims are usually dirty due to dust
or soil. However, we have no ground-truth to evaluate the qual-
ity of these generated harmonized images. We can only eval-
uate whether the fine-tuning of victim detectors benefits from
these harmonized images. The quantitative evaluation is in Sec-
tion 4.4.

4.3 Details of fine-tuning a body part detector

We fine-tune the detection model YOLOv5 (Jocher et al., 2021),
which is a PyTorch implementation of the YOLOv4 (Boch-
kovskiy et al., 2020) pre-trained on the COCO data set (Lin
et al., 2014). The YOLOv5 model consists of a backbone to
extract features, a neck to concatenate features, and a head to
predict the class and the bounding box. According to the differ-
ence of network depth and width, we used three different sizes
of YOLOV5 models (Jocher et al., 2021), namely YOLOV5s,
YOLOV5m, and YOLOV5l. Because the pre-trained YOLOv5
model has advantages in feature extraction, we fine-tune the
pre-trained detector by fixing the backbone and updating the
weights of the neck and the head. We want the model to be able
to apply the feature extraction ability learned from the COCO
data set to our composite data set. Two settings of data set are
used, (i) the composite images without harmonization, and (ii)
the harmonized composite images.

1 https://github.com/ultralytics/yolov5

4.4 Evaluation of victim detection

According to the evaluation metric used in Pascal VOC chal-
lenge (Everingham et al., 2010) we measure the AP (average
precision) and assume a successful detection if the predicted
bounding box has an IoU (Intersection over Union) greater
than a threshold 0.5 with the ground-truth, and denote this as
AP@0.5. We also evaluateAP@[0.5 : 0.95], which is a COCO
metric and can be calculated by averaging AP over different
IoU thresholds, from 0.5 to 0.95 with a step 0.05 (Lin et al.,
2014). Table 1 shows the results of the COCO pre-trained
YOLOv5 model and our models on the test set. We can find
from the first row of each model that YOLOv5s is fast, but
it performs poorly in detecting victims. YOLOv5s’s shallow
structures cannot learn a good representation from the train-
ing data. Although YOLOv5l is about 2.5 times slower than
YOLOv5s, the detection accuracy improves substantially when
the models are fine-tuned with our composite image (the second
row of each model). Our harmonious images further improve
the results (the third row of each model), which verifies the ef-
fectiveness of the proposed approach. Figure 5 visualizes some
detection results. The default COCO pre-trained model (the
second row) cannot detect victims as expected.

Because of the uncertainty of image copyright, we do not show
the detection results of real victims in this paper. It is worth
reporting that our models can detect some body parts, but fail
in detecting some complete bodies. For example, in our test set
there is a picture of the victim lying on the ground covered with
mud, and the COCO pre-trained model cannot detect any body
parts in this image. Although our method only detects one foot
of the victim, not the whole body, it is still useful in the real
rescue operation.

5. CONCLUSION

In order to enable first responders to find the victims partially
buried in the ruins more efficiently in real rescue, we propose
a novel framework to generate composite victims-in-ruins im-
ages and apply them to fine-tune a victim detector. The experi-
mental results show that the normal COCO pre-trained models
achieves low AP in detecting victims in ruins. Since it is dif-
ficult to get more real training images, our method uses com-
posite images to train victim detectors, and its effectiveness is
verified. We evaluate three variants of YOLOv5, which are fast
detectors that can be deployed on UAVs for real-time victim de-
tection. We hope that the work is useful in real disaster search
and rescue and can save more lives.

There is still much room for improvement in studying the victim
detection models, and our future work will focus on the use of
UAVs with illumination for victim detection at night, because
many rescues are carried out at night.
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Figure 4. Qualitative results. The first row shows composite images, and the second row is the corresponding harmonious images
generated by our network.

Table 1. Comparison of the accuracy of the YOLOv5 pretrained on COCO and the proposed fine-tuning models.

Model Speed
(ms)

Fine-tuned on AP@[0.5:0.95] AP@0.5
composite harmonious

YOLOv5s 4.7
7 7 11.6 21.2
3 7 17.7 35.2
3 3 18.1 35.3

YOLOv5m 8.1
7 7 16.6 28.9
3 7 32.6 52.5
3 3 34.3 55.2

YOLOv5l 11.2
7 7 19.5 32.4
3 7 33.6 53.4
3 3 35.7 59.5
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