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Chapter 1

Introduction

1.1 Studies about light and applications of radiative trans-
fer models

When in need to model the transport of photons and their interaction with
a medium consisting of randomly distributed particles, the radiative transfer
equation (RTE), also called Linear Boltzmann equation, is a popular choice [30].
The RTE is an integro-differential equation that describes the distribution of
photons in position and velocity space in a medium. A detailed description of
the RTE will be provided in Section 1.2.

The RTE allows to calculate the specific intensity of light while it is prop-
agating through media with different material characteristics. The RT model
takes into account properties of the photon flux and media, such as absorp-
tion, emission and scattering, thus allowing for a wide range of applications, as
outlined next.

In atmospheric science the use of the RTE allows the description of radiation
passing through the atmosphere of the Earth, which is modelled with the so
called plane-parallel model. One application of the plane-parallel model is
satellite data assimilation [21]. Another example is a so-called free space optical
communication system, which is used for transmitting telecommunication data
wirelessly [3].

A prominent example in remote sensing is the use of the RTE for optical
oceanography purposes. Here measurements collected remotely by aircraft or
satellite are used to recover data about the properties and condition of oceans
and seas, the physical characteristics of the bottom, etc. [4]. There are also
interesting applications of the RTE in the field of cloud tomography, like the
retrieval of cloud optical thickness [31]. This helps to better understand the
function of clouds in the climate system of the Earth.

In stellar spectrometry, due to the scale of the problem, a plane-parallel
model provides a useful simplification of the complex physics, for instance see
[5], in which a plane-parallel geometry is considered to study the structure of
galaxies.

In biomedical studies, the RTE is a suitable choice for modeling light prop-
agation in biological tissues, see for instance [6, 7, 8, 9, 10]. In biomedical
studies the RTE is generally used as a forward model in related inverse prob-
lems, which aim to recover biomedical information from data at the boundary
[13].

7



8 Introduction

1.2 The radiative transfer boundary-value problem in mul-
tiple dimensions

We consider the steady-state radiative transfer equation. The steady-state RTE
is applicable for cases where the propagation of photons is happening much
faster than other physical processes. An example of an application where the
usage of the steady-state equation is justified can be found in photo-acoustic
imaging applications [13], as sound waves propagate much slower than light in
biomedical tissue.

The RTE is formulated in multiple dimensions as

s · ∇rϕ(r, s) + σt(r)ϕ(r, s) = q(r, s) + σs(r)

∫
S2

k(s · s′)ϕ(r, s′)ds′, (1.1)

and is complemented by the boundary condition

ϕ(r, s) = g(r, s) for (r, s) ∈ ∂R× S, such that s · n(r) < 0. (1.2)

Here, ϕ(r, s) is a density function representing, for example, the density of
photons. The density function depends on the position r ∈ R ⊆ R3, and the
direction of propagation s ∈ S2. In general the velocity domain S2 is the
unit sphere and s ∈ S2 is a vector variable that describes the direction of
propagation. Furthermore, we denote with n(r) the unit outer normal vector
on the boundary ∂R.

On the left-hand side of (1.1) the transport of photons is modelled by a
directional derivative s·∇rϕ(r, s). The second term σt(r)ϕ(r, s) in (1.1) is one of
the terms that describe the interaction of the quantity ϕ with the medium. The
coefficient function σt(r) = σa(r) + σs(r) is called the total attenuation cross
section, and σa(r) and σs(r) are, respectively, the absorption and scattering
coefficients.

On the right-hand-side, the scattering of photons is modelled by the integral
operator σs(r)

∫
S2 k(s · s′)ϕ(r, s′)ds′, and q(r, s) represents the source function.

1.3 Slab geometry model

In this section we will derive a slab geometry radiative transfer equation from
the original 3D problem (1.1)-(1.2). We assume translational invariance, that
is the physical domain is infinite in two directions, i.e. Ω = R2×(0, L), and the
photon density is independent of (x, y) and the azimuthal angle ψ. Moreover,
we assume that the optical parameters and data depend only on z and polar
angle θ. A schematic drawing of the one-layer slab geometry domain is given
on the left hand side of Figure 1.1. Using spherical coordinates, the vector s
can be expressed using the polar (θ) and azimuthal (ψ) angles

s = (s1, s2, s3) = (cosψ sin θ, sinψ sin θ, cos θ)T .

We next derive expressions for the transport, attenuation, and source terms
for the slab geometry. Since in a slab geometry ϕ does not depend on x, y and
ψ, the term s · ∇ϕ reduces to µ∂ϕ

∂z with µ = cos θ,

s · ∇ϕ = s1∂xϕ+ s2∂yϕ+ s3∂zϕ = cos θ
∂ϕ

∂z
= µ

∂ϕ

∂z
.
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Figure 1.1: Left: Slab geometry in physical coordinates. Right: Slab in (z, µ)
plane, with inflow boundary in blue, and outflow boundary in red.

The scattering kernel k(s · s′) will reduce in the slab geometry model to
k̃(µ, µ′), as explained next. Consider

s · s′ = sin θ sin θ′ cos(ψ − ψ′) + cos θ cos θ′.

Then by denoting µ = cos θ and µ′ = cos θ′, we get

s · s′ = (1− µ2)1/2(1− (µ′)2)1/2 cos(ψ − ψ′) + µµ′.

After substituting ψ − ψ′ = ψ̄ and integrating the scattering kernel over the
sphere, we obtain that∫

S2

k(s · s′)ϕ(z, s′3)ds′ =∫ π

0

∫ 2π

0

k(sin θ sin θ′ cos ψ̄ + cos θ cos θ′)ϕ(z, cos θ′) sin θ′dψ̄dθ′ =∫ 1

−1

(∫ 2π

0

k((1− µ2)1/2(1− (µ′)2)1/2 cos ψ̄ + µµ′)dψ̄

)
ϕ(z, µ′)dµ′,

where we used the substitution µ = cos θ and µ′ = cos θ′. This motivates the
definition

k̃(µ, µ′) =

∫ 2π

0

k((1− µ2)1/2(1− (µ′)2)1/2 cos ψ̄ + µµ′)dψ̄.

Then the slab geometry radiative transfer problem can be written as

µ
∂ϕ(z, µ)

∂z
+ σt(z)ϕ(z, µ) = σs(z)

∫ 1

−1

k̃(µ, µ′)ϕ(z, µ′)dµ′ + q(z, µ). (1.3)

In full analogy with the multidimensional case, equation (1.3) requires bound-
ary conditions to be defined. Consider the normal vector n(x, y, 0) = (0, 0,−1),
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see Figure 1.1. Using the expression for s in spherical coordinates we obtain
s·n = − cos θ = −µ, hence the boundary condition at z = 0 is defined for µ > 0.
Similarly for the outward normal vector n(x, y, L) = (0, 0, 1), s · n = cos θ = µ
and the boundary condition at z = L is defined for µ < 0. Summarizing, the
boundary condition is prescribed by{

ϕ(0, µ) = g0(µ), if µ > 0,

ϕ(L, µ) = gL(µ), if µ < 0.
(1.4)

Multilayered media

The slab geometry RTE can also be used to model a beam of light that propa-
gates through a composite material with a multilayered structure. In this case
we consider a change in the refractive index when transitioning from one layer
to another. This introduces reflection and transmission conditions at the corre-
sponding interfaces. If the refractive index does not change across layers then a
multilayered slab is included in (1.3) - (1.4), when piecewise constant spectral
coefficients are used. Consider a schematic description of a multilayered slab,
see Figure 1.2.

Figure 1.2: Layered slab geometry in physical coordinates, layer 1(green), layer
2(yellow).

By considering the RTE in layered media we can model a situation, in which
photons propagate through media with varying spectral properties. There are
a number of applications for which such layered media are important.

In [25], the estimation of the albedo and optical thickness parameters from
the collected measurements in a stratified atmosphere is considered. The at-
mosphere is essentially translated into a two-layered medium in slab geometry.
In remote sensing applications [28] a layered slab geometry allows to model
the layers of the atmosphere or different layers of the ocean, such as surface,
the bottom covering layer of vegetation and soil, and to retrieve their optical
characteristics.
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A good classification of radiative transfer inverse problems in multilayered
slab geometry is given in [29], and more solution methods can be found in
[27, 29, 26].

1.4 Overview of classical approximation techniques

In this section we give an overview of several classical methods that are used
to discretize and solve radiative transfer problems numerically. For ease of pre-
sentation, we will discuss these techniques for the slab geometry RTE problem
(1.3)-(1.4).

Legendre polynomial expansion

A popular technique for approximating the angular component of the solution
ϕ in (1.3)-(1.4) uses a truncated series of Legendre polynomials {Pl}l, which is
known as the PN approximation (or spherical harmonics expansion in higher
dimensions)[22, 23],

ϕ(z, µ) =

∞∑
l=0

2l + 1

2
ϕl(z)Pl(µ). (1.5)

Legendre polynomials are orthogonal on [−1, 1] and satisfy the following or-
thogonality relation ∫ 1

−1

Pl(µ)Pl′(µ)dµ =
2

2l + 1
δll′ .

For these properties please refer to [2]. The scattering term in (1.3) can also
be represented using Legendre polynomials, which in general would require the
use of the addition theorem for spherical harmonics. Consider, for simplicity,
the isotropic scattering case, where k̃(µ, µ′) = 1

2 . Then, using the orthogonality
of the Legendre polynomials, we obtain

1

2

∫ 1

−1

ϕ(z, µ′)dµ′ =
1

2

∞∑
l=0

2l + 1

2
ϕl(z)

∫ 1

−1

Pl(µ
′)dµ′ = ϕ0(z).

Then, after substituting expression (1.5) into (1.3), assuming that ϕL+1 = 0
and taking the inner product with Pl′ for l′ = 0, . . . , L in the angular domain
we obtain

L∑
l=0

ϕ′l(z)

∫ 1

−1

2l + 1

2
µPl(µ)Pl′(µ)dµ+ σt(z)ϕl′(z) = (1.6)

σs(z)

2
ϕ0(z)δ0,l′ +

∫ 1

−1

q(z, µ)Pl′(µ)dµ, l
′ = 0, . . . , L,

where ϕ′l(z) =
dϕl(z)
dz . Using the recurrence relation for Legendre polynomials,

(2l + 1)µPl(µ) = (l + 1)Pl+1(µ) + lPl−1(µ),
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we can write (1.6) as a coupled system of L+1 equations with L+1 unknowns
ϕl, for l = 0, . . . , L, which, by setting ϕ−1 = 0 and ϕL+1 = 0, is given by

l + 1

2l + 1
ϕ′l+1(z) +

l

2l + 1
ϕ′l−1(z) + σt(z)ϕl(z) =

σs(z)

2
ϕ0(z)δ0,l+∫ 1

−1

q(z, µ)Pl(µ)dµ.

We also must impose L+1 boundary conditions on ϕl(z), l = 0, .., L. Formulat-
ing boundary conditions in the PN method is a subject of discussion, because
the representation of the solution via finite set of Legendre polynomials is in
general inconsistent with the boundary conditions, see [24]. One of the possi-
bilities is to use the approximate formulation of the boundary condition, which
results from taking the inner product with the Legendre polynomials{∑L

l=0

∫ 1

0
2l+1
2 ϕl(0)Pl(µ)Pl′(µ)dµ =

∫ 1

0
g0(µ)Pl′(µ)dµ,∑L

l=0

∫ 0

−1
2l+1
2 ϕl(L)Pl(µ)Pl′(µ)dµ =

∫ 0

−1
gL(µ)Pl′(µ)dµ.

Since Legendre polynomials are not orthogonal in L2(−1, 0) and L2(0, 1) such
an approximation of the boundary condition results in a dense coupling of the
functions ϕl, see [32] for more details.

Discrete ordinates method

Another popular discretization method for the slab geometry model (1.3)-(1.4)
that is used to describe the angular dependence is the discrete ordinates method
or SN method, introduced in [1]. The idea is based on approximating the
infinite angular space with a finite set of N directions and can be viewed as a
collocation method.

Consider the slab geometry problem (1.3)-(1.4) with isotropic scattering
term k̃(µ, µ′) = 1

2 , namely

µ
∂ϕ(z, µ)

∂z
+ σt(z)ϕ(z, µ) =

σs(z)

2

∫ 1

−1

ϕ(z, µ′)dµ′ + q(z, µ),

for z ∈ (0, L) and µ ∈ (−1, 1), with the inflow boundary condition{
ϕ(0, µ) = g0(µ), if µ > 0,

ϕ(L, µ) = gL(µ), if µ < 0.

Let the set of discrete ordinates consist of the quadrature points µi, such that
µi ̸= 0, and corresponding weights ωi for i = 1, .., N , where N is the chosen
number of directions of propagation. Let ϕi(z) ≈ ϕ(z, µi) be defined by

µiϕ
′
i(z) + σt(z)ϕi(z) =

σs(z)

2

N∑
j=1

ϕj(z)ωj + q(z, µi), (1.7)

where ϕ′i(z) =
dϕi(z)

dz , and{
ϕi(0) = g0(µi), if µi > 0,

ϕi(L) = gL(µi), if µi < 0.
(1.8)
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In this way the radiative transfer equation is represented as a system of
advection equations with corresponding boundary conditions for each chosen
direction of propagation that is coupled via the sum on the right-hand side of
(1.7).

The sum in (1.7) requires special attention when solving for ϕl, l = 1, .., N .
If the summation in (1.7) can be performed efficiently, solving (1.7)–(1.8) iter-
atively is a viable approach.

Iterative solvers

The system of equations (1.7)–(1.8) resulting from the discretization of the RTE
using the discrete ordinates method can be solved iteratively, for example with
the Source Iteration (SI) method [16], which will be explained in more detail in
Chapter 2. This contraction mapping proved to be mostly effective for optically
thin regimes and very slow for diffusive regimes [16], where c = ||σs/σt||∞ ≈ 1.
In order to address these problems acceleration techniques, i.e., precondition-
ers were proposed. The Diffusion Synthetic Acceleration (DSA) [14] can be
used for isotropic scattering, but for strongly forwardly peaked scattering the
convergence rate deteriorates [16, 17, 18]. An angular multigrid preconditioner
for the slab geometry was proposed in [18] as an alternative to DSA, and the
convergence analysis is done in [19]. In multiple dimensions the multigrid pre-
conditioner developed for the source iteration does not converge, but can be
effective when implemented as a preconditioner for Krylov-based techniques,
see [15]. Several multigrid preconditioners were developed for various iterative
techniques, see [11, 12, 20]. However, the construction of robustly convergent
schemes for the most general cases is still an open problem.

1.5 Thesis outline

To conclude the introduction we formulate the main research questions, that
will be addressed in this thesis.

1. Developing a robust preconditioner for the source iteration technique.
For ease of implementation and presentation this will be considered first
for the case of isotropic scattering.

2. Extending the developed preconditioners to anisotropic scattering prob-
lems.

3. Applying the discretized version of the scattering operator efficiently to
solve the anisotropic scattering problem robustly.

4. Solving isotropic scattering problems with a stable and accurate non-
tensor product phase-space discretization technique suitable for adaptive
mesh refinement.

The outline of the thesis is as follows: in Chapter 2 we will give a more detailed
description of the source iteration method, and relate it to another common
solution technique, namely the first collision source method. In Chapter 3 we
will propose a generalisation of the SN and PN methods in combination with
a robust preconditioned source iteration method. This method is implemented
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for isotropic radiative transfer problems, addressing research question 1. In
Chapter 4 we will discuss the efficient solution of the linear equations that
arise from the discretization of the anisotropic radiative transfer. We will
propose a robust and efficient iterative method for solving this problem as well
as an efficient application of the anisotropic scattering operator, addressing
research questions 2 and 3. In Chapter 5 we address research question 4, and
we provide an analysis of a discontinuous Galerkin approximation in both space
and angle that does not use a tensor product formulation, allowing for adaptive
discretization in phase-space. This algorithm is implemented for the isotropic
radiative transfer equation in slab geometry for problems with non-smooth and
discontinuous solutions.
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Chapter 2

On the equivalence of the source iteration method
and the first collision source method

2.1 Introduction

Iterative methods to solve the RTE [3, 4, 5] are a viable alternative to di-
rect methods. Two of the most comprehensive studies on the source iteration
method and supportive acceleration methods can be found in [2, 6]. In this
chapter we will provide a summary of the source iteration method and an
equivalent method - the first collision source method, which are often used to
solve the radiative transfer equation. While the source iteration method and
the first collision source method are equivalent, there are differences in how the
solution can be obtained using each method.

Various approximation methods were developed and successfully applied for
different media and geometries, for a brief overview see Section 1.4.

2.2 Source Iteration method

Recall the radiative transfer equations (1.1)–(1.2)

s · ∇rϕ(r, s) + σt(r)ϕ(r, s) = q(r, s)+

+ σs(r)

∫
S2

k(s · s′)ϕ(r, s′)ds′, for (r, s) ∈ R× S2,

ϕ(r, s) = g(r, s), for (r, s) ∈ Γ−,

where R ⊆ R3. Here the inflow boundary Γ− is defined as

Γ− = {(r, s) ∈ ∂R× S, s · n(r) < 0}, (2.1)

see Section 1.2.
The basic idea behind the source iteration method lies in the following. We

start with a given initial iterate ϕk−1 and compute ϕk by solving the decoupled
transport equations,

s · ∇rϕk(r, s) + σt(r)ϕk(r, s) = σs(r)Kϕk−1(r, s)+ (2.2)

+ q(r, s) for (r, s) ∈ R× S2,

ϕk(r, s) = g(r, s) for (r, s) ∈ Γ−. (2.3)

19
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This process continues until the iteration converges within a specified tolerance.
The source iteration method is a well-researched method, and several results

of its convergence can be found in the literature. Let

∥ϕ∥2σt
= (σtϕ, ϕ) =

∫
R

∫
S2

σt|ϕ|2dsdr.

The following sources provide the proofs of convergence of the source iteration
method

• Case and Zweifel [7, p.291]: ∥ϕ − ϕk∥σt ≤ ∥σs

σt
∥∞∥ϕ − ϕk−1∥σt

, when
||σs

σt
||∞ < 1.

• Blake [8, sec. 2.5.2 - 2.5.3], slab geometry: for the isotropic scattering
case with ||σs

σt
||∞ ≤ 1.

• Egger and Schlottbom [1], for the case of bounded domains with ||σs

σt
||∞ ≤

1.

2.3 First Collision Source Method

The First Collision Source Method (FCSM) was presented in Lathrop [9], and
later also in Alcouffe [10]. It was also extended and modified for unstructured
grids in multiple dimensions in [12] and implemented with adaptive quadrature
in 3D [13].

The first collision source method decomposes the intensity into two compo-
nents,

ϕ(r, s) = ϕc(r, s) + ϕu(r, s),

where the physical interpretation of ϕc and ϕu is as follows:

• ϕu is the uncollided part, which corresponds to particles that have not
undergone scattering events.

• ϕc is the collided component, which corresponds to the scattered particles.

By linearity of (1.1) and (1.2), we can define ϕu and ϕc as the solutions to

s · ∇rϕu(r, s) + σt(r)ϕu(r, s) = q(r, s), (2.4)
s · ∇rϕc(r, s) + σt(r)ϕc(r, s) = σs(r)Kϕc(r, s) + σs(r)Kϕu(r, s), (2.5)

for (r, s) ∈ R× S2, with corresponding boundary conditions

ϕu(r, s) = g(r, s) for (r, s) ∈ Γ−, (2.6)
ϕc(r, s) = 0 for (r, s) ∈ Γ−. (2.7)

Each component can be computed separately:

• ϕu solves an advection equation without scattering and can be computed
numerically or analytically by using, for instance, the discrete ordinates
method;

• ϕc cannot be computed analytically due to the inclusion of the collision
operator, i.e., the computation of ϕc from (2.5), (2.7) is as difficult as the
computation of ϕ itself.
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The biggest potential advantage of FCSM is that the equation for the uncollided
and collided parts can be solved using different approximation techniques. This
was done in [10], where the problem (2.4), (2.6) is solved by the Monte-Carlo
method and (2.5), (2.7) is solved using the discrete ordinates method.

Since the collided component ϕc is expected to have less directional infor-
mation than ϕu, equations (2.5), (2.7) were approximated by PN methods [9].
Sometimes, a few spherical harmonics will be enough to approximate ϕc well,
the use of a low degree approximation allows then for the scattering operator
to be approximated more efficiently. If a low degree PN approximation is not
enough, the accuracy of the method will be low. Another issue with the PN

approximation is the dense coupling of the boundary conditions, see Section
1.4. Unfortunately, the solution for collided and uncollided problems are gen-
erally inconsistent if different schemes, such as Monte-Carlo and PN methods,
are employed for ϕu and ϕc.

2.4 Relation of the source iteration method and the first
collision source method

Before discussing the similarities between the source iteration method and the
first collision source method we would like to remark that this comparison
has been considered by other authors. For example in [13] an adaptive first
collision source method is presented, and numerical examples for the source
iteration method and FCSM are given and compared. It is shown that, while
the methods are equivalent, the collision equations (2.5),(2.7) in the FCSM
can be dicretized more efficiently with a quadrature of lower order than for the
collision free equation.

It is easy to see that source iteration method and the first collision source
method are similar techniques. To show this, let us consider the residual Rk =
ϕ−ϕk. Subtracting equations (2.2) and (2.3) from (1.1) and (1.2) for k = 1, 2,
we obtain

s · ∇rR2 + σtR2 = σsKR1 in R× S2,

R2 = 0 on Γ−.

Combining the obtained system with (2.2) and (2.3) for k = 1, and taking
ϕ0 = 0 as initial iterate we arrive at the system of the form (2.4)-(2.5),

s · ∇rϕ1 + σtϕ1 = q, on R× S2,

s · ∇rR2 + σtR2 = σsKϕ1 + σsKR2, on R× S2,

with corresponding boundary conditions

ϕ1 = g, on Γ−,

R2 = 0, on Γ−.

Hence, we can draw the following conclusion for the source iteration method
and the first collision source method: ϕ1 corresponds to ϕu and R2 corresponds
to ϕc.

On the basis of the source iteration method and the first collision source
method we can also construct another splitting method that we refer to as
extended first collision source method.
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2.5 Extended first collision source method

The observations regarding the first collision source method in Section 2.3 carry
over if we use the following extension of the first collision source method, similar
to [13]. We represent the function ϕ as a sum of M functions, where M ≥ 1
(standard FCSM for M = 1):

ϕ = ψ0 + ψ1 + ...+ ψM . (2.8)

In this formulation ψk, k = 0, ...,M−1 are the components of the solution that
correspond to exactly k scattering events and ψM is a residual that corresponds
to M or more scattering events.

Let L denote the following differential operator

Lψ(r, s) = s · ∇rψ(r, s) + σt(r)ψ(r, s)

and Kψ(r, s) =
∫
S2 k(s · s′)ψ(r, s′)ds′ be the integral scattering operator, see

Section 1.2.
The components ψk, 0 ≤ k ≤M − 1, then satisfy

Lψ0 = q on R× S2, ψ0 = g on Γ−,

Lψk = σsKψk−1 on R× S2, ψk = 0 on Γ−, k ≥ 1. (2.9)

The closing equation for the residual is given by

LψM = σsKψM + σsKψM−1 on R× S2, ψM = 0 on Γ−. (2.10)

Observe that, if all the equations are added, we retrieve the original problem:

Lϕ = q + σsKϕ on R× S2, ϕ = g on Γ−.

It is expected that the solution component ψk has less directional information
than the previous one ψk−1. From a physical perspective the validity of the
statement is quite obvious. After every scattering event with the medium the
photons lose a fraction of the directional information. Indeed, suppose σs = 1
for simplicity, and let L0 be the differential operator defined as

L0ψ(r, s) = s · ∇rψ(r, s) + σt(r)ψ(r, s),

together with homogeneous boundary conditions. Using (2.9) we obtain for
k = 1, . . . ,M − 1 that

ψk = L−1
0 Kψk−1.

By iterating the argument, we therefore obtain for k ≥ 1 that

ψk = L−1
0 (KL−1

0 )k−1Kψ0.

Assume the eigendecomposition KL−1
0 vj = λjvj with |λj | < 1. Since KL−1

0 is
compact [11], we have that λj −→ 0 as j −→ ∞. For uj = L−1

0 vj , we observe
that λjL0uj = Kuj . Expanding Kψ0 as

Kψ0 =

∞∑
j=1

ajvj ,
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we then obtain that

ψk = L−1
0 (KL−1

0 )k−1Kψ0 = L−1
0

∞∑
j=1

ajλ
k−1
j vj =

∞∑
j=1

ajλ
k−1
j uj .

In view of Section 4.3, the functions uj with λj close to 1 might be approximated
well by Legendre polynomials of low degree, confirming the physical argument
stated above.

Similar to the first collision source method the last equation (2.10) of the
splitting system needs to be solved numerically, too, as it contains a term
KψM (r, s). One possibility, as just argued, is to use the SN or PN method for
the first M − 1 equations and the PN method (spherical harmonics approxi-
mation) of low degree for the closing M -th equation.

2.6 Conclusions

As a basic iterative technique in radiative transfer theory, the source itera-
tion method (or equivalently the first collision source method) provides a good
starting point for our research. Due to the consistency issues of the first col-
lision source method we prefer the source iteration method. In Chapter 3 we
will solve the isotropic radiative transfer equation and construct a robust pre-
conditioner for the source iteration method. In Chapter 4 we will build upon
the results obtained in Chapter 3 to construct highly efficient preconditioned
iterative schemes, which are convergent in both the transport and diffusive
regimes, also for anisotropic scattering problems.



Bibliography

[1] H. Egger, M. Schlottbom: An Lp theory for stationary radiative transfer.
Applicable Analysis. An International Journal 93(6), 1283-1296 (2014)

[2] G. I. Marchuk, V. I. Lebedev: Numerical methods in the theory of neutron
transport. Harwood Academic Publishers, Chur, London, Paris, New York
(1986)

[3] W.H. Reed: New difference schemes for the neutron transport equation.
Nuclear Science and Engineering, 46(2), 309-314 (1971)

[4] R.T. Ackroyd: A finite element method for neutron transport—I. Some
theoretical considerations. Annals of Nuclear Energy, 5(2), 75-94 (1978)

[5] W.H. Reed: The effectiveness of acceleration techniques for iterative meth-
ods in transport theory. Nuclear Science and Engineering, 45(3), 245-254
(1971)

[6] M.L. Adams, E.W. Larsen: Fast iterative methods for discrete-ordinates
particle transport calculations. Progress in nuclear energy, 40(1), 3-159
(2002)

[7] K. M. Case, P. F. Zweifel: Linear transport theory. Addison-Wesley, Read-
ing (1967)

[8] J. C. Blake: Domain decomposition methods for nuclear reactor modelling
with diffusion acceleration. Ph.D. thesis, University of Bath (2016)

[9] K.D. Lathrop: Remedies for ray effects. Nuclear Science and Engineering,
45(3), 255-268 (1971)

[10] R.E. Alcouffe: A first collision source method for coupling Monte Carlo
and discrete ordinates for localized source problems. In Monte-Carlo Meth-
ods and Applications in Neutronics, Photonics and Statistical Physics,
Springer, Berlin, Heidelberg, 352-366 (1985)

[11] F. Golse, P.L. Lions, B. Perthame, R. Sentis: Regularity of the moments
of the solution of a transport equation. Journal of functional analysis, 76(1),
110-125 (1988)

[12] T.A. Wareing, J.E. Morel, D.K. Parsons: A first collision source method
for ATTILA, an unstructured tetrahedral mesh discrete ordinates code. Los
Alamos National Lab., NM, United States : N. p. (1998)

24



Bibliography 25

[13] W.J. Walters, A. Haghighat: The adaptive collision source method for
discrete ordinates radiation transport. Annals of Nuclear Energy, 105, 45-58
(2017)





Chapter 3

On a convergent DSA preconditioned source iter-
ation for a DGFEM method for radiative transfer

3.1 Introduction

We consider the numerical solution of the radiative transfer equation in plane
parallel geometry, see Figure 1.1

µ∂zϕ(z, µ) + σt(z)ϕ(z, µ) =
σs(z)

2

∫ 1

−1

ϕ(z, µ′)dµ′ + q(z, µ), (3.1)

where 0 < z < Z and −1 < µ < 1, and Z denotes the thickness of the slab
and µ is the cosine of the polar angle of a unit vector. The function ϕ(z, µ)
models the equilibrium distribution of some quantity, like neutrons or photons
[14, 13]. The basic physical principles embodied in (3.1) are transport, which
is modeled by the differential operator µ∂z, absorption with rate σa = σt − σs
and scattering with rate σs. Internal sources are described by the function q.
In this work we will close the radiative transfer equation using inflow boundary
conditions

ϕ(0, µ) = g0(µ) µ > 0, and ϕ(Z, µ) = gZ(µ) µ < 0. (3.2)

Such transport problems arise when the full three-dimensional model posed
on R2 × (0, Z) × S2 obeys certain symmetries [13]. It has been studied in
many instance due to simpler structure compared to three dimensional prob-
lems without symmetries; the methodology presented here directly carries over
to the general case, see also the numerical examples presented below.

Classical deterministic discretization strategies are based on a semidis-
cretization in µ. One class of such strategies are the PN -approximations,
which are spectral methods based on truncated spherical harmonics expan-
sions [21, 18], and we refer to [3, 24, 15] for variational discretization strategies
using this approximation. The major advantage of PN -approximations is that
the scattering operator becomes diagonal. In addition, the matrix representa-
tion of the transport operator µ∂z is sparse. The main drawbacks of the PN -
method are that the variational incorporation of the inflow boundary condition

The content of this chapter was published in: O. Palii and M. Schlot-
tbom, Computers & Mathematics with Applications, 79(12), pp. 3366-3377 (2020).
https://doi.org/10.1016/j.camwa.2020.02.002

27
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introduces a dense coupling of the spherical harmonics expansion coefficients
making standard PN -approximations quite expensive to solve. We note, how-
ever, that a modified variational formulation of the PN -equations has recently
been derived that leads to sparse matrices [6]. In any case, the success of spec-
tral approximation techniques depends on the smoothness of the solution. In
general, the solution ϕ is not smooth for µ = 0, which is related to the in-
flow boundary conditions (3.2). Hence, the PN -approximations will in general
not converge spectrally. Resolving the non-smoothness of ϕ should improve
the approximation considerably, and this observation led to the developments
of double PN -methods [18] or half space moment methods [23, 22], which are
spectral methods on the intervals µ > 0 and µ < 0.

A second class of semidiscretizations are discrete ordinates methods that
use a quadrature rule for the discretization of the µ-variable [13], with anal-
ysis provided in [16, 11]. Such methods are closely related to discontinuous
Galerkin (DG) methods, see, e.g., [20, 2, 4, 5, 17, 26]. While allowing for
local angular resolution, the main obstruction in the use of these methods is
that the scattering operator leads to dense matrices, and a direct inversion of
the resulting system is not possible in realistic applications. To overcome this
issue, iterative solution techniques have been proposed. An often used itera-
tive technique is Richardson iteration, i.e., the source iteration [19, 9, 36], but
other Krylov space methods exist [1]. The key idea of the source iteration is
to decouple scattering and transport, and to exploit that the transport part
can be inverted efficiently. If σs/σt ≈ 1, the convergence of these iterative
methods is slow, and several preconditioning techniques have been proposed
[5, 19, 9, 1]. Among the most used and simple preconditioners is the diffusion
synthetic acceleration method (DSA), in which a diffusion problem is solved
in every iteration. This is well motivated by asymptotic analysis [7, 8]. While
Fourier analysis can be applied to special situations [19, 9], the convergence
analysis is mainly open for the general case, i.e., for non-constant coefficients
or non-periodic boundary conditions. A further complication in using the DSA
preconditioner is that the resulting iterative scheme might diverge if the dis-
cretization of the diffusion problem and the discrete ordinates system are not
consistent [9].

For isotropic scattering, integral methods for the approximation of the an-
gular average of the solution have been proposed recently [25]. The efficiency
of the iterative solver of [25] deteriorates if scattering becomes dominant, and a
diffusion-based preconditioner is employed to reduce the number of iterations.
Extensions to anisotropic scattering can be found in [27].

The contribution of this chapter is to develop discretizations that allow for
local resolution of the non-smoothness of the solution, and which lead to dis-
crete problems that can be solved efficiently by diffusion synthetic accelerated
source iterations. Our approach builds upon an even-parity formulation of
the radiative transfer equation derived from the mixed variational framework
given in [15], where PN -approximations have been treated in detail. We show
that our DSA preconditioned source iteration converges already for the contin-
uous problem. We present conforming hp-type approximation spaces for the
discretization, and prove quasi-best approximation properties of the Galerkin
approximation. In order to solve the resulting linear systems, we employ a
DSA preconditioned Richardson iteration, which is just the infinite dimensional
iteration projected to the approximation spaces. In particular, the finite di-



Function spaces and further preliminaries 29

mensional iteration is guaranteed to converge for any discretization. Moreover,
the inversion of the transport problem can be parallelized straightforwardly.
In numerical experiments, even when employing low-order approximations, we
observe that the developed method does not suffer from the ray effect, which
is typically observed for discrete ordinates methods [18, 12].

The outline of the chapter is as follows: In Section 3.2 we introduce basic
notation and recall the relevant function spaces. In Section 3.3 we introduce
the even-parity equation for (3.1), show its well-posedness, and formulate an
infinite dimensional DSA preconditioned source iteration, for which we show
convergence. The approximation spaces are described in Section 3.4 and well-
posedness of the Galerkin problems as well as quasi-best approximation results
are presented. In Section 3.5 we discuss the efficient iterative solution of the
resulting linear systems and provide a convergence proof for the discrete DSA
scheme. Section 3.6 presents supporting numerical examples for a slab geom-
etry and for multi-dimensional problems that show the good approximation
properties of the proposed method as well as fast convergence of the iterative
solver in multi-dimensional problems and in the diffusion limit. The chapter
ends with some conclusions in Section 3.7.

3.2 Function spaces and further preliminaries

Following [10] we denote by L2(D) with D = (0, Z)× (−1, 1) the usual Hilbert
space of square integrable functions with inner product

(ϕ, ψ) =

∫ 1

−1

∫ Z

0

ϕ(z, µ)ψ(z, µ)dzdµ

and induced norm ∥ϕ∥L2(D) = (ϕ, ϕ)
1
2 . Furthermore, we define the Hilbert

space

H1
2 (D) = {ϕ ∈ L2(D) : µ∂zϕ ∈ L2(D)}

of functions with square integrable weak derivatives with respect to the weighted
differential operator µ∂z endowed with the corresponding graph norm.

In order to deal with boundary data, let us introduce the Hilbert space L2
−

that consists of measurable functions for which

∥ψ∥2L2
−
=

∫ 1

0

|ψ(0, µ)|2|µ|dµ+

∫ 0

−1

|ψ(Z, µ)|2|µ|dµ

is finite, and we denote by ⟨ψ, ϕ⟩L2
−

the corresponding inner product on L2
−.

Similarly, L2
+ denotes the space of outflow data. We have the following trace

lemma [10].

Lemma 3.2.1. If ϕ ∈ H1
2 (D), then there exist traces ϕ|Γ− ∈ L2

− and ϕ|Γ+
∈ L2

+

and

∥ϕ|Γ±∥L2
±
≤ C√

1− e−Z
∥ϕ∥H1

2 (D)

with a constant C > 0 independent of ϕ and Z.
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As a consequence of the trace lemma and the density of smooth functions
in H1

2 (D) the following integration-by-parts formula is true [10]

(µ∂zϕ, ψ) = −(ϕ, µ∂zψ) + ⟨ϕ, ψ⟩L2
+
− ⟨ϕ, ψ⟩L2

−
. (3.3)

Throughout this chapter we make the following basic assumption:

(A1) σs, σt ∈ L∞(0, Z) are non-negative and σa = σt − σs ≥ γ > 0.

Assumption (A1) means that we consider absorbing media, which makes (3.1)-
(3.2) well-posed [10].

Lemma 3.2.2. Let assumption (A1) hold, and let g ∈ L2
− and q ∈ L2(D), then

(3.1)-(3.2) has a unique solution ϕ ∈ H1
2 (D) that satisfies the a-priori bound

∥ϕ∥H1
2 (D) ≤ C(∥g∥L2

−
+ ∥q∥L2(D)).

Assumption (A1) is not required to prove well-posedness for bounded ge-
ometries [30], or for slab problems with constant coefficients [28, Thm. 2.25].

Let P : L2(D) → L2(D) denote the L2-projection onto constants in µ, i.e.,

(Pψ)(z, µ) = 1

2

∫ 1

−1

ψ(z, µ′)dµ′.

Since σt ∈ L∞(0, Z) is strictly positive, we can define the following norms on
L2(D)

∥ψ∥2σt
= (σtψ,ψ) and ∥ψ∥21

σt

= (
1

σt
ψ,ψ). (3.4)

Even-odd splitting

The even ϕ+ and odd ϕ− parts of a function ϕ ∈ L2(D) are defined as

ϕ+(z, µ) =
1

2
(ϕ(z, µ) + ϕ(z,−µ)), ϕ−(z, µ) =

1

2
(ϕ(z, µ)− ϕ(z,−µ)).

Even-odd decompositions are frequently used in transport theory [21, 3]. Since,
as functions of µ, even and odd functions are orthogonal in L2(−1, 1), we can
decompose L2(D) into orthogonal subspaces containing even and odd functions,
respectively,

L2(D) = L2(D)+ ⊕ L2(D)−.

Similarly, we will write H1
2 (D)± = H1

2 (D) ∩ L2(D)±. As in [15], we observe
that µ∂zϕ± ∈ L2(D)∓ for any ϕ ∈ H1

2 (D), and Pϕ± ∈ L2(D)+ for ϕ ∈ L2(D).
It turns out that the natural space for our formulation is

W = H1
2 (D)+ ⊕ L2(D)−.
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3.3 Weak formulation of the slab problem

Derivation

We follow the steps presented in [15] for multi-dimensional problems. The key
idea is to rewrite the slab problem into a weak formulation for the even and
odd parts of the solution. Multiplication of (3.1) with a test function ψ ∈ W+

and using orthogonality of even and odd functions gives that

(µ∂zϕ
−, ψ+) + ((σt − σsP)ϕ+, ψ+) = (q+, ψ+).

Integration-by-parts (3.3) applied to the first term on the left-hand side yields
that

(µ∂zϕ
−, ψ+) = −(ϕ−, µ∂zψ

+) + ⟨ϕ−, ψ+⟩L2
+
− ⟨ϕ−, ψ+⟩L2

−
.

Due to symmetries, we have that ⟨ϕ−, ψ+⟩L2
+
= −⟨ϕ−, ψ+⟩L2

−
. Using (3.2), we

have that ϕ− = ϕ− ϕ+ = g − ϕ+ on the inflow boundary, which leads to

(µ∂zϕ
−, ψ+) = −(ϕ−, µ∂zψ

+) + 2⟨ϕ+, ψ+⟩L2
−
− 2⟨g, ψ+⟩L2

−
.

Thus, for any ψ+ ∈ W+, it holds that

2⟨ϕ+, ψ+⟩L2
−
− (ϕ−, µ∂zψ

+) + ((σt − σsP)ϕ+, ψ+) = (3.5)

(q+, ψ+) + 2⟨g, ψ+⟩L2
−
.

Testing (3.1) with an odd test function ψ− ∈ W−, we obtain that

(µ∂zϕ
+, ψ−) + (σtϕ

−, ψ−) = (q−, ψ−),

which implies that ϕ− = 1
σt
(q− − µ∂zϕ

+) ∈ W−. Using this expression for ϕ−

in (3.5), we deduce that u = ϕ+ is a solution to the following problem; cf. [15].

Problem 3.3.1. Let q ∈ L2(D) and g ∈ L2
−. Find u ∈ W+ such that

a(u, v) = ℓ(v) for all v ∈ W+. (3.6)

where the bilinear form a : W+ ×W+ → R is given by

a(u, v) = 2⟨u, v⟩L2
−
+ (

1

σt
µ∂zu, µ∂zv) + ((σt − σsP)u, v), (3.7)

and the linear form ℓ : W+ → R is defined as

ℓ(v) = (q+, v) + 2⟨g, ψ+⟩L2
−
+ (q−,

1

σt
µ∂zv). (3.8)

Well-posedness

We endow W+ with the norm induced by the bilinear form a defined in (3.7),
i.e.,

∥u∥W = ∥u∥a = a(u, u)
1
2 for u ∈ W+. (3.9)

Using the Cauchy-Schwarz inequality, we obtain the following result.



32 DSA preconditioned source iteration for isotropic scattering

Lemma 3.3.2. The linear form ℓ : W → R defined in (3.8) is bounded, i.e.,
for all v ∈ W+ it holds

ℓ(v) ≤ (∥q+∥21
σa

+ ∥q−∥21
σt

+ 2∥g∥2L2
−
)

1
2 ∥v∥a.

Since the space W+ endowed with the inner product induced by a is a
Hilbert space, the unique solvability of Problem 3.3.1 is a direct consequence
of the Riesz representation theorem.

Theorem 3.3.3. Let Assumption (A1) hold true. Then Problem 3.3.1 has a
unique solution u ∈ W+. Moreover, we have the bound

∥u∥a ≤ (∥q+∥21
σa

+ ∥q−∥21
σt

+ 2∥g∥2L2
−
)

1
2 .

Remark 3.3.4. Setting ϕ+ = u and ϕ− = 1
σt
(q− − µ∂zu), one can show that

µ∂zϕ
− ∈ L2(D), i.e., ϕ = ϕ+ + ϕ− ∈ H1

2 (D) satisfies (3.1) in L2(D), cf. [15].
Using the trace lemma 3.2.1 and partial-integration (3.3), we further can show
that ϕ satisfies the boundary conditions (3.2) in the sense of traces. Hence,
Theorem 3.3.3, independently, leads to a well-posedness result as Lemma 3.2.2
for (3.1)-(3.2).

DSA preconditioned source iteration in second order form

As a preparation for the numerical solution of the discrete systems that will
be described below, let us discuss an iterative scheme in infinite dimensions for
solving the radiative transfer equation. The basic idea is a standard one and
consists of decoupling scattering and transport in order to compute successive
approximations, viz., the source iteration [19, 9]. Next to the basic iteration,
we describe a preconditioner which resembles diffusion synthetic acceleration
(DSA) schemes using the notation of [9] or a KP1 scheme using the terminology
of [19].

In order to formulate the method, we introduce the following bilinear forms

k(u, v) = (σsPu, v) and b(u, v) = a(u, v) + k(u, v) for u, v ∈ W+,

and denote the induced semi-norm and norm by ∥u∥k and ∥u∥b, respectively.
The iteration scheme is defined as follows: For uk ∈ W+ given, compute

uk+
1
2 ∈ W+ as the unique solution to

b(uk+
1
2 , v) = k(uk, v) + ℓ(v) for all v ∈ W+. (3.10)

The half-step error ek+
1
2 = u− uk+

1
2 satisfies

a(ek+
1
2 , v) = k(uk+

1
2 − uk, v) for all v ∈ W+. (3.11)

The key idea is then to construct an easy-to-compute approximation to ek+
1
2 by

Galerkin projection onto a suitable subspace W+
1 ⊂ W+. This approximation

is then used to correct uk+
1
2 to obtain a more accurate approximation uk+1 to

u. Define the following closed subspace of W+

W+
1 = {u ∈ W+ : u = Pu}, (3.12)
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i.e., W+
1 consists of functions in W+ that do not depend on µ. The correction

u
k+ 1

2

D ∈ W+
1 is then computed by Galerkin projection of (3.11) to W+

1 :

a(u
k+ 1

2

D , v) = k(uk+
1
2 − uk, v) for all v ∈ W+

1 , (3.13)

and the new iterate is defined as

uk+1 = uk+
1
2 + u

k+ 1
2

D . (3.14)

If uk+
1
2

D is a good approximation to ek+
1
2 , then ek+1 = ek+

1
2 − u

k+ 1
2

D is small.
The convergence proof for the iteration W+ → W+, uk 7→ uk+1 is based on
spectral analysis [34, 35].

Lemma 3.3.5. The half-step error ek+
1
2 = u− uk+1/2 of the iteration (3.10)

satisfies

∥ek+ 1
2 ∥a ≤ c∥ek∥a,

with constant c = ∥σs/σt∥∞.

Proof. We endow W+ with the inner product induced by the bilinear b in this
proof, and define bounded, self-adjoint and positive operators A and K on W+

by

b(Au, v) = a(u, v), b(Ku, v) = k(u, v) for u, v ∈ W+.

Using a = b − k, we obtain that A = I −K. Using uk+
1
2 − uk = ek − ek+

1
2 ,

(3.11) can be written as

ek+
1
2 = Kek.

We thus have that

∥ek+ 1
2 ∥2a = b((I −K)Kek,Kek) = b(K2(I −K)

1
2 ek, (I −K)

1
2 ek)

≤ maxσ(K)2∥(I −K)
1
2 ek∥2b ≤ c2∥ek∥2a.

In the last step we have used the following bounds on the numerical range

0 ≤ b(Kv, v) = k(v, v) ≤ ∥σs
σt

∥∞(σtv, v) ≤ cb(v, v),

which yields the spectral bounds σ(K) ⊂ [0, c].

Theorem 3.3.6. Let Assumption (A1) hold, and let c = ∥σs/σt∥∞ < 1 be as
in Lemma 3.3.5. For any u0 ∈ W+, the iteration defined by (3.10), (3.13),
(3.14) converges linearly to the solution u of Problem 3.3.1 with

∥u− uk+1∥a ≤ c∥u− uk∥a.

Proof. Since uk+
1
2

D is the orthogonal projection of ek+
1
2 to W+

1 in the a-inner
product it holds that

∥ek+1∥a = ∥ek+ 1
2 − u

k+ 1
2

D ∥a = inf
v∈W+

1

∥ek+ 1
2 − v∥a ≤ ∥ek+ 1

2 ∥a.

The assertion then follows from Lemma 3.3.5.
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Remark 3.3.7. The convergence analysis presented in this section carries over
verbatim to multi-dimensional problems without symmetries, and it can be ex-
tended immediately to more general (symmetric and positive) scattering oper-
ators. Moreover, if a Poincaré-Friedrichs inequality is available, cf., e.g., [24],
then the case σa ≥ 0 can be treated similarly as long as σt is uniformly bounded
away from 0, and the source iteration converges also in this situation

Remark 3.3.8. Problem (3.13) is the weak formulation of the diffusion equa-
tion

−∂z(
1

3σt
∂zuD) + σauD = f in (0, Z),

with f = σsP(uk+
1
2 − uk), complemented by Robin boundary conditions, which

shows the close relationship to DSA schemes.

Remark 3.3.9. The convergence analysis for the iteration without precondi-
tioning, can alternatively be based on the following estimates. These estimates
are the only ones in this paper that exploit that the scattering operator is related
to the L2-projector P. First note that

∥ek+ 1
2 ∥2b = ∥Pek+ 1

2 ∥2σt
+ ∥(I − P)ek+

1
2 ∥2σt

+ ∥ek+ 1
2 ∥2L2

−
+ ∥µ∂zek+

1
2 ∥21

σt

and that ∥ek+ 1
2 ∥2b = k(ek, ek+

1
2 ). Setting c = ∥σs/σt∥∞, the Cauchy-Schwarz

inequality yields

(1− ε

2
)∥Pek+ 1

2 ∥2σt
+ ∥(I − P)ek+

1
2 ∥2σt

+ ∥ek+ 1
2 ∥2L2

−
+ ∥µ∂zek+

1
2 ∥21

σt

≤ c2

2ε
∥Pek∥2σt

for any ε ∈ (0, 2]. Choosing ε = 2 shows that parts of the error are smoothened
independently of c, i.e.,

∥(I − P)ek+
1
2 ∥2σt

+ ∥ek+ 1
2 ∥2L2

−
+ ∥µ∂zek+

1
2 ∥21

σt

≤ c2

4
∥Pek∥2σt

,

while the angular average is hardly damped. In any case, this shows that Pek
converges to zero. It remains open how to exploit such an estimate to improve
the analysis of the DSA preconditioned scheme above as it seems difficult to
relate the latter smoothing property to the best approximation error of ek+

1
2 in

the a-norm.

3.4 Galerkin approximations

In this section, we construct conforming approximation spaces W+
h,N ⊂ W+

in a two-step procedure. In a first step, we discretize the µ-variable using
discontinuous ansatz functions. In a second step, we discretize the z-variable
by continuous finite elements. Before stating the particular approximation
space, we provide some general results. Let us begin with the definition of the
discrete problem.
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Problem 3.4.1. Let q ∈ L2(D), g ∈ L2
−, W+

h,N ⊂ W+ and let a and ℓ be
defined as in Problem 3.3.1. Find uh ∈ W+

h,N such that for all v ∈ W+
h,N there

holds

a(uh, vh) = ℓ(vh).

Since the bilinear form a induces the energy norm that we use in our anal-
ysis, we immediately obtain the following best approximation result.

Theorem 3.4.2. Let W+
h,N be a closed subspace of W+. Then, there exists a

unique solution uh ∈ W+
h,N of Problem 3.4.1 that satisfies the a-priori estimate

∥uh∥a ≤ (∥q+∥21
σa

+ ∥q−∥21
σt

+ 2∥g∥2L2
−
)

1
2 , (3.15)

and the following best approximation error estimate

∥u− uh∥a = inf
vh∈W+

h,N

∥u− vh∥a. (3.16)

In the next sections, we will discuss some particular discretizations. We
note that these generalize the spherical harmonics approach presented in [15].

hp-type semidiscretization in µ

Since we consider even functions, we require that the partition of the interval
[−1, 1] for the µ variable respects the point symmetry µ 7→ −µ. For simplicity,
we thus partition the interval [0, 1] only, and the partition of [−1, 0] is implicitly
defined by reflection.

Let N ∈ N be a positive integer, and define intervals µ̄n = (µn− 1
2
, µn+ 1

2
),

n = 1, . . . , N , such that µ 1
2
= 0 and µN+ 1

2
= 1, and set ∆µn = µn+ 1

2
− µn− 1

2

and µn = (µn+ 1
2
+ µn− 1

2
)/2. Denote χn(µ) the characteristic function of the

interval µ̄n. For µ > 0, we define the piecewise functions

Qn,l(µ) =

√
2l + 1

2
Pl

(
2
µ− µn− 1

2

∆µn
− 1
)
χn(µ), µ > 0,

where Pl denotes the lth Legendre polynomial. Hence, {Qn,l}Ll=0 is an L2-
orthogonal basis for the space of polynomials of degree L on each interval
µ̄n. For µ > 0, we set Q±

n,l(µ) = Qn,l(µ), and for µ < 0, we set Q±
n,l(µ) =

±Q±
n,l(−µ). The semidiscretization of the even parts is then

u(z, µ) ≈ uh(z, µ) =

N∑
n=1

L∑
l=0

ϕ+n,l(z)Q
+
n,l(µ).

Remark 3.4.3. If we partition the interval [−1, 1] for the angular variable by
a single element, we obtain truncated spherical harmonics approximations, see,
e.g., [18, 15]. Partitioning of [−1, 1] into two symmetric intervals (−1, 0) ∪
(0, 1) corresponds to the double PL-method [18], which generalizes in multiple
dimensions to half space moment methods [23]. The latter can resolve the non-
smoothness of ϕ at µ = 0, and, thus might yield spectral convergence on the
intervals µ > 0 and µ < 0.
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Fully discrete scheme

In order to obtain a conforming discretization, we approximate the coefficient
functions ϕ+n,l using H1(0, Z)-conforming elements. Let J ∈ N, and z̄j =
(zj−1, zj) be such that

[0, Z] = ∪J
j=1clos(z̄j)

is a partition of (0, Z). Let p ≥ 1 and denote Pp the space of polynomials of
degree p. The full approximation space is then defined by

W+
h,N = {ψ+

h (z, µ) =

N∑
n=1

L∑
l=0

ψ+
n,l(z)Q

+
n,l(µ) :ψ

+
n,l(z) ∈ H1(0, Z), (3.17)

ψ+
n,l|z̄j ∈ Pp}.

The choice (3.17) for the approximation space W+
h,N corresponds to a hp-type

finite element method, for which the assertion of Theorem 3.4.2 holds true.

Remark 3.4.4. If the solution uh ∈ W+
h,N to Problem 3.4.1 is computed, we

compute even and odd approximations to the solution ϕ of (3.1) via ϕ+h =
uh and the odd part ϕ−h ∈ W−

h as the solution to the variational problem
(ϕ−h , ψ

−
h ) = ( 1

σt
(q− − µ∂zuh), ψ

−
h ) for all ψ−

h ∈ W−
h , where

W−
h,N = {ψ−

h (z, µ) =

N∑
n=1

L+1∑
l=0

ψ−
n,l(z)Q

−
n,l(µ) : ψ

−
n,l|z̄j ∈ Pp−1}.

We note that this space satisfies the compatibility condition µ∂zW+
h,N ⊂ W−

h,N ,
which makes this pair of approximation spaces suitable for a direct approxima-
tion of a corresponding mixed formulation, cf. [15]. The even-parity formu-
lation that we consider here corresponds then to the Schur complement of the
mixed problem, cf. [15]. The reader should note the different degrees in the
polynomial approximations, e.g., if ϕ+h is piecewise constant in angle, then ϕ−h
is piecewise linear.

3.5 Discrete preconditioned source iteration

In order to solve the discrete variational problem defined in Problem 3.4.1, we
proceed as in Section 3.3, but with W+ and W+

1 replaced by W+
h,N and W+

h,1,
respectively. We note that W+

h,1 ⊂ W+
1 consists of functions in W+

h,N that do
not dependent on µ.

The finite dimensional counterpart of the DSA preconditioned source iter-
ation is then defined as follows: For given ukh ∈ W+

h,N , compute uk+
1
2

h ∈ W+
h,N

as the unique solution to

b(u
k+ 1

2

h , vh) = k(ukh, vh) + ℓ(vh) for all vh ∈ W+
h,N . (3.18)

The correction uk+
1
2

h,D ∈ W+
h,1 is defined by Galerkin projection of ek+

1
2

h to W+
h,1:

a(u
k+ 1

2

h,D , vh) = k(u
k+ 1

2

h − ukh, vh) for all vh ∈ W+
h,1, (3.19)



Numerical examples 37

and the new iterate is defined as

uk+1
h = u

k+ 1
2

h + u
k+ 1

2

h,D . (3.20)

Using the same arguments as above, we obtain the following convergence result.

Theorem 3.5.1. Let Assumption (A1) hold, and let c < 1 be as in Lemma 3.3.5.
For any u0h ∈ W+

h,N , the iteration defined by (3.18), (3.19), (3.20) converges
linearly with

∥uh − uk+1
h ∥a ≤ c∥uh − ukh∥a.

Remark 3.5.2. Similar to Remark 3.3.8, uk+
1
2

h,D is the Galerkin projection to
W+

h,1 of the weak solution to

−∂z(D(z)∂zuD) + σauD = f, 0 < z < Z,

with µ-grid dependent diffusion coefficient D(z) and f = σsP(u
k+ 1

2

h − ukh). If
piecewise constant functions in angle are employed, then D(z) = 1

3σt(z)
(1 +

1
4

∑N
n=1 ∆µ

3
n).

Remark 3.5.3. Once the scattering term in the right-hand side of (3.18) has
been computed, the half-step iterate uk+

1
2

h can be computed independently for
each direction, and, thus, its computation can be parallelized.

3.6 Numerical examples

In this section, we report on the accuracy of the proposed discretization scheme
and its efficient numerical solution using the DSA preconditioned source iter-
ation of Section 3.5. We restrict our discussion to a low-order method that
offers local resolution. To do so, we fix p = 1 and L = 0 in the definition of
W+

h,N , while N might be large. Hence, the approximation space W+
h,N con-

sists of discontinuous, piecewise constant functions in the angular variable and
continuous, piecewise linear functions in z.

Manufactured solutions

To investigate the convergence behavior, we use manufactured solutions, i.e.,
the exact solution is

ϕ(z, µ) = |µ|e−µe−z(1−z), (3.21)

with parameters σa = 1/100, σs(z) = 2 + sin(πz)/2 and Z = 1, and source
terms defined accordingly. We computed the numerical solution uh using the
DSA preconditioned iteration (3.18), (3.19), (3.20). We stopped the iteration
using the a-posteriori stopping rule

∥ukh − uk−1
h ∥a ≤ ε,

where ε = 10−10 is a chosen tolerance. The approximations of the even and
odd parts of the solutions are recovered as described in Remark 3.4.4.
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For the chosen parameters, the predicted convergence rate is c ≈ 0.996.
Table 3.1 shows the errors for different discretization parameters N and J . As
expected we observe a linear rate of convergence with respect to N , cf. The-
orem 3.4.2. In addition, we observe that the preconditioned source iteration
converged within at most 15 iterations, and the expression ∥ukh − uk−1

h ∥a de-
creased by 0.21 in each iteration. The convergence rate with respect to J is
initially quadratic, which is better than predicted by Theorem 3.4.2, and then
saturates for fixed N = 8192. As before, the preconditioned source iteration
converged within at most 15 iterations with a decrease by a factor of 0.21 of
∥ukh − uk−1

h ∥a.
The observed convergence rate is thus as the one obtained by classical

Fourier analysis for constant coefficients and periodic boundary conditions,
which is bounded by 0.2247 [9]. Furthermore, we observe that the rate of con-
vergence does not depend on the grid size as predicted by Theorem 3.5.1, cf.
Remark 3.5.2, i.e., using the terminology of [9], our discrete diffusion approxi-
mation is consistently discretized.

N Eh rate

512 1.61e-04
1024 8.07e-05 0.99
2048 4.04e-05 0.99
4096 2.04e-05 0.99
8192 1.06e-05 0.95

J Eh rate

16 7.88e-04
32 1.99e-04 1.98
64 5.14e-05 1.96

128 1.63e-05 1.66
256 1.06e-05 0.62

Table 3.1: Observed errors Eh = ∥ϕ−ϕh∥L2(D) between finite element solution
ϕh and the manufactured solution ϕ defined in (3.21) together with the rate of
convergence of Eh. Left: Convergence for different discretization parameters
N , and J = 256. Right: Convergence for different discretization parameters J
and N = 8192.

In the next section, we present a more detailed study of spectrum of the
preconditioned operator.

Eigenvalue studies of the preconditioned operator

In this section, we consider the spectrum of the error propagation operator
Penh 7→ Pen+1

h , where P is the L2-projection onto constants in angle defined in
Section 3.2 and enh is the sequence of errors generated by the DSA precondi-
tioned source iteration, cf. Remark 3.3.9. The function Penh depends only on
z, and, assuming σs > 0, we can measure the projected error using the norm
induced by σs, i.e.,

∥Penh∥σs
= ∥enh∥k.

We choose the following scattering and absorption parameters

σs(z) =

{
2 + sin(2πz), z ≤ 1

2

102 + sin(2πz), z > 1
2 ,

σa(z) =

{
10.01, z ≤ 1

2

0.01, z > 1
2 .

We notice that both parameters have huge jumps and that the predicted con-
vergence rate is c = ∥σs/σt∥∞ ≈ 0.9999, cf. Theorem 3.3.6.
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Figure 3.1: Spectra of the error propagation operator Penh 7→ Pen+1
h for

different spatial discretizations J = 16, 64, 512 (from left to right). Each plot
contains the corresponding spectra for N = 2i, i = 1, . . . , 8.

In Figure 3.1 we plot the spectrum of the error propagation operator for
different mesh sizes. All eigenvalues are bounded from above by 0.2247, which
is inline with the results of [19, 9]. For each spatial discretization, we observe
that the corresponding eigenvalues are monotonically increasing with N . The
spectra for N ≥ 16 lie on top of each other, indicating convergence of the
eigenvalues. In particular, also for the coarse grid approximations the spectrum
is uniformly bounded by 0.2247, again confirming the robustness of the method
with respect to different approximations.

Multi-dimensional problems

Although the theory has been presented for slab problems, it becomes clear
from our proofs that the results carry over verbatim to truly multi-dimensional
problems, for which the radiative transfer equation writes as

s · ∇xϕ(x, s) + σt(x)ϕ(x, s) = σs(x)Pϕ+ q(x, s).

In the following, let us consider homogeneous inflow boundary conditions, and
homogeneity of the problem with respect to one spatial variable, i.e., we assume
that the solution depends only on x ∈ R ⊂ R2 and s ∈ S2 ⊂ R3.

We discretize L2(S2) by approximating S2 using a geodesic polyhedron con-
sisting of flat triangles, see Figure 3.2. The approximation space in angle then
consists of standard discontinuous finite element spaces associated to this trian-
gulation. In the following, we focus on piecewise constant approximations, but
higher order approximations are straightforward if the geometry approximation
is also of higher order. The next paragraph is concerned with the accuracy of
our method.

Manufactured solutions Let R = (0, 1)× (0, 1) be the unit square, and let
σs = 2 and σa = 0.01. Define the source function q such that

ϕ(x, s) = sin(πx1) sin(πx2)(1 + s1 + s22 + s33) (3.22)

is the exact solution. In Table 3.2 we report on the numerical errors for different
computational grids.

As expected from our error estimates, we observe linear convergence of the
error in terms of the mesh size until saturation occurs. Note that for N = 4096
and J = 4225 the number of degrees of freedom is 17 305 600. The proven
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N Eh rate

4 6.55e-01
16 3.48e-01 0.91
64 1.87e-01 0.90

256 1.06e-01 0.81
1024 7.37e-02 0.53

J Eh rate

25 6.89e-01
81 4.12e-01 0.75

289 2.25e-01 0.87
1089 1.18e-01 0.93
4225 6.30e-02 0.91

Table 3.2: Observed errors Eh = ∥ϕ+ − ϕ+h ∥a between finite element solution
ϕh and the manufactured solution ϕ defined in (3.22) together with the rate of
convergence of Eh. Left: Convergence for different discretization parameters
N , and J = 4225 vertices. Right: Convergence for different discretization
parameters J and N = 4096 triangles on a half-sphere.

Figure 3.2: Left and middle: Approximation of the half-sphere with N = 4
and N = 64 triangles. Right: Geometry of the lattice problem.

contraction rate for the iteration is c = 0.995, while the observed maximal
value of ∥ukh−u

k−1
h ∥a/∥uk−1

h −uk−2
h ∥a, i.e., the minimal reduction rate, was 0.2

indicating much faster convergence of the iteration. After at most 16 iterations
the stopping criterion ∥ukh − uk−1

h ∥a ≤ ε was reached.

The lattice problem A non-smooth test case without analytical solution
is the lattice problem [12], which models the core of a neutron reactor. The
computational domain is a square R = (0, 7) × (0, 7). The absorption and
scattering rates are piecewise constant functions. We define σa = 10 in the
black regions shown in Figure 3.2, and σa = 0 elsewhere. We set σs = 1 in
the grey and white regions and σs = 0 elsewhere. The source is defined by
q(x, s) = 1 in the white region and q(x, s) = 0 elsewhere. Note that due to
the availability of a Poincaré-Friedrichs inequality [24], the case σa = 0 leads
to a well-posed radiative transfer problem, and, since σs + σa ≥ 1, the theory
presented here is applicable. Moreover, the constant c will depend on the
constant from the Poincaré-Friedrichs inequality and c < 1.

In Figure 3.3 we show the angular averages of the computed solutions for two
different grids with J = 9801 vertices in the spatial grid and N = 4 triangles
on a half-sphere and for J = 78 961 and N = 64, respectively. We note that our
solutions do not suffer from ray effects, cf. [18, 12]. The preconditioned source
iteration converged with 9 and 17 iterations for the coarse grid approximation
and for the fine grid approximation, respectively. This amounts to an error
reduction per iteration of at least 0.04 for the coarse grid discretization and of
at least 0.2 for the fine grid discretization.



Numerical examples 41

Figure 3.3: Angular average of the computed solution in a log10-scale for the
lattice problem for J = 9801 spatial vertices and N = 4 triangles on a half-
sphere (left) and J = 78 961 spatial vertices and N = 64 triangles on a half-
sphere (right).

Diffusion scaling Next, let us investigate the behavior of the preconditioned
source iteration for scaled parameters. Introducing a scale parameter δ > 0, a
diffusion limit is obtained by the scaling [29]

σ̄s(x)

δ
, δσ̄a(x), δq̄(x),

when both parameters σ̄s and σ̄a are bounded and strictly bounded away from
zero. Since this is not the case for the lattice problem, we consider the following
parameters

σδ
s(x) =

σs(x) + 1/10

δ
, σδ

a = δ(σa(x) + 1/10), qδ(x, s) = δq(x).

For δ → 0, the corresponding solution uδ will converge to the solution of a
diffusion problem; for non-smooth coefficients see [8]. The parameter c defined
in Lemma 3.3.5 is bounded by O(1/δ). Table 3.3 shows the iteration counts

J = 9801 J = 78 961
N = 4 N = 64 N = 4 N = 64

1/δ k rate k rate k rate k rate

1 9 0.04 15 0.16 9 0.04 15 0.17
10 9 0.06 15 0.22 9 0.06 16 0.25

100 8 0.06 13 0.22 9 0.07 15 0.27
1000 5 0.01 7 0.06 6 0.05 10 0.17

Table 3.3: Iteration counts k and minimal reduction rates for ∥ukh−u
k−1
h ∥a for

the lattice problem with scaled parameters σδ
s , σδ

a and qδ for different δ and
discretizations with N triangles on a half-sphere and J vertices in the spatial
mesh.

and the minimum reduction of ∥ukh − uk−1
h ∥a during the iteration. We observe

that the preconditioned iteration is robust with respect to δ → 0 for different
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meshes. The convergence rate on the finest grid is, however, slightly worse
than the convergence rate for slab problems.

3.7 Conclusions

We investigated discontinuous angular and continuous spatial approximations
of the even-parity formulation for the radiative transfer equation. Certain
instances of these approximations are closely related to classical discretizations,
such as truncated spherical harmonics approximations, double PN -methods or
discrete ordinates methods.

We considered a diffusion accelerated preconditioned source iteration for
the solution of the resulting variational problems that has been formulated in
infinite dimensions. Convergence rates of this iteration have been proven. The
Galerkin approach used for the discretization allowed to translate the results
for the infinite dimensional iteration directly to the discrete problems. In par-
ticular, the discrete iteration converges independently of the chosen resolution.

The theoretically proven convergence rate in Theorem 3.3.6 is not robust
in the limit of large scattering, while numerical results show that in practice
the preconditioned iteration converges robustly even in scattering dominated
problems. One approach to obtain an improved convergence rates estimate is to
estimate the best approximation error infv∈W+

1
∥ek+ 1

2 − v∥a, which, however,
seems rather difficult, and we postpone a corresponding rigorous analysis to
future research.

The term diffusion acceleration is linked to the usage of the space W+
1 in

(3.12) that consists of functions constant in angle. This choice is, however, not
essential, and other closed subspaces can be employed, which allows for the
construction of multi-level schemes, cf. also [5, 31, 32, 33]. The multi-level
approach might lead to a feasible approach to estimate the best approximation
error.

In any case, the DSA preconditioner can be combined with a conjugate
gradient method in order to further reduce the number of iterations. Moreover,
unlike many discrete ordinates schemes, the numerical approximation did not
suffer from the ray effect in our numerical examples. We postpone a detailed
study of this phenomenon to future research.
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Chapter 4

On robustly convergent and efficient iterative meth-
ods for anisotropic radiative transfer

4.1 Introduction

Radiative transfer models describe the streaming, absorption, and scattering
of radiation waves propagating through a turbid medium occupying a bounded
convex domain R ⊂ Rd, and they arise in a variety of applications, e.g., neutron
transport [1, 2], heat transfer [43], climate sciences [48], geosciences [27] or
medical imaging and treatment [28, 30, 29]. The underlying physical model
can be described by the anisotropic radiative transfer equation,

s · ∇ru(s, r) + σt(r)u(s, r) = σs(r)

∫
S

k(s · s′)u(s′, r)ds′ + q(s, r). (4.1)

The specific intensity u = u(s, r) depends on the position r ∈ R and the direc-
tion of propagation described by a unit vector s = (cosψ sin θ, sinψ sin θ, cos θ)T ,
s ∈ S, i.e., we assume a constant speed of propagation. The medium is charac-
terized by the total attenuation coefficient σt = σa+σs, where σa and σs denote
the absorption and scattering rates, respectively. The scattering phase function
k relates pre- and post-collisional directions, and we consider exemplary the
Henyey-Greenstein phase function

k(s · s′) = 1

4π

1− g2

[1− 2g(s · s′) + g2]
3/2

, (4.2)

with anisotropy factor g. For g = 0, we speak about isotropic scattering, and
for g close to one, we say that the scattering is (highly) forward peaked. For
simplicity, we assume 0 ≤ g < 1 in the following. The case −1 < g ≤ 0 is
similar. Internal sources of radiation are modeled by the function q. Introduc-
ing the outer unit normal vector field n(r) on ∂R, the boundary condition is
modeled by

u(s, r) = f(s, r) for (s, r) ∈ S × ∂R such that s · n(r) < 0. (4.3)

The content of this chapter was published in: J. Dölz, O. Palii and M.
Schlottbom, Springer Journal of Scientific Computing, (2022) vol. 90, no. 94.
https://doi.org/10.1007/s10915-021-01757-9
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In this chapter we consider the iterative solution of the linear systems arising
from the discretization of the anisotropic radiative transfer equations (4.1)–
(4.3) by preconditioned Richardson iterations. We are particularly interested
in robustly convergent methods for multiple physical regimes that, at the same
time, can embody ballistic regimes σs ≪ 1 and diffusive regimes, i.e., σs ≫ 1
and σa > 0, and highly forward peaked scattering, as it occurs for example
in medical imaging applications [26]. Due to the size of the arising systems
of linear equations, their numerical solution is challenging, and a variety of
methods were developed as briefly summarized next.

Related work

Since for realistic problems analytical solutions are not available, numerical ap-
proximations are required. Common discretization methods can be classified
into two main approaches based on their semidiscretization in s. The spheri-
cal harmonics method [45, 21, 2] approximates the solution u by a truncated
series of spherical harmonics, which allows for spectral convergence for smooth
solutions. For non-smooth solutions, which is the generic situation, local ap-
proximations in s can be advantageous, which is achieved, e.g., by discrete
ordinates methods [23, 2, 51, 22, 12], continuous Galerkin methods [8], the
discontinuous Galerkin (DG) method [42, 3, 9], iteratively refined piecewise
polynomial approximations [31], or hybrid methods [15, 19].

A common step in the solution of the linear systems resulting from local
approximations in s is to split the discrete system into a transport part and
a scattering part. While the inversion of transport is usually straight-forward,
scattering introduces a dense coupling in s. The corresponding Richardson it-
eration resulting from this splitting is called the source iteration [6, 5], and it
converges linearly with a rate c = ∥σs/σt∥∞. For scattering dominated prob-
lems, such as the biomedical applications mentioned above, we have c ≈ 1
and the convergence of the source iteration becomes too slow for such applica-
tions. Acceleration of the source iteration can be achieved by preconditioning,
which usually employs the diffusion approximation to (4.1)–(4.3) [6], and the
resulting scheme is then called diffusion synthetic accelerated (DSA) source
iteration [6]. Although this approach is well motivated by asymptotic analysis,
it faces several issues, such as, a proper generalization to multi-dimensional
problems with anisotropy, strong variations in the optical parameters, or the
use of unstructured and curved meshes, see [6].

Effective DSA schemes rely on consistent discretization of the correspond-
ing diffusion approximation, see [9, 10] for isotropic scattering, and in [13] for
two-dimensional problems with anisotropic scattering. The latter employs a
modified interior penalty DG discretization for the corresponding diffusion ap-
proximation, which has also been used in [14] where it is, however, found that
their DSA scheme becomes less effective for highly heterogeneous optical pa-
rameters. A discrete analysis of DSA schemes for high-order DG discretizations
on possibly curved meshes, which may complicate the inversion of the trans-
port part, can be found in [17]. In the variational framework of [9] consistency
is automatically achieved by subspace correction instead of finding a consis-
tent discretization of the diffusion approximation. This variational treatment
allowed to prove convergence of the corresponding iteration and numerical re-
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sults showed robust contraction rates, even in multi-dimensional calculations
with heterogeneous optical parameters.

It is the purpose of this paper to generalize the approach of [9] to the
anisotropic scattering case, which requires non-trivial extensions as outlined in
the next section.

Approach and contribution

In this paper we focus on the construction of robustly and provably convergent
efficient iterative schemes for the radiative transfer equation with anisotropic
scattering. To describe our approach, let us introduce the linear system that
we need to solve, which stems from a mixed finite element discretization of
(4.1)–(4.3) using discontinuous polynomials on the sphere [7, 9], i.e.,[

R+M+ −A⊺

A M−

] [
u+

u−

]
=

[
K+

K−

] [
u+

u−

]
+

[
q+

q−

]
. (4.4)

Here, the superscripts in the equation refer to even (‘+’) and odd (‘−’) parts
from the underlying discretization. The matrices K+ and K− discretize scatter-
ing, while R incorporates boundary conditions, M+ and M− are mass matrices
related to σt, and A discretizes s · ∇r, and their assembly can be done with
standard FEM codes. The even part solves the even-parity equations

Eu+ = K+u+ + q, (4.5)

i.e., the Schur complement of (4.4), with symmetric positive definite matrix
E = A⊺(M−−K−)−1A+M++R and source term q = q++A⊺(M−−K−)−1q−.
Once the even part u+ is known, the odd part u− can be obtained from (4.4).
The preconditioned Richardson iteration considered in this article then reads

u+n+1 =
(
I−P2P1(E−K+)

)
u+n +P2P1q, (4.6)

with preconditioners P1 and P2. Comparing to standard DSA source itera-
tions, P1 corresponds to a transport sweep, and a typical choice that renders
the convergence behavior of (4.6) independent of the discretization parameters
is P1 = E−1. More precisely, we show that this choice of P1 yields a con-
traction rate of c = ∥σs/σt∥∞. The second preconditioner P2 aims to improve
the convergence behavior in diffusive regimes, c ≈ 1. In the spirit of [9], we
construct P2 via Galerkin projection onto suitable subspaces, which guarantees
monotone convergence of (4.6). The construction of suitable subspaces that
give good error reduction is motivated by the observation that error modes that
are hardly damped by I−P1(E−K+) can be approximated well by spherical
harmonics of low degree, cf. Section 4.3. While for the isotropic case g = 0,
spherical harmonics of degree zero, i.e., constants in angle, are sufficient for ob-
taining good convergence rates, we show that higher order spherical harmonics
should be used for anisotropic scattering. To preserve consistency, we replace
higher order spherical harmonics, which are the eigenfunctions of the integral
operator in (4.1), by discrete eigenfunctions of K+.

The efficiency of the proposed iterative scheme hinges on the ability to
efficiently implement and apply the arising operators. While for g = 0, K− = 0,
and K+ can be realized via fast Fourier transformation, and E is block-diagonal
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with sparse blocks allowing for an efficient application of E, the situation is
more involved for g > 0. We show that K+ and K− can be applied efficiently
by exploiting their Kronecker structure between a sparse matrix and a dense
matrix, which turns out to be efficiently applicable by using H- or H2-matrix
approximations independently of g. As we show the practical implementation
of H- or H2-matrices can be done by standard libraries, such as H2LIB [32]
or BEMBEL [34]. This in combination with standard FEM assembly routines
for the other matrices ensures robustness and maintainability of the code.

Since A, M+, and R are sparse and block diagonal, the main bottleneck in
the application of E is the application of (M− −K−)−1. Based on the tensor
structure of K− and its spectral properties, we derive a preconditioner such that
(M−−K−)−1 can be applied robustly in g in only a few iterations. Thus, we can
apply E in almost linear complexity. Efficiency of (4.6) is further increased by
realizing the preconditioner P1 inexactly by employing a small, fixed number
of l steps of an inner iterative scheme. Denoting the resulting preconditioner
by Pl

1, we show that the condition number of Pl
1E is O((1− (cg)l)−1), which

is robust in the limit c→ 1. In contrast, we note that the condition number of
Pl

1(E−K+) is O((1−c)−1), i.e., a straight-forward iterative solution of the even-
parity equations using a black-box solver, such as preconditioned conjugate
gradients, is in general not robust for c→ 1.

Summarizing, each step of our iteration (4.6) can be performed very effi-
ciently. The iteration is provably convergent and numerical results show that
the contraction rates are robust for c → 1. The result is a highly efficient
numerical scheme for the solution of the even parity equations (4.5) and, thus,
also for the overall system (4.4).

Outline

The structure of the chapter is as follows: In Section 4.2 we recall the varia-
tional formulation that builds the basis of our numerical scheme and establish
some spectral equivalences for the scattering operator, which are key to the con-
struction of our preconditioners. In Section 4.3 we present iterative schemes
for the even-parity equations of radiative transfer in Hilbert space, which, af-
ter discretization in Section 4.4, result in the schemes described in Section 4.1.
Details of the implementation and its complexity are described in Section 4.5.
Numerical studies of the performance of the proposed methods and report on
the results are presented in Section 4.7. The chapter closes with a discussion
in Section 4.8.

4.2 Preliminaries

In the following we recall the relevant functional analytic framework, state the
corresponding variational formulation of the radiative transfer problem (4.1)–
(4.3) and provide some analytical results about the spectrum of the scattering
operator, which we will later use for the construction of our preconditioners.

Function spaces

By L2(M) we denote the usual Hilbert space of square integrable functions on a
manifoldM , and denote (u,w)M =

∫
M
uw dM the corresponding inner product
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and ∥u∥L2(M) the induced norm. For M = D = S × R, we write V = L2(D)
and (u,w) = (u,w)D. Functions w ∈ V with weak derivative s · ∇rw ∈ V have
a well-defined trace [11]. We restrict the natural trace space [11], and consider
the weighted Hilbert space L2(∂D±; |s · n|) of measurable functions w on

∂D± = {(s, r) ∈ S × ∂R : ±s · n(r) > 0}

with |s ·n|1/2w ∈ L2(∂D±). For the weak formulation of (4.1)–(4.3) we use the
Hilbert space

W = {w ∈ L2(D) : s · ∇rw ∈ L2(D), w|∂D− ∈ L2(∂D−; |s · n|)},

with corresponding norm ∥w∥2W = ∥s·∇rw∥2L2(D)+∥w∥2L2(D)+∥w∥2L2(∂D−;|s·n|).

Assumptions on the optical parameters and data

The data terms are assumed to satisfy q ∈ L2(D) and f ∈ L2(∂D−; |s · n|).
Absorption and scattering rates are non-negative and essentially bounded func-
tions σa, σs ∈ L∞(R). We assume that the medium occupied by R is absorbing,
i.e., that there exists a constant γ > 0 such that σa(r) ≥ γ for a.e. r ∈ R. Thus,
the ratio between the scattering rate and the total attenuation rate σt = σa+σs
is strictly less than one, c = ∥σs/σt∥∞ < 1.

Even-odd splitting

The space V = V+⊕V− allows for an orthogonal decomposition into even and
odd functions of the variable s ∈ S. The even part u+ and odd part u− of a
function u ∈ V is defined a.e. by

u±(s, r) =
1

2
(u(s, r)± u(−s, r)).

Similarly, we denote W± the corresponding subspaces of functions u ∈ W with
u ∈ V±.

Operator formulation of the radiative transfer equation

The weak formulation of (4.1)–(4.3) presented in [7] can be stated concisely
using suitable operators and we refer to [7] for proofs of the corresponding
mapping properties. Let u+, w+ ∈ W+ and u− ∈ V−. The transport operator
A : W+ → V− is defined by

Au+ = s · ∇ru
+.

Identifying the dual V′ of V with V, the dual transport operator A′ : V− →
(W+)′ is defined by

⟨A′u−, w+⟩ = (Aw+, u−).

Boundary terms are handled by the operator R : W+ → (W+)′ defined by

⟨Ru+, w+⟩ = (|s · n|u+, w+)∂D.
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Scattering is described by the operator S : L2(S) → L2(S) defined by

(Su)(s) =
∫
S

k(s · s′)u(s′)ds′,

where k is the phase function defined in (4.2). In slight abuse of notation, we
also denote the trivial extension of S to an operator L2(D) → L2(D) by S.
We recall that S maps even to even and odd to odd functions [7, Lemma 2.6],
and so does K : V → V defined by

Ku = σsSu.

We denote by K also its restrictions to V± and W+, respectively. The spherical
harmonics {H l

m : l ∈ N∪ {0},−l ≤ m ≤ l} form a complete orthogonal system
for L2(S), and we assume the normalization ∥H l

m∥L2(S) = 1. Furthermore, H l
m

is an eigenfunction of S with eigenvalue gl, i.e.,

SH l
m = glH l

m, (4.7)

and H l
m ∈ V+ if l is an even number and H l

m ∈ V− if l is an odd number.
Attenuation is described by the multiplication operator M : V → V defined by

Mu = σtu.

Introducing the functionals ℓ+ ∈ (W+)′, and ℓ− ∈ (V−)′, given by

ℓ+(w+) = (q, w+) + 2(|s · n|f, w+)∂D− , w+ ∈ W+,

ℓ−(w−) = (q, w−), w− ∈ V−,

the operator formulation of the radiative transfer equation (4.1)–(4.3) is [7]:
Find (u+, u−) ∈ W+ × V− such that

Ru+ −A′u− +Mu+ = Ku+ + ℓ+ in (W+)′, (4.8)

Au+ +Mu− = Ku− + ℓ− in V−. (4.9)

Well-posedness

In the situation of Section 4.2, there exists a unique solution (u+, u−) ∈ W+ ×
V− of (4.8) and (4.9) satisfying

∥u+∥W + ∥u−∥V ≤ C(∥q∥L2(D) + ∥f∥L2(∂D−;|s·n|)),

with a constant C depending only on γ and ∥σt∥∞ [7]. Notice that this well-
posedness result remains true even if σa and σs are allowed to vanish [46]. As
shown in [7, Theorem 4.1] it holds that u− ∈ W− and u+ + u− ∈ W satisfies
(4.1) a.e. in D and (4.3) holds in L2(∂D−; |s · n|).

Even-parity formulation

As in [7], it follows from (4.7) that for v− ∈ V−

inf
r∈R

(σa + (1− g)σs)∥v−∥2V ≤ ∥v−∥2M−K ≤ ∥σt∥∞∥v−∥2V, (4.10)
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where we write ∥w∥2Q = (Qw,w) for any positive operator Q.
Thus, M−K : V− → V− is boundedly invertible, and, by (4.9),

u− = (M−K)−1(ℓ− −Au+). (4.11)

Using (4.11) in (4.8) and introducing

E : W+ → (W+)′, Eu+ = Ru+ +A′(M−K)−1Au+ +Mu+,

and
ℓ(w+) = ℓ+(w+) + ((M−K)−1q,Aw+), w+ ∈ W+,

the even-parity formulation of the radiative transfer equation is: Find u+ ∈ W+

such that

(E − K)u+ = ℓ. (4.12)

As shown in [7], the even-parity formulation is a coercive, symmetric problem,
which is well-posed by the Lax-Milgram lemma. Solving (4.12) for u+ ∈ W+,
we can retrieve u− ∈ V− by (4.11). In turn, (u+, u−) ∈ W+ × V− solves
(4.8)–(4.9).

Preconditioning of M−K
We generalize the inequalities (4.10) to obtain spectrally equivalent approxi-
mations to M−K. Since K = σsS, we can construct approximations to K by
approximating S. To do so let us define for N ∈ N and v ∈ V

SNv =

N∑
l=0

gl
l∑

m=−l

(v,H l
m)SH

l
m. (4.13)

Notice that the summation is only over even integers 0 ≤ l ≤ N if v ∈ V+

and only over odd ones if v ∈ V−. The approximation of K is then defined by
KN = σsSN .

Lemma 4.2.1. The operator M−KN is spectrally equivalent to M−K, that
is (

1− cgN+1
)
((M−KN )v, v) ≤ ((M−K)v, v) ≤ ((M−KN )v, v)

for all v ∈ V, with c = ∥σs/σt∥∞. In particular, M−KN is invertible.

Proof. We use that {Hm
l } is a complete orthonormal system of L2(S). Hence,

any v ∈ V = L2(S)⊗ L2(R) has the expansion

v(s, r) =

∞∑
l=0

l∑
m=−l

vlm(r)H l
m(s),

with vlm ∈ L2(R) and ∥v∥2V =
∑∞

l=0

∑l
m=−l ∥vlm∥2L2(R) <∞, and

((M−KN )v, v) =

L∑
l=0

l∑
m=−l

∥∥∥√σt − glσsv
l
m

∥∥∥2
L2(R)

+

∞∑
l=N+1

l∑
m=−l

∥∥∥√σtvlm∥∥∥2
L2(R)

.
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Using c = ∥σs/σt∥∞ it follows that

0 ≤ ((K −KN )v, v) =

∞∑
l=N+1

gl
l∑

m=−l

∥∥∥√σsvlm∥∥∥2
L2(R)

≤ cgN+1((M−KN )v, v).

(4.14)

The inequalities in the statement then follow from

((M−K)v, v) = ((M−KN )v, v)− ((K −KN )v, v),

while invertibility follows from [7, Lemma 2.14].

4.3 Iteration for the even-parity formulation

We generalize the Richardson iteration of [9] for the radiative transfer equation
with isotropic scattering to the anisotropic case and equip the iteration process
with a suitable preconditioner, which we will investigate later. We restrict
ourselves to a presentation suitable for the error analysis and postpone the
linear algebra setting and the discussion of its efficient realization to Section 4.5.

Derivation of the scheme

We consider the solution of (4.12) along the following two steps:
Step (i) Given u+n ∈ W+ and a symmetric and positive definite operator
P1 : (W+)′ → W+, we compute

u+
n+ 1

2

= u+n − P1((E − K)u+n − ℓ). (4.15)

Step (ii) Compute a subspace correction to u+n+1/2 based on the observation
that the error e+n+1/2 = u+ − u+n+1/2 satisfies

(E − K)e+
n+ 1

2

= ((E − K)P1 − I)((E − K)u+n − ℓ). (4.16)

Solving (4.16) is as difficult as solving the original problem. Let W+
N ⊂ W+ be

closed, and consider the Galerkin projection PG : W+ → W+
N onto W+

N defined
by

⟨(E − K)PGw, v⟩ = ⟨(E − K)w, v⟩ for all v ∈ W+
N . (4.17)

Using (4.16), the correction u+c,n = PGe
+
n+1/2, is then characterized as the

solution to

⟨(E − K)u+c,n, v⟩ = ⟨(E − K)P1 − I)((E − K)u+n − ℓ), v⟩ (4.18)

for all v ∈ W+
N , where the right-hand side involves available data only. The

update is performed via

u+n+1 = u+
n+ 1

2

+ u+c,n. (4.19)
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Error analysis

Since PG is non-expansive in the norm induced by E − K, the error analysis
for the overall iteration (4.15) and (4.19) relies on the spectral properties of
P1. Therefore, the following theoretical investigations consider the generalized
eigenvalue problem

(E − K)w = λP−1
1 w. (4.20)

The following well-known lemma asserts that the half-step (4.15) yields a con-
traction if an appropriate preconditioner P1 is chosen. We provide a proof for
later reference.

Lemma 4.3.1. Let 0 < β ≤ 1 and assume that the eigenvalues λ of (4.20)
satisfy β ≤ λ ≤ 1. Then, for any u+n ∈ W+, u+n+1/2 defined via (4.15) satisfies

∥u+ − u+
n+ 1

2

∥E−K ≤ (1− β)∥u+ − u+n∥E−K.

Proof. Assume that {(wk, λk)}k≥0 is the eigensystem of the generalized eigen-
value problem (4.20). For any u+n, the error e+n = u+ − u+n satisfies

e+
n+ 1

2

= (I − P1(E − K))e+n . (4.21)

Using the expansion e+n =
∑∞

k=0 akwk, we compute ∥e+n ∥2E−K =
∑∞

k=0 a
2
kλk.

Using (4.21), we thus obtain e+n+1/2 =
∑∞

k=0(1− λk)akwk, and hence

∥e+
n+ 1

2

∥2E−K =

∞∑
k=0

(1− λk)
2λka

2
k ≤ sup

0≤k<∞
(1− λk)

2∥e+n ∥2E−K.

Since 0 < β ≤ λk ≤ 1 by assumption, the assertion follows.

The next statement asserts that the iterative scheme defined by (4.19)
converges linearly to the even part of the solution of the radiative transfer
equation. It is a direct consequence of Lemma 4.3.1 and the observation that
e+n+1 = (I − PG)e

+
n+1/2 satisfies

∥e+n+1∥E−K = inf
v∈W+

N

∥e+
n+ 1

2

− v∥E−K. (4.22)

Lemma 4.3.2. Let W+
N ⊂ W+ be closed, and assume that the eigenvalues λ

of (4.20) satisfy β ≤ λ ≤ 1 for some 0 < β ≤ 1. Then, for any u+0 ∈ W+, the
sequence {u+n} defined in (4.15) and (4.19) converges linearly to the solution
u+ of (4.12), i.e.,

∥u+ − u+n+1∥E−K ≤ (1− β)∥u+ − u+n∥E−K. (4.23)

In view of the previous lemma fast convergence u+n → u+ can be obtained
by ensuring that β is close to one or by making the best-approximation error
in (4.22) small. These two possibilities are discussed in the remainder of this
section in more detail.
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Generic preconditioners

The next result builds the basis for the preconditioner we will use later.

Lemma 4.3.3. Let P1 be defined either by
(i) P−1

1 = E or
(ii) P−1

1 = E0 = (1− cg)−1A′M−1A+M+R.
Then P1 is spectrally equivalent to E − K, i.e.,

(1− c)(P−1
1 w+, w+) ≤ ((E − K)w+, w+) ≤ (P−1

1 w+, w+),

for all w+ ∈ W+. It holds 1− β = c in Lemma 4.3.2 in both cases.

Proof. Since Aw+ ∈ V−, the result is a direct consequence of Lemma 4.2.1.

Remark 4.3.4. We can further generalize the choices for P−1
1 by choosing

N+ ≥ −1, N− ≥ 0, and γN− = 1/(1− cgN
−+1). Then

P−1
1 = P−1

N+,N− = R+ γN−A′(M−KN−)−1A+M−KN+

and E − K are spectrally equivalent, i.e.,

(1− cgmin(N−,N+)+1)(P−1
1 w+, w+) ≤ ((E − K)w+, w+) ≤ (P−1

1 w+, w+)

for all w+ ∈ W+. In particular, 1− β = cgmin(N−,N+)+1 in Lemma 4.3.2.

Remark 4.3.5. For isotropic scattering g = 0, we have that E = E0. Thus,
both choices in Lemma 4.3.3 can be understood as generalizations of the itera-
tion considered in [9].

The preconditioners in Remark 4.3.4 yield arbitrarily small contraction
rates for sufficiently large N+ and N−. However, the efficient implementa-
tion of such a preconditioner seems to be rather challenging. Therefore, we
focus on the preconditioners defined in Lemma 4.2.1 in the following. Since
these choices for P1 yield slow convergence for c ≈ 1, we need to construct
W+

N properly. This construction is motivated next, see Section 4.5 for a precise
definition.

A motivation for constructing effective subspaces

From the proof of Lemma 4.3.1, one sees that error modes associated to small
eigenvalues λ of (4.20) converge slowly. Hence, in order to regain fast conver-
gence, such modes should be approximated well by functions in W+

N , see (4.22).
Next, we give a heuristic motivation that such slowly convergent modes might
be approximated well by low-order spherical harmonics.

Since we use P−1
1 ≈ E below, let us fix P−1

1 = E in this subsection. Further-
more, let w be a slowly damped mode, i.e., w satisfies (4.20) with λ such that
λ ≈ 1− c ≈ 0. Observe that w also satisfies Kw = δEw with δ = 1−λ ≈ c ≈ 1,
and δ ≤ c by Lemma 4.3.3(i). Let us expand the angular part of w into spherical
harmonics, cf. Section 4.2,

w(s, r) =

∞∑
l=0

l∑
m=−l

wl
m(r)H l

m(s),



Iteration for the even-parity formulation 57

where wl
m = 0 if l is odd. As in the proof of lemma 4.3.3, we obtain

Kw =

∞∑
l=0

gl
l∑

m=−l

σs(r)w
l
m(r)H l

m(s).

Since σs ≤ σt, orthogonality of the spherical harmonics implies

∞∑
l=0

cgl
l∑

m=−l

∥
√
σtw

l
m∥2L2(R) ≥ (Kw,w) =

δ

(
⟨Rw,w⟩+ ∥s · ∇rw∥2(M−K)−1 +

∞∑
l=0

l∑
m=−l

∥
√
σtw

l
m∥2L2(R)

)
.

Neglecting the contributions from R and s · ∇r, we see that

∞∑
l=0

(cgl − δ)

l∑
m=−l

∥
√
σtw

l
m∥2L2(R) ≥ 0. (4.24)

Since δ ≈ c ≈ 1 by assumption and g < 1, (4.24) can hold true only if w can
be approximated well by spherical harmonics of degree less than or equal to N
for some moderate integer N .

To convince the reader that this is likely to be true, we consider in the
following the case g = 0 and remark that the overall behaviour does not change
too much when varying g. If c = δ, then (4.24) implies that wl

m = 0 for all
l > 0. If δ < c, then (4.24) is equivalent to

∥
√
σtw

0
0∥2L2(R) ≥

δ

c− δ

∞∑
l=1

l∑
m=−l

∥
√
σtw

l
m∥2L2(R).

Therefore, using orthogonality of the spherical harmonics once more, we obtain

∞∑
l=1

l∑
m=−l

∥
√
σtw

l
m∥2L2(R) = ∥

√
σtw∥2L2(D) − ∥

√
σtw

0
0∥2L2(R)

≤ ∥
√
σtw∥2L2(D) −

δ

c− δ

∞∑
l=1

l∑
m=−l

∥
√
σtw

l
m∥2L2(R).

Rearranging terms yields the estimate

∞∑
l=1

l∑
m=−l

∥
√
σtw

l
m∥2L2(R) ≤

(
1− δ/c

)
∥
√
σtw∥2L2(D).

Since, by assumption, δ ≈ c, we conclude that w can be approximated well by
w0

0H
0
0 .

Note that this statement quantifies approximation in terms of the L2-norm.
However, using recurrence relations of spherical harmonics to incorporate the
terms ⟨Rw,w⟩+∥s·∇rw∥2(M−K)−1 into (4.24), suggests that a similar statement
also holds for the E−K-norm. A full analysis of this statement seems out of the
scope of this paper, and we postpone it to future research. We conclude that
effective subspaces W+

N consist of linear combinations of low-order spherical
harmonics, and we employ this observation in our numerical realization.
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4.4 Galerkin approximation

The iterative scheme of the previous section has been formulated for infinite-
dimensional function spaces W+ and W+

N ⊂ W+. For the practical imple-
mentation we recall the approximation spaces described in [7] and [9, Section
6.3]. Let T R

h and T S
h denote shape regular triangulations of R and S, respec-

tively. For simplicity we assume the triangulations to be quasi-uniform. To
properly define even and odd functions associated with the triangulations, we
further require that −KS ∈ T S

h for each spherical element KS ∈ T S
h . The

latter requirement can be ensured by starting with a triangulation of a half-
sphere and reflection. Let X+

h = Pc
1(T R

h ) denote the vector space of continuous,
piecewise linear functions subordinate to the triangulation T R

h with basis {φi}
and dimension n+R, and let X−

h = P0(T R
h ) denote the vector space of piece-

wise constant functions subordinate to T R
h with basis {χj} and dimension n−R.

Similarly, we denote by S+h = P0(T S
h ) ∩ L2(S)+ and S−h = P1(T S

h ) ∩ L2(S)−

the vector spaces of even, piecewise constant and odd, piecewise linear func-
tions subordinate to the triangulation T S

h , respectively. We can construct a
basis {µ+

k } for S+h by choosing n+S many triangles with midpoints in a given
half-sphere, and define the functions µ+

k to be the indicator functions of these
triangles. For any other point s ∈ S, we find KS ∈ T S

h with midpoint in the
given half-sphere such that −s ∈ KS and we define µ+

k (s) = µ+
k (−s). A simi-

lar construction leads to a basis {ψ−
l } of S−h . The conforming approximation

spaces are then defined through tensor product constructions, W+
h = S+h ⊗X+

h ,
V−

h = S−h ⊗ X−
h . Thus, for some coefficient matrices

[
U+

i,k

]
∈ Rn+

R×n+
S and[

U−
j,l

]
∈ Rn−

R×n−
S , any u+h ∈ W+

h and u−h ∈ V−
h can be expanded as

u+h =

n+
R∑

i=1

n+
S∑

k=1

U+
i,kφiµ

+
k , u−h =

n−
R∑

j=1

n−
S∑

l=1

U−
j,lχjψ

−
l . (4.25)

The Galerkin approximation of (4.8)–(4.9) computes (u+h, u
−
h) ∈ W+

h ×V−
h such

that

Ru+h −A′u−h +Mu+h = Ku+h + ℓ+ in (W+
h )

′, (4.26)

Au+h +Mu−h = Ku−h + ℓ− in V−
h . (4.27)

The discrete mixed system (4.26)–(4.27) can be solved uniquely [7]. Denoting
u± = vec(U±) the concatenation of the columns of the matrices U± into a
vector, the mixed system (4.26)–(4.27) can be written as the following linear
system [

R+M+ −A⊺

A M−

] [
u+

u−

]
=

[
K+

K−

] [
u+

u−

]
+

[
q+

q−

]
. (4.28)

The matrices in the system are given by

K+ = S+ ⊗M+
s , K− = S− ⊗M−

s , (4.29)

M+ = M+ ⊗M+
t , M− = M− ⊗M−

t , (4.30)

A =

d∑
i=1

Ai ⊗Di, R = blkdiag(R1, . . . ,Rn+
S
), (4.31)
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where we denote by Gothic letters the matrices arising from the discretization
on R and by Sans Serif letters matrices arising from the discretization on S,
i.e.,

(M−
t )j,j′ =

∫
R

σtχjχj′dr, (S−)l,l′ =

∫
S

Sψ−
l ψ

−
l′ ds,

(M+
t )i,i′ =

∫
R

σtφiφi′dr, (S+)k,k′ =

∫
S

Sµ+
k µ

+
k′ds,

(Dn)j,i =

∫
R

∂φi

∂rn
χjdr, (An)l,k =

∫
S

snψ
−
l µ

+
k ds,

(Rk)i,i′ =

∫
∂R

φiφi′ωkdr, ωk =

∫
S

|s · n|(µ+
k )

2ds.

The matrices M−
s and M+

s are defined accordingly. By M+ and M− we denote
the Gramian matrices in L2(S).

We readily remark that all of these matrices are sparse, except for S+ and
S−, which are dense. M+ and M− are diagonal and 3 × 3 block diagonal,
respectively. Moreover, we note that M−

t is a diagonal matrix.
To conclude this section let us remark that taking the Schur complement

of (4.28) finally yields the matrix counterpart of the even-parity system (4.12),
i.e.,

Eu+ = K+u+ + q (4.32)

with E = A⊺(M− −K−)−1A+M+ +R and q = q+ +A⊺(M− −K−)−1q−.

4.5 Discrete preconditioned Richardson iteration

After discretization, the iteration presented in Section 4.3 becomes

u+n+1 = u+n −P2P1((E−K+)u+n − q). (4.33)

The preconditioner P1 is directly related to P1 in (4.15). By denoting the
coordinate vectors of the basis functions of the subspace W+

h,N ⊂ W+
h by W,

the matrix representation of the overall preconditioner is

P2P1 = P1 +W
(
W⊺(E−K+)W

)−1
W⊺(I+ − (E−K+)P1). (4.34)

Denoting PG = W
(
W⊺(E−K+)W

)−1
W⊺(E−K+) the matrix representation

of the Galerkin projection PG defined in (4.17), the iteration matrix admits
the factorization

I+ −P2P1(E−K+) = (I+ −PG)
(
I+ −P1(E−K+)

)
.

The discrete analog of Lemma 4.3.2 implies that the sequence {u+n} generated
by (4.33) converges for any initial choice u+0 to the solution u+ of (4.32). More
precisely, by choosing P1 according to Lemma 4.3.3, there holds

∥u+ − u+n+1∥E−K+ ≤ η∥u+ − u+n∥E−K+ , (4.35)

where 0 ≤ η ≤ c < 1 is defined as

η = sup ∥(I+ −PG)(I
+ −P1(E−K+))v+∥E−K+ (4.36)
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with supremum taken over all v+ ∈ Rn+
Sn+

R satisfying ∥v+∥E−K+ = 1. The
realization of (4.33) relies on the efficient application of E, K+, P1 and P2

discussed next.

Application of E

In view of (4.30) and (4.31) it is clear that A, M+, and M− can be stored
and applied efficiently by using their tensor product structure, sparsity, and
the characterization

(B⊗C) vec(X) = vec(D) ⇐⇒ CXB⊺ = D, (4.37)

where C ∈ Rm×n, X ∈ Rn×p, B ∈ Rq×p, D ∈ Rm×q. The boundary matrix R
consists of sparse diagonal blocks, and can thus also be applied efficiently, see
Section 4.6 for details. The remaining operation required for the application
of E as given in (4.32) is the application of (M− − K−)−1, which deserves
some discussion. Since M− −K− has a condition number of (1− cg)−1 due to
Lemma 4.2.1, a straightforward implementation with the conjugate gradient
method may be inefficient for cg ≈ 1.

To mitigate the influence of cg, we can use Lemma 4.2.1 once more and
obtain preconditioners derived from M − KN , which lead to bounds on the
condition number by (1− (cg)N+2)−1 for odd N . In what follows, we comment
on the practical realization of such preconditioners and their numerical con-
struction. As we will verify in the numerical examples, these preconditioners
allow the application of (M− −K−)−1 in only a few iterations even for g close
to 1.

After discretization, the continuous eigenvalue problem (4.7) for the scat-
tering operator becomes the generalized eigenvalue problem

S−W− = M−W−Λ−.

Since S− and M− are symmetric and positive, the eigenvalues satisfy 0 ≤ λl ≤ g,
and we assume that they are ordered non-increasingly. The eigenvectors W−

form an orthonormal basis (W−)⊺M−W− = I−. Truncation of the eigendecom-
position at index dN = (N + 1)(N + 2)/2, N odd, which is the number of odd
spherical harmonics of order less than or equal to N , yields the approximation

S− = M−W−Λ−(W−)⊺M− ≈ M−W−
NΛ−N (W−

N )⊺M− =: S−N . (4.38)

The discrete version of M−KN then reads M− −K−
N , with K−

N = S−N ⊗M−
s .

An explicit representation of its inverse is given by the following lemma. Its
essential idea is to use an orthogonal decomposition of V−

h induced by the eigen
decomposition of S−, and to employ the diagonal representation of M− −K−

N

in the angular eigenbasis.

Lemma 4.5.1. Let b ∈ Rn−
S n−

R . Then x = (M− −K−
N )−1b is given by

x =
(
W−

N ⊗ I−
)(

I− ⊗M−
t − Λ−N ⊗M−

s

)−1(
(W−

N )⊺ ⊗ I−
)
b

+
((

(M−)−1 −W−
N (W−

N )⊺
)
⊗ (M−

t )
−1
)
b,

(4.39)

where I− and I− denote the identity matrices of dimension n−R and dN , respec-
tively.
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Proof. We first decompose x as follows

x = (W−
N (W−

N )⊺M− ⊗ I−)x+
(
(I− −W−

N (W−
N )⊺M−)⊗ I−

)
x. (4.40)

Applying (W−
N )⊺ ⊗ I− to (M− −K−

N )x = b, (4.38), and M−-orthogonality of
W−

N yield(
I− ⊗M−

t − Λ−N ⊗M−
s

)
((W−

N )⊺M− ⊗ I−)x = ((W−
N )⊺ ⊗ I−)b.

Inverting I− ⊗M−
t − Λ−N ⊗M−

s and applying W−
N ⊗ I− further yields

(W−
N (W−

N )⊺M− ⊗ I−)x = (W−
N ⊗ I−)

(
I− ⊗M−

t − Λ−N ⊗M−
s

)−1
((W−

N )⊺ ⊗ I−)b.

For the other part in (4.40), apply ((M−)−1−W−
N (W−

N )⊺)⊗ (M−
t )

−1 to (M−−
K−

N )x = b and obtain

((I− −W−
N (W−

N )⊺M−)⊗ I−)x =
(
((M−)−1 −W−

N (W−
N )⊺)⊗ (M−

t )
−1
)
b.

Substituting both expressions into (4.40) yields the assertion.

Remark 4.5.2. If σs has huge variations, a more effective approximation to
K− can be obtained from the eigendecomposition

M−
s I

− = M−
t I

−∆

with diagonal matrix ∆ with entries ∆j =
∫
R
σsχjdr/

∫
R
σtχjdr. The modified

approximation K̃− is then computed by considering only those combinations of
spatial and angular eigenfunctions for which λl∆j is above a certain tolerance.

Application of K+ and K−

Although K+ and K− provide a tensor product structure (4.29) involving the
sparse matrices M+

s and M−
s , the density of the scattering operators S+ and

S− becomes a bottleneck for iterative methods due to quadratic complexity in
storage consumption and computational cost for assembly and matrix-vector
products. H- and H2-matrices, which can be considered as abstract variants
of the fast multipole method [35, 39], where developed in the context of the
boundary element method and can realize the storage, assembly and matrix-
vector multiplication in linear or almost linear complexity, see [41, 40] and the
references therein. A sufficient condition for compressibility in these formats is
the following.

Definition 1. Let S̃ ⊂ Rd such that k : S̃ × S̃ → R is defined and arbitrarily
often differentiable for all x̃ ̸= ỹ with x̃, ỹ ∈ S̃. Then k is called asymptotically
smooth if

∣∣∂αx̃ ∂βỹ k(x̃, ỹ)∣∣ ≤ C
(|α|+ |β|)!
r|α|+|β| ∥x̃− ỹ∥−|α|−|β|, x̃ ̸= ỹ, (4.41)

independently of α and β for some constants C, r > 0.
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While several methods [36, 37] can operate on the Henyey-Greenstein kernel
on the sphere, most classical methods require an extension into space which we
define as

K(x̃, ỹ) = k(x · y), with x = x̃/∥x̃∥, y = ỹ/∥ỹ∥. (4.42)

The following result allows to use this extension in most H- and H2-matrix
libraries such as [32, 34, 33] in a black-box fashion.

Lemma 4.5.3. Let g ≥ 0. Then K(x̃, ỹ) is asymptotically smooth for x̃, ỹ ∈
Rd \ {0}.

Proof. We first remark that the cosinus theorem implies for x,y ∈ S with
angle φ that x · y = cos(φ) = 1 − ∥x − y∥2/2. Moreover, k̃(ξ) = k(1 − ξ2/2)
is holomorphic for ℜ(ξ) > 0 such that its Taylor series around ξ > 0 has
convergence radius ξ and the derivatives of k̃ satisfy

∣∣∂αξ k̃(ξ)∣∣ ≤ crαα!|ξ|−α,
α ∈ N0, for all ξ > 0. Since x̃ 7→ x = x̃/∥x̃∥ is analytic for x̃ ̸= 0 and
since K(x̃, ỹ) = k̃(∥x − y∥), the assertion follows in complete analogy to the
appendix of [38].

The H- or H2-approximation of S+ and S− and the sparsity of M+
s and M−

s

combined with the tensor product identity (4.37) then allow for an application
of K+ and K− in almost linear or even linear complexity.

Choice and implementation of P1

As shown in Section 4.3, choosing P1 as in Lemma 4.3.3 leads to contraction
rates η ≤ c in (4.35), i.e., independent of the mesh-parameters. The choice
P1 = E−1 can be realized through an inner iterative methods, such as a precon-
ditioned Richardson iteration resulting in an inner-outer iteration scheme when
employed in (4.33). An effective preconditioner for E is given by the block-
diagonal, symmetric positive definite matrix E0 = 1

1−cgA
⊺(M−)−1A+R+M+

which provides the spectral estimates

(1− cg)x⊺E0x ≤ x⊺Ex ≤ x⊺E0x, (4.43)

for all x ∈ Rn+
Sn+

R , cf. Lemma 4.2.1. Thus, the condition number of E−1
0 E

is bounded by (1 − cg)−1, which is uniformly bounded for c ∈ [0, 1] for fixed
g < 1. For clarity of presentation, we will use a preconditioned Richardson
iteration for the inner iteration to implement P1 in the rest of the paper, but
remark that a non-stationary preconditioned conjugate gradient method will
lead to even better performance. Applying P1 with high accuracy may still
involve many iterations. Instead, we use a preconditioner Pl

1 which performs l
steps of an inner iteration, i.e., we set Pl

1b = zl, where

z0 = 0, zk+1 = zk −E−1
0 (Ezk − b), k < l. (4.44)

Notice that, P1
1 = E−1

0 while Pl
1b → E−1b as l → ∞. In fact, with similar

arguments as in Lemma 4.3.1, it follows from (4.43) that

∥Pl
1b−E−1b∥E ≤ (cg)l∥E−1b∥E, (4.45)

where ∥x∥2E = x⊺Ex. The next result asserts that this inexact realization of
the preconditioner leads to a convergent scheme.
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Lemma 4.5.4. Let l ≥ 1 be fixed. The iteration (4.32) with preconditioner
P1 = Pl

1 defines a convergent sequence, i.e., (4.35) holds with η ≤ c and η as
in (4.36).

Proof. Observing that Pl
1 =

∑l−1
k=0(E

−1
0 (E0 − E))kE−1

0 and that each term in
the sum is symmetric and positive semi-definite for k > 0 and positive definite
for k = 0, it follows that Pl

1 is symmetric positive definite. Using (4.43), we
deduce that the sum converges as a Neumann series to E−1. Hence, it follows
that

x⊺E−1
0 x ≤ x⊺Pl

1x ≤ x⊺E−1x (4.46)

for all x ∈ Rn+
Sn+

R , which implies that x⊺Ex ≤ x⊺(Pl
1)

−1x ≤ x⊺E0x and, in
turn,

(1− c)x⊺(Pl
1)

−1x ≤ x⊺(E−K)x ≤ x⊺(Pl
1)

−1x, (4.47)

where we used Lemma 4.3.3. The assertion follows then as in Section 4.3.

Remark 4.5.5. On the one hand, inspecting (4.47) we observe that the condi-
tion number of Pl

1(E−K), and, similarly, of E−1(E−K) is (1− c)−1, which
is not robust for scattering dominated regimes c → 1; cf. also Lemma 4.3.3.
On the other hand, combining the second inequality in (4.46) with (4.45), we
obtain as in Lemma 4.2.1, that

(1− (cg)l)x⊺(Pl
1)

−1x ≤ x⊺Ex ≤ x⊺(Pl
1)

−1x,

which shows that the condition number of Pl
1E is bounded by (1 − (cg)l)−1,

which, for fixed g < 1, is robust for c→ 1.

Implementation of the subspace correction

The optimal subspaces for the correction (4.18) are constructed from the eigen-
functions associated with the largest eigenvalues of the generalized eigenprob-
lem (4.20) as can be seen from the proof of Lemma 4.3.2 . The iterative compu-
tation of these eigenfunctions is, however, computationally expensive. Instead,
we employ a different, computationally efficient tensor product construction
that employs discrete counterparts of low-order spherical harmonics expan-
sions motivated in Section 4.3. More precisely, the subspace for the correction
is defined as W+

h,N = P0,N (T S
h ) ⊗ Pc

1(T R
h ), where P0,N (T S

h ) ⊂ P0(T S
h ) is the

space spanned by the eigenfunctions associated to the dN = (N +1)(N +2)/2
largest eigenvalues of the generalized eigenvalue problem

S+W+ = M+W+Λ+

for the scattering operator, mimicking (4.7) after discretization. Note that dN
with N even is the number of even spherical harmonics of order less than or
equal to N , and P0,N (T S

h ) approximates their span. Denote W+
N the corre-

sponding matrix of coefficient vectors. The subspace W+
h,N is spanned by the

columns of the matrix W+ = W+
N ⊗ I+. At the discrete level, the correction

equation (4.18), thus, reads as(
W+⊺(E−K+)W+

)
uc = W+⊺((E−K+)P1 − I)((E−K+)un − q). (4.48)
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The efficient assembly of the matrix on the left-hand side relies on the tensor
product structure of K+ and the choice of W+

N as outlined in the following. A
simple and direct representation of the scattering operator on W+

h,N is obtained
by

W+⊺K+W+ = Λ+
N ⊗M+

s .

Similarly, we have that W+⊺M+W+ = I+ ⊗M+
t , and the block-diagonal struc-

ture of R allows to compute W+⊺RW+, i.e. the (i, j)th block-entry is given
by

n+
S∑

k=1

Rk(W
+
N (k, i)W+

N (k, j))

which requires O(n+S (n
+
R)

(d−1)/ddN ) many multiplications. The efficient as-
sembly of the remaining term W+⊺A⊺(M− − K−)−1AW+ relies on another
eigenvalue decomposition, which diagonalizes M− − K− on the column range
of AW+. The arguments are similar to those in Section 4.5 and we leave the
details to the reader.

4.6 Full algorithm and complexity

For the convenience of the reader we provide here the full algorithm of our
numerical scheme. To simplify presentation we start with the application of
E as given in Algorithm 1 and the application of P1 as given in Algorithm 2.
The full preconditioned Richardson iteration (4.33) is outlined in Algorithm 3.

Algorithm 1 Apply E, given a factorization of S−N as in (4.38).
1: function y =ApplyE(x)
2: Solve (M− −K−)z = Ax with PCG, preconditioned by (M− −K−

N )−1

as in (4.39)
3: y = A⊺z+M+x+Rx
4: end function

Algorithm 2 Apply P1 = Pl
1 as given in (4.44).

1: function z =ApplyP1(x)
2: z = 0
3: for k = 0, 1, . . . , l do
4: z = z−E−1

0 (ApplyE(z)−x)
5: end for
6: end function

For the efficient implementation of these algorithms one may exploit that,
except for R, all matrices provide a tensor product structure, see (4.29)–(4.31),
allowing for efficient storage in O(n±S + n±R) or O(cHn

±
S + n±R) complexity by

using their sparsity or their H2-matrix representation1. Here, cH is a constant
1The storage requirements of K+ and K− are O(cHn±

S log(n±
S ) + n±

R) if H-matrices are
used instead of H2-matrices. In practice, cH may depend on additional implementation
dependent parameters, see [41, 40], which we neglect here for sake of simplicity.
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Algorithm 3 Solve Eu+ = K+u+ + q according to (4.33)
1: Compute S+N = M+W+

NΛ+N (W+
N )⊺M+

2: Compute S−N = M−W−
NΛ−N (W−

N )⊺M−

3:
4: Compute Ec = W+⊺(E−K+)W+ as in Section 4.5
5:
6: Choose u+0
7: for n = 0, 1, 2, . . . do
8:
9: r =ApplyE(u+n)−K+u+n − q

10: s =ApplyP1(r)
11: u+n+1/2 = u+n − s ▷ Half-step
12:
13: qc = W+⊺

(
ApplyE(s)−K+s− q− r

)
14: Solve Ecu

+
n+1/2,c = qc

15: u+n+1 = u+n+1/2 +W+u+n+1/2,c ▷ Subspace correction
16: end for

related to the compression pattern of the H2-matrix. The storage requirements
and application of R have complexity O(n+S (n

+
R)

(d−1)/d). The relation (4.37)
then allows for an efficient application of all matrices occurring in (4.28) in
O(n±S n

±
R) or O(cHn

±
S n

±
R) operations. Since the solution vector itself has size

n+Sn
+
R, see also (4.25), and since 3n+S = n−S and n+R ∼ n−R, all matrices appearing

in (4.28) can be stored and applied with linear complexity.
In the following we elaborate the algorithmic complexities of Algorithms 1

to 3 in more detail.

Complexity of applying E

The listing of Algorithm 1 directly indicates that the main effort of applying E
lies in the preconditioned conjugate gradient method for applying (M−−K−)−1.
From Lemma 4.5.1, we obtain that (M− −K−

N )−1(M− −K−) is applicable in
O((dN + cH)n−S n

−
R) operations, while its condition number is (1− (cg)N+2)−1.

This implies an iteration count for the application of (M−−K−)−1 proportional
to (1 − (cg)N+2)−1/2 for cg ≈ 1 when using the preconditioned conjugate
gradient method with a fixed tolerance. The overall complexity for applying
(M− −K−)−1 and, thus, also E is then O((dN + cH)n−S n

−
R/(1− (cg)N+2)1/2).

We note that typically dN ≪ cH for moderate N .

Complexity of applying the preconditioner Pl
1

Pl
1 consists of l − 1 applications of E and l applications of E−1

0 . Since E0 is
block-diagonal with n+S sparse blocks of size n+R × n+R, the application of E−1

0

can be performed in O(n+S (n
+
R)

γ) if the inversion of each block has O((n+R)
γ)

complexity.
This amounts to O(l(dN + cH)n+Sn

+
R/(1 − (cg)N+2)1/2 + ln+S (n

+
R)

γ) com-
plexity for the application of Pl

1. For moderate N , the subspace correction
amounts to solving an elliptic system that is reminiscent of an order N spheri-
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cal harmonics approximation, which can be solved efficiently with a conjugate
gradient method preconditioned by a V-cycle geometric multigrid with Gauss-
Seidel smoother, cf. [44].

Let us also remark that each diagonal block of E0 discretizes an anisotropic
diffusion problem with a diffusion tensor σ−1

t

∫
KS

s · s⊺ds for KS ∈ T S
h . The

results reported in [20] indicate that such problems can be treated efficiently
by multigrid methods with line smoothing allowing for γ = 1. A full analysis
in the present context is out of the scope of this paper, but any method that
gives γ = 1 allows to perform one step in the Richardson iteration (4.33) in
linear complexity in the dimension of the solution vector. Although γ > 1,
sparse direct solvers may work well, too, cf. Table 4.9.

Complexity of the overall iteration

We start our considerations by remarking that the truncated eigendecomposi-
tions of the smaller matrices S+ and S− can be obtained by a few iterations of
an iterative eigensolver. Once this is achieved, the computation of the reduced
matrix Ec can be achieved in O(n+Sn

+
RdN ) operations, see Section 4.5. Thus,

the offline cost for the construction of the preconditioners are O(n+Sn
+
RdN ). The

discussion on the application of E and P1 shows that a single iteration of Algo-
rithm 3 can be accomplished in O(l(dN+cH)n+Sn

+
R/(1−(cg)N+2)1/2+ln+S (n

+
R)

γ)
operations.

Let us remark that in the case γ = 1 each iteration has linear complexity
and it can be implemented such that it offers a perfect parallel weak scaling
in n+Sn

+
R as long as the number of processors is bounded by n+S and n+R. To

see this, we note that, with R being the only exception, we are only relying on
matrix-vector products of matrices having tensor-product structure (or sums
thereof). Using the identity (4.37), it is clear that these operations offer the
promised weak scaling when these matrix-matrix products are accelerated by
a parallelization over the rows and columns of the middle matrix. The matrix
R does not directly provide such a structure, but its block diagonal structure,
cf. (4.31), provides possibilities for a perfectly weakly scaling implementation
as well.

In summary, each step in (4.33) can be executed very efficiently with straight-
forward parallelization. In the next section we show numerically that the num-
ber of iterations required to decrease the error below a given threshold is small
already for small values of l and N .

4.7 Numerical realization and examples

We present the performance of the proposed iterative schemes using a lattice
type problem [18], see fig. 4.1. Here, R = (0, 7) × (0, 7), the inflow boundary
source f = 0, and c = ∥σs/σt∥∞ ≈ 0.999. The coarsest triangulation of
the sphere consists of 128 element, i.e., n+S = 64, and n+R = 3249 vertices to
discretize the spatial domain. Finer meshes are obtained by uniform refinement;
the new grid points for T S

h are projected to the sphere. To minimize consistency
errors, we use higher-order integration rules for the spherical integrals. The
timings are performed using an AMD dual EPYC 7742 with 128 cores and
with 1024GB memory.
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Figure 4.1: Left: geometry of the lattice problem. The optical parameters are
σs = 10 and σa = 0.01 in the white and grey regions, σs = 0 and σa = 1 in the
black regions and q = 1 in the grey region and q = 0 outside the grey region.
Right: Sketch of the spherical grid.

Application of (M−K)−1

We show that (M− − K−)−1 can be applied efficiently and robustly in g. To
that end, we implemented a preconditioned conjugate gradient method with
preconditioner M− −K−

N , see Section 4.5. Table Table 4.1 shows the required
iteration counts to achieve a relative error below 10−13. For all g, the iteration
counts decrease with N as predicted by the considerations in Section 4.6. In
particular, since K− = K−

N = 0, only one iteration is needed for convergence
for g = 0. Moreover, we see that, although increasing the value of N increases
the workload per iteration, the overall solution time can decrease, which is due
to the fact that the scattering operator dominates the computational cost for
moderate dN , see Section 4.6. In the remainder of the paper, we employ N = 5,
which yields fast convergence for the considered values of g.

Table 4.1: Iteration counts (timings in sec.) for the application of (M−−K−)−1

using a preconditioned CG method with preconditioner M−−K−
N and tolerance

10−13 for n+S = 256 and n+R = 12 769.

g

N dN 0 0.1 0.3 0.5 0.7 0.9

-1 0 1 (1.6) 4 (4.2) 6 (6.1) 8 (8.0) 11 (10.7) 21 (19.9)
1 3 1 (1.6) 3 (3.3) 5 (4.9) 7 (6.7) 10 (9.5) 19 (17.4)
3 10 1 (1.7) 2 (2.6) 5 (5.0) 6 (6.1) 8 (7.8) 19 (17.6)
5 21 1 (1.8) 2 (2.7) 3 (3.6) 4 (4.5) 7 (7.1) 15 (14.2)
7 36 1 (1.8) 2 (2.8) 3 (3.6) 4 (4.6) 6 (6.4) 14 (13.4)
9 55 1 (1.9) 2 (2.8) 2 (2.8) 4 (4.7) 6 (6.4) 12 (12.1)
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Convergence rates

We study the norm η of the iteration matrix (I+ − PG)(I
+ − Pl

1(E − K+))
defined in (4.36) and its spectral radius

ρ = max{|λ| : λ is an eigenvalue of (I+ −PG)(I
+ −Pl

1(E−K+))}

for different choices of preconditioners P1 = Pl
1, anisotropy factors g and

dimensions dN chosen for the subspace correction. Since PG is a projection,
we have that

(I+ −PG)
⊺(E−K+)(I+ −PG) = (E−K+)(I+ −PG).

Therefore, η2 is the largest eigenvalue of the eigenvalue problem

(I+ −Pl
1(E−K+))(I+ −PG)(I

+ −Pl
1(E−K+))w = λw.

We use Matlab’s eigs function to compute ρ and η with tolerance 10−7 and
maximum iterations set to 300.

For the isotropic case g = 0, Pl
1 = E−1

0 = E−1, i.e., ρ and η do not depend
on l. For N = 0, Table 4.2 shows that the values of η and ρ are essentially inde-
pendent of the discretization parameters, see also [9]. We observed numerically
that choosing N ∈ {2, 4} improves the values of ρ and η only slightly.

Table 4.2: Values of ρ and η of the iteration matrix for g = 0 and different
angular grids.

n+
S 16 64 256 1024 4096

η 0.385 0.429 0.445 0.450 0.451
ρ 0.212 0.261 0.280 0.286 0.288

In the next experiments, we vary g from 0.1 to 0.9 in steps of 0.2. Table 4.3–
Table 4.7 display the corresponding values of ρ and η. For these anisotropic
cases, the iteration count l for the preconditioner Pl

1 as well as the number
dN , defined in Section 4.5, play an important role. For all combinations of
dN and l, we observe a convergent behavior with η ≤ c < 1, which is in
line with Lemma 4.5.4. The values of ρ and η decrease substantially with
increasing dN which is inline with the motivation of Section 4.3, while, for
fixed dN a saturation in l can be observed. For dN sufficiently large, it seems
that ρ = η = gl, see, e.g. Table 4.6 for d4 and 1 ≤ l ≤ 4. We may conclude
that we can achieve very good convergence rates for moderate values of dN and
l if combined appropriately.

H2-matrix approximation of S

We demonstrate the H2-compressibility of the scattering operator S. Since
every H2-matrix can be represented as an H-matrix, this also demonstrates
the compressibility of S by means of H-matrices. For the implementation
we use a Mex interface to include the library H2Lib [32] into our Matlab-
implementation.

For the numerical experiments themselves, we choose g = 0.5 and the same
quadrature formula in our Matlab implementation and in our implementation
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Table 4.3: Values of ρ and η for g = 0.1 and different values of dN and l to
realize Pl

1.

d0 = 1 d2 = 6 d4 = 15

l ρ η ρ η ρ η

1 0.298 0.432 0.156 0.247 0.117 0.161
2 0.264 0.429 0.101 0.237 0.048 0.141
3 0.261 0.429 0.097 0.237 0.043 0.141
4 0.261 0.429 0.097 0.237 0.042 0.141
5 0.261 0.429 0.097 0.237 0.042 0.141
6 0.261 0.429 0.097 0.237 0.042 0.141

Table 4.4: Values of ρ and η for g = 0.3 and different values of dN and l to
realize Pl

1.

d0 = 1 d2 = 6 d4 = 15

l ρ η ρ η ρ η

1 0.392 0.473 0.311 0.332 0.300 0.302
2 0.299 0.448 0.146 0.246 0.106 0.157
3 0.284 0.447 0.111 0.242 0.060 0.146
4 0.281 0.447 0.103 0.242 0.050 0.146
5 0.280 0.447 0.101 0.242 0.047 0.146
6 0.280 0.447 0.101 0.242 0.046 0.146

Table 4.5: Values of ρ and η for g = 0.5 and different values of dN and l to
realize Pl

1.

d0 = 1 d2 = 6 d4 = 15

l ρ η ρ η ρ η

1 0.522 0.553 0.499 0.499 0.499 0.499
2 0.386 0.489 0.265 0.301 0.250 0.255
3 0.361 0.482 0.174 0.260 0.136 0.175
4 0.358 0.480 0.147 0.254 0.089 0.159
5 0.357 0.480 0.140 0.253 0.070 0.156
6 0.357 0.480 0.137 0.253 0.062 0.156

within the H2Lib. The compression algorithm of H2Lib uses multivariate poly-
nomial interpolation, requiring the extension of the Henyey-Greenstein kernel
as in (4.42). The compression parameters are set to an admissibility param-
eter ηH = 1.4, p = 4 interpolation points on a single interval and a minimal
block size parameter nmin = 64, see [41, 40]. We also tested an implementa-
tion without the need for an extension within the Bembel library [34] which
yields similar results, but requires a finite element discretization on quadrilat-
erals, rather than triangles. In both cases, the differences between dense and
compressed scattering matrix are below the discretization error.

Table 4.8 lists the memory requirements, setup time, and time for a single
matrix-vector multiplication of S+ in dense and H2-compressed form. We can
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Table 4.6: Values of ρ and η for g = 0.7 and different values of dN and l
to realize Pl

1. The symbol − indicates that Matlab’s eigs function has not
converged to the desired tolerance.

d0 = 1 d2 = 6 d4 = 15

l ρ η ρ η ρ η

1 — 0.699 0.699 0.699 0.699 0.699
2 0.537 0.582 0.489 0.489 0.489 0.489
3 0.515 0.567 0.349 0.366 0.342 0.342
4 0.512 0.565 0.270 0.319 0.241 0.253
5 0.511 0.564 0.248 0.309 0.178 0.212
6 0.511 0.564 0.239 0.306 0.142 0.195

Table 4.7: Values of ρ and η for g = 0.9 and different values of dN and l
to realize Pl

1. The symbol − indicates that Matlab’s eigs function has not
converged to the desired tolerance.

d0 = 1 d2 = 6 d4 = 15

l ρ η ρ η ρ η

1 — — — — — 0.899
2 0.808 0.808 0.808 0.808 0.808 0.808
3 0.764 0.775 0.758 0.758 0.727 0.727
4 0.763 0.773 0.757 0.757 0.653 0.653
5 0.763 0.772 0.757 0.757 0.587 0.587
6 0.763 0.772 0.757 0.757 0.528 0.528

clearly observe the quadratic complexity for storage and matrix-vector mul-
tiplication of the dense matrices and the asymptotically linear complexity of
the H2-matrices. The scaling of the assembly times for dense and H2-matrices
seems to be worse than predicted by theory, which is possibly caused by mem-
ory issues. Nevertheless, the scaling of the H2-matrices for the assembly times
is much better than the one for dense matrices.

Benchmark example

The viability of the preconditioned Richardson iteration (4.33) is shown for
some larger computations. We fix g = 0.5 and solve the even-parity equations
(4.32) for the lattice problem. We fix l = 4 steps to realize the preconditioner
Pl

1 and N = 4, i.e., we use d4 = 15 eigenfunctions of S+ for the subspace
correction, cf. Section 4.5. In view of Table 4.5, we expect a contraction rate
η ≈ 0.16. Therefore, in order to achieve an error bound ∥u+−u+n∥E−K+ < 10−8,
we expect to require n ≈ 10 iterations. In our implementation, we choose
u+0 = 0, and we stop the iteration at index n for which

∥u+n − u+n−1∥E−K+ < 10−8∥u+1∥E−K+ . (4.49)

Note that, assuming a contraction rate η = 0.16, Banach’s fixed point theorem
asserts that the error satisfies ∥u+ − u+n∥E−K+ ≤ 0.2∥u+n − u+n−1∥E−K+ . The
dimension of the problem on the finest grid is n+Rn

+
S = 207 360 000, i.e., storing
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Table 4.8: Memory consumption in MB, timings in sec. for assembly and
matrix-vector multiplication of S+ and corresponding H2-matrix approxima-
tion S+ for g = 0.5. Numbers in brackets indicate the ratio to the previous
refinement level.

n+
S mem S+ setup S+ apply S+

64 0.0312 0.171 6.9 · 10−5

256 0.5 (16.0) 0.203 (1.2) 6.5 · 10−5 (0.9)
1 024 8 (16.0) 0.438 (2.2) 0.000313 (4.8)
4 096 128 (16.0) 4.2 (9.6) 0.00517 (16.5)

16 384 2.05 · 103 (16.0) 189 (45.0) 0.0805 (15.6)
65 536 3.28 · 104 (16.0) 1.09 · 104 (57.5) 2.67 (33.1)

262 144 — — —
1 048 576 — — —

n+
S mem S+ setup S+ apply S+

64 0.0313 0.00109 0.00025

256 0.502 (16.0) 0.0116 (10.7) 0.000547 (2.2)
1 024 11.3 (22.5) 0.139 (11.9) 0.0086 (15.7)
4 096 89.2 (7.9) 0.902 (6.5) 0.0841 (9.8)

16 384 484 (5.4) 4.75 (5.3) 0.328 (3.9)
65 536 2.27 · 103 (4.7) 24.6 (5.2) 1.46 (4.4)

262 144 9.53 · 103 (4.2) 182 (7.4) 6.92 (4.7)
1 048 576 3.82 · 104 (4.0) 1.46 · 103 (8.0) 28.5 (4.1)

the solution vector requires 1.5GB of memory. Note that the corresponding
dimension of the solution vector to the mixed system is about 1.5× 109. Mo-
tivated by Table 4.8 we implement the scattering operators S+ and S− using
dense matrices in this example. The application of E−1

0 is implemented with
Matlab’s sparse LU factorization, i.e., here, γ ≤ 1.5 in the complexity esti-
mates of Section 4.6.

Figure 4.2 shows exemplary the spherical average of the computed solu-
tion for n+S = 1024 and n+R = 12 769. Table 4.9 displays the iteration counts
and timings for different grid refinements. We observe mesh-independent con-
vergence behavior of the iteration, which matches well the theoretical bound
n ≈ 10. Furthermore, the computation time scales like (n+R)

1.3 for fixed n+S .
If n+S increases from 1024 to 4096, the superlinear growth in computation

time can be explained by using dense matrices for S+ and S−, which, as shown
in Table 4.8, can be remedied by using the compressed scattering operators.

Table 4.9: Iteration index n (timings in sec.) such that (4.49) holds for the
benchmark example.

n+
R

n+
S 3 249 12 769 50 625

64 8 (50) 9 (236) 9 (1 470)
256 9 (114) 9 (499) 9 (2 476)

1 024 9 (300) 9 (1 107) 10 (6 580)
4 096 9 (1 017) 9 (4 983) 10 (34 029)
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Figure 4.2: log10-plot of the spherical average of the numerical solution u+ to
the benchmark problem as in Section 4.7 for n+S = 1024 and n+R = 12 769.

4.8 Conclusions

We have presented efficient preconditioned Richardson iterations for anisotropic
radiative transfer that are provably convergent and show robust convergence
in the optical parameters, which comprises forwarded peaked scattering and
heterogeneous absorption and scattering coefficients. This has been achieved
by employing black-box matrix compression techniques to handle the scatter-
ing operator efficiently, and by construction of appropriate preconditioners. In
particular, we have shown that, for anisotropic scattering, subspace correc-
tions constructed from low-order spherical harmonics expansions considerably
improve the convergence of our iteration.

On the discrete level, our preconditioners can be obtained algebraically from
the matrices of any FEM code providing the matrices from the mixed system
(4.28). We discussed further implementational details and their computational
complexity, which, supported by several numerical tests, showed the efficiency
of our method. If a solver with linear computational complexity for anisotropic
elliptic problems is employed to realize E−1

0 , each single iteration of our scheme
has linear computational complexity in the discretization parameters. Our nu-
merical examples employed low-order polynomials for discretization, but the
presented methodology directly applies to high-order polynomial approxima-
tions as well.

Let us mention that the saddle-point problem (4.4) may also be solved using
the MINRES algorithm after appropriate multiplication of the second equation
by −1. In view of the inf-sup theory for (4.8)–(4.9) given in [7], block-diagonal
preconditioners with blocks E−K+ and M− −K− lead to robust convergence
behavior [24, Section 5.2], but the efficient inversion of E−K+ is as difficult as
solving the even-parity equations, which has been considered in this chapter.

Our subspace correction approach can also be related to multigrid schemes
[4], and we refer to [25, 47, 16] and the references there in the context of
radiative transfer. Comparing to non-symmetric Krylov space methods, such
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as GMRES or BiCGStab, see [6, 50, 49] and the references there, our approach
is very memory effective and monotone convergence behavior is guaranteed.
Moreover, in view of its good convergence rates, the preconditioned Richardson
iteration presented here is competitive to these multilevel and Krylov space
methods.
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Chapter 5

Phase-space Discontinuous Galerkin approxima-
tion for the Radiative Transfer Equation

5.1 Introduction

We consider the numerical solution of the radiative transfer equation in slab ge-
ometry, which has several applications such as atmospheric science [1], oceanog-
raphy [5], pharmaceutical powders [4] or solid state lightning [2]. Let us refer
to [3] for a recent introduction. In view of available well-posedness results [7],
it is natural to assume that the total cross section σt, which is the sum of
the scattering cross section σs and the absorption cross section σa, is strictly
positive. In this situation, the radiative transfer equation is equivalent to the
following second-order form of radiative transfer equation with Robin boundary
conditions [6, 8],

−∂z(
µ2

σt
∂zu) + σtu = σs

∫ 1

0

u(·, µ′) dµ′ + f in Ω, (5.1)

u+
µ

σt
∂nu = g on Γ. (5.2)

Here, u(z, µ) corresponds to the even part of the solution of the radiative
transfer equation for (z, µ) ∈ Ω = (0, L) × (0, 1). Furthermore, ∂nu(0, µ) =
−∂zu(0, µ) and ∂nu(L, µ) = ∂zu(L, µ) are the normal derivatives of u on the
boundary of the slab, defined as Γ = Γ0 ∪ ΓL, where Γz = {z} × (0, 1). The
functions f and g model volume and boundary sources, respectively.

Due to the product structure of Ω, it seems natural to use separate dis-
cretization techniques for the spatial variable z and the angular variable µ.
This is for instance done in the spherical harmonics method, in which a trun-
cated Legendre polynomial expansion is employed to discretize µ [11]. The re-
sulting coupled system of Legendre moments, which still depend on z, is then
discretized for instance by finite differences or finite elements [11]. Another
class of approximations consists of discrete ordinate methods which perform a
collocation in µ and the integral (5.1) is approximated by a quadrature rule
[11]. The resulting system of transport equations is then discretized for in-
stance by finite differences [11] or discontinuous Galerkin methods [12, 9], and
also spatially adaptive schemes have been used [10].

The content of this chapter has been submitted to Applied Numerical Mathematics
journal as joint work of O. Palii and M. Schlottbom.
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A major drawback of the independent discretization of the two variables
z and µ is that a local refinement in phase-space is not possible. Such local
refinement is generally necessary to achieve optimal schemes. For instance, in
slab geometry, the solution can be non-smooth in the two points (z, µ) = (0, 0)
and (z, µ) = (L, 0), which are exactly the two points separating the inflow from
the outflow boundary. Although certain tensor-product grids can resolve this
geometric singularity for the slab geometry, such as double Legendre expansions
[11], they fail to do so for generic multi-dimensional situations. Moreover, local
singularities of the solution due to the optical parameters or the source terms
can in general not be resolved with optimal complexity.

Phase-space discretizations have been used successfully for radiative trans-
fer in several applications, see, e.g., [13, 14, 15, 16] for slab geometry, [17] for
geometries with spherical symmetries, or [18, 19] for more general geometries.
Let us also refer to [20] for a phase-space discontinuous Galerkin method for
the nonlinear Boltzmann equation. A non-tensor product discretization that
combines ideas of discrete ordinates to discretize the angular variable with a
discontinuous Petrov-Galerkin method to discretize the spatial variable has
been developed in [21].

In this work, we aim to develop a numerical method for (5.1)–(5.2) that
allows for local mesh refinement in phase-space and that allows for a rela-
tively simple analysis and implementation. To accomplish this, we base our
discretization on a partition of Ω such that each element in that partition
is the Cartesian product of two intervals. Local approximations are then con-
structed from products of polynomials defined on the respective intervals. Since
such partitions generically contain hanging nodes, global approximations are
generally discontinuous. Therefore, we employ a symmetric interior penalty
discontinuous Galerkin formulation. Besides the proper treatment of traces,
which requires the inclusion of a weight function in our case, the analysis of
the overall scheme is along the standard steps for the analysis of discontinuous
Galerkin methods [22]. As a result, we obtain a scheme that enjoys an abstract
quasi-best approximation property in a mesh-dependent energy norm. Our
choice of meshes also allows to explicitly estimate the constants in auxiliary
tools, such as inverse estimates and discrete trace inequalities. As a result, we
can give an explicit lower bound on the penalty parameter required for discrete
stability. Our theoretical results about accuracy and stability of the method
are confirmed by numerical examples. Moreover, we show that adaptively re-
fined grids are able to construct approximations to non-smooth solutions in
optimal complexity.

The outline of the rest of the manuscript is as follows. In Section 5.2 we
introduce notation and collect technical tools, such as trace theorems. In Sec-
tion 5.3 we derive and analyze the discontinuous Galerkin scheme. Section 5.4
presents numerical examples confirming the theoretical results of Section 5.3.
Section 5.5 shows that our scheme works well with adaptively refined grids.
The chapter closes with some conclusions in Section 5.6.
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5.2 Preliminaries

We denote by L2(Ω) the usual Hilbert space of square integrable functions and
denote the corresponding inner product by

(u, v) =

∫
Ω

u(z, µ)v(z, µ) d(z, µ).

Furthermore, we introduce the Hilbert space

V = {v ∈ L2(Ω) : µ∂zv ∈ L2(Ω)},

which consists of square integrable functions for which the weighted derivative
is also square integrable; see [7, Section 2.2]. We endow the space V with the
graph norm

∥v∥2V = ∥v∥2L2(Ω) + ∥µ∂zv∥2L2(Ω), v ∈ V.

To treat the boundary condition (5.2), let us introduce the following inner
product

⟨u, v⟩ =
∫
Γ

uv µ dµ =

∫ 1

0

(
u(L, µ)v(L, µ) + u(0, µ)v(0, µ)

)
µdµ,

and the corresponding space L2(Γ;µ) of all measurable functions v such that

∥v∥2L2(Γ;µ) = ⟨v, v⟩ <∞.

According to [7, Theorem 2.8], functions in V have a trace on Γ and

∥v∥L2(Γ;µ) ≤
2√

1− exp(−L)
∥v∥V . (5.3)

For the analysis of the numerical scheme, we provide a slightly different trace
lemma.

Lemma 5.2.1. Let K = (zl, zr) × (µb, µt) ⊂ Ω for 0 ≤ zl < zr ≤ L and
0 ≤ µb < µt ≤ 1. Let F = {zF } × (µb, µt) with zF ∈ {zl, zr} be a vertical face
of K. Then, for every v ∈ V it holds that∫

F

|v|2µdµ ≤
(

µt

zr − zl
∥v∥L2(K) + 2∥µ∂zv∥L2(K)

)
∥v∥L2(K).

Proof. Without loss of generality, we assume that zl = zF = 0 and zr = hz.
From the fundamental theorem of calculus, we obtain that

w(0, µ) = w(z, µ)−
∫ z

0

∂zw(y, µ)dy.

Multiplication by µ and integration over K yields the inequality

hz

∫
F

|w|µdµ ≤
∫
K

|w|µd(z, µ) +
∫
K

∫ z

0

µ|∂zw(y, µ)|dyd(z, µ).

Setting w = v2 in the previous inequality, observing that |µ∂zw| ≤ 2|(µ∂zv)v|
and applying the Cauchy-Schwarz inequality shows that∫

F

|v|2µdµ ≤
∫
K

|v|2 µ
hz
d(z, µ) + 2∥µ∂zv∥L2(K)∥v∥L2(K),

which concludes the proof.
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Weak formulation and solvability

Performing the usual integration-by-parts, see also [8], the weak formulation of
(5.1)–(5.2) is as follows.

Find u ∈ V such that

ae(u, v) = (f, v) + ⟨g, v⟩ ∀v ∈ V, (5.4)

with bilinear form ae : V × V → R,

ae(u, v) = (
1

σt
µ∂zu, µ∂zv) + (σtu, v)− (σsPu, v) + ⟨u, v⟩. (5.5)

Here, for ease of notation, we use the scattering operator P : L2(Ω) → L2(Ω),

(Pu)(z, µ) =

∫ 1

0

u(z, µ′) dµ′.

Under the assumptions 0 ≤ σs, σt ∈ L∞(0, L), σt − σs ≥ c > 0, f ∈ L2(Ω)
and g ∈ L2(Γ;µ), the weak solution u ∈ V of (5.4) exists, by the Lax-Milgram
lemma, cf., e.g., [22, Lemma 1.4]. For µ > 0 fixed, problem (5.1)-(5.2) reduces
to an elliptic problem for u(·, µ) and smoothness of z 7→ u(z, µ) is governed by
the smoothness of the data and the coefficients [27]. Therefore, since f ∈ L2(Ω),
we have that the flux µ

σt
∂zu ∈ V . In particular, for a.e. fixed µ > 0, the flux

µ
σt
∂zu is continuous as a function of z ∈ (0, L). We denote by

V∗ = {u ∈ V :
µ

σt
∂zu ∈ V } (5.6)

the space of regular solutions u.

5.3 Discontinuous Galerkin scheme

In the following we will derive the numerical scheme to approximation solutions
to (5.4). After introducing a suitable partition of Ω using quadtree grids and
corresponding broken polynomial spaces, we can essentially follow the standard
procedure for elliptic problems, cf. [22]. One notable difference is that we need
to incorporate the weight function µ on the faces.

Mesh and broken polynomial spaces

Discontinuous Galerkin methods can be formulated for rather general meshes.
In order to simplify the presentation, and subsequently the implementation, we
consider quadtree meshes [28] as follows. Let T be a partition of Ω such that

K = (zlK , z
r
K)× (µl

K , µ
r
K) ∀K ∈ T ,

for illustration see Figure 5.1. We denote the local mesh size by hK = zrK−zlK .

Next, let us introduce some standard notation. Denote Pk the space of
polynomials of one real variable of degree k ≥ 0, and let the broken polynomial
space Vh be denoted by

Vh = {v ∈ L2(Ω) : v|K ∈ Pk+1 ⊗ Pk ∀K ∈ T }. (5.7)
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Figure 5.1: Left: Uniform mesh with 16 elements. Right: Non-uniform mesh
with hanging nodes.

Moreover, let V (h) = V + Vh. By Fv
h
i we denote the set of interior vertical

faces, that is for any F ∈ Fv
h
i there exist two disjoint elements

K1 = (zl1, z
r
1)× (µl

1, µ
r
1) and K2 = (zl2, z

r
2)× (µl

2, µ
r
2)

such that zF = zr1 = zl2 and F = {zF } ×
(
(µl

1, µ
r
1) ∩ (µl

2, µ
r
2)
)
. For F ∈ Fv

h
i we

define the jump and the average of v ∈ Vh by

JvK = v|K1
(zF , µ)− v|K2

(zF , µ), {{v}} =
1

2
(v|K1

(zF , µ) + v|K2
(zF , µ)).

Using the local mesh size hKi
, i ∈ {1, 2}, of the element Ki in z-direction, we

define the averaged mesh-size HF = (1/hK1 + 1/hK2)
−1, which should not be

confused with the length of the face F .
For an interior face F ∈ Fv

h
i with F = {zF }× (µb

F , µ
t
F ), which is shared by

two elements Ki
F ∈ T , i = 1, 2, as above, let us introduce the sub-elements

Ei
F = (zli, z

r
i )× (µb

F , µ
t
F ) ⊂ Ki

F . (5.8)

We note that the inclusion in (5.8) can be strict in the case of hanging nodes,
see for instance Figure 5.1.

Combining Lemma 5.2.1 with common inverse inequalities, cf. [29, Sect. 4.5],
i.e., for any k ≥ 0 there exists a constant Cie(k) such that(∫ zr

zl

|v′|2dz

)1/2

≤
√
Cie

zr − zl

(∫ zr

zl

|v|2dz

)1/2

∀v ∈ Pk, (5.9)

we obtain the following discrete trace lemma.

Lemma 5.3.1 (Discrete trace inequality). Let K = (zlK , z
r
K)× (µl

K , µ
r
K) ∈ T

and let F = {zF } × (µb
F , µ

t
F ) ∈ Fv

h be such that F ⊂ ∂K. Then, for any k ≥ 0
there holds

∥v∥2L2(F ;µ) ≤
Cdt

hK
∥v∥2L2((zl

K ,zr
K)×(µb

F ,µt
F )) ∀v ∈ Pk,

where Cdt(k) = 1 +
√
Cie(k), and Cie is the constant in (5.9).
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Derivation of the DG scheme

In order to extend the bilinear form defined in (5.5) to the broken space Vh,
we denote with ∂hz the broken derivative operator such that

(
µ2

σt
∂hz uh, ∂

h
z vh) =

∑
K∈T

∫
K

µ2

σt
∂zuh∂zvhd(z, µ)

for uh, vh ∈ Vh. In view of (5.4), let us then introduce the bilinear form

aeh(u, v) = (
µ2

σt
∂hz u, ∂

h
z v) + (σtu, v)− (σsPu, v) + ⟨u, v⟩,

which is defined on V (h). Note that ae and aeh coincide on V . A routine
calculation, cf. [22, Chapter 4], yields for any solution u ∈ V∗ to (5.1)–(5.2)
and v ∈ Vh that

aeh(u, v) = (f, v) + ⟨g, v⟩+
∑

F∈Fv
h
i

∫
F

(
{{ µ
σt
∂hz u}}JvK + J

µ

σt
∂hz uK{{v}}

)
µdµ.

Since J µ
σt
∂hz uK = 0 for all F ∈ Fv

h
i by z-continuity of the flux of u ∈ V∗, we

arrive at the identity

aeh(u, v) = (f, v) + ⟨g, v⟩+
∑

F∈Fv
h
i

∫
F

{{ µ
σt
∂hz u}}JvKµdµ.

Hence, a consistent bilinear form is given by

ach(u, v) = aeh(u, v)−
∑

F∈Fv
h
i

∫
F

{{ µ
σt
∂hz u}}JvKµdµ,

which, for V∗h = V∗ + Vh, is well-defined on V∗h × Vh. Using that JuK = 0 for
any u ∈ V , we arrive at the following symmetric and consistent bilinear form

acsh (u, v) = aeh(u, v)−
∑

F∈Fv
h
i

∫
F

(
{{ µ
σt
∂hz u}}JvK + {{ µ

σt
∂hz v}}JuK

)
µdµ,

which is again well-defined on V∗h ×Vh. We note that the summation over the
vertical faces on the boundary Γ is included in the term ⟨u, v⟩ in aeh.

The stabilized bilinear form is then defined on V∗h × Vh by

ah(u, v) = acsh (u, v) +
∑

F∈Fv
h
i

αF

HF

∫
F

JuKJvKµdµ,

with positive penalty parameter αF > 0, which will be specified below. Since
JuK = 0 on any F ∈ Fv

h
i and u ∈ V , it follows that ah is consistent, i.e., for

u ∈ V∗ it holds

ah(u, vh) = ae(u, vh) ∀v ∈ Vh. (5.10)

The discrete variational problem is formulated as follows:
Find uh ∈ Vh such that

ah(uh, vh) = (f, vh) + ⟨g, vh⟩ ∀vh ∈ Vh. (5.11)
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Analysis

For the analysis of (5.11), let us introduce mesh-dependent norms

∥v∥2Vh
= aeh(v, v) +

∑
F∈Fv

h
i

H−1
F ∥JvK∥2L2(F ;µ), v ∈ V (h),

∥v∥2∗ = ∥v∥2Vh
+
∑

F∈Fv
h
i

HF

Cdt
∥{{ µ
σt
∂hz v}}∥2L2(F ;µ), v ∈ V∗h.

In order to show discrete stability and boundedness of ah, we will use the
following auxiliary lemma.

Lemma 5.3.2 (Auxiliary lemma). Let F ∈ Fv
h
i be shared by the elements

K1
F ,K

2
F ∈ T . Then, for w ∈ Vh and v ∈ V (h) it holds that∫

F

{{ µ
σt
∂hzw}}JvKµdµ ≤

√
Cdt

2
√
HF

(
∥ µ
σt
∂zw∥2L2(E1

F ) + ∥ µ
σt
∂zw∥2L2(E2

F )

)1/2

∥JvK∥L2(F ;µ),

with Cdt from Lemma 5.3.1 and sub-elements Ei
F , i = 1, 2, defined in (5.8).

Proof. By definition of the average, we have that∫
F

{{ µ
σt
∂hzw}}JvKµdµ =

1

2

∫
F

µ

σt
∂zw1JvKµdµ+

1

2

∫
F

µ

σt
∂zw2JvKµdµ,

where w1, w2 denote the restrictions of w to K1
F and K2

F , respectively. To esti-
mate the first integral on the right-hand side, we employ the Cauchy-Schwarz
inequality and Lemma 5.3.1 to obtain∫

F

µ

σt
∂zw1JvKµdµ ≤ ∥ µ

σt
∂zw1∥L2(F ;µ)∥JvK∥L2(F ;µ)

≤
√
Cdt√
hK1

F

∥ µ
σt
∂zw1∥L2(E1

F )∥JvK∥L2(F ;µ).

A similar estimate holds for the second integral. Hence, we can estimate∫
F

{{ µ
σt
∂zw}}JvKµdµ ≤

√
Cdt

2

(
∥ µ
σt
∂zw∥2L2(E1

F ) + ∥ µ
σt
∂zw∥2L2(E2

F )

)1/2
√

1

hK1
F

+
1

hK2
F

∥JvK∥L2(F ;µ),

which concludes the proof.

The auxiliary lemma allows to bound the consistency terms in ah, which
gives discrete stability of ah.

Lemma 5.3.3 (Discrete stability). For any v ∈ Vh it holds that

ah(v, v) ≥
1

2
∥v∥2Vh

provided that αF ≥ 1/2 + Cdt with constant Cdt given in Lemma 5.3.1.
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Proof. Let vh ∈ Vh, and consider

ah(vh, vh) = aeh(vh, vh)− 2
∑

F∈Fv
h
i

∫
F

{{ µ
σt
∂zvh}}JvhKµdµ+

∑
F∈Fv

h
i

αF

HF

∫
F

JvhK2µdµ.

Using Lemma 5.3.2, and the fact that each sub-element Ei
F touches at most

two interior faces, an application of the Cauchy-Schwarz yields for any ϵ > 0,

2
∑

F∈Fv
h
i

∫
F

{{ µ
σt
∂zvh}}JvhKµdµ ≤ ϵ∥ µ

σt
∂hz vh∥2L2(Ω) +

∑
F∈Fv

h
i

Cdt

2ϵHF

∫
F

JvhK2µdµ.

Hence, by choosing ϵ = 1/2,

ah(vh, vh) ≥
1

2
aeh(vh, vh) +

∑
F∈Fv

h
i

αF − Cdt

HF

∫
F

JvhK2µdµ,

from which we obtain the assertion.

Discrete stability implies that the scheme (5.11) is well-posed, cf. [22,
Lemma 1.30].

Theorem 5.3.4 (Discrete well-posedness). Let αF ≥ 1/2 + Cdt with constant
Cdt given in Lemma 5.3.1. Then for any f ∈ L2(Ω) and g ∈ L2(Γ;µ) there
exists a unique solution uh ∈ Vh of the discrete variational problem (5.11).

Proof. The space Vh is finite-dimensional. Hence, Lemma 5.3.3 implies the
assertion.

To proceed with an abstract error estimate, we need the following bound-
edness result, which relies on the auxiliary Lemma 5.3.2.

Lemma 5.3.5 (Boundedness). For any u ∈ V∗h and v ∈ Vh it holds that

ah(u, v) ≤ (Cdt + αF )∥u∥∗∥v∥Vh
,

where αF is as in Lemma 5.3.3.

Proof. We have that

ah(u, v) = aeh(u, v)−
∑

F∈Fv
h
i

∫
F

{{ µ
σt
∂hz u}}JvKµdµ−

∑
F∈Fv

h
i

∫
F

{{ µ
σt
∂hz v}}JuKµdµ

+
∑

F∈Fv
h
i

αF

HF

∫
F

JuKJvKµdµ.

The first two terms can be estimated using the Cauchy-Schwarz inequality as

aeh(u, v) ≤ aeh(u, u)
1/2aeh(v, v)

1/2,∑
F∈Fv

h
i

∫
F

{{ µ
σt
∂hz u}}JvKµdµ ≤

∑
F∈Fv

h
i

∥{{ µ
σt
∂hz u}}∥L2(F ;µ)∥JvK∥L2(F ;µ).
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For the third term, we use Lemma 5.3.2 to obtain∑
F∈Fv

h
i

∫
F

{{ µ
σt
∂hz v}}JuKµdµ

≤
∑

F∈Fv
h
i

√
Cdt

2
√
HF

(
∥ µ
σt
∂zv∥2L2(E1

F ) + ∥ µ
σt
∂zv∥2L2(E2

F )

)1/2

∥JuK∥L2(F ;µ).

To separate the terms that include u and v, respectively, we apply the Cauchy-
Schwarz inequality once more and use again that each sub-element Ei

F touches
at most two interior faces, to arrive at

ah(u, v) ≤
(
aeh(u, u) +

∑
F∈Fv

h
i

HF

Cdt
∥{{ µ
σt
∂hz u}}∥2L2(F ;µ) +

Cdt + αF

HF
∥JuK∥2L2(F ;µ)

)1/2
(
aeh(v, v) +

1

2
∥ µ
σt
∂hz v∥2L2(Ω) +

∑
F∈Fv

h
i

Cdt + αF

HF
∥JvK∥2L2(F ;µ)

)1/2
,

which concludes the proof as Cdt + αF ≥ 3/2.

Combining, consistency, stability and boundedness ensures that the dis-
crete solution uh to (5.11) yields a quasi-best approximation to u, cf. [22,
Theorem 1.35].

Theorem 5.3.6 (Error estimate). Let f ∈ L2(Ω) and g ∈ L2(Γ;µ), and denote
u ∈ V∗ the solution to (5.1)–(5.2) and uh ∈ Vh the solution to (5.11). Then the
following error estimate holds true

∥u− uh∥Vh
≤
(
1 + 2(Cdt + αF )

)
inf

vh∈Vh

∥u− vh∥∗,

provided that αF ≥ 1/2 + Cdt.

5.4 Numerical examples

In the following we confirm the theoretical statements about stability and con-
vergence of Section 5.3 numerically. Let σs = 1/2 and σt = 1 and the width
of the slab be L = 1. We then define the source terms f and g in (5.1)–(5.2)
such that the exact solution is given by the following function

u(z, µ) =
(
1 + exp(−µ)

)
χ{µ>1/2}(µ) exp(−z2). (5.12)

Here, χ{µ>1/2}(µ) denotes the indicator function of the interval (1/2, 1), i.e.,
u is discontinuous in µ = 1/2, but note that u ∈ V∗. We compute the DG
solution uh of (5.11) on a sequence of uniformly refined meshes such that the
initial mesh consists of 16 elements, see Figure 5.1. Hence, the discontinuity in
u is resolved by the mesh. For our computations we use the lowest order space
Vh with k = 0 in (5.7), that is piecewise constant functions in µ and piecewise
linear functions in z. Using shifted Legendre polynomials, one can show that
then Cie = 3 in (5.9). In view of lemma 5.3.3, we choose αF = 3/2 +

√
3.

For the numerical solution of the resulting linear systems, we employ the
usual source iteration [23]. Introducing the auxiliary bilinear form bh(u, v) =
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ah(u, v)− (σsPu, v), the source iteration performs the iteration unh 7→ un+1
h by

solving

bh(u
n+1
h , v) = (σsPu

n
h, v) + (f, v) + ⟨g, v⟩ ∀v ∈ Vh. (5.13)

The source iteration converges linearly with a rate σs/σt [23], which is bounded
by 1/2 in this example. For acceleration of the source iteration see also [23, 8].
The matrix representation of bh has a block structure for the uniformly refined
meshes considered in this example, and its inverse can be applied efficiently via
LU factorization.

Table 5.1 shows the Vh-norm of the error u − uh between the exact and
the numerical solution. As expected from of the polynomial degrees used for
approximation, we observe linear convergence of the error in terms of the mesh
size. For this example, we note that we found numerically a boundedness

Table 5.1: Error ∥u − uh∥Vh
for uniformly refined mesh with N elements and

solution u defined in (5.12).

N 16 64 256 1 014 4 096 16 384 65 536
∥u− uh∥Vh 0.0705 0.0352 0.0176 0.0088 0.0044 0.0022 0.0011

constant for the Vh-norm around 3.5 ≤ Cdt + αF (≈ 4.23) and a coercivity
constant larger than 0.75 ≥ 1/2, see Lemma 5.3.5 and Lemma 5.3.3.

5.5 Towards adaptive mesh refinement

In this section, we demonstrate that adaptive mesh refinement is beneficial if
the non-smoothness of the solution is not resolved by the mesh. Different to
the previous section, we assume for simplicity σs = 0 and

u(z, µ) =
(
µ2 + exp(−µ)χ{µ>1/

√
2}(µ)

)
exp(−z2). (5.14)

The choice of 1/
√
2 in the indicator function ensures that the corresponding

discontinuity in u is never resolved exactly by our mesh. Note that again
u ∈ V∗.

Figure 5.2 shows the convergence rate for uniformly refined meshes, adap-
tively refined meshes, and for comparison, the optimal rate 1/

√
N with N

denoting the number of elements. We observe that the error for the uniformly
refined grids behaves suboptimal, while the error for the adaptively refined grid
is nearly parallel to the optimal curve. Here, we adapted the grid by using the
local L2-error between the numerical solution and the exact solution, i.e., for
each K ∈ T we use

η2K = ∥u− uh∥2L2(K),

which is computed using numerical quadrature; see Figure 5.2 for an illustra-
tion. The mesh is then refined by a Dörfler marking strategy [25], that is all
elements in the set K ⊂ T are refined, where K ⊂ T is the set of smallest
cardinality such that ∑

K∈K
η2K > 0.3

∑
K∈T

η2K .
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Figure 5.2: Non-smooth test case (5.14). Top left: Locally refined mesh with
local mesh sizes varying from 1/22 to 1/26 for N = 151 elements. Top right:
Local L2-error times the size of an element for the grid shown left. Bottom:
Convergence for uniformly refined grids (dotted), adaptively refined grids (con-
nected), and, for comparison, the rate 1/

√
N (connected with stars) for differ-

ent number of elements N in a double logarithmic scale.

An intermediate mesh with N = 151 elements obtained in this way is shown
in Figure 5.2. We clearly see the local refinement towards the discontinuity of
u for µ = 1/

√
2.

5.6 Conclusions

We developed and analyzed a discontinuous Galerkin approximation for the
radiative transfer equation in slab geometry. The use of quadtree-like grids
allowed for a relatively simple analysis with similar arguments as for more
standard elliptic problems. While such grids allow for local mesh refinement in
phase-space, the implementation of the numerical scheme is straightforward.
For sufficiently regular solutions, we showed optimal rates of convergence.

We showed by example that non-smooth solutions can be approximated
well by adaptively refined grids. In order to automate the mesh adaptation
procedure, an a posteriori error estimator is required. Since the solution to
(5.1)–(5.2) is not in H1(Ω) and is even allowed to be discontinuous, it seems
difficult to generalize residual error estimators for elliptic problems, see, e.g.,
[22, Section 5.6] or [24, 25]. Upper bounds for the error can be derived for con-
sistent approximations using duality theory [26]. Rigorous a posteriori error
estimation has also been done using discontinuous Petrov-Galerkin discretiza-
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tions [21]. We leave it to future research to investigate the construction of
reliable and efficient local error estimators for the DG scheme considered here.
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Summary

In this thesis we studied approximation methods for the radiative transfer
equation, which has numerous important applications, see Chapter 1. For
most of these applications the radiative transfer equation cannot be solved
analytically and a wide variety of numerical methods has been developed.

As an important introductory step, we gave an overview of classical semi-
discretizations in the angular component. The two most frequently used dis-
cretizations - the discrete ordinates and spherical harmonics methods are sum-
marised in Chapter 1. While the spherical harmonics discretization allows to
turn the radiative transfer equation into a system of linear equations with tridi-
agonal structure, approximating the boundary conditions effectively requires
extra steps. Furthermore, since the spherical harmonics expansion is a global
approximation method, it is not suited for approximating non-smooth or dis-
continuous solutions, unlike the discrete ordinates method, which is a local
approximation in the angle. The discrete ordinates method allows to obtain a
consistent discretization of both the radiative transfer equation and the bound-
ary conditions, though yielding dense scattering matrix.

A number of iterative techniques has been developed to tackle the difficulty
that arises from the dense scattering matrix. A summary of some important
methods was given in Chapter 2. We discussed two closely related methods
- the first collision source method and the standard source iteration method,
which is often accompanied by further preconditioning techniques, such as the
diffusion synthetic acceleration technique. In the first collision source method
the radiative transfer boundary value problem is split into two equations for
the uncollided and collided components, which can be separately approximated
by different numerical methods. In general this can, however, introduce consis-
tency errors, which are difficult to analyse. We turned, therefore, to the source
iteration method, which can be discretized consistently and for which conver-
gence results are available. On the basis of these methods we gave in Chapter
2 a description of a splitting technique, which is essentially an extension of
the first collision source method. These iterative methods, together with the
aforementioned discretization techniques, provided an inspiration for the major
part of our research.

In Chapter 3 we presented a discontinuous approximation in angle that al-
lows for arbitrary partitions of the angular domain and arbitrary polynomial
degrees on each element of that partition. As such, it can be understood as
a generalization of the classical spherical harmonics approximation, where the
angular domain is discretized by a single interval (−1, 1) and polynomials of
high degree, and the discrete ordinates method, where the angular domain is
partitioned into several intervals with piecewise constant functions. In partic-
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ular, the approach described in Chapter 3 allows to account for the natural
discontinuity of the solution at µ = 0. In Chapter 3 an hp-discretization was
applied to the even-parity formulation of the radiative transfer equation with
isotropic scattering. Moreover, we developed and analysed an iterative solution
technique that employs subspace correction as a preconditioner. Our approach
was inspired by the DSA preconditioned source iteration method. It was shown
that our iterative method exhibited convergence independent of the resolution
of the computational mesh.

In Chapter 4 we then focused on an efficient iterative framework that is
capable of accurately solving the system of linear equations that arises from
the discretization of anisotropic radiative transfer problems. In case of forward-
peaked scattering the convergence of the standard DSA-preconditioned source
iteration method is slow, hence acceleration with the use of an appropriate
preconditioning technique is necessary. In Chapter 4 we proposed a provably
convergent iterative method, equipped with two preconditioners, one of which
corresponds to the efficient approximate inversion of transport. The second
preconditioner was used to improve the standard contraction rate ∥σs

σt
∥∞ in

the source iteration method. The subspace correction is then constructed from
low order spherical harmonics expansions - eigenfunctions corresponding to the
largest eigenvalues of the anisotropic scattering operator. The method is shown
to be efficient if the scattering operator is applied properly, for which we used
H and H2-matrix compression algorithms.

Finally, in Chapter 5 we considered a non-tensor product discontinuous
Galerkin discretization for the even-parity radiative transfer equations for the
slab geometry. We proved stability and well-posedness for the symmetric inte-
rior penalty discontinuous Galerkin method. We also investigated the numeri-
cal convergence of the phase-space discontinuous Galerkin method. For piece-
wise smooth solutions the phase-space discontinuous Galerkin method with low
order polynomials displays a linear rate of convergence. We show numerically
that in case of non-smooth solutions the use of adaptive mesh refinement allows
for efficient approximation. The question of an appropriate choice of the error
estimator remains an open question. Despite the similarity of the even-parity
form of the RTE to standard elliptic problems, standard elliptic residual-based
error estimators can not be generalized directly.

There are several problems, which are open for future research.

1. Developing and analyzing proper a-posteriori error estimators for our
discontinuous Galerkin discretization of the radiative transfer equations
in phase-space, allowing for hp-adaptivity.

2. Improving the error analysis of the preconditioned iterative schemes pre-
sented in Chapters 3 and 4, by proving precise quantitative rates of con-
vergence.

3. Developing multigrid methods as an alternative to the preconditioned
source iteration method.



Samenvatting

Dit proefschrift is gewijd aan numerieke methoden voor het oplossen van de
stralingsoverdrachtvergelijking. Deze vergelijking heeft talloze toepassingen,
zie Hoofdstuk 1. Voor de meeste toepassingen kan de stralingsoverdrachtvergeli-
jking echter niet analytisch opgelost worden en daarom is een breed scala aan
numerieke methoden ontwikkelt.

Als een eerste inleiding geven we een overzicht van een aantal semi-klassieke
discretisaties in de hoekvariabele. De twee meest frequent gebruikte numerieke
discretisaties: de “discrete ordinates” methode en de spectrale harmonische
methode, die samengevat worden in Hoofdstuk 1, maken het mogelijk om
de stralingsoverdrachtvergelijking te transformeren in een lineair stelsel van
vergelijkingen met een drie-diagonale structuur. Het opleggen van de randcon-
dities is echter niet triviaal. Aangezien de spectrale harmonische methode een
globale benaderingstechniek is, is deze methode niet geschikt om niet-gladde of
discontinue oplossingen te berekenen. Met de “discrete ordinates” methode is
het well mogelijk om een consistente numerieke discretisatie van zowel de stral-
ingsoverdrachtvergelijking als de randcondities te verkrijgen. Dit resulteert
echter wel in een volle verstrooiingsmatrix.

Om de problemen op te lossen die veroorzaakt worden door de volle ver-
strooiingsmatrix zijn een aantal iteratieve numerieke methoden ontwikkeld.
Een samenvatting van de belangrijkste methoden wordt gegeven in Hoofdstuk
2. Twee sterk gerelateerde methoden zijn de “first collision source” methode en
de standaard “source iteration” methode, die vaak gebruikt wordt samen met
preconditioneringstechnieken, zoals de “diffusion synthetic acceleration tech-
nique”. In de “first collision source” methode wordt het randwaardeprobleem
voor de stralingsoverdrachtvergelijking gesplitst in twee vergelijkingen, één voor
de componenten die botsen en één voor de componenten die niet botsen, die
ieder apart benaderd worden met een numerieke discretisatie. Dit resulteert
echter vaak in consistentiefouten, die moeilijk zijn te analyseren. De voorkeur
gaat daarom uit naar de “source iteration” methode, die op een consisten-
tie manier numeriek benaderd kan worden en waarvoor convergentieresultaten
beschikbaar zijn. Uitgaande van deze twee methoden geven we in Hoofdstuk
2 een beschrijving van een splitsingsmethode die in principe een uitbreiding is
van de “first collision source” methode. Deze iteratieve methode, samen met de
eerdergenoemde numerieke methoden, verschaffen de belangrijkste inspiratie
voor een belangrijk deel van het onderzoek in dit proefschrift.

Hoofdstuk 3 is gewijd aan discontinue benaderingen in de stralingshoek. Hi-
erbij is een willekeurige partitie van de stralingshoeken in verschillende domeinen
toestaan en in ieder element van die partitie kunnen polynomen van verschil-
lende graad worden gebruikt. Deze aanpak kan beschouwd worden als een
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generalisatie van de klassieke bol-harmonische benaderingstechniek, waarin het
hoekdomein wordt benaderd met het interval (−1, 1) en polynomen van hoge
graad, en de “discrete ordinates” methode waarin het hoekdomein verdeeld is in
verschillende intervallen met stuksgewijs constante functies. Een belangrijk vo-
ordeel van de methode die besproken wordt in Hoofdstuk 3 is dat dit de mogeli-
jkheid geeft om de natuurlijke discontinuïteit in de oplossing voor µ = 0 goed
te representeren. In Hoofdstuk 3 wordt een hp-discretisatie gebruikt voor de
even-oneven formulering van de stralingsoverdrachtvergelijking met homogene
verstrooiing. Daarnaast worden iteratieve methoden ontwikkeld en geanaly-
seerd die gebruik maken van deelruimte correcties als preconditioner. Onze
aanpak was hierbij geïnspireerd door de DSA gepreconditioneerde “source iter-
ation” methode. We laten zien dat de convergentie van onze iteratieve methode
onafhankelijk is van de resolutie van het rekenrooster.

In Hoofdstuk 4 onderzoeken we een efficiënte klasse van iteratieve methoden
die geschikt is om nauwkeurig het stelsel van lineaire vergelijkingen op te lossen
dat voortkomt uit de numerieke discretisatie van de anisotrope stralingsover-
drachtvergelijking. De convergentie van de standaard DSA-gepreconditioneerde
“source iteration” methode is in het geval van voorwaarts-gepiekte verstrooiing
traag. Hierdoor is versnelling van de convergentie via het gebruik van pre-
conditioneringsmethoden noodzakelijk. In Hoofdstuk 4 introduceren we een
iteratieve methode waarvoor we de convergentie kunnen bewijzen. Deze meth-
ode bestaat uit twee preconditioners, waarvan één overeenkomt met een effi-
ciënte benadering van de inverse van de transport termen in de vergelijking.
De tweede preconditioner wordt gebruikt om de standard contractie coëfficiënt
∥σs

σt
∥∞ in de “source iteration” methode te verbeteren. De deelruimte correctie

wordt geconstrueerd via een bol-harmonische reeks met een gering aantal ter-
men, die overeenkomt met de eigenfuncties die gerelateerd zijn aan de grootste
eigenwaarden van de anisotrope verstrooiingsoperator. Deze methode is effi-
ciënt wanneer de verstrooiingsoperator correct wordt toegepast, wat gedaan
wordt via H and H2-matrix compressie algoritmes.

In Hoofdstuk 5 bestuderen we discontinue Galerkin discretisaties voor de
even-oneven partitie van de stralingsoverdrachtvergelijking in een plaatgeome-
trie. De basisfuncties zijn niet gebaseerd op een tensorproduct van basisfunc-
ties. We bewijzen stabiliteit en goedgesteldheid voor de symmetrische “interior
penalty” discontinue Galerkin methode. We hebben daarbij ook de numerieke
convergentie van de “phase-space” discontinue Galerkin methode onderzocht.
Voor stuksgewijs gladde oplossingen convergeert de “phase-space” discontinue
Galerkin methode met lage orde polynomen lineair. We tonen via numerieke
experimenten aan dat in het geval van niet-gladde oplossingen adaptieve meth-
oden die gebaseerd zijn op lokale roosterverfijning effectief kunnen zijn. De
juiste keuze van een foutenschatter is echter een open vraag. Ondanks de
overeenkomst van de even-pariteit vorm van de stralingsoverdrachtvergelijking
met standaard elliptisch problemen kan een residu gebaseerde foutenschatter
niet direct gegeneraliseerd worden naar de stralingsoverdrachtvergelijking.

Verschillende problemen staan nog open voor toekomstig onderzoek.

1. De ontwikkeling en analyse van geschikte a-posteriori foutenschatters
voor discontinue Galerkin discretisaties van de stralingsoverdrachtvergeli-
jking in de toestandsruimte die toepasbaar zijn voor hp adaptatie.
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2. Het verbeteren van de foutenanalyse van de gepreconditioneerde iter-
atieve methoden, die besproken worden in Hoofdstukken 3 en 4, door het
verkrijgen van een nauwkeurige kwantitatieve schatting van de conver-
gentiesnelheid.

3. Het ontwikkelen van multigrid methoden als alternatief voor de gepre-
conditioneerde “source iteration” methode.
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