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Abstract

How can we tell complex point clouds with different small scale characteristics apart,
while disregarding global features? Can we find a suitable transformation of such data in a
way that allows to discriminate between differences in this sense with statistical guarantees?

In this paper, we consider the analysis and classification of complex point clouds as they
are obtained, e.g., via single molecule localization microscopy. We focus on the task of
identifying differences between noisy point clouds based on small scale characteristics, while
disregarding large scale information such as overall size. We propose an approach based
on a transformation of the data via the so-called Distance-to-Measure (DTM) function, a
transformation which is based on the average of nearest neighbor distances. For each data
set, we estimate the probability density of average local distances of all data points and
use the estimated densities for classification. While the applicability is immediate and the
practical performance of the proposed methodology is very good, the theoretical study of
the density estimators is quite challenging, as they are based on non-i.i.d. observations that
have been obtained via a complicated transformation. In fact, the transformed data are
stochastically dependent in a non-local way that is not captured by commonly considered
dependence measures. Nonetheless, we show that the asymptotic behaviour of the density
estimator is driven by a kernel density estimator of certain i.i.d. random variables by using
theoretical properties of U-statistics, which allows to handle the dependencies via a Hoeffding
decomposition. We show via a numerical study and in an application to simulated single
molecule localization microscopy data of chromatin fibers that unsupervised classification
tasks based on estimated DTM-densities achieve excellent separation results.

Keywords Geometric data analysis, Distance-to-Measure signature, kernel density estimators,
nearest neighbor distributions

1 Introduction

The analysis and extraction of information from complex point clouds has become a main task
in many applications. Prominent examples can be found in geomorphology, where structure
in point-clouds obtained from laser scanners is investigated to infer on the shape of the Earth
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[27, 54], or in cosmology, where the Cosmic Web is analysed based on a discrete set of points from
N -body simulations or galaxy studies [32]. Related questions also arise in biology, when data from
single molecule localization microscopy (SMLM), which is based on the localization of fluorescent
molecules that appear at different times, are analyzed [31, 42]. Data obtained in SMLM are 2D
or 3D point clouds, where the points correspond to particular molecular localization events. In
this paper, we consider a specific example which is related to the analysis of super-resolution
visualization of human chromosomal regions as it has recently been investigated in Hao et al.
[26]. In this application, the goal is to better understand the 3D organization of the chromatin
fiber in cell nuclei, which plays a key role in the regulation of gene expression.
In all aforementioned examples, it is important to identify significant differences between noisy
point clouds, where a focus is on general structure and small scale information rather than on
global features such as the overall shape of a point cloud.

Fig. 1: Example Data: Four different simulated chromatin fibers in two different conditions: Condition A
(orange (far left) and blue-green (middle right)) and Condition B (pink (middle left) and green (far right)) for
the purpose of comparison.

For illustration, Figure 1 shows four simulated chromatin fibers in two different conditions. The
displayed structures form loops of different sizes and frequencies, based on the condition under
which they were simulated, where the differences are very subtle. In the application considered
in this paper, we analyse noisy samples of such simulated structures. The noise accounts for
localization errors as they are present in real SMLM data. The loops are of sizes comparable to
the resolution of the images (see Section 4 and Hao et al. [26] for more details), which makes
the problem tractable but difficult. The aim is to classify the point clouds based on their loop
distribution (i.e. based on their small scale characteristics), while disregarding their total size
or large scale shapes. It is natural to transform such complicated data prior to the analysis,
in particular when one has a clear objective in mind. In the above reference, the statistical
analysis of the simulated and real data was based on a transformation of each data cloud onto
a set of two parameters, capturing smoothness and local curvature of the point clouds. While
this transformation provided a clear discrimination between different groups, the amount of
information preserved in a two-dimensional parameter is not sufficient as a basis for point-by-
point classification. In this paper, we propose an approach which is similar in spirit, but which
provides a transformation into a curve, with different characteristics for the different conditions.
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In our analysis, the whole curves are then used as features. To this end, we perform the following
two steps.

(i) A transformation of the data points in a point cloud based on the Distance-to-Measure
(DTM) signature [13, 14] to a one-dimensional data set,

(ii) The analysis of the distribution of the DTM-transformed data via their estimated proba-
bility density.

The DTM signature is closely related to certain nearest neighbor distributions, which makes this
approach very intuitive. In particular, this framework allows for a comprehensive exploratory
analysis of complex data, for which we might seek a simple graphical representation that captures
and summarizes the local structural information well.

1.1 The DTM-Density as a Representation for Local Features

We now introduce the statistical framework of the paper and carefully define the previously men-
tioned DTM-signature. Throughout the following, we consider random point clouds as samples
from a Euclidean metric measure space X = (X , || · ||, µX ), i.e., a triple, where X ⊂ Rd denotes a
compact set, || · || stands for the Euclidean distance and µX denotes a probability measure that
is fully supported on the compact set X . If, additionally, µX has a Lipschitz continuous density
with respect to the d-dimensional Lebesgue measure, then we call X a regular Euclidean metric
measure space. For each metric measure space X , we can define the corresponding Distance-to-
Measure (DTM) function with mass parameter m ∈ (0, 1] for x ∈ Rd as

d2
X ,m(x) =

1

m

∫ m

0

F−1
x (u) du, (1)

where Fx(t) = P (‖X − x‖2 ≤ t), X ∼ µX , and F−1
x denotes the corresponding quantile function.

The DTM function, which is essential for the definition of the DTM-signature, is a population
quantity that is generally unknown in practice and thus has to be estimated from the data. In
order to do so, we replace the quantile function in the definition (1) by its empirical version as

follows. Let X1 . . . , Xn
i.i.d.∼ µX and denote the corresponding empirical measure by µ̂X . We

define for t ≥ 0

F̂x,n(t) =
1

n

n∑
i=1

1{||x−Xi||2≤t} (2)

and denote by F̂−1
x,n the corresponding quantile function, giving rise to a plug-in estimator for

the Distance-to-Measure function d2
X ,m(x):

δ2
X ,m(x) =

1

m

∫ m

0

F̂−1
x,n(u) du. (3)

In the special case that m = k
n , it is possible to rewrite (3) as a nearest neighbor statistic as

follows

δ2
X ,m(x) =

1

k

∑
Xi∈Nk(x)

||Xi − x||2, (4)

where Nk(x) is the set containing the k nearest neighbors of x among the data points X1, . . . , Xn.

As discussed previously, we require a good descriptor for the small scale behavior of our data.
Hence, in a similar spirit as Brécheteau [7], we reduce the potentially complex Euclidean metric
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measure space to a one-dimensional probability distribution by considering the Distance-to-
Measure (DTM) signature d2

X ,m(X), where X ∼ µX . That is, the deterministic point x ∈ X is

replaced by the random variable X. The distribution of d2
X ,m(X) captures the relative frequency

of the mean of the distances of a random point in X to its “m ·100% nearest neighbors”. We will
empirically illustrate that the distribution of d2

X ,m(X) is a good descriptor for the small scale be-
havior of the considered data for small values of m and verify that it is well-suited for chromatin
loop analysis. Furthermore, it is easy to see that for m = 1 the random quantity d2

X ,1(X) is
closely related to the lower bound FLBp of the Gromov-Wasserstein distance defined in Mémoli
[37] and is well suited for object discrimination with a focus on large scale characteristics. Al-
though this case is not of interest in our specific data example, we include it in our analysis, since
variants of d2

X ,1(X) have been proven very useful for pose invariant object discrimination [22, 25].

Since we propose to reduce (possibly complex) multi-dimensional metric measure spaces to a
one-dimensional probability distribution, the next step is to visualize and investigate these dis-
tributions. It is well known that probability densities (if they exist) usually provide a useful
visual insight into the probability distributions considered. In this regard, they are usually bet-
ter suited than cumulative distribution functions (see, e.g., Chen and Pokojovy [15]). Therefore,
we focus on the estimation of the density of d2

X ,m(X) in this paper. A natural estimator for the

density of d2
X ,m(X), in the following denoted as DTM-density, in case of a known DTM-function,

is given by

f̂d2
X ,m

(y) =
1

nh

n∑
i=1

K

(
d2
X ,m(Xi)− y

h

)
. (5)

However, since µX is usually unknown, we cannot calculate d2
X ,m and consequently it is generally

not feasible to estimate fd2
X ,m

via f̂d2
X ,m

. Instead, we propose to replace d2
X ,m by its empirical

version δ2
X ,m and estimate fd2

X ,m
based on the plug-in estimator

f̂δ2X ,m(y) =
1

nh

n∑
i=1

K

(
δ2
X ,m(Xi)− y

h

)
. (6)

It is important to note that, in contrast to f̂d2
X ,m

, the plug-in estimator f̂δ2X ,m is based on

the non-i.i.d. observations δ2
X ,m(X1), . . . , δ2

X ,m(Xn). In fact, for each i 6= j, δ2
X ,m(Xi) and

δ2
X ,m(Xj) are stochastically dependent. The asymptotic behaviour of kernel density estimators

under dependence has been studied extensively in the literature for various mixing and linear
processes connected to weakly dependent time series [10, 34, 35, 45, 56]. In all these settings,
results on asymptotic normality similar to the i.i.d. case can be derived. Related results for spatial
processes can be found, e.g., in Hallin et al. [24]. For long-range dependent data, the asymptotic
behaviour of kernel density estimators changes drastically. Here, the empirical density process
(based on kernel estimators of the marginal densities) converges weakly to a tight limit (see
Csorgo and Mielniczuk [16]). For the sequence δ2

X ,m(X1), . . . , δ2
X ,m(Xn), however, a structure as

in the above examples (in space or time) is not given. For each i 6= j, δ2
X ,m(Xi) and δ2

X ,m(Xj)
are stochastically dependent in a way that is not captured by the dependency models considered
in the literature discussed above.
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1.2 Main Results

The main theoretical contribution of the paper is the distributional limit of the kernel density
estimator defined in (6). More precisely, we prove (cf. Theorem 2.12), given certain regularity
conditions on fd2

X ,m
, d2
X ,m(y) and X , (see Condition 2.2 in Section 2.1) that for n → ∞, h =

o
(
n−1/5

)
and nh→∞

√
nh
(
f̂δ2X ,m(y)− fd2

X ,m
(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
. (7)

This means that, although the kernel density estimator f̂δ2X ,m is based on transformed, dependent

random variables, asymptotically, it behaves precisely as the inaccessible kernel density estimator
f̂d2
X ,m

based on independent random variables. This entails that many methods which are feasible

for kernel density estimators based on i.i.d. data, can be applied in this much more complex
setting as well, with the same asymptotic justification.

1.3 Application

Chromosomes, which consist of chromatin fibres, are essential parts of cell nuclei in human beings
and carry the genetic information important for heredity transmission. It is known by now that
there are small scale self-interacting genomic regions, so called topologically associating domains
(TADs) which are often associated with loops in the chromatin fibers [43]. As an application,
we consider chromatin loop analysis, one aspect of which is to study the presence or absence of
loops in the chromatin (see Section 4).
The local loop structure is very well characterized by local nearest neighbor means as illustrated
on the right of Figure 2 and hence we propose to use DTM-signatures for tackling this issue.
Figure 2 shows the pipeline for the data transformation (left) and the resulting kernel density
estimators (m = 1/250, biweight kernel, bandwidth selection as in Section 4) for the four data
sets shown in Figure 1 (right, same coloring). It shows that the kernel density estimators mainly
differ between the different conditions and not between the corresponding chromatin fibers and
that the differences between the conditions are clearly pronounced. This demonstrates that the
transformation allows for a qualitative analysis of the data.

Fig. 2: Data analysis pipeline: Illustration of the different steps in the proposed data analysis (left). The red
dots in the details of the image represent data points, the red lines show the point-to-point distances, whereas
the underlying chromatin structure is depicted by a black line. Right: The resulting DTM-density estimates of
the point clouds illustrated in Figure 1 (same coloring).
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1.4 Related Work

The use of the DTM-signature for the purpose of pose invariant object discrimination was pro-
posed by Brécheteau [7], who in particular established a relation between the DTM-signature and
the Gromov-Wasserstein distance (see Mémoli [37] for a definition). In the aforementioned work,
the author considers the asymptotic behavior of the Wasserstein distance between sub-sampled
estimates of the DTM-signatures for two different spaces. One big advantage of our method of
estimating the DTM-densities over the former is that it does not require sub-sampling and all
data points can be used for the analysis.
As illustrated in Section 1.1, the DTM-signature is based on the DTM-function (see (1)). This
function has been thoroughly studied and applied in the context of support estimation and
topological data analysis [9, 11, 12] and for its sample counterpart (see (3)) many consistency
properties have been established in Chazal et al. [13, 14].

Distance based signatures for object discrimination have been applied and studied in a variety
of settings [2, 3, 8, 21, 44, 47]. Recently, lower bounds of the Gromov-Wasserstein distance (see
Mémoli [37]) have received some attention in applications [22] and in the investigation of their
discriminating properties and their statistical behavior [38, 55].

Furthermore, it is noteworthy that nearest neighbor distributions are of great interest in various
fields in biology [39, 57] as well as in physics [4, 30, 50]. In these fields it is quite common to
consider the (mean of the) distribution of all nearest neighbors for data analysis. While this case
corresponds to m = 1/n and is not included in our theoretic analysis, we would like to emphasize
that taking the mean over a certain percentage of nearest neighbors makes our method a lot
more robust against noise, which is why it performs so well in the analysis of noisy point clouds.
In the analysis of SMLM images, methods from spatial statistics are often employed. Related
to the global distribution of all distances is Ripley’s K, which is used to infer on the amount
and the degree of clustering in a given data set as compared to a point cloud generated by a
homogeneous Poisson point process (see, e.g., Nicovich et al. [42] for the application of Ripley’s K
in this context). Despite the connection via certain distributions of distances, the objectives and
underlying models are quite different to the setting of this paper, such that a direct comparison
is not straightforward.

Kernel density estimation from dependent data is a broad and well investigated topic. In addition
to the references provided in Section 1.1, kernel density estimators of symmetric functions of the
data and dyadic undirected data have been considered [20, 23]. In these settings, the summands of
the corresponding kernel density estimators admit a “U -statistic like” dependency structure that
has to be accounted for. While this is more closely related to the dependency structure which we
are encountering in our analysis, the structure of the statistics that appear in the decomposition
of the kernel density estimator (6) is quite different, such that those results cannot directly be
transferred to our setting.

1.5 Organization of the Paper

In Section 2 we state the main results and are concerned with the derivation of (7) and the
assumptions required for this.

Afterwards, in Section 3 we illustrate our findings via simulations. In Section 4, we apply our
methodology to the classification within the framework of chromatin loop analysis.
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Notation: Throughout the following, we denote the d-dimensional Lebesgue measure by λd

and the (d−1)-dimensional surface measure in Rd by σd−1. We write B(x, r) for the open ball in
Rd (equipped with || · ||) with center x and radius r. Given a function f or a measure µ, we write
supp(f) and supp(µ) to denote their respective support. Let F be a distribution function with
compact support [a, b] and let F−1 denote the corresponding quantile function. As frequently
done, we set F−1(0) = a and F−1(1) = b. Let U ⊆ Rd1 be an open set. We denote by Ck(U,Rd2)
the set of all k-times continuously differentiable functions from U to Rd2 . Further, we denote
by Ck,1(U,Rd2) the set of all k-times continuously differentiable functions from U to Rd2 , whose
k’th derivative is Lipschitz continuous. For d2 = 1, we abbreviate this to Ck(U) and Ck,1(U). If
the domain and range of a function g are clear from the context, we will usually write g ∈ Ck or
g ∈ Ck,1.

2 Distributional Limits

In this section, we state our main theoretical results, upon which our statistical methodology is
based. We show that f̂δ2X ,m is a reasonable estimator for the density of the DTM-signature by

proving the distributional limit (7). Before we come to this, we recall the setting, establish the
conditions required and ensure that they are met in some simple examples.

2.1 Setting and Assumptions

First of all, we summarize the setting introduced in Section 1.1.

Setting 2.1. Let (X , || · ||, µX ) denote a regular Euclidean metric measure space. For x ∈ X let
d2
X ,m(x) denote the corresponding Distance-to-Measure function with mass parameter m ∈ (0, 1].

Let X ∼ µX and assume that the Distance-to-Measure Signature d2
X ,m(X) has a density fd2

X ,m
.

Let X1, . . . , Xn
i.i.d.∼ µX and denote by f̂d2

X ,m
and f̂δ2X ,m the kernel density estimators defined in

(6) and (5), respectively.

It is noteworthy that the assumption that d2
X ,m(X) admits a Lebesgue density is slightly restric-

tive. The probability measure µd2
X ,m

of the DTM-signature can have a pure point component

µd2
X ,m,pp in addition to the continuous component µd2

X ,m,cont, if the spaces considered have very

little local structure (for examples, see Section 2.2). That is,

µd2
X ,m

= µd2
X ,m,pp + µd2

X ,m,cont.

If we define fd2
X ,m

to be the Radon-Nikodym derivative of the absolutely continuous component

µd2
X ,m,cont, i.e., fd2

X ,m
dλ = dµd2

X ,m,cont, the pointwise asymptotic analysis of f̂δ2X ,m performed

in Section 2.3 (see Theorem 2.12) remains valid for all y with µd2
X ,m

({y}) = 0 that meet the

corresponding assumptions. This guarantees that our analysis remains meaningful even if parts
of our space do not provide local structure that is discriminative.

In order to derive the statement (7), we require certain regularity assumptions on the density
fd2
X ,m

, the DTM function d2
X ,m and the kernel K. For the sake of completeness, we first recall

some facts about the relation of the level sets of a given function. Let g : Rd → R and let
y ∈ R be such that g−1({y}) 6= ∅. Suppose that the function g is continuously differentiable
in an open environment of g−1({y}). Assume further that ∇g 6= 0 on the level set g−1({y}).
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Then, it follows by Cauchy-Lipschitz’s theory that there exists a constant h0 > 0, an open
set W ⊃ g−1([y − h0, y + h0]) and a canonical one parameter family of C1-diffeomorphisms
Φ : [−h0, h0]×W → Rd with the following property:

Φ(v, g−1({y})) = g−1({y + v})

for all v ∈ [−h0, h0] (for the precise construction of Φ see the proof of Lemma D.4 in Section
D.1). Throughout the following, the family {Φ(v, ·)}v∈[−h0,h0] (also abbreviated to Φ) is referred
to as canonical level set flow of g−1({y}).

Condition 2.2. Let fd2
X ,m

be supported on [D1, D2] and let y ∈ [D1, D2]. Assume that there

exists ε > 0 such that fd2
X ,m

is twice continuously differentiable on (y−ε, y+ε). Further, suppose

that the function d2
X ,m : Rd → R is C2,1 on an open neighborhood of the level set

Γy := d2
X ,m

−1
({y}) = {x ∈ Rd : d2

X ,m(x) = y},

that ∇d2
X ,m 6= 0 on Γy and that there exists h0 > 0 such that for all −h0 < v < h0

IX (y; v) :=

∫
Γy

∣∣1{x∈X} − 1{Φ(v,x)∈X}
∣∣ dσd−1(x) ≤ Cy|v|, (8)

where {Φ(v, ·)}v∈[−h0,h0] denotes the canonical level set flow of Γy and Cy denotes a finite con-
stant that depends on y and d2

X ,m. Suppose that the kernel K : R → R+, is an even, twice
continuously differentiable function with supp(K) = [−1, 1]. If m < 1, we assume additionally
that there are constants κ > 0 and 1 ≤ b < 5 such that for u ∈ (0, 1) it holds

ωX (u) := sup
x∈X

sup
t,t′∈(0,1)2,|t−t′|<u

∣∣F−1
x (t)− F−1

x (t′)
∣∣ ≤ κu1/b. (9)

The satisfiability of Condition 2.2 is an important issue that is difficult to address in general.
Hence, in Section 2.2 we will verify that the requirements of Condition 2.2 are met in several
simple examples. Nevertheless, in order to put Condition 2.2 into a broader perspective, we first
gather some known regularity properties of d2

X ,m as well as {F−1
x }x∈X and discuss the technical

requirement (8) afterwards.

2.1.1 Regularity of d2
X ,m and {F−1

x }x∈X
We distinguish between the cases m < 1 and m = 1 for the presentation of known regularity
results. For m < 1, the smoothness of d2

X ,m has been investigated in Chazal et al. [11], where
the authors derived the following results.

Lemma 2.3.
1. Let (X , || · ||, µX ) denote an Euclidean metric measure space. Then, the function d2

X ,m :

Rd → R is almost everywhere twice differentiable.

2. If X = (X , || · ||, µX ) denotes a regular Euclidean metric measure space, then the function
d2
X ,m : Rd → R is differentiable with derivative

∇d2
X ,m(x) =

2

m

∫
[x− y] dµ̄x(y),

where µ̄x = µX |B(x,γµX ,m(x)) and γµX ,m(x) = inf{r > 0 : µX
(
B̄(x, r)

)
> m}.

8



Another important point for the case m < 1 is the verification of inequality (9). This corresponds
to bounding a uniform modulus of continuity for the family {F−1

x }x∈X . An application of Lemma
3 in Chazal et al. [13] immediately yields the subsequent result.

Lemma 2.4. Let (X , || · ||, µX ) be a regular Euclidean metric measure space. Suppose that there
are constants a, b > 0 such that for all r > 0 and all x ∈ X

µX (B(x, r)) ≥ 1 ∧ arb. (10)

Then, it holds that

ωX (u) ≤ 2

(
h

a

)1/b

diam (X ) .

Remark 2.5. Condition (10) is frequently assumed in the context of shape analysis. Measures
that fulfill (10) are often called (a,b)-standard (see Chazal et al. [13], Cuevas [17], Fasy et al.
[18] for a detailed discussion of (a,b)-standard measures). In particular, we observe that our
assumption (9) is met, whenever b < 5.

In the case m = 1, it is important to observe that the DTM function admits the following specific
form:

d2
X ,1(x) =

∫ 1

0

F−1
x (u) du = E

[
||X − x||2

]
, (11)

where X ∼ µX . This identity allows us to derive the following lemma.

Lemma 2.6. Let X = (X , || · ||, µX ) denote a regular Euclidean metric measure space and let
X ∼ µX . Then, it holds that:

1. The function d2
X ,1 : Rd → R is given as

x = (x1, . . . , xd) 7→ (x1 − c1)2 + (x2 − c2)2 + · · ·+ (xd − cd)2 + ζ, (12)

where c = (c1, . . . , cd)
T = E [X] and ζ denotes a finite constant that can be made explicit.

2. The function d2
X ,1 : Rd → R is three times continuously differentiable.

3. We have ∇d2
X ,1(x) = 0 if and only if x = E [X].

4. Consider the representation of d2
X ,1 in (12). Set Γy = d2

X ,1
−1

({y}) and suppose that(
y − E

[
||X − E [X] ||2

])
> 2h0 > 0. Then, the canonical level set flow {Φ(v, ·)}v∈[−h0,h0]

of Γy considered as function from [−h0, h0] × d2
X ,1
−1

([y − h0, y + h0]) to Rd is for x =
(x1, . . . , xd) given as

(v, x) 7→
(
(x1 − c1)

√
1 +

v

||x− c||2
+ c1, . . . , (xd − cd)

√
1 +

v

||x− c||2
+ cd

)
. (13)

In order to increase the readability of this section, the proof of Lemma 2.6 is postponed to Section
A in the Appendix.
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2.1.2 Discussion of assumption (8) in Condition 2.2

To conclude this section, we consider the technical assumption (8). First of all, it is obvious (if
d2
X ,m is nowhere constant) that the assumption only comes into play for d ≥ 2. Furthermore,

we observe that it is trivially fulfilled if there exists some ε > 0 such that Γy−ε ⊂ X , Γy ⊂ X
and Γy+ε ⊂ X . Only if this is not the case, there might be points y ∈ X for which (8) is not
satisfied. However, the assumption will typically be satisfied for all points of regularity of the
density fd2

X ,m
. To provide some intuition on this matter, we will consider the following example.

Example 2.7. Let X = [0, 1]2 and let µX stand for the uniform distribution on X . In this case,
using relation (11), we obtain for x = (x1, x2) ∈ X

d2
X ,1(x) = E

[
||X − x||2

]
=

(
x1 −

1

2

)2

+

(
x2 −

1

2

)2

+
1

6
.

The corresponding DTM-density is supported on [1/6, 2/3] and it is smooth everywhere except
for y = 5/12, where fd2

X ,m
has a kink (detailed computations are provided in Section B.3 in the

appendix). The level sets Γy (y ≥ 1/6), are concentric circles centered at (1/2, 1/2) with radii√
y − 1/6. For all y < 5/12 the level sets are fully contained in the open cube (0, 1)2. For all

y > 5/12, we have R2\[0, 1]2 ∩ Γy 6= ∅, i.e., the level sets are at least partly outside of the cube
[0, 1]2. This means that y = 5/12 is, in a sense, a transition point. In order to check (8) for
y ≥ 5/12, we observe that Lemma 2.6 implies that for v > 0, y ∈ [5/12, 2/3] and each x ∈ X the
equality 1{x∈Γy∩X} = 0 implies 1{Φ(v,x))Γy∩X} = 0, where Φ denotes the canonical level set flow
of Γy. Consequently, it follows that

IX (y; v) =

∣∣∣∣∣
∫

Γy

1{x∈X} − 1{Φ(v,x)∈X} dσ
1(x)

∣∣∣∣∣ = |L(Γy ∩ X )− L(Γy+v ∩ X )| ,

where L(Γy∩X ) stands for the length of the curve Γy in X and L(Γy+v∩X ) is defined analogously.
Using the above equality, it is easy to verify that the requirement (8) is satisfied for all y ∈
[1/6, 2/3]\{5/12}. Figure 3 exemplarily illustrates the behavior of the level sets in a neighborhood
of (1/2, 1). The figure shows the level sets Γ5/12 in blue and Γ5/12+v for some v > 0 as dotted
line in black. We observe that for 0 ≤ v ≤ h0 for some h0 sufficiently small, the value of the
integral IX (y; v) corresponds to 2πv minus four times the length of the red line, which can be
calculated explicitly using a well-known formula for circular segments:

IX (y; v) =
∣∣∣2πv − 4 arcsin

(
2
√
v − v2

)∣∣∣ ≥ √v.
This proves that for y = 5/12 the requirement (8) is not fulfilled.

We conclude this subsection by noting that the dimension of X heavily influences the regularity of
(8). While it seems to be problematic, if Γy intersects tangentially with the boundary ∂X of X for
d = 2, this is not necessarily the case for d ≥ 3. In particular, if we consider X = [0, 1]3 equipped
with the uniform distribution, we find that for y = 3/4 the level set Γy tangentially touches ∂X
at 6 points. However, here, it does not cause any problems. Following our considerations from
Example 2.7, one can show that condition (8) holds for all points y in the support of fd2

X ,m
.

2.2 Examples of DTM-Densities

In the following, we will derive d2
X ,m as well as fd2

X ,m
in several simple examples explicitly and

verify that in these settings Condition 2.2 is met almost everywhere. Since calculating d2
X ,m

10



Fig. 3: Tangential Level Set: Illustration of the behavior of the levels sets in a neighborhood of tangential
intersection point with the boundary of X in the setting of Example 2.7.

and fd2
X ,m

explicitly is quite cumbersome (especially for m < 1), we concentrate on one- or

two-dimensional examples. In order to increase the readability of this section, we postpone the
the explicit, but lengthy representations of the derived DTM-functions and densities (as well as
their derivation) to Section B.

We begin our considerations with the simplest case possible, the interval [0, 1] equipped with the
uniform distribution.

Example 2.8. Let X = [0, 1] and let µX denote the uniform distribution on X . Furthermore,
we consider two values for m, namely m1 = 1 and m2 = 0.1. In Section B.1, we derive d2

X ,1,

d2
X ,0.1, fd2

X ,1
(see Figure 4 for an illustration). For m = 1, the requirement (8) does not come into

play as X is one-dimensional and d2
X ,1 nowhere constant. Further, we point out that the density

fd2
X ,1

is unbounded (however twice continuously differentiable on the interior of its support). In

the case m = 0.1 things are quite different. The function d2
X ,0.1 is constant on [0.05, 0.95] and

hence the random variable d2
X ,0.1(X), X ∼ µX , does not have a Lebesgue density.

It is immediately clear that the DTM-signature can only admit a density with respect to the
Lebesgue measure, if the DTM-function defined in (1) is almost nowhere constant. In Example
2.8 this is the case for m1 = 1 but not for m2 = 0.1. Recall that the DTM-function considers
the quantile function of the random variable ||X − x||2, X ∼ µX , on [0,m] for each x ∈ X . In
Example 2.8, µX denotes the uniform measure on X = [0, 1]. Hence, it is evident in this setting
that the quantile functions of the random variables {||X − x||}x∈[m/2,1−m/2] agree on [0,m].
Consequently, the corresponding DTM-signature admits a Lebesgue density only for m = 1. In
the next example, we equip X with another distribution, whose density is not constant on X . In
this case, we will find that also for m < 1 the corresponding DTM-signature admits a Lebesgue
density.

Example 2.9. Let X = [0, 1] and let µX denote the probability distribution on [0, 1] with density
f(x) = 2x. Let m = 0.1. In Section B.2, we derive d2

X ,0.1 explicitly and demonstrate that the

random variable d2
X ,0.1(X), X ∼ µX , admits a Lebesgue density in this setting (see Figure 4

for an illustration). We observe that d2
X ,0.1 is continuously differentiable everywhere and three

times continuously differentiable almost everywhere. Further, the density fd2
X ,0.1

admits one

discontinuity for y = −683
60 + 18

√
2
5 and is C2 almost everywhere.

We observe that the DTM-densities derived in Example 2.8 and Example 2.9 are both unbounded.
This has a simple explanation. Let (X , || · ||, µX ) be a regular Euclidean metric measure space
and denote the d-dimensional Lebesgue density of µX by gµX . Suppose that fd2

X ,m
exists. Then,

11



one can show (see e.g. Appendix C of Weitkamp et al. [55]) that

fd2
X ,m

(y) =

∫
{x∈X :d2

X ,m(x)=y}
gµX (u)

||∇d2
X ,m(u)||

dσd−1(u). (14)

Since dσ0 corresponds to integration with respect to the counting measure, the DTM-density
of a one-dimensional Euclidean metric measure space is unbounded if there are u ∈ X with
|∇d2

X ,m(u)| = 0 (this is the case in Example 2.8 and Example 2.9). However, it is important to
note that this behavior mainly occurs for one-dimensional Euclidean metric measure spaces. For
higher dimensional spaces, the area (w.r.t. dσd−1) of the set A = {x ∈ X : ||∇d2

X ,m(u)|| = 0}, is
usually a null set. Hence, it is possible that the density fd2

X ,m
defined in (14) remains bounded

even if A is non-empty (see Example 2.7 and Example 2.10).

To conclude this section and in order to illustrate that the showcased regularity of the DTM-
function d2

X ,m and the DTM-density fd2
X ,m

does not only hold for one-dimensional settings, we

consider two simple examples in R2 next. As the derivation of the family (F−1
x )x∈X can be

incredibly time consuming, we restrict ourselves in the following to the case m = 1.

Example 2.7 (Continued). Recall that X = [0, 1]2, µX stands for the uniform distribution on
X and that m = 1. Based on our previous considerations it is possible to derive fd2

X ,1
explicitly

(see Section B.3 for the derivation). As illustrated in Figure 4, the density fd2
X ,1

is continuous.

Moreover, it is twice continuously differentiable inside its support for y 6= 5
12 , which is also the

only point where the requirements of (8) are not met, as discussed previously.

We note that the density fd2
X ,1

derived in Example 2.7 is constant on [1/6, 5/12]. This kind of

behavior is also expressed when considering a disc in R2 equipped with the uniform distribution
(it is easy to verify that fd2

X ,1
is a constant function in this case). It is well known that it is difficult

for kernel density estimators to approximate constant pieces or a constant function. However,
it is not reasonable to assume that the data stems from a uniform distribution over a compact
set in many applications (such as chromatin loop analysis). More often, it is possible to assume
that the data generating distribution is more concentrated in the center of the considered set.
The final example of this section showcases that in such a case the corresponding DTM-signature
admits a density without any constant parts even on the disk.

Example 2.10. Let X denote a disk in R2 centered at (0, 0) with radius 1 and let µX denote
probability measure with density

f(x1, x2) =

{
− 2
π

(
x2

1 + x2
2 − 1

)
x2

1 + x2
2 ≤ 1,

0 else.

In this framework, we derive d2
X ,1 and fd2

X ,1
in Section B.4. We observe that the level sets Γy

(of d2
X ,1) are contained in X for any y ∈ [1/3, 4/3], i.e., condition (8) is met for all y ∈ (1/3, 4/3)

in this setting. Further, we realize that fd2
X ,1

(see Figure 4 for an illustration) is smooth and

nowhere constant on the interior of its support.

2.3 Theoretical Results

In this section we study the asymptotic behavior of the kernel estimator of the DTM-density
(6). Clearly, standard methodology implies the following pointwise central limit theorem for the

kernel estimator f̂d2
X ,m

defined in (5).
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Fig. 4: Distance-to-Measure signature: Illustration of the densities calculated in Example 2.8-2.9, Example
2.7 and Example 2.10 (from left to right).

Theorem 2.11. Assume Setting 2.1 and suppose that d2
X ,m(X1) admits a density that is twice

continuously differentiable in an environment of y. Suppose further that the kernel K : R→ R+,
is an even, twice continuously differentiable function with supp(K) = [−1, 1]. Then, it holds for
n→∞, h = o

(
n−1/5

)
and nh→∞ that

√
nh
(
f̂d2
X ,m

(y)− fd2
X ,m

(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
.

Surprisingly perhaps, despite the complicated stochastic dependence of the random variables
δ2
X ,m(Xi), asymptotically, f̂d2

X ,m
and f̂δ2X ,m behave equivalently in the following sense.

Theorem 2.12. Assume Setting 2.1 and let Condition 2.2 hold. Then, it holds for n → ∞,
h = o

(
n−1/5

)
and nh→∞ that

√
nh
(
f̂δ2X ,m(y)− fd2

X ,m
(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
.

As the the proof of Theorem 2.12 is lengthy and quite technical, it has been deferred to Appendix
C. There, we will write the density estimator f̂δ2X ,m as a U-statistic plus remainder terms. Then,

using a Hoeffding decomposition, the dependencies can be handled. However, showing that the
remainder terms vanish is not trivial and requires the application of some tools from geometric
measure theory.

3 Simulations

In the following, we investigate the finite sample behavior of f̂δ2X ,m in Monte Carlo simulations. To

this end, we illustrate the pointwise limit derived in Theorem 2.11 in the setting of Example 2.10
and exemplarily highlight the discriminating potential of f̂δ2X ,m . All simulations were performed

in R (R Core Team [36]).

3.1 Pointwise Limit

We start with the illustration of Theorem 2.11. To this end, we consider the Euclidean metric
measure space (X , || · ||, µX ) from Example 2.10. Recall that in this setting, X denotes a disk in
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R2 centered at (0, 0) with radius 1 and that µX denotes the probability measure with density

f(x1, x2) =

{
− 2
π

(
x2

1 + x2
2 − 1

)
x2

1 + x2
2 ≤ 1,

0 else.

Now, we choose m = 1 and consider

f̂δ2X ,1(y) =
1

nh1

n∑
i=1

KBi

(
δ2
X ,m(Xi)− y

h1

)
,

where KBi denotes the Biweight kernel, i.e.,

KBi(u) =

{
15
16

(
1− u2

)2 |u| ≤ 1,

0 else.
(15)

Since we have calculated d2
X ,1 explicitly (see (18)), it is of interest to compare the behavior of

f̂δ2X ,1(y) to the one of

f̂d2
X ,1

(y) =
1

nh2

n∑
i=1

KBi

(
d2
X ,1(Xi)− y

h2

)
.

As discussed previously, f̂d2
X ,1

is different from f̂δ2X ,1 a kernel density estimator based on inde-

pendent data, whose limit behavior is well understood (see Theorem 2.11). Nevertheless, for

y ∈ (1/3, 4/3), f̂d2
X ,1

(y) and f̂δ2X ,1(y) admit the same asymptotic behavior according to Theorem

2.12, whose requirements can be easily checked in this setting (see Example 2.10). In order to
illustrate this, we generate two independent samples {Xi}ni=1 and {X ′i}ni=1 of µX and calculate
∆n = {δ2

X ,1(Xi)}ni=1 as well as Dn = {d2
X ,1(Xi)}ni=1 for n = 50, 500, 2500, 5000. We set

h1 = (1.06 min{s(∆n), IQR(∆n)/1.34)})5/4n−1/4

and
h2 = (1.06 min{s(Dn), IQR(Dn)/1.34)})5/4n−1/4,

where s is the usual sample standard deviation and IQR denotes the inter quartile range. Based
on ∆n and Dn, we choose a central value of y and calculate√

nh1(f̂δ2X ,1(y)− fd2
X ,1

(y)) and
√
nh2(f̂d2

X ,1
(y)− fd2

X ,1
(y)). (16)

For each n, we repeat this process 5,000 times. The finite sample distributions of the quantities
defined in (16) are compared to their theoretical normal counter part in Figure 5 (exemplarily
for the specific choice of y = 0.7). The kernel density estimators displayed (Gaussian kernel with

bandwidth given by Silverman’s rule) highlight that the asymptotic behavior of f̂δ2X ,1(y) (red)

matches that of f̂d2
X ,1

(y) (green). Further, we observe that even for small samples sizes both

finite sample distributions strongly resemble their theoretical normal limit distribution (blue).

3.2 Discriminating Properties

In the remainder of this section, we will showcase empirically the potential of the DTM-signature
for discriminating between different Euclidean metric measure spaces. To this end, let µY1

stand
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Fig. 5: Pointwise limit distribution: Kernel density estimators of
√
nh1(f̂δ2X ,1

(0.7) − fd2
X ,1

(0.7)) (in red)

and
√
nh2(f̂d2

X ,1
(0.7) − fd2

X ,1
(0.7)) (in green) for n = 50, 500, 2500, 5000 (from left to right, sample size 5,000)

and the normal limiting density (blue).

t1 = 0 t2 = 0.1 t3 = 0.2 t4 = 0.4 t5 = 0.6 t6 = 0.8 t7 = 1

Fig. 6: Metric measure spaces: Graphical illustration of the metric measure spaces {Yi}7i=1.

for the uniform distribution on a 3D-pentagon (inner pentagon side length: 1, Euclidean distance
between inner and outer pentagon: 0.4, height: 0.4) and let µY7

denote the uniform distribution
on a torus (center radius: 1.169, tube radius: 0.2) with the same center and orientation (see the
plots for t1 = 0 and t7 = 1 in Figure 6). In order to interpolate between these measures, let
Π
µY7
µY1

(t), t ∈ [0, 1], denote the 2-Wasserstein geodesic between µY1
and µY7

(see e.g. Santambrogio
[46, Sec. 5.4] for a formal definition). Figure 6 displays the Euclidean metric measure spaces Yi,
1 ≤ i ≤ 7, corresponding to µYi = Π

µY7
µY1

(ti) for ti ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1} (the geodesic has
been approximated discretely based on 40,000 points with the the WSGeometry-package [28]).

In this example, we are not interested in only finding local changes, but we want to distinguish
between Euclidean metric measure spaces that differ globally. Hence, m = 1 seems to be the most
reasonable choice. At the end of this section, we will illustrate the influence of the parameter m
in the present setting. We draw independent samples of size n from µYi , denoted as {Yj,n,i}nj=1,

and calculate ∆n,i = {δ2
X ,1(Yj,n,i)}nj=1 and f̂δ2Yi,1

based on each of these samples for 1 ≤ i ≤ 7

and n = 500, 2500, 5000, 10000 (Biweight kernel, hi = 1.06 min{s(∆n), IQR(∆n)/1.34)}n−1/5).
We repeat this procedure for each i and n 10 times and display the resulting kernel density
estimators in the upper row of Figure 7. While it is not possible to reliably distinguish between
the realizations of f̂δ2Y0,1

(blue-green), f̂δ2Y1,1
(orange) and f̂δ2Y2,1

(blue) by eye for n = 500, this

is very simple for n ≥ 2500. Now, that we have estimated the densities, we can choose a suitable
notion of distance between densities (e.g. the L1-distance) and perform a linkage clustering
in order to showcase that the illustrations in the upper row are not deceptive and that it is
indeed possible to discriminate between the Euclidean metric measure spaces considered based
on the kernel density estimators of the respective DTM-densities. To this end, we calculate the
L1-distance between the kernel density estimators considered and perform an average linkage
clustering on the resulting distance matrix for each n. The results are showcased in the lower
row of Figure 7. The average linkage clustering confirms our previous observations.
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Fig. 7: Discriminating between Euclidean metric measure spaces: Upper row: Ten realizations of the
kernel density estimators f̂δ2Y1,1

(blue-green), f̂δ2Y2,1
(orange), f̂δ2Y3,1

(blue), f̂δ2Y4,1
(pink), f̂δ2Y5,1

(green), f̂δ2Y6,1

(yellow) and f̂δ2Y6,1
(brown) for n = 500, 2500, 5000, 10000 (from left to right). Lower row: The results of an

average linkage clustering of the considered kernel density estimators based on the L1-distance (same coloring).

To conclude this section, we illustrate the influence of the choice of m. For this purpose, we
repeat the above procedure with n = 10, 000 and m = 0.2, 0.4, 0.6, 0.8 (this means that we can
use the alternative representation of d2

X ,m in (4) with k = 2000, 4000, 6000, 8000). The resulting
kernel density estimators are displayed in the upper row and the corresponding average clustering
in the bottom row of Figure 8 (same coloring as previously). As we consider the transformation
of µY1 into µY7 along a 2-Wasserstein geodesic, it is intuitive that choosing m too small is not
informative in this setting (the goal is to distinguish between the whole spaces). Indeed, this is
exactly, what we observe. For m = 0.2 the kernel density estimators strongly resemble each other
and in particular the Euclidean metric measure spaces Y1 and Y2 are hardly distinguishable (see
the corresponding dendrogram in the lower row of Figure 8). For m ≥ 0.4 the kernel density
estimators are better separated and the corresponding dendrograms highlight that it possible to
discriminate between the spaces Yi based on the kernel density estimators f̂δ2Yi,m

, i = 1, . . . , 7

and m = 0.4, 0.6, 0.8. It is noteworthy that although the form of the kernel density estimators
drastically changes between m = 0.4 and m = 1, the quality of the corresponding clustering only
increases slightly with increasing m.

4 Chromatin Loop Analysis

In this section, we will highlight how to use the DTM-density-transformation for chromantin
loop analysis. First, we briefly recall some important facts about chromatin fibers, state the goal
of this analysis and precisely describe the data used here.

For human beings, chromosomes are essential parts of cell nuclei. They carry the genetic in-
formation important for heredity transmission and consist of chromatin fibers. Learning the
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Fig. 8: The influence of m: Upper row: Ten realizations of the kernel density estimators f̂δ2Y1,m
(blue-

green), f̂δ2Y2,m
(orange), f̂δ2Y3,m

(blue), f̂δ2Y4,m
(pink), f̂δ2Y5,m

(green), f̂δ2Y6,m
(yellow) and f̂δ2Y7,m

(brown) for

n = 10000 and m = 0.2, 0.4, 0.6, 0.8 (from left to right). Lower row: The results of an average linkage clustering
of the considered kernel density estimators based on the L1-distance (same coloring).

topological 3D structure of the chromatin fiber in cell nuclei is important for a better under-
standing of the human genome. As discussed in Section 1.3, TADs are self-interacting genomic
regions, which are often associated with loops in the chromatin fibers. These domains have been
estimated to the range of 100–300 nm [43]. Hi-C data [33] allow to construct spatial proximity
maps of the human genome and are often used to analyze genome-wide chromatin organization
and to identify TADs. However, spatial size and form, and how frequently chromatin loops and
domains exist in single cells, cannot directly be answered based on Hi-C data, whereas in 3D
visualization of chromosomal regions via SMLM with a sufficiently high resolution, this informa-
tion might be more easily accessible [26]. Therefore, in the above reference, such an approach is
considered, in which two groups of images of chromatin fibers were produced: Chromatin with
supposedly fully intact loop structures and chromatin, which had been treated with auxin prior
to imaging. Auxin is known to cause a degrading of the loops. Therefore, in the second set of
images, the loops are expected to be mostly dissolved. The obtained resolution in these images
was of the order of 150 nm, i.e., below the diffraction limit and comparable to the typical sizes
of TADs. This means that the analysis of chromatin loops based on these images is tractable
but difficult as we will not see detailed loops when zooming in.

In this paper we analyse simulated SMLM data of chromatin fibers that mimic the chromatin
structure with loops as local features and compare them to simulated data that mimic the
progressive degradation of loop structures in five steps. The simulated structures mimic the first
chromosome (of 23 in total) of the human genome, which is the longest with approximately 249
megabases (Mb, corresponding to 249,000,000 nucleotides). Each step corresponds to a loop
density with a different parameter, which we denote by c. The value of c is the number of loops
per megabase. A value of c = 25 corresponds to a high loop density with 2490 loops in total and
corresponds to the setting without the application of auxin. Values of c = 10, 6, 4, 2 correspond
to decreasing states of resolved loops (1494, 996 and 498 loops) and c = 0 encodes the fully
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Fig. 9: Chromatin Loops: Upper row: Illustration of a chromatin structure and the corresponding sample
with loop density c = 25. Lower row: Illustration of the same chromatin and the corresponding sample with loop
density c = 10.

resolved state. These simulated images provide a controlled setting in which we can investigate
the applicability of our methods and in which we can explore how small a difference in loop
density our method can still pick up and when it starts to break down. Here, we only consider
classification into the different conditions based on the estimated DTM density. While it is clear
from the results described below that information on loop size and frequency is encoded in these
densities, a quantification of these parameters requires a deeper study of the proposed methods
and is beyond the scope of this manuscript.
In our study, we consider 102 synthetic, noisy samples of size 49800 of 6 different loop densities
each and denote the corresponding samples as Xi,c, c = 25, 10, 6, 4, 2, 0, 1 ≤ i ≤ 102. These
samples are created by first discretizing the chromatin structure such that the distance between
two points along the chromatin structure corresponds to 45 nm. Then, we add independent,
centered Gaussian errors with covariance matrix

Σ =

45 0 0
0 45 0
0 0 90


to each point (see Figure 9 for an illustration of data obtained in this fashion). This high level
of noise is chosen to match the experimental data obtained in Hao et al. [26]. Throughout the
following, we consider the data on a scale of 1:45. We stress once again that the goal of our
analysis is to distinguish between the respective loop conditions and not between chromatin
fibers from which the points are sampled (the overall form of the chromatin fibers within one
condition can be quite different). We demonstrate in the following that the corresponding DTM-

signatures, or more precisely the corresponding kernel density estimators f̂δ2Xi,c,m
, 1 ≤ i ≤ 102,

(m chosen suitably small) represent a useful transformation of the data that allows discrimination
between the different loop densities, while disregarding the overall shape of the chromatin fiber.
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Fig. 10: Chromatin Loop Analysis I: Illustration of the DTM-density estimators f̂δ2Xi,c,m
, 1 ≤ i ≤ 102,

for c = 25 (blue-green), c = 10 (orange), c = 6 (blue), c = 4 (pink), c = 2 (green) and c = 0 (yellow) and
m ∈ {1/9960, 1/4980, 1/1245} (from left to right).

To this end, we follow the strategy proposed in Section 1.3 and calculate ∆i,c = {δ2
X ,m(Xj,i,c) :

Xj,i,c ∈ Xi,c} for 1 ≤ i ≤ 102, c ∈ {25, 10, 6, 4, 2, 0} and m ∈ {1/9960, 1/4980, 1/1245}. These
particular choices of m entail that in order to calculate δ2

X ,m(Xj,i,c) we need to take the mean
over the distances to the k = 5, 10, 40 nearest neighbors of Xj,i,c ∈ Xi,c (recall the representation

of δ2
X ,m in (4)). We determine f̂δ2Xi,c,m

based on each of the samples ∆i,c (Biweight kernel, h =

1.06 min{s(∆n), IQR(∆n)/1.34)}n−1/5). The resulting kernel density estimators are displayed in
Figure 10. Generally, the kernel density estimators based on the different samples with the same
loop density strongly resemble each other and it is possible to roughly distinguish between the
different values of c. For all values of m considered, the DTM-density estimators based on Xi,25,
1 ≤ i ≤ 102, (here the respective chromatin fibers form many loops) are well separated from the
other kernel density estimators and the estimators based on the samples ∆i,2 and ∆i,0 (which
correspond to the lowest loop densities considered) are the most similar when comparing the
different loop densities. In order to make a more qualitative comparison between the estimators
f̂δ2Xi,c,m

, we use the strategy developed in Section 3.2 and perform an average linkage clustering

based on the L1-distance between the estimated densities. For clarity, we restrict ourselves to the
comparison of the loop density c = 25 against c = 10 as well as c = 2 against c = 0 and point out
that the comparison between the setting c = 2 against c = 0 is very difficult as the loop frequencies
are very low. The dendrograms in the upper row of Figure 11 illustrate the comparison of c = 25
and c = 10. It is remarkable that for each m the correct clusters are obtained. The lower row of
Figure 11 showcases the dendrograms for the comparison of the estimators f̂δ2Xi,2,m

and f̂δ2Xi,0,m
,

1 ≤ i ≤ 102 and m ∈ {1/9960, 1/4980, 1/1245}. For m ∈ {1/9960, 1/4980}, we obtain (up to
one exception) the correct clusters, although they are much closer (w.r.t. the L1-distance) than
the clusters for the previous comparisons. However, for m = 1/1245, it is no longer possible to
reliably identify two clusters that correspond to c = 2 and c = 0. It seems that in this case m is
too large to yield a perfect discrimination.

To conclude this section, we investigate whether classification based on the DTM-density esti-
mates f̂δ2Xi,c,m

is possible. Here, we restrict ourselves once again to the comparison of c = 25

with c = 10 as well as of c = 2 with c = 0. For each comparison, we randomly select 5%/10%
(rounded up) of the density estimates for each considered loop density and classify the remaining
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Fig. 11: Chromatin Analysis II: Upper row: The results of an average linkage clustering of the kernel density
estimators f̂δ2Xi,25,m

(blue-green) and f̂δ2Xi,10,m
(orange), 1 ≤ i ≤ 102, for m ∈ {1/9960, 1/4980, 1/1245} (from

left to right) based on the L1-distance. Lower row: The results of an average linkage clustering of the kernel

density estimators f̂δ2Xi,2,m
(green) and f̂δ2Xi,0,m

(yellow), 1 ≤ i ≤ 102, for m ∈ {1/9960, 1/4980, 1/1245} (from

left to right) based on the L1-distance.

ones according to the the majority of the labels of their k = 1, 3, 5 nearest neighbors in the
randomly selected sample. We repeat this procedure for both comparisons 10,000 times and re-
port the relative number of misclassifications in Table 1. The upper row of said table highlights
that in the comparison of c = 25 and c = 10 the DTM-density estimates are always classified
correctly. Things change in the comparison of c = 2 with c = 0. While for all m at least 90%
of the classifications are correct, there is a noticeable difference between the individual values of
m. We observe that m = 1/4980 yields by far the best performance in this setting. It is clear
that the loop distributions of the respective chromatin fibers for these two parameters are ex-
tremely similar (the chromatin admits few to no loops). Hence, choosing m too large incorporates
too much global (non-loop) structure and makes it difficult to discriminate between these two
loop densities. On the other hand, choosing m too small seems to incorporate too little structure.

To conclude, we find that it is possible for a suitable choice of m to clearly distinguish between
the different loop densities based on the DTM-density estimators f̂δ2Xi,c,m

. We have illustrated

that these estimators yield a good summary of the data and can be used to approach the (already
quite difficult) problem of chromatin loop analysis for noisy synthetic data.
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k = 1 k = 3 k = 5
5% 0.000 0.000 0.000
10% 0.000 0.000 0.000

k = 1 k = 3 k = 5
5% 0.000 0.000 0.000
10% 0.000 0.000 0.000

k = 1 k = 3 k = 5
5% 0.000 0.000 0.000
10% 0.000 0.000 0.000

k = 1 k = 3 k = 5
5% 0.029 0.049 0.069
10% 0.020 0.033 0.043

k = 1 k = 3 k = 5
5% 0.012 0.019 0.039
10% 0.001 0.007 0.012

k = 1 k = 3 k = 5
5% 0.029 0.064 0.100
10% 0.008 0.021 0.025

Tab. 1: Chromatin Analysis III: Upper row: The relative number of missclassifications of a k-nearest neighbor
classification (w.r.t. the L1-distance) based on the kernel density estimators f̂δ2Xi,25,m

and f̂δ2Xi,10,m
, 1 ≤ i ≤ 102,

for m ∈ {1/9960, 1/4980, 1/1245} (from left to right). Lower row: The relative number of missclassifications of

a k-nearest neighbor classification (w.r.t. the L1-distance) based on the kernel density estimators f̂δ2Xi,2,m
and

f̂δ2Xi,0,m
, 1 ≤ i ≤ 102, for m ∈ {1/9960, 1/4980, 1/1245} (from left to right).
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A Proof of Lemma 2.6

In this section, we state the full proof of Lemma 2.6.

Lemma 2.6. Let X = (X1, . . . , Xd) ∼ µX and x = (x1, . . . , xd) ∈ Rd.

1. We observe that

d2
X ,1(x) = E

[
||X − x||2

]
=

d∑
i=1

(
E
[
X2
i

]
− 2xiE [Xi] + x2

i

)
=

d∑
i=1

(
(xi − E [Xi])

2
+ E

[
X2
i

]
− (E [Xi])

2
)
.

Setting ci = E [Xi] and ζ =
∑d
i=1

(
E
[
X2
i

]
− (E [Xi])

2
)

yields the claim.

2. This follows directly from the fist statement.

3. The fist statement implies that

∇d2
X ,1(x) = 2(x− E [X]).

Clearly, this is zero if and only if x = E [X].

4. By the second and third statement d2
X ,1 is three times continuously differentiable and

∇d2
X ,1 > 0 on d2

X ,1
−1

([y − 2h0, y + 2h0]). In consequence, there exists an open set U ⊃
d2
X ,1
−1

([y − h0, y + h0]) such that the function

ϕ : U ⊂ Rd → Rd; x 7→
∇d2
X ,1(x)

||∇d2
X ,1(x)||2
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is C2(U,Rd). By Theorem 2 in Chapter 15 of Hirsch and Smale [29] there is a unique flow
Φ∗ : [−h0, h0]×W → Rd with ∂

∂vΦ∗(v, x) =
∇d2
X ,1(Φ∗(v,x))

||∇d2
X ,1(Φ∗(v,x))||2

Φ∗(0, x) = x,
(17)

where W ⊂ Rd is an open set that contains d2
X ,1
−1

([y − h0, y + h0]). Differentiating the

function v 7→ d2
X ,1(Φ∗(v, x)) immediately shows that d2

X ,1 (Φ∗(v, x)) = d2
X ,1(x) + v. This

implies that Φ∗(v,d2
X ,1
−1

({y})) = d2
X ,1
−1

({y + v}). In consequence, it only remains prove
that Φ defined in the statement is a solution of the ordinary differential equation (17). For
this purpose, we observe that Φ(0, x) = x for all x. Furthermore, we derive that

∂

∂v
Φ(v, x) =

 x1 − c1
2||x− c||2

√
v

||x−c||2 + 1
, . . . ,

xd − cd
2||x− c||2

√
v

||x−c||2 + 1

T

By the first statement, it follows immediately that

∇d2
X ,1(x)

||∇d2
X ,1(x)||2

=

(
x1 − c1

2||x− c||2
, . . . ,

xd − cd
2||x− c||2

)T
.

In consequence, we find that

∇d2
X ,1(Φ∗(v, x))

||∇d2
X ,1(Φ∗(v, x))||2

=

 x1 − c1
2||x− c||2

√
v

||x−c||2 + 1
, . . . ,

xd − cd
2||x− c||2

√
v

||x−c||2 + 1

T

,

which proves the fourth statement.

B Additional Details on Example 2.7-2.10

In this section, we will provide additional details on the examples considered in Section 2.2.
For each example considered, we first briefly recall the setting and derive the corresponding
DTM-function and DTM-density.

B.1 Example 2.8

Let X = [0, 1] and let µX denote the uniform distribution on X . Furthermore, we consider two
values for m, namely m1 = 1 and m2 = 0.1.

First, we derive d2
X ,1 and fd2

X ,1
. To this end, we observe that for x ∈ X and X ∼ µX

d2
X ,1(x) =

∫ 1

0

F−1
x (t) dt = E

[
(X − x)2

]
=

1

3
− x+ x2.
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This immediately gives that

Fd2
X ,1

(t) = P
(
d2
X ,1(X) ≤ t

)
=


0 t ≤ 1

12 ,√
4t− 1

3
1
12 ≤ t ≤

1
3 ,

1 t > 1
3 .

Hence, fd2
X ,1

is given as

fd2
X ,1

(t) =

{
2
√

3√
12t−1

1
12 ≤ t ≤

1
3 ,

0 else.

Next, we come to m2 = 0.1. In order to calculate d2
X ,0.1 and fd2

X ,0.1
, it is necessary to derive the

family
(
F−1
x

)
x∈X explicitly. A short calculation yields that for 0 ≤ x ≤ 1/2

F−1
x (y) =

{
y2

4 0 < y ≤ 2x,

(y − x)2 2x < y < 1,

and for 1/2 < x ≤ 1

F−1
x (y) =

{
y2

4 0 < y ≤ 2(1− x),

(y − (1− x))2 2(1− x) < y < 1.

Therefore, we find that

d2
X ,0.1(x) =


x2 + 0.1x+ 1

300 0 ≤ x < 0.05,
1

1200 0.05 ≤ x ≤ 0.95,

(1− x)2 + 0.1(1− x) + 1
300 0.95 ≤ x ≤ 1.

Since d2
X ,0.1 is constant for x ∈ [0.05, 0.95] it is immediately clear that the corresponding distri-

bution function Fd2
X ,0.1

is not continuous. Indeed, we find that

Fd2
X ,0.1

(y) = P
(
d2
X ,0.1(X) ≤ y

)
=


0 y < 1

1200 ,

1
20

√
400y − 1

3 + 0.9 1
1200 ≤ y ≤

1
300 ,

1 y ≥ 1
300 .

B.2 Example 2.9

Let X = [0, 1] and let µX denote the probability distribution on [0, 1] with density f(x) = 2x. Let
m = 0.1. As previously, we have to explicitly calculate the family

(
F−1
x

)
x∈X . A short calculation

shows that for 0 ≤ x ≤ 1/2 we have that

F−1
x (y) =

{
y2

16x2 0 < y ≤ 4x2,

(
√
y − x)2 4x2 < y < 1,

and for 1/2 < x ≤ 1

F−1
x (y) =

{
y2

16x2 0 < y ≤ 4x(1− x),

(x−
√

1− y)2 4x(1− x) < y < 1.
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The integration of these function on [0, 0.1], shows that the corresponding DTM-function is given
as

d2
X ,0.1(x) =


x2 − 2

3

√
2
5x+ 1

20 0 ≤ x ≤
√

0.1
2 ,

1
4800x2

√
0.1
2 ≤ x ≤ 1

2 + 3
2
√

10
,

x2 +
(

18
√

2
5 −

40
3

)
x+ 19

20
1
2 + 3

2
√

10
< x ≤ 1.

It is obvious that in this case d2
X ,0.1 is almost nowhere constant. Furthermore, we can now show

that

Fd2
X ,0.1

(y) =



0 y≤ − 13661
180 + 24

√
10,

2
45

(
−27
√

2 + 20
√

5
)√

13661− 4320
√

10 + 180y − 13661
180 + 24

√
10 <y≤ 19−6

√
10

120 ,

y− 3
5

√
360y−8640

√
10+27322+ 4

9

√
900y−21600

√
10+68305

− 1
4800y−48

√
10+ 27493

180

19−6
√

10
120 < y ≤ −683

60 + 18
√

2
5 ,

1− 1
4800y

−683
60 + 18

√
2
5 <y≤

1
120

−y + 1
45

√
360y − 2 + 173

180
1

120 <y≤
1
20

1 y> 1
20 .

This allows us to derive that

fd2
X ,0.1

(y) =



80
√

5−108
√

2√
13661−4320

√
10+180y

− 13661
180 + 24

√
10 < y ≤ 19−6

√
10

120 ,

1 + 40
√

5−54
√

2√
13661−4320

√
10+180y

+ 1
4800y2

19−6
√

10
120 < y ≤ −683

60 + 18
√

2
5 ,

1
4800y2

−683
60 + 18

√
2
5 < y ≤ 1

120

−1 + 2√
− 1

2 +90y

1
120 < y ≤ 1

20

0 else.

B.3 Example 2.7

Let X = [0, 1]2 and let µX stand for the uniform distribution on X . Choose m = 1 and let
X ∼ µX . Then, it is possible to derive that for x = (x1, x2) ∈ X

d2
X ,1(x) = E

[
||X − x||2

]
= x2

1 + x2
2 − x1 − x2 +

2

3
.

Hence, we find that

Fd2
X ,1

(y) =



0 y ≤ 1
6 ,

π
(
y − 1

6

)
1
6 < y ≤ 5

12 ,

1
3

(√
36y−15+(6y−1)arccot

(
2
√
y− 5

12

)
+(1−6y) arctan

(√
4y− 5

3

)) 5
12 < y ≤ 2

3 ,

1 y > 2
3 .
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The corresponding density is given as

fd2
X ,1

(y) =


π 1

6 ≤ y ≤
5
12 ,

2arccot
(

2
√
y − 5

12

)
− 2 arctan

(√
4y − 5

3

)
5
12 < y ≤ 2

3 ,

0 else.

B.4 Example 2.10

Let X denote a disk in R2 centered at (0, 0) with radius 1 and let µX denote probability measure
with density

f(x1, x2) =

{
− 2
π

(
x2

1 + x2
2 − 1

)
x2

1 + x2
2 ≤ 1,

0 else.

In this case, it is for m = 1 straight forward to derive that for x = (x1, x2) ∈ X

d2
X ,1(x) = x2

1 + x2
2 +

1

3
. (18)

In consequence, we find that for X ∼ µX

Fd2
X ,1

(y) =


0 y ≤ 1

3 ,

−y2 + 8
3y −

7
9

1
3 < y ≤ 4

3 ,

1 else.

The corresponding density is given as

fd2
X ,1

(y) =

{
−2y + 8

3
1
3 < y ≤ 4

3 ,

0 else.
(19)

C Proof of Theorem 2.12

In this section, we give the full proof of Theorem 2.12. The proof is composed of four steps, each
of which formulated as an independent lemma (see Section C.1).

Step 1: Replacement of δ2
X ,m(Xi) by d2

X ,m(Xi) (Lemma C.1).

We provide a decomposition of f̂δ2X ,m in a sum of two leading terms in which δ2
X ,m(Xi) is

replaced by d2
X ,m(Xi) in the argument of the kernel K and we show that the remainder

terms are negligible.

Step 2: Introducing U-statistics (Lemma C.2).
It is shown that the leading terms obtained in Step 1 can be written as a (sum of two)
U-statistic(s) asymptotically.

Step 3: Hoeffding decomposition (Lemma C.4).
Applying a Hoeffding decomposition allows to derive a representation of the (sum of two)
U-statistic(s) of step 2 as a sum of a deterministic term (expectation), a stochastic leading
term consisting of a sum of independent random variables and a remainder term.

Step 4: CLT for the leading term of Step 3 (Lemma C.7).
Since the leading term of Step 3 is a sum of centered independent random variables, we
can apply a standard CLT to show its asymptotic normality.
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C.1 Auxiliary lemmas representing Step 1 - Step 4

Before we come to the proof of Theorem 2.12, we will establish several auxiliary results. In order
to highlight the overall proof strategy, the corresponding proofs are deferred to Section C.3. We
begin this section, by addressing Step 1.

Lemma C.1 (Step 1). Assume that Setting 2.1 holds and let Condition 2.2 be met. Then, it
follows that

f̂δ2X ,m(y) =
1

n

n∑
i=1

[
1

h
K

(
d2
X ,m(Xi)− y

h

)
+

1

h2
K ′

(
d2
X ,m(Xi)− y

h

)
An(Xi)

]

+OP
(

1

nh3

)
+ oP

(
log(n)1/(2b)

n1/2+1/(2b)h

)
,

where

An(x) :=
1

m

∫ F−1
x (m)

0

Fx(t)− F̂x,n(t) dt.

As a direct consequence of Lemma C.1, we find that for h ∈ o
(
1/n1/5

)
the statistic

Vn(y) =
1

n

n∑
i=1

1

h
K

(
d2
X ,m(Xi)− y

h

)
+

1

n

n∑
i=1

1

h2
K ′

(
d2
X ,m(Xi)− y

h

)
An(Xi)

=: V (1)
n (y) + V (2)

n (y) (20)

drives the limit behavior of
√
nh
(
f̂δ2X ,m(y)− fd2

X ,m
(y)
)

. Next, we will establish that the statistic

Vn(y) can, up to asymptotically negligible terms, be written as a U -statistic (see e.g. Van der
Vaart [52] for more information on U -statistics).

Lemma C.2 (Introduction of U-statistics, Step 2). Assume Setting 2.1 and let V
(1)
n and V

(2)
n

be as defined in (20). Then, we have

V (1)
n (y) =

2

n(n− 1)

∑
1≤i<j≤n

g
(1)
y,h(Xi, Xj),

where

g
(1)
y,h(x1, x2) =

1

2h

(
K

(
d2
X ,m(x1)− y

h

)
+K

(
d2
X ,m(x2)− y

h

))
.

Furthermore,

V (2)
n (y) =

2

n(n− 1)

∑
1≤i<j≤n

g
(2)
y,h(Xi, Xj) +OP

(
1

nh2

)
,

where

g
(2)
y,h(x1, x2) =

1

2mh2

[
K ′

(
d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0

Fx1
(t)− 1{||x1−x2||2≤t} dt

+K ′

(
d2
X ,m(x2)− y

h

)∫ F−1
x2

(m)

0

Fx2
(t)− 1{||x1−x2||2≤t} dt

]
.
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Remark C.3. It is important to note that g
(1)
y,h and g

(2)
y,h are symmetric by definition, i.e., V

(1)
n (x)

is a U -statistic and V
(2)
n (x) can be decomposed into a U-statistic and an asymptotically negligible

remainder term.

Combining Lemma C.1 and Lemma C.2, we see that

f̂δ2X ,m(y) = Un +OP
(

1

nh3

)
+ oP

(
log(n)1/(2b)

n1/2+1/(2b)h

)
, (21)

where Un = Un(y) denotes the U -statistic with kernel function gy,h(x1, x2) := g
(1)
y,h(x1, x2) +

g
(2)
y,h(x1, x2). Before we use (21) to finalize the proof of Theorem 2.12, we establish two further

auxiliary results. Next, we rewrite Un using the Hoeffding decomposition (see Van der Vaart [52,
Sec. 11.4]), which is the key ingredient to handling the stochastic dependencies introduced by
the terms An(Xi).

Lemma C.4 (Hoeffding decomposition, Step 3). Assume Setting 2.1. Let Un be the U -statistic

with kernel function gy,h(x1, x2) = g
(1)
y,h(x1, x2) + g

(2)
y,h(x1, x2). Then, it follows that

Un = Θy,h +
2

n

n∑
i=1

gy,h,1(Xi) +
2

n(n− 1)

∑
1≤i<j≤n

gy,h,2(Xi, Xj).

Here, we have that

Θy,h =

∫
K (v) fd2

X ,m
(x+ vh) dv.

Furthermore, let Z1, Z2
i.i.d.∼ µX . Then, it holds that

gy,h,1(x1) =
1

2h
K

(
d2
X ,m(x1)− y

h

)
− 1

2
Θy,h + EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(x1, Z1)

]
,

where
Ψ(x1, x2) := ||x1 − x2||2 ∧ F−1

x2
(m)− EZ2

[
||Z2 − x2||2 ∧ F−1

x2
(m)

]
, (22)

and
gy,h,2(x1, x2) = gy,h(x1, x2)− gy,h,1(x1)− gy,h,1(x2)−Θy,h. (23)

Remark C.5. It is well known that the mean zero random variables (gy,h,2(Xi, Xj))1≤i<j≤n are

uncorrelated (see Van der Vaart [52, Sec. 11.4]).

For our later considerations it is important to derive a certain regularity for the function Ψ
defined in (22).

Lemma C.6. Assume Setting 2.1 and let Ψ be the function defined in (22). Then, the function
z 7→ Ψ(x1, z) is Lipschitz continuous for all x1 ∈ X and the corresponding Lipschitz constant
does not depend on the choice of x1, i.e., it holds

|Ψ(x1, z1)−Ψ(x1, z2)| ≤ C||z1 − z2||,

for all z1, z2 ∈ X , where the constant 0 < C <∞ does not depend on x1.

The next step in the proof of Theorem 2.12 is to derive for n → ∞ and h → 0 the limit
distribution of

√
nh
(

2
n

∑n
i=1 gy,h,1(Xi)

)
.
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Lemma C.7. Assume Setting 2.1 and let Condition 2.2 be met. Let n → ∞, h → 0 such that
nh→∞ and recall that

gy,h,1(x1) =
1

2h
K

(
d2
X ,m(x1)− y

h

)
− 1

2
Θy,h + EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(x1, Z1)

]
,

It holds
2
√
h√
n

n∑
i=1

gy,h,1(Xi)⇒ N

(
0, fd2

X ,m
(y)

∫
K2(u) du

)
. (24)

With all auxiliary results required established, we can finally come to the proof of Theorem 2.12.

The proof strategy is to demonstrate that the limit of
√
nh
(
f̂δ2X ,m(y)− fd2

X ,m
(y)
)

coincides with

the limit of 2
√
h√
n

∑n
i=1 gy,h,1(Xi).

C.2 Proof of Theorem 2.12

The proof of Theorem 2.12 is now a consequence of the lemmas provided in the previous subsec-
tion.

Theorem 2.12. We find that∣∣∣∣∣√nh(f̂δ2X ,m(y)− fd2
X ,m

(y)
)
−
√
nh

(
2

n

n∑
i=1

gy,h,1(Xi)

)∣∣∣∣∣
≤
√
nh

∣∣∣∣∣f̂δ2X ,m(y)−

(
2

n

n∑
i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣+
√
nh
∣∣∣fd2
X ,m

(y)−Θy,h

∣∣∣ . (25)

In the following, we consider both summands separately.

First summand: For the first summand, we obtain that

Sn(y) =
√
nh

∣∣∣∣∣f̂δ2X ,m(y)−

(
2

n

n∑
i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣
≤
√
nh

(∣∣∣f̂δ2X ,m(y)− Vn(y)
∣∣∣+ |Vn(y)− Un(y)|+

∣∣∣∣∣Un(y)−

(
2

n

n∑
i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣
)
,

where Vn(y) and Un(y) are defined in(20) and (21) respectively. By Lemma C.1 and h = o
(
n−1/5

)
we obtain that

√
nh
∣∣∣f̂δ2X ,m(y)− Vn(y)

∣∣∣ = OP

(√
nh

nh3

)
+ oP

(√
nh log(n)1/(2b)

n1/2+1/(2b)h

)
= oP (1).

Similarly, we get by Lemma C.2 and h = o
(
n−1/5

)
that

√
nh |Vn(y)− Un(y)| = OP

(√
nh

nh2

)
= oP (1).
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Hence, it remains to consider

√
nh

∣∣∣∣∣Un(y)−

(
2

n

n∑
i=1

gy,h,1(Xi) + Θy,h

)∣∣∣∣∣ =
√
nh

∣∣∣∣∣∣ 2

n(n− 1)

∑
1≤i<j≤n

gy,h,2(Xi, Xj)

∣∣∣∣∣∣ ,
where the last equality follows by Lemma C.4. Considering the definition of gy,h,2(x1, x2) in (23),
we recognize that gy,h,2(x1, x2) ∈ O

(
1
h2

)
, as h → 0. Let now g∗y,2(x1, x2) = h2gy,h,2(x1, x2).

Then, g∗y,h,2(x1, x2) = O(1), as h → 0. Furthermore, we have by Remark C.5 that the ran-
dom variables {gy,h,2(Xi, Xj)}1≤i<j≤n are uncorrelated, whence the same holds for the random
variables {g∗y,h,2(Xi, Xj)}1≤i<j≤n. In consequence, we obtain that

Var

 2

n(n− 1)

∑
1≤i<j≤n

g∗y,2(Xi, Xj)

 = O
(
n−2

)
.

This in turn implies by Chebyshev’s inequality that

2

n(n− 1)

∑
1≤i<j≤n

g∗y,2(Xi, Xj) = OP (n−1).

Therefore, we obtain with h = o
(
n−1/5

)
that

2
√
h√

n(n− 1)

∑
1≤i<j≤n

gy,h,2(Xi, Xj) =

√
nh

h2

 2

n(n− 1)

∑
1≤i<j≤n

g∗y,2(Xi, Xj)


=OP

(
1

n1/2h1.5

)
= oP (1).

Thus, we have shown that S(y) = oP (1).
Second summand: Finally, we come to the second summand in (25). First of all, we observe that

Θy,h =

∫
K (v) fd2

X ,m
(x+ vh) dv = E

[
1

nh

n∑
i=1

K

(
d2
X ,m(Xi)− y

h

)]
,

where {d2
X ,m(Xi)}ni=1 is a collection of i.i.d. random variables with density fd2

X ,m
. Since fd2

X ,m

is assumed to be twice differentiable on (y − ε, y + ε) and K is symmetric, i.e.,
∫
uK(u) du = 0,

it follows by a straight forward adaptation of Proposition 1.2 of Tsybakov [51] that∣∣∣Θy,h − fd2
X ,m

(y)
∣∣∣ ≤ Ch2.

Here, C denotes a constant independent of n and h. We get that

√
nh
∣∣∣Θy,h − fd2

X ,m
(y)
∣∣∣ = OP (

√
nh5) = oP (1),

as h = o
(
n−1/5

)
.

In conclusion, we have shown that∣∣∣∣∣√nh(f̂δ2X ,m(y)− fd2
X ,m

(y)
)
−
√
nh

(
2

n

n∑
i=1

gy,h,1(Xi)

)∣∣∣∣∣ = oP (1),
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which yields that

√
nh
(
f̂δ2X ,m(y)− fd2

X ,m
(y)
)
⇒ N

(
0, fd2

X ,m
(y)

∫
R
K2(u) du

)
as claimed.

C.3 Proofs of the Auxiliary Lemmas from Section C.1

In this section, we gather the full proofs of Lemma C.1-C.7.

C.3.1 Proof of Lemma C.1

In the course of this proof we have to differentiate between the cases 0 < m < 1 and m = 1.

The case 0 < m < 1: By assumption the kernel K is twice continuously differentiable. Using a
Taylor series approximation, we find that

K

(
δ2
X ,m(Xi)− y

h

)
= K

(
d2
X ,m(Xi)− y

h

)
+

1

h
K ′

(
d2
X ,m(Xi)− y

h

)(
δ2
X ,m(Xi)− d2

X ,m(Xi)
)

+
1

2h2
K ′′

(
ζ − y
h

)(
δ2
X ,m(Xi)− d2

X ,m(Xi)
)2
,

for some ζi between d2
X ,m(Xi) and δ2

X ,m(Xi). By Theorem 9 in Chazal et al. [14] (whose condi-
tions are met by assumption) it holds

sup
x∈X

∣∣δ2
X ,m(x)− d2

X ,m(x)
∣∣ = OP (1/

√
n). (26)

In consequence, we obtain that

f̂δ2X ,m(y) =
1

nh

n∑
i=1

K

(
δ2
X ,m(Xi)− y

h

)

=
1

nh

n∑
i=1

[
K

(
d2
X ,m(Xi)− y

h

)
+

1

h
K ′

(
d2
X ,m(Xi)− y

h

)(
δ2
X ,m(Xi)− d2

X ,m(Xi)
)]

+OP (1/(nh3)).

Furthermore, it has been shown (see the proof of Theorem 5 in Chazal et al. [14]) that for any
x ∈ X

δ2
X ,m(x)− d2

X ,m(x) =
1

m

∫ F−1
x (m)

0

Fx(t)− F̂x,n(t) dt+
1

m

∫ F̂−1
x,n(m)

F−1
x (m)

m− F̂x,n(t) dt

=: An(x) +Rn(x). (27)

In consequence, it remains to estimate supx∈X |Rn(x)|. Clearly, we have that

|Rn(x)| ≤ 1

m
|Sn(x)| |Tn(x)| , (28)

where
Sn(x) =

∣∣∣F−1
x (m)− F̂−1

x,n(m)
∣∣∣ and Tn(x) = sup

t

∣∣∣Fx(t)− F̂x,n(t)
∣∣∣ .
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Claim 1: It holds that

sup
x∈X
|Sn(x)| = oP

((
log(n)

n

)1/(2b)
)

as well as sup
x∈X
|Tn(x)| = OP

(√
d

n

)
,

where 1 ≤ b < 5.

Combining Claim 1 with (28) yields supx∈X |Rn(x)| = oP

(
log(n)1/(2b)

n1/2+1/(2b)

)
, which gives the state-

ment for 0 < m < 1.

Proof of Claim 1: It has already been established in the proof of Theorem 9 in Chazal et al.
[14] that under the assumptions made

sup
x∈X
|Tn(x)| = OP

(√
d

n

)
.

Hence, it only remains to demonstrate the first equality. To this end, let ξi
i.i.d.∼ Uniform(0,1),

1 ≤ i ≤ n, and denote by Hn their empirical distribution function. Define k = mn. Then, it

holds that F̂−1
x,n(m)

D
= F−1

x (ξ(k)) = F−1
x

(
H−1
n (m)

)
. Here, ξ(k) is the k-th order statistic and

D
=

denotes equality in deistribution. Hence, we have for any m > 0 and x ∈ X that

P (|Sn(x)| > ε) =P
(∣∣F−1

x

(
H−1
n (m)

)
− F−1

x (m)
∣∣ > ε

)
≤P
(
ωx
(∣∣m−H−1

n (m)
∣∣) > ε

)
,

where ωx denote the modulus of continuity for F−1
x . This means that for u ∈ (0, 1)

ωx(u) := sup
t,t′∈(0,1)2,|t−t′|<u

∣∣F−1
x (t)− F−1

x (t′)
∣∣ .

By assumption, there exists a constant κ ∈ R such that ωX (u) = supx∈X ωx(u) ≤ κu1/b for all
u ∈ (0, 1). Hence, we find that

P
(
ωx
(∣∣m−H−1

n (m)
∣∣) > ε

)
≤P
(∣∣m−H−1

n (m)
∣∣ > ( ε

κ

)b)

≤2 exp

−n ( εκ)2b
m

1

1 +
2( εκ )

b

3m

 , (29)

where the last line follows from Shorack and Wellner [48] (Inequality 1 on Page 453 and Propo-
sition 1, page 455). Next, we observe that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤P
(

sup
x∈X

ωx
(
|m−H−1

n (m)|
)
> ε

)
≤ P

(
κ|m−H−1

n (m)|1/b > ε
)
.

Using (29), we find that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤2 exp

−n ( εκ)2b
m

1

1 +
2( εκ )

b

3m

 ≤ 2 exp

(
−
n
(
ε
κ

)2b
m

1

1 + 2
3m

)
,
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since ε/κ < 1 for epsilon small enough. As m ≤ 1, we find that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤ 2 exp

(
−3n

5

( ε
κ

)2b
)
.

Let now ε = τ
(

log(n)
n

)1/(2b)

. It follows that

P
(

sup
x∈X
|Sn(x)| > ε

)
≤ 2 exp

(
−3

5

( τ
κ

)2b

log(n)

)
,

and thus

sup
x∈X
|Sn(x)| = oP

(
log(n)

n

)1/(2b)

,

which yields Claim 1.

The case m = 1: Similar as for 0 < m < 1, we find that

K

(
δ2
X ,1(Xi)− y

h

)
= K

(
d2
X ,1(Xi)− y

h

)
+

1

h
K ′

(
d2
X ,1(Xi)− y

h

)(
δ2
X ,1(Xi)− d2

X ,1(Xi)
)

+
1

2h2
K ′′

(
ζi − y
h

)(
δ2
X ,1(Xi)− d2

X ,1(Xi)
)2
,

for some ζi between d2
X ,1(Xi) and δ2

X ,1(Xi). By Lemma E.1 we obtain

sup
x∈X

∣∣δ2
X ,1(x)− d2

X ,1(x)
∣∣ = OP (1/

√
n). (30)

Furthermore, we note that for x ∈ X

δ2
X ,1(x)− d2

X ,1(x) =

∫ Dx

0

Fx(t)− F̂x,n(t) dt, (31)

where [0, Dx] denotes the support of Fx. In combination with our previous considerations, we
find that

f̂δ2X ,1(y) =
1

nh

n∑
i=1

[
K

(
d2
X ,1(Xi)− y

h

)
+

1

h
K ′

(
d2
X ,1(Xi)− y

h

)
An(x)

]
+OP

(
1

nh3

)
,

which yields the claim.
�

C.3.2 Proof of Lemma C.2

First, we consider V
(1)
n (x). Clearly, we have

V (1)
n (y) =

1

n

n∑
i=1

1

h
K

(
d2
X ,m(Xi)− y

h

)

=
2

n(n− 1)

∑
1≤i<j≤n

1

2h

(
K

(
d2
X ,m(Xi)− y

h

)
+K

(
d2
X ,m(Xj)− y

h

))

=
2

n(n− 1)

∑
1≤i<j≤n

g
(1)
y,h(Xi, Xj).
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Next, we come to V
(2)
n (y). We have that

V (2)
n (y) =

1

n

n∑
i=1

1

h2
K ′

(
d2
X ,m(Xi)− y

h

)
An(Xi)

=
1

n

n∑
i=1

1

h2
K ′

(
d2
X ,m(Xi)− y

h

)
1

m

∫ F−1
Xi

(m)

0

FXi(t)− F̂Xi,n(t) dt

=
1

n

n∑
i=1

1

h2
K ′

(
d2
X ,m(Xi)− y

h

)
1

m

∫ F−1
Xi

(m)

0

FXi(t)−
1

n

n∑
j=1

1{||Xi−Xj ||2≤t} dt

=
1

n2

n∑
i=1

1

h2
K ′

(
d2
X ,m(Xi)− y

h

)
1

m

n∑
j=1

∫ F−1
Xi

(m)

0

FXi(t)− 1{||Xi−Xj ||2≤t} dt.

Further, we obtain that

V (2)
n (y) =

1

n2

n∑
i=1

n∑
j=1

1

mh2
K ′

(
d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0

FXi(t)− 1{||Xi−Xj ||2≤t} dt

=
1

n2

∑
1≤i<j≤n

1

mh2

[
K ′

(
d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0

FXi(t)− 1{||Xi−Xj ||2≤t} dt

+K ′

(
d2
X ,m(Xj)− y

h

)∫ F−1
Xj

(m)

0

FXj (t)− 1{||Xj−Xi||2≤t} dt

]

+
1

n2

n∑
i=1

1

mh2

[
K ′

(
d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0

FXi(t)− 1 dt

]
.

We note that K is twice differentiable and X is compact, i.e.,∣∣∣∣∣
∫ F−1

x1
(m)

0

Fx2
(t)− 1{||x1−x2||2≤t} dt

∣∣∣∣∣ ≤ diam (X ) <∞

for all x1, x2 ∈ X . This yields that

V (2)
n (y)=

2

n2

∑
1≤i<j≤n

1

2mh2

[
K ′

(
d2
X ,m(Xi)− y

h

)∫ F−1
Xi

(m)

0

FXi(t)− 1{||Xi−Xj ||2≤t} dt

+K ′

(
d2
X ,m(Xj)− y

h

)∫ F−1
Xj

(m)

0

FXj (t)− 1{||Xj−Xi||2≤t} dt

]
+OP

(
1

nh2

)

=
n− 1

n

 2

n(n− 1)

∑
1≤i<j≤n

g
(2)
y,h(Xi, Xj)

+OP
(

1

nh2

)

=
2

n(n− 1)

∑
1≤i<j≤n

g
(2)
y,h(Xi, Xj) +OP

(
1

nh2

)
.

�
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C.3.3 Proof of Lemma C.4

Since X1, . . . Xn
i.i.d.∼ µX , the claim follows by the Hoeffding decomposition [52, Lemma 11.11]

once we have shown that

1. Θy,h = E [Un]

2. gy,h,1(x1) = E [gy,h(x1, Z1)]−Θy,h, where Z1 ∼ µX .

First equality: We start by verifying the first equality. Clearly,

E [Un] = E
[
g

(1)
y,h(X1, X2)

]
+ E

[
g

(2)
y,h(X1, X2)

]
.

Since X1, X2
i.i.d.∼ µX , we obtain that

E
[
g

(1)
y,h(X1, X2)

]
=E

[
1

2h

(
K

(
d2
X ,m(X1)− y

h

)
+K

(
d2
X ,m(X2)− y

h

))]

=E

[
1

h
K

(
d2
X ,m(X1)− y

h

)]
=

∫
1

h
K

(
d2
X ,m(z)− y

h

)
dµX (z)

=

∫
1

h
K

(
u− y
h

)
d(d2
X ,m#µX )(u).

Here, the last equality follows by the change-of-variables formula (d2
X ,m#µX denotes the push-

forward measure of µX with respect to d2
X ,m). By assumption the measure d2

X ,m#µX possesses
a density fd2

X ,m
with respect to the Lebesgue measure. Hence,

E
[
g

(1)
y,h(X1, X2)

]
=

∫
1

h
K

(
u− y
h

)
fd2
X ,m

(u) du

=

∫
K (v) fd2

X ,m
(y + vh) dv.

As X1, X2
i.i.d.∼ µX , we obtain for the second summand that

E
[
g

(2)
y,h(X1, X2)

]
=E

[
1

2mh2
K ′

(
d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0

FX1
(t)− 1{||X1−X2||2≤t} dt

]

+E

[
1

2mh2
K ′

(
d2
X ,m(X2)− y

h

)∫ F−1
X2

(m)

0

FX2(t)− 1{||X2−X1||2≤t} dt

]

=E

[
1

mh2
K ′

(
d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0

FX1(t)− 1{||X1−X2||2≤t} dt

]
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Since X1 and X2 are independent, we further find that

E
[
g

(2)
y,h(X1, X2)

]
=EX1

[
1

mh2
K ′

(
d2
X ,m(X1)− y

h

)
EX2

[∫ F−1
X1

(m)

0

FX1(t)− 1{||X1−X2||2≤t} dt

]]
(i)
=EX1

[
1

mh2
K ′

(
d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0

FX1
(t)− EX2

[
1{||X1−X2||2≤t}

]
dt

]

=EX1

[
1

mh2
K ′

(
d2
X ,m(X1)− y

h

)∫ F−1
X1

(m)

0

FX1
(t)− FX1

(t) dt

]
=0,

where (i) follows by the Theorem of Tonelli/Fubini [6, Thm. 18]. Combining our results, we find
that E [Un] = Θy,h.

Second equality: Recall that Z1 ∼ µX . We demonstrate that

gy,h,1(x1) = E [gy,h(x1, Z1)]−Θy,h = E
[
g

(1)
y,h(x1, Z1)

]
+ E

[
g

(2)
y,h(x1, Z1)

]
−Θy,h.

Once again, we consider the two summands separately. We observe that

E
[
g

(1)
y,h(x1, Z1)

]
=E

[
1

2h

(
K

(
d2
X ,m(x1)− y

h

)
+K

(
d2
X ,m(Z1)− y

h

))]

=
1

2h
K

(
d2
X ,m(x1)− y

h

)
+

1

2
Θy,h.

Here, the last equality follows by our previous considerations for E [Un]. For the second summand,
it follows that

E
[
g

(2)
y,h(x1, Z1)

]
=E

[
1

2mh2
K ′

(
d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0

Fx1
(t)− 1{||x1−Z1||2≤t} dt

]

+E

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)∫ F−1
Z1

(m)

0

FZ1
(t)− 1{||Z1−x1||2≤t} dt

]
=:T1 + T2.

The Theorem of Tonelli/Fubini [6, Thm. 18] shows that

T1 =
1

2mh2
K ′

(
d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0

Fx1
(t)− E

[
1{||x1−Z1||2≤t}

]
dt

=
1

2mh2
K ′

(
d2
X ,m(x1)− y

h

)∫ F−1
x1

(m)

0

Fx1(t)− Fx1(t) dt = 0.

Furthermore, we obtain for Z2 ∼ µX independent of Z1 that

T2 =EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)∫ F−1
Z1

(m)

0

EZ2

[
1{||Z1−Z2||2≤t}

]
− 1{||Z1−x1||2≤t} dt

]

=EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)
EZ2

[∫ F−1
Z1

(m)

0

1{||Z1−Z2||2≤t} − 1{||Z1−x1||2≤t} dt

]]
,
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where the last step follows by the theorem of Tonelli/Fubini [6, Thm. 18]. Moreover, Lemma
F.1 yields that

T2 =EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)
EZ2

[
||x1 − Z1||2 ∧ F−1

Z1
(m)− ||Z1 − Z2||2 ∧ F−1

Z1
(m)

]]

=EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)(
||x1 − Z1||2 ∧ F−1

Z1
(m)− EZ2

[
||Z1 − Z2||2 ∧ F−1

Z1
(m)

])]
.

Combining all of our results, we finally get that

gy,h,1(x1) =
1

2h
K

(
d2
X ,m(x1)− y

h

)
− 1

2
Θy,h + EZ1

[
1

2mh2
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(x1, Z1)

]
,

as claimed.
�

C.3.4 Proof of Lemma C.6

Let x1 ∈ X be arbitrary. We observe that for any z1, z2 ∈ X

|Ψ(x1, z1)−Ψ(x1, z2)| =
∣∣||x1 − z1||2 ∧ F−1

z1 (m)− EZ2

[
||Z2 − z1||2 ∧ F−1

z1 (m)
]

−||x1 − z2||2 ∧ F−1
z2 (m) + EZ2

[
||Z2 − z2||2 ∧ F−1

z2 (m)
] ∣∣

≤
∣∣||x1 − z1||2 ∧ F−1

z1 (m)− ||x1 − z2||2 ∧ F−1
z2 (m)

∣∣
+
∣∣EZ2

[
||Z2 − z1||2 ∧ F−1

z1 (m)
]
− EZ2

[
||Z2 − z2||2 ∧ F−1

z2 (m)
] ∣∣

=:Ψ1(z1, z2)−Ψ2(z1, z2).

In the following, we consider Ψ1 and Ψ2 separately. We have that for z1, z2 ∈ X

Ψ1(z1, z2) =
∣∣||x1 − z1||2 ∧ F−1

z1 (m)− ||x1 − z2||2 ∧ F−1
z2 (m)

∣∣
≤
∣∣||x1 − z1||2 − ||x1 − z2||2

∣∣+
∣∣F−1
z1 (m)− F−1

z2 (m)
∣∣

≤D
∣∣||x1 − z1|| − ||x1 − z2||

∣∣+ 2
√
D||z1 − z2||,

where the last inequality follows with D = diam (X ) <∞ and Lemma 8 in Chazal et al. [14]. In
particular, note that in the current setting we have that

sup
t∈(0,1)

sup
x∈X

F−1
x (t) ≤ D <∞.

In consequence, we obtain that for z1, z2 ∈ X

Ψ1(z1, z2) ≤ D
∣∣||z1 − z2||

∣∣+ 2
√
D||z1 − z2|| ≤ C||z1 − z2||,

where C denotes a constant that only depends on X .

Next, we consider

Ψ2(z1, z2) =
∣∣EZ2

[
||Z2 − z1||2 ∧ F−1

z1 (m)
]
− EZ2

[
||Z2 − z2||2 ∧ F−1

z2 (m)
] ∣∣

≤EZ2

[∣∣||Z2 − z1||2 ∧ F−1
z1 (m)− ||Z2 − z2||2 ∧ F−1

z2 (m)
∣∣] .
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Considering our previous calculation, we immediately obtain that

Ψ2(z1, z2) ≤EZ2 [C||z1 − z2||] = C||z1 − z2||,

where C denotes the same constant as previously. Combining our results, we find that

|Ψ(x1, z1)−Ψ(x1, z2)| ≤ C||z1 − z2||,

where the constant C only depends on X and not on x1. This yields the claim.
�

C.3.5 Proof of Lemma C.7

Next, we derive (24) using Lyapunov’s Central Limit Theorem for triangular arrays [5, Sec. 27].
To this end, we define zin := 2gy,h,1(Xi), z̄n = 1

n

∑n
i=1 zin and σ2

in := Var (zin). Clearly, for n
fixed the zin’s are independent and identically distributed. In order to check the assumptions of
Lyapunov’s Central Limit Theorem, it remains to find r > 2 such that

ρ1n := E [|z1n − E [z1n] |r] <∞ (32)

and
nρ1n

(nσ2
1n)r/2

→ 0, (33)

as n→∞.

Calculation of σ2
1n: The next step is to consider σ2

1n. As E [z1n] = 0 by construction, we find
that

σ1n =E
[
|z1n|2

]
= E

[
|2gy,h,1(X1)|2

]
= E

[
|T3 + T4|2

]
,

where

T3 :=
1

h
K

(
d2
X ,m(X1)− y

h

)
−Θy,h (34)

and

T4 := EZ1

[
1

mh2
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]
. (35)

Here, Ψ(x1, x2) is the function defined in (22). Obviously, we obtain that

σ2
1n = E

[
T 2

3

]
+ E

[
T 2

4

]
+ 2E [T3T4] .

In the following, we treat each of these summands separately.

First summand: Considering the first term, we see that

E
[
T 2

3

]
= E

∣∣∣∣∣ 1hK
(

d2
X ,m(X1)− y

h

)
−Θy,h

∣∣∣∣∣
2
 .
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which is essentially the variance of the kernel density estimator of the real valued random variable
d2
X ,m(X1). Hence, one can show using standard arguments (see e.g. Silverman [49, Sec. 3.3])

that

E
[
|T3|2

]
=
fd2
X ,m

(y)

h

∫
|K(u)|2 du+ o

(
1

h

)
.

as h→ 0.

Second summand: Next, we consider E
[
|T4|2

]
. We have that

E
[
|T4|2

]
= E

∣∣∣∣∣EZ1

[
1

mh2
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣
2
 .

Recall that Z1 ∼ µX and that µX has, by assumption, a Lipschitz continuous Lebesgue density.
Denote this density by gµX . Then, it follows that

EZ1

[
1

mh2
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]

=
1

mh2

∫
X
K ′

(
d2
X ,m(z)− y

h

)
Ψ(X1, z)gµX (z) dλd(z) (36)

Next, we realize that
sup
x1,x2

|Ψ(x1, x2)| ≤ D

and hence there is a constant 0 < C <∞ such that

max

{
sup
x∈X

gµX (x), sup
x1,x2

|Ψ(x1, x2)|
}
< C. (37)

Further, it follows by Lemma C.6 that the function Ψ∗x1
: X → R, z 7→ Ψ(x1, z) is Lipschitz

continuous for all x1 ∈ X with a Lipschitz constant that does not depend on x1. This in
combination with the Lipschitz continuity of gµX and (37) implies that the function

ψx1
: X → R, z 7→ Ψ(x1, z)gµX (z)

is Lipschitz continuous for all x1 ∈ X with a Lipschitz constant that does not depend on x1.
We have that the function x 7→ d2

X ,m(x) is coercive, that d2
X ,m is C2,1 on an open neighborhood

of Γy = d2
X ,m

−1
(y) and that ∇d2

X ,m 6= 0 on Γy by assumption. By Condition 2.2, there exists
h0 > 0 such that for all −h0 < v < h0∫

Γy

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ dH d−1(x) ≤ Cy|v|,

where Φ denotes the canonical level set flow of Γy and Cy denotes a finite constant that depends
on y and d2

X ,m. Furthermore, the kernel K is twice continuously differentiable and supp(K) =
[−1, 1]. Since K is also even, by assumption, it follows that K ′ is odd, i.e.∫ 1

−1

K ′(z) dz = 0.
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Thus, we find by Theorem D.1 that there exists some constants cy > 0 and h0 > 0 (depending
on d2

X ,m, y and X ) such that for any h < h0 we obtain that∣∣∣∣∣EZ1

[
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣ ≤ cyh2.

In consequence, we find that for h small enough

E
[
|T4|2

]
≤ E

 1

m2h4

∣∣∣∣∣EZ1

[
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣
2
 ≤ cy

m2
.

This in particular shows that E
[
|T4|2

]
= O(1) as h→ 0.

Third summand:. By Hölder’s inequality, we obtain that

E [T3T4] ≤ E [|T3T4|] ≤
(
E
[
|T3|2

])1/2 (E [|T4|2
])1/2

.

Plugging in our previous findings, we find that

E [T3T4] = O
(

1√
h

)
· O (1) = O

(
1√
h

)
.

as h→ 0. In consequence, we find that

σ2
1n =

fd2
X ,m

(x)

h

∫
|K(u)|2 du+ o

(
1

h

)
.

This concludes our consideration of σ2
1n.

Calculation of third moments: We choose r = 3 and consider ρ1n = E [|z1n − E [z1n] |r]. By
construction E [z1n] = 0. Thus, we obtain

ρ1n =E
[
|z1n|3

]
= E

[
|gy,h,1(X1)|3

]
= E

[
|T3 + T4|3

]
,

where T3 and T4 denote the terms defined in (34) and (35), respectively. Furthermore, it follows
that

ρ1n ≤ E
[
(|T3|+ |T4|)3

]
≤ 8E

[
|T3|3

]
+ 8E

[
|T4|3

]
.

Considering the first summand, this yields that

E
[
|T3|3

]
= E

∣∣∣∣∣ 1hK
(

d2
X ,m(X1)− y

h

)
−Θy,h

∣∣∣∣∣
3
 ,

which is the third moment of the kernel density estimator of the real valued random variable
d2
X ,m(X1). In particular, one can show using standard arguments that

E
[
|T3|3

]
≤

8fd2
X ,m

(x)

h2

∫
|K(u)|3 du+ o

(
1

h2

)
.
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It remains to consider

E
[
|T4|3

]
= E

∣∣∣∣∣ 1

2mh2
EZ1

[
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣
3
 .

We have already shown that for h→ 0∣∣∣∣∣ 1

2mh2
EZ1

[
K ′

(
d2
X ,m(Z1)− y

h

)
Ψ(X1, Z1)

]∣∣∣∣∣ = O(1).

Consequently, this implies that

E
[
|T4|3

]
= O(1).

Hence, we obtain that

ρ1n ≤
8fd2

X ,m
(y)

h2

∫ 1

−1

|K(u)|3 du+ o

(
1

h2

)
.

Applying Lyapunov’s CLT: Now that we have calculated ρ1n and σ2
1n, we can verify the

remaining assumption of Lyapunov’s Central Limit Theorem for triangular array’s [5, Sec. 26].
First of all, we observe that ρ1n <∞, sinceK, K ′ and Ψ are continuous and compactly supported.
Furthermore, we obtain

nρ1n

(nσ2
1n)

3/2
≤

8nf
d2
X ,m

(x)

h2

∫
|K(u)|3 du+ o

(
n
h2

)(
nf

d2
X ,m

(x)

2h

∫
|K(u)|2 du+ o

(
n
h

))3/2

=O
( n
h2

)
· O
(
n−3/2

h−3/2

)
=O

(
(nh)−1/2

)
→ 0,

if nh→∞. In consequence, Lyapunov’s Central Limit Theorem for triangular arrays is applica-
ble. It yields that

z̄n − E [z̄n]√
Var (z̄n)

D→ N(0, 1).

This in turn implies that

√
nh

(
2

n

n∑
i=1

gy,h,1(Xi)

)
⇒ N

(
0, fd2

X ,m
(y)

∫ 1

−1

|K(u)|2 du
)

which gives the claim.

�
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D Some Geometric Measure Theory

In the proof of Lemma C.7, we need to bound the term (36):

I(y) :=

∫
X
K ′

(
d2
X ,m(z)− y

h

)
Ψ(X1, z)gµX (z) dλd(z),

where gµX denotes the Lebesgue density of µX (which exists by assumption) and X1 ∼ µX . Since
the kernel K and thus also its derivative K ′ are supported on [−1, 1] , we obtain

I(y) =

∫
Ah(y)

K ′

(
d2
X ,m(z)− y

h

)
Ψ(X1, z)gµX (z) dλd(z),

where

Ah(y) :=
{
z ∈ X | y − h ≤ d2

X ,m(z) ≤ y + h
}

=
(
d2
X ,m

)−1
[y − h, y + h] ∩ X . (38)

In the following, we will show how to control such integrals over thickened level sets such as Ah(y)
for small h. More precisely, we prove the subsequent theorem that has already been applied to
bound the term I(y) in the proof of Lemma C.7.

Theorem D.1. Let X ⊂ Rd be a compact set. Let g : X → [−α, α] be α-Lipschitz continuous and
suppose that k : R→ [−α, α] for some α > 0. Assume that supp(k) = [−1, 1] and

∫
k(s) ds = 0.

Let d : Rd → R be a coercive function, i.e., lim||x||→∞ d(x) = ∞, with level sets Γy = d
−1{y}

for y ∈ R. Call y ∈ R a C2,1-regular bounded value of d with respect to X if

C.1 Γy has an open neighborhood on which d is C2,1,

C.2 ∇d 6= 0 on Γy.

C.3 There exists h∗0 > 0 and such that for all −h∗0 < v < h∗0∫
Γy

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ dH d−1(x) ≤ Cy|v|,

where Φ denotes the canonical level set flow of Γy and Cy denotes a constant that only
depends on the function d, the variable y and the underlying space X .

If y is a C2,1-regular bounded value of d with respect to X , then∣∣∣∣∫
X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣ ≤ cyh2 (39)

for some cy > 0 and any 0 < h < h0, where cy and h0 > 0 only depend on d, y, α and X (and
not on k and g explicitly).

The proof of Theorem D.1 consists of three steps, each of which is formulated as an independent
lemma (see Section D.1).

Step 1: Splitting the integration (Lemma D.2).
We first note that integration over Ah(y) can be split into integrating first over the surface
(d2
X ,m)−1(v) ∩ X with respect to the (d − 1)-dimensional Hausdorff measure H d−1 (see

Federer [19], Morgan [41] for an introduction) and afterwards over v ∈ [y − h, y + h].
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Step 2: Flow regularity (Lemma D.3).

Let W ⊂ Rd be open and let ϕ : W → Rd be C2,1. We show that the flow Φ corresponding
to the initial value problem

u′ = ϕ(u) (40)

is C2,1 on its domain (see Hirsch and Smale [29] for information about initial value problems
and flows).

Step 3: Local Lipschitz continuity (Lemma D.4).

We prove that the integral of a bounded, α-Lipschitz function g : X ⊂ Rd → [−α, α] over
the level set of a C2,1-regular bounded value d with respect to X , denoted as y, is locally
Lipschitz continuous in y. More precisely, we prove that there exists h0 > 0 such that for
all −h0 < v < h0 it holds that∣∣∣∣∣

∫
Γy+v∩X

g(x) dH d−1(x)−
∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣ ≤ Cy|v|,
where Cy > 0 denotes a constant that only depends on d, y, α and X .

D.1 Auxiliary Lemmas Representing Step 1 - Step 3

Lemma D.2. Let f : Rd → R be a Lipschitz continuous function. Let h > 0, X ⊂ Rd a compact
space and g : Rd → R such that the function

x 7→ |g(x)|
||∇f(x)||

1{x∈X : |f(x)|≤h} (41)

is integrable with respect to λd. Then, it follows that∫
{x∈X : |f(x)|≤h}

g(x) dλd(x) =

∫ h

−h

∫
f−1(v)∩X

g(x)

||∇f(x)||
dH d−1(x) dv,

where H d−1 denotes the (d− 1)-dimensional Hausdorff measure.

Proof. First of all, we observe that∫
{x∈X : |f(x)|≤h}

g(x) dλd(x) =

∫
Rd

g(x)

||∇f(x)||
1{x∈X : |f(x)|≤h}||∇f(x)|| dλd(x).

Since the function defined in (41) is integrable, it follows by the co-area formula (see Federer
[19, Thm. 3.2.12], where the k-dimensional Jacobian of f is ||∇f || in this setting) that∫

Rd

g(x)

||∇f(x)||
1{x∈X : |f(x)|≤h}||∇f(x)|| dλd(x)

=

∫ ∞
−∞

∫
f−1(v)

g(x)

||∇f(x)||
1{x∈Rd :−h≤f(x)≤h}1{x∈X} dH

d−1(x) dv

=

∫ h

−h

∫
f−1(v)∩X

g(x)

||∇f(x)||
dH d−1(x) dv.

This yields the claim.
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Lemma D.3. Let W ⊂ Rd be an open set and let ϕ : W → Rd be Cr,1, 1 ≤ 0 < ∞. Consider
the initial value problem

∂

∂t
u(t) = ϕ(u), u(0) = y (42)

Let Ω ⊂ R×W be defined as

Ω = {(t, y) ∈ R×W : t ∈ J(y)},

where J(y) ⊂ R denotes the maximal open interval on which the ODE defined in (42) admits a
solution. Then, the flow Φ : Ω→ Rd is also in Cr,1.

Proof. This statement essentially follows by a combination of Theorem 8.3 and Theorem 10.3 in
Amann [1] with the idea of proof of Theorem 2 in Chapter 15 of Hirsch and Smale [29]. For the
sake of completeness, we give the full argument here.

To prove the claim, we induct on r. The case r = 0 follows by combining Theorem 8.3 of Amann
[1] with Theorem 10.3 of the same reference. Suppose as induction hypothesis, that r ≥ 1 and
that the flow of every differential equation

∂

∂t
ζ(t) = ϕ(ζ)

with ϕ ∈ Cr−1,1 is Cr−1,1. Consider the differential equation on Rd × Rd defined by the vector
field ϕ∗ : W × Rd → Rd × Rd, ϕ∗(u, v) = (ϕ(u), Dϕ(u)v), i.e.,

∂

∂t
(u, v) = ϕ∗(u, v)

or equivalently,
u′ = ϕ(u), v′ = Dϕ(u)v. (43)

Since ϕ∗ is in Cr−1,1, the flow Φ∗ of (43) is Cr−1,1 by the induction hypothesis. But this flow is
just

Φ∗(t, (u, v)) = (Φ(t, u), DΦt(u)v)

since the second equation in (43) is the variational equation (see Hirsch and Smale [29, Chap.
15] for a definition) of the first equation. Therefore, ∂Φ/∂u is a Cr−1,1 function of (t, u), since
∂Φ/∂u = DΦt(u). Moreover, ∂Φ/∂t is in Cr−1,1 since

∂

∂t
Φ = ϕ(Φ(t, u)).

It follows that Φ is Cr,1, since its first partial derivatives are Cr−1,1.

Lemma D.4. Let X ⊂ Rd be a compact set. Let g : X → [−α, α] be an α-Lipschitz function for
some α > 0. Let d : Rd → R be a coercive function and y ∈ R a C2,1-regular bounded value of
d with respect to X . Let Γy = d

−1{y}. Then, it holds that∣∣∣∣∣
∫

Γy+v∩X
g(x) dH d−1(x)−

∫
Γy∩X

g(x) dH d−1(x)

∣∣∣∣∣ ≤ Cy|v|, (44)

for some Cy > 0 and any −h0 < v < h0, where Cy and h0 > 0 only depend on d, y, α and X
(and not on g explicitly).
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Proof. Before we prove (44), we ensure that the statement is well defined and prove that under
the assumptions made∫

Γy∩X
|g(x)| dH d−1(x) ≤ α

∫
Γy∩X

dH d−1(x) <∞.

To this end, we observe that H d−1(d−1({y}∩X ) ≤H d−1(d−1({y})). As d is coercive it follows
that the set d−1([0, y]) is bounded. Hence, the same holds true for d−1({y}). Furthermore, as
d is C2,1 in an open environment of the level set Γy and ∇d 6= 0 on Γy, it follows that Γy is a
compact C1-manifold of dimension d − 1 [53, Thm. 9], which obviously has finite volume (and
hence finite (d− 1)-dimensional Hausdorff measure [19, 41]).

Now, we focus on proving the statement (44). By assumption, d is C2,1 on an open environment U
of Γy with ||∇d|| > 0 on Γy. In consequence, there exists h′0 > 0 such that d−1([y−h′0, y+h′0]) ⊂
U and ||∇d|| > 0 on d−1([y − h′0, y + h′0]). This means that the function

ϕ(u) : Rd → Rd, u 7→ ∇d(u)

||∇d(u)||2

is C1,1(d−1((y−h′0, y+h′0)),Rd). By Lemma D.3 (or more generally by Cauchy-Lipschitz’s theory
[1, 29]) there exists 0 < h0 ≤ h′0 such that one can construct a flow Φ : [−h0, h0]×W → Rd with{

∂
∂tΦ(t, x) = ∇d(Φ(t,x))

||∇d(Φ(t,x))||2

Φ(0, x) = x,

where W ⊂ Rd is an open set that contains d−1([y − h0, y + h0]). Differentiating the function
t 7→ d(Φ(t, x)) immediately shows that d (Φ(t, x)) = d(x)+t. This implies that Φ(t,d−1({y})) =
d
−1({y + t}). In particular, Lemma D.3 yields that Φ is in C1,1. Consequently, we find that∣∣∣∣∣

∫
Γy+v∩X

g(x) dH d−1(x)−
∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
d−1({y})

g(x)1{x∈X}dH
d−1(x)−

∫
Φ(v,d−1({y}))

g(x)1{x∈X} dH
d−1(x)

∣∣∣∣∣
≤
∫
d−1({y})

∣∣g(Φ(0, x))JΦ(0,·)(x)1{Φ(0,x)∈X} − g(Φ(v, x))JΦ(v,·)(x)1{Φ(v,x)∈X}
∣∣ dH d−1(x),

where JΦ(v,·) denotes the Jacobian determinant of Φ(v, ·). The last line follows by a change of
variables (see e.g. Merigot and Thibert [40, Thm. 56]) and the fact that Φ(0, ·) is the identity.
By Kirszbraun’s Theorem [19, Thm. 2.10.43] we can extend g : X → [−α, α] to a Lipschitz
continuous function g̃ : Rd → R, that has the same Lipschitz constant α. Obviously, it holds
that ∫

d−1({y})

∣∣g(Φ(0, x))JΦ(0,·)(x)1{Φ(0,x)∈X} − g(Φ(v, x))JΦ(v,·)(x)1{Φ(v,x)∈X}
∣∣ dH d−1(x)

=

∫
d−1({y})

∣∣g̃(Φ(0, x))JΦ(0,·)(x)1{Φ(0,x)∈X} − g̃(Φ(v, x))JΦ(v,·)(x)1{Φ(v,x)∈X}
∣∣ dH d−1(x).
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Therefore, we find that∣∣∣∣∣
∫

Γy+v∩X
g(x) dH d−1(x)−

∫
Γy∩X

g(x) dH d−1(x)

∣∣∣∣∣
≤
∫
d−1({y})

∣∣g̃(Φ(0, x))JΦ(0,·)(x)− g̃(Φ(v, x))JΦ(v,·)(x)
∣∣1{Φ(0,x)∈X} dH

d−1(x)

+

∫
d−1({y})

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ ∣∣g̃(Φ(v, x))JΦ(v,·)(x)

∣∣ dH d−1(x).

Since Φ is in C1,1([−h0, h0]×W ), it follows that (v, x) 7→ g̃(Φ(v, x)) and (v, x) 7→ JΦ(v,·)(x) are
Lipschitz continuous functions. We observe that for (v, x) ∈ [−h0, h0]×X

|g̃(Φ(v, x))| ≤ |g̃(Φ(0, x))|+ |g̃(Φ(v, x))− g̃(Φ(0, x))| ≤ α+ α||Φ(v, x)− Φ(0, x)||
≤ α+ αLΦh0,

where LΦ denotes the Lipschitz constant of Φ. This implies immediately that the function
(v, x) 7→ g̃(Φ(v, x))JΦ(v,·)(x) is Lipschitz continuous on [−h0, h0] × X with a Lipschitz constant
that only depends on d, y, α and X . Further, we realize that∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}

∣∣ > 0 (45)

implies that either x ∈ X or Φ(v, x) ∈ X (but not both). Given (45), our previous calculations
show that ∣∣g̃(Φ(v, x))JΦ(v,·)(x)

∣∣ ≤ Cy,
where Cy denotes a finite constant that depends only on d, y, α as well as X . For the remainder
of this proof, this constant may vary from line to line. We obtain that∣∣∣∣∣

∫
Γy+v∩X

g(x) dH d−1(x)−
∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣
≤
∫
d−1({y})

Cy |v|1{x∈X} dH d−1(x) + Cy

∫
d−1({y})

∣∣1{Φ(0,x)∈X} − 1{Φ(v,x)∈X}
∣∣ dH d−1(x).

Since y is a C2,1-regular value of d with respect to X , we find that (by potentially adjusting h0)
there exists h0 > 0 such that for all −h0 < v < h0∣∣∣∣∣

∫
Γy+v∩X

g(x) dH d−1(x)−
∫

Γy∩X
g(x) dH d−1(x)

∣∣∣∣∣ ≤ Cy|v|H d−1 (Γy) + Cy|v| ≤ Cy|v|.

This gives the claim.

D.2 Proof of Theorem D.1

By assumption, we have that ∇d 6= 0 on the level set Γy. Furthermore, we have assumed that
the function d is C2,1 on an open neighborhood of Γy. Thus, there exists h0 > 0 such that
||∇d|| > 0 on

d
−1[y − h0, y + h0] = {x ∈ Rd : y − h0 ≤ d(x) ≤ y + h0}. (46)
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Throughout the following let 0 < h < h0. We get that∣∣∣∣∫
X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣ =

∣∣∣∣∣
∫
{x∈X : y−h≤d(x)≤y+h}

k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
{x∈X : |d(x)−y|≤h}

k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣∣ .
Since ||∇d(x)|| > 0 for x ∈ d−1[y − h0, y + h0] and |g(x)| ≤ α for all x, we obtain that

sup
x∈Rd

∣∣∣∣ g(x)

||∇d(x)||
1{x∈X : |d(x)−y|≤h}

∣∣∣∣ < Cy, (47)

where Cy denotes a constant that only depends on d, y, α and X (in particular it can be chosen
independently from h). In the following, Cy may vary from line to line. Clearly, (47) implies
that the function

x 7→ |g(x)|
||∇d(x)||

1{x∈X : |d(x)−y|≤h}

is λd-integrable for any 0 ≤ h ≤ h0. Therefore, it follows by Lemma D.2 in combination with
(47) that ∣∣∣∣∫

X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣
=

∣∣∣∣∣
∫ h

−h

∫
{x∈X :d(x)−y=v}

k

(
d(x)− y

h

)
g(x)

||∇d(x)||
dH d−1(x) dv

∣∣∣∣∣
=

∣∣∣∣∣
∫ h

−h
k
( v
h

)∫
{x∈X :d(x)−y=v}

g(x)

||∇d(x)||
dH d−1(x) dv

∣∣∣∣∣ .
We note that

{x ∈ X : d(x)− y = v} = d
−1(y + v) ∩ X = Γy+v ∩ X .

This yields that∣∣∣∣∫
X
k

(
d(x)− y

h

)
g(x) dλd(x)

∣∣∣∣
≤

∣∣∣∣∣
∫ h

−h
k
( v
h

)∫
Γy∩X

g(x)

||∇d(x)||
dH d−1(x) dv

∣∣∣∣∣
+

∣∣∣∣∣
∫ h

−h
k
( v
h

)(∫
Γy+v∩X

g(x)

||∇d(x)||
dH d−1(x)−

∫
Γy∩X

g(x)

||∇d(x)||
dH d−1(x)

)
dv

∣∣∣∣∣ =: T5 + T6.

Next, we consider both summands separately. First of all, we observe that the integral∫
Γy∩X

g(x)

||∇d(x)||
dH d−1(x)

does not depend on v. Consequently, we obtain that

T5

(i)

≤ Cy

∣∣∣∣∣
∫ h

−h
k
( v
h

)
dv

∣∣∣∣∣
∣∣∣∣∣
∫

Γy∩X
dH d−1(x)

∣∣∣∣∣ (ii)

≤ Cy

∣∣∣∣∣
∫ h

−h
k
( v
h

)
dv

∣∣∣∣∣ .
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Here, (i) follows by (47) and (ii) follows since H d−1(Γy ∩ X ) ≤ C < ∞ for some constant C,
as already argued in the proof of of Lemma D.4. Setting u = v/h and using

∫
k(u) du = 0 gives

that

T5 ≤ Cyh
∣∣∣∣∫ 1

−1

k (u) du

∣∣∣∣ = 0.

Hence, it only remains to consider the second summand T6. Let X ∗ = X ∩d−1([y− h0, y+ h0]).
Since h ≤ h0, we obtain that

T6 ≤
∫ h

−h

∣∣∣k ( v
h

)∣∣∣ ∣∣∣∣∣
∫

Γy+v∩X∗

g(x)

||∇d(x)||
dH d−1(x)−

∫
Γy∩X∗

g(x)

||∇d(x)||
dH d−1(x)

∣∣∣∣∣ dv
We realize that the function

g∗ : X ∗ → R, x 7→ g(x)

||∇d(x)||
is Lipschitz continuous, as ||∇d(x)|| > 0 for x ∈ d−1([y − h0, y + h0]), the function ||∇d(x)|| is
in C1,1(d(−1(y − h0, y + h0)) and g is Lipschitz continuous and bounded by assumption. As y
is a C2,1-regular bounded value of d with respect to X , it is straight forward to verify that it
is also one with respect to X ∗. Thus, the requirements of Lemma D.4 are met. By potentially
decreasing h0, we find for all h small enough that

T6 ≤ Cy
∫ h

−h

∣∣∣k ( v
h

)∣∣∣ v dv.
Setting u = v/h gives that

T6 ≤ Cyh2

∫ 1

−1

|k (u)|u du ≤ cyh2,

where cy > 0 depends only on d, y, α and X .

All in all, this gives ∣∣∣∣∫
X
k

(
d(x)− y

h

)
g(z) dλd(z)

∣∣∣∣ ≤ T5 + T6 ≤ cyh2,

which yields the claim. �

E The Distance-to-Measure-Function

In this section, we derive further properties of the DTM-function.

First of all, we ensure that

sup
x∈X

∣∣δ2
X ,1(x)− d2

X ,1(x)
∣∣ = OP (1/

√
n)

This is a minor extension of Theorem 9 in Chazal et al. [14], which considers only 0 < m < 1.
For this purpose, we need to introduce some notation. For a compact set A ⊂ Rd we define the
radius of the smallest enclosing ball of centered at zero as

r(A) = inf{r > 0 : A ⊂ B̄(0, r)},

where B̄(0, r) denotes a closed ball with radius r centered at the origin.
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Lemma E.1. Let P be a measure with compact support and let X be a compact domain on Rd.
Further, suppose that for any x ∈ X the pushforward measure of P by ||x−·||2, whose distribution
function is denoted by Fx, is supported on a finite closed interval [0, Dx] with

sup
x∈X

Dx ≤ D <∞.

Suppose that there is a constant CX such that r(X ) < CX . Let X1, . . . , Xn
i.i.d.∼ P and denote

the corresponding empirical measure by Pn. Then, it follows that

sup
x∈X

∣∣δ2
X ,1(x)− d2

X ,1(x)
∣∣ = OP

(
1√
n

)
.

Proof. Let F̂x,n be defined as in (2). Recalling (31), we find

√
n
(
δ2
X ,1(x)− d2

X ,1(x)
)

=
√
n

(∫ Dx

0

Fx(t)− F̂x,n(t) dt

)

=
√
n

(∫ Dx

0

∫
1{||x−z||2≤t} dP (z) −

∫
1{||x−z||2≤t} dPn(z) dt

)
.

Since P is compactly supported and supx∈X |Dx| <∞ by assumption, the Theorem of Tonelli/
Fubini [6, Thm. 18] yields

√
n
(
δ2
X ,1(x)− d2

X ,1(x)
)

=
√
n

(∫ ∫ Dx

0

1{||x−z||2≤t} dt dP (z) −
∫ ∫ Dx

0

1{||x−z||2≤t} dt dPn(z)

)
=− νn(gx),

where νn =
√
n (Pn − P ) denotes the empirical process and

gx(z) =

∫ Dx

0

1{||x−z||2≤t} dt = Dx − ||x− z||2.

Hence, the claim follows once we have shown that G = {gx : x ∈ X} is a Donsker class. To this
end, we observe that by Chazal et al. [14, Lemma 8] it holds that for x, x′ ∈ X

|Dx −Dx′ | ≤ sup
t∈(0,1)

|F−1
x (t)− F−1

x′ (t)| ≤ 2 sup
t∈(0,1)

[
sup
x∈X

F−1
x (t)

]
||x− x′||

≤ 2D||x− x′||.

Now, we have for any (x, x′) ∈ X 2 and any z ∈ supp(P ) that

|gx(z)− gx′(z)| ≤ |Dx −Dx′ |+ ||x− x′|| (||x||+ ||x′||+ 2||z||)
≤ 2 (CX +D + ||z||) ||x− x′||.

As P is compactly supported, it follows that G is a Donsker class (see Example 19.7 in Van der
Vaart [52]). As already argued this yields the claim.
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F Miscellaneous

Lemma F.1. Let x, y and κ denote non-negative real numbers. Then, it holds that∫ κ

0

1{x≤t} − 1{y≤t} dt = y ∧ κ− x ∧ κ.

Proof. In order to show the claim, we have to distinguish several cases:

1. x ≤ y ≤ κ: In this case we have that∫ κ

0

1{x≤t} − 1{y≤t} dt = y − x = y ∧ κ− x ∧ κ.

2. x ≤ κ ≤ y: Here, obtain that∫ κ

0

1{x≤t} − 1{y≤t} dt = κ− x = y ∧ κ− x ∧ κ.

3. y ≤ x ≤ κ: It follows that∫ κ

0

1{x≤t} − 1{y≤t} dt = −(x− y) = y ∧ κ− x ∧ κ.

4. y ≤ κ ≤ x: We get ∫ κ

0

1{x≤t} − 1{y≤t} dt = −(κ− y) = y ∧ κ− x ∧ κ.

5. κ ≤ x and κ ≤ y: In this case, the claim is trivial.
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