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Abstract. We consider the multilinear polytope which arises naturally
in binary polynomial optimization. Del Pia and Di Gregorio introduced
the class of odd β-cycle inequalities valid for this polytope, showed that
these generally have Chvátal rank 2 with respect to the standard relax-
ation and that, together with flower inequalities, they yield a perfect
formulation for cycle hypergraph instances. Moreover, they describe a
separation algorithm in case the instance is a cycle hypergraph. We intro-
duce a weaker version, called simple odd β-cycle inequalities, for which we
establish a strongly polynomial-time separation algorithm for arbitrary
instances. These inequalities still have Chvátal rank 2 in general and still
suffice to describe the multilinear polytope for cycle hypergraphs.

Keywords: Binary polynomial optimization · Cutting planes ·
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1 Introduction

In binary polynomial optimization our task is to find a binary vector that maxi-
mizes a given multivariate polynomial function. In order to give a mathematical
formulation, it is useful to use a hypergraph G = (V,E), where the node set V
represents the variables in the polynomial function, and the edge set E represents
the monomials with nonzero coefficients. In a binary polynomial optimization
problem, we are then given a hypergraph G = (V,E), a profit vector p ∈ R

V ∪E ,
and our goal is to solve the optimization problem

max

{∑
v∈V

pvzv +
∑
e∈E

pe

∏
v∈e

zv : z ∈ {0, 1}V

}
. (1)
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Using Fortet’s linearization [13,15], we introduce binary auxiliary variables ze,
for e ∈ E, which are linked to the variables zv, for v ∈ V , via the linear inequal-
ities

zv − ze ≥ 0 ∀e ∈ E, ∀v ∈ e (2a)

(ze − 1) +
∑
v∈e

(1 − zv) ≥ 0 ∀e ∈ E. (2b)

It is simple to see that{
z ∈ {0, 1}V ∪E : ze =

∏
v∈e

zv ∀e ∈ E

}
=

{
z ∈ {0, 1}V ∪E : (2)

}
.

Hence, we can reformulate (1) as the integer linear optimization problem

max

{∑
v∈V

pvzv +
∑
e∈E

peze : (2), z ∈ {0, 1}V ∪E

}
. (3)

We define the multilinear polytope ML(G) [6], which is the convex hull of the
feasible points of (3), and its standard relaxation SR(G):

ML(G) := conv
{
z ∈ {0, 1}V ∪E : (2)

}
,

SR(G) :=
{
z ∈ [0, 1]V ∪E : (2)

}
.

Recently, several classes of inequalities valid for ML(G) have been intro-
duced, including 2-link inequalities [4], flower inequalities [7], running intersec-
tion inequalities [8], and odd β-cycle inequalities [5]. On a theoretical level,
these inequalities fully describe the multilinear polytope for several hypergraph
instances: flower inequalities for γ-acyclic hypergraphs, running intersection
inequalities for kite-free β-acyclic hypergraphs, and flower inequalities together
with odd β-cycle inequalities for cycle hypergraphs. Furthermore, these cutting
planes greatly reduce the integrality gap of (3) [5,8] and their addition leads to
a significant reduction of the runtime of the state-of-the-art solver BARON [9].
Unfortunately, we are not able to separate efficiently over most of these inequal-
ities. In fact, while the simplest 2-link inequalities can be trivially separated in
polynomial time, there is no known polynomial-time algorithm to separate the
other classes of cutting planes, and it is known that separating flower inequalities
is NP-hard [9].

Contribution. In this paper we introduce a novel class of cutting planes called
simple odd β-cycle inequalities. As the name suggests, these inequalities form a
subclass of the odd β-cycle inequalities introduced in [5]. The main result of this
paper is that simple odd β-cycle inequalities can be separated in strongly poly-
nomial time. While our inequalities form a subclass of the inequalities introduced
in [5], they still inherit the two most interesting properties of the odd β-cycle
inequalities. First, simple odd β-cycle inequalities can have Chvátal rank 2. To
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the best of our knowledge, our algorithm is the first known polynomial-time sep-
aration algorithm over an exponential class of inequalities with Chvátal rank 2.
Second, simple odd β-cycle inequalities, together with standard linearization
inequalities and flower inequalities with at most two neighbors, provide a per-
fect formulation of the multilinear polytope for cycle hypergraphs. Finally, we
believe that our separation algorithm could lead to significant speedups in solv-
ing several applications that can be formulated as (1) with a hypergraph that
contains β-cycles. These applications include the image restoration problem in
computer vision [4,5], and the low auto-correlation binary sequence problem in
theoretical physics [2,5,16,18,19].

Outline. We first introduce certain simple inequalities in Sect. 2 that are then
combined to form the simple odd β-cycle inequalities in Sect. 3. Section 4 is ded-
icated to the polynomial-time separation algorithm. Finally, Sect. 5 relates the
simple odd β-cycle inequalities to the general (non-simple) odd β-cycle inequal-
ities in [5].

2 Building Block Inequalities

We consider certain affine linear functions s : R
V ∪E → R defined as follows. For

each e ∈ E and each v ∈ e we define

since,v(z) := zv − ze (since,v)

For each e ∈ E and all U,W ⊆ e with U,W �= ∅ and U ∩ W = ∅ we define

sodde,U,W (z) := 2ze−1 +
∑
u∈U

(1−zu) +
∑

w∈W

(1−zw) +
∑

v∈e\(U∪W )

(2−2zv) (sodde,U,W )

For all e, f ∈ E with e ∩ f �= ∅ and all U ⊆ e with U �= ∅ and U ∩ f = ∅ we
define

sonee,U,f (z) := 2ze−1 +
∑
u∈U

(1−zu)+(1−zf ) +
∑

v∈e\(U∪f)

(2−2zv) (sonee,U,f )

For all e, f, g ∈ E with e ∩ f �= ∅, e ∩ g �= ∅ and e ∩ f ∩ g = ∅ we define

stwo
e,f,g(z) := 2ze − 1 + (1 − zf ) + (1 − zg) +

∑
v∈e\(f∪g)

(2 − 2zv) (stwo
e,f,g)

In this paper we often refer to since,v, sodde,U,W , sonee,U,f , stwo
e,f,g as building blocks.

Although in these definitions U and W can be arbitrary subsets of an edge e,
in the following U and W will always correspond to the intersection of e with
another edge. In the next lemma we will show that all building blocks are nonneg-
ative on a relaxation of ML(G) obtained by adding some flower inequalities [7] to
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SR(G), which we will define now. For ease of notation, in this paper, we denote
by [m] the set {1, . . . , m}, for any nonnegative integer m.

Let f ∈ E and let ei, i ∈ [m], be a collection of distinct edges in E, adjacent
to f , such that f ∩ ei ∩ ej = ∅ for all i, j ∈ [m] with i �= j. Then the flower
inequality [5,7] centered at f with neighbors ei, i ∈ [m], is defined by

(zf − 1) +
∑

i∈[m]

(1 − zei
) +

∑
v∈f\∪i∈[m]ei

(1 − zv) ≥ 0.

We denote by FR(G) the polytope obtained from SR(G) by adding all flower
inequalities with at most two neighbors. Clearly FR(G) is a relaxation of ML(G).
Furthermore, FR(G) is defined by a number of inequalities that is bounded by
a polynomial in |V | and |E|.
Lemma 1. Let G = (V,E) be a hypergraph and let s be one of since,v, sodde,U,W ,
sonee,U,f , stwo

e,f,g. Then s(z) ≥ 0 is valid for FR(G). Furthermore, if z ∈ ML(G) ∩
Z

V ∪E and s(z) = 0, then the corresponding implication below holds.

(i) If since,v(z) = 0 then zv = ze.
(ii) If sodde,U,W (z) = 0 then

∏
u∈U zu +

∏
w∈W zw = 1.

(iii) If sonee,U,f (z) = 0 then zf +
∏

u∈U zu = 1.
(iv) If stwo

e,f,g(z) = 0 then zf + zg = 1.

Proof. First, since,v(z) ≥ 0 is part of the standard relaxation and implication (i) is
obvious.

Second, sodde,U,W (z) ≥ 0 is the sum of the following inequalities from the
standard relaxation: ze ≥ 0, 1 − zv ≥ 0 for all v ∈ e\(U ∪ W ), and
(ze −1)+

∑
v∈e(1−zv) ≥ 0. If z ∈ ML(G) ∩ Z

V ∪E and sodde,U,W (z) = 0, then each
of these inequalities must be tight, thus ze = 0, zv = 1 for each v ∈ e\(U ∪ W ).
The last (tight) inequality yields −1 +

∑
v∈U∪W (1 − zv) = 0, i.e., precisely one

variable zv, for v ∈ U ∪ W , is 0, while all others are 1, which yields implica-
tion (ii).

Third, sonee,U,f (z) ≥ 0 is the sum of the following inequalities: ze ≥ 0, 1−zv ≥ 0
for all v ∈ e \ (U ∪ f) and (ze − 1) + (1 − zf ) +

∑
v∈e\f (1 − zv) ≥ 0. The latter

is the flower inequality centered at e with neighbor f . If z ∈ ML(G) ∩ Z
V ∪E

and sonee,U,f (z) = 0, then each of these inequalities must be tight, thus ze = 0,
zv = 1 for each v ∈ e \ (U ∪ f). The last (tight) inequality yields −1+ (1− zf )+∑

u∈U (1 − zu) = 0, i.e., either zf = 1 and zu = 0 for exactly one u ∈ U , or
zf = 0 and zu = 1 holds for all u ∈ U . Both cases yield implication (iii).

Fourth, we consider stwo
e,f,g(z) ≥ 0. Note that due to e ∩ f �= ∅, e ∩ g �= ∅ and

e ∩ f ∩ g = ∅, the three edges e, f, g must all be different. Thus, stwo
e,f,g(z) ≥ 0 is

the sum of ze ≥ 0, 1 − zv ≥ 0 for all v ∈ e\(f ∪ g) and of (ze − 1) + (1 − zf ) +
(1 − zg) +

∑
v∈e\(f∪g)(1 − zv) ≥ 0. The latter is the flower inequality centered

at e with neighbors f and g. If z ∈ ML(G) ∩ Z
V ∪E and stwo

e,f,g(z) = 0 holds, then
each of the involved inequalities must be tight, thus ze = 0 and zv = 1 for each
v ∈ e \ (f ∪ g). The last (tight) inequality implies −1 + (1 − zf ) + (1 − zg) = 0,
i.e., zf + zg = 1. Hence, implication (iv). holds. ��
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3 Simple Odd β-Cycle Inequalities

We will consider signed edges by associating either a “+” or a “−” with each
edge. We denote by {±} the set {+,−} and by −p a sign change for p ∈ {±}.
In order to introduce simple odd β-cycle inequalities, we first present some more
definitions.

Definition 1. A closed walk in G of length k ≥ 3 is a sequence C = v1-e1-v2-
e2-v3-· · · -vk−1-ek−1-vk-ek-v1, where we have ei ∈ E as well as vi ∈ ei−1 ∩ei and
ei−1 ∩ei ∩ei+1 = ∅ for each i ∈ [k], where we denote e0 := ek and ek+1 := e1 for
convenience. A signature of C is a map σ : [k] → {±}. A signed closed walk in G
is a pair (C, σ) for a closed walk C and a signature σ of C. Similarly, we denote
v0 := vk, vk+1 := v1, σ(0) := σ(k) and σ(k + 1) := σ(1). We say that (C, σ) is
odd if there is an odd number of indices i ∈ [k] with σ(i) = −; otherwise we say
that (C, σ) is even. Finally, for any signed closed walk (C, σ) in G, its length
function is the map �(C,σ) : FR(G) → R defined by

�(C,σ)(z) :=
∑

i∈I(+,+,+)

(
sincei,vi

(z) + sincei,vi+1
(z)

)
+

∑

i∈I(−,−,−)

soddei,ei∩ei−1,ei∩ei+1
(z)

+
∑

i∈I(+,+,−)

sincei,vi
(z) +

∑

i∈I(−,−,+)

soneei,ei∩ei−1,ei+1
(z) +

∑

i∈I(−,+,+)

sincei,vi+1
(z)

+
∑

i∈I(+,−,−)

soneei,ei∩ei+1,ei−1
(z) +

∑

i∈I(+,−,+)

stwo
ei,ei−1,ei+1

(z),

where I(a,b,c) is the set of edge indices i for which ei−1, ei and ei+1 have sign
pattern (a, b, c) ∈ {±}3, i.e., I(a,b,c) := {i ∈ [k] : σ(i − 1) = a, σ(i) = b,
σ(i + 1) = c}.

We remark that the definition of �(C,σ)(z) is independent of where the closed
walk starts and ends. Namely, if instead of C we consider C ′ = vi-ei -· · · -vk-
ek-v1-e1-· · · -vi−1-ei−1-vi, and we define σ′ accordingly, then we have �(C,σ)(z) =
�(C′,σ′)(z). Moreover, if σ(i − 1) = − or σ(i) = −, then �(C,σ)(z) is independent
of the choice of vi ∈ ei−1 ∩ ei.

By Lemma 1, the length function of a signed closed walk is nonnegative. We
will show that for odd signed closed walks, the length function evaluated in each
integer solution is at least 1. Hence, we define the simple odd β-cycle inequality
corresponding to the odd signed closed walk (C, σ) as

�(C,σ)(z) ≥ 1. (4)

We first establish that this inequality is indeed valid for ML(G).

Theorem 1. Simple odd β-cycle inequalities (4) are valid for ML(G).

Proof. Let z ∈ ML(G) ∩ {0, 1}V ∪E and assume, for the sake of contradiction,
that z violates inequality (4) for some odd signed closed walk (C, σ). Since the
coefficients of �(C,σ) are integer, we obtain �(C,σ) ≤ 0. From Lemma 1, we have
that s(z) = 0 holds for all involved functions s(z). Moreover, edge variables



186 A. Del Pia and M. Walter

zei
for all edges ei with σ(i) = +, node variables zvi

for all nodes vi with
σ(i − 1) = σ(i) = +, and the expressions

∏
v∈ei−1∩ei

zv for all nodes i with
σ(i−1) = σ(i) = − are either equal or complementary, where the latter happens
if and only if the corresponding edge ei satisfies σ(i) = −1. Since the signed
closed walk C is odd, this yields a contradiction ze = 1 − ze for some edge e of
C or zv = 1 − zv for some node v of C or

∏
v∈e∩f zv = 1 −

∏
v∈e∩f zv for a pair

e, f of subsequent edges of C. ��

Next, we provide an example of a simple odd β-cycle inequality.

e1

e2e3e4

e5
v1

v2

v3
v4

v5

u1

u2

u4

u3

Fig. 1. Figure of the closed walk considered in Example 1. The solid edges have sign
+ and the dashed edges have sign −.

Example 1. We consider the closed walk of length 5 given by the sequence
C = v1-e1-v2-e2-v3-· · · -v5-e5-v1 with signature (σ(1), σ(2), . . . , σ(5)) =
(−,+,+,−,−) depicted in Fig. 1. We have 1 ∈ I(−,−,+), 2 ∈ I(−,+,+), 3 ∈
I(+,+,−), 4 ∈ I(+,−,−), 5 ∈ I(−,−,−). The corresponding simple odd β-cycle
inequality is �(C,σ)(z) ≥ 1. Using Definition 1, we write �(C,σ)(z) in terms of
the building blocks as

�(C,σ)(z) = sonee1,e1∩e5,e2(z) + since2,v3(z) + since3,v3(z) + sonee4,e4∩e5,e3(z) + sodde5,e5∩e4,e5∩e1(z).

Using the definition of the building blocks, we obtain

�(C,σ)(z) = + 2ze1 − 1 +
∑

u∈e1∩e5

(1 − zu) + (1 − ze2 ) +
∑

v∈e1\(e1∩e5∪e2)

(2 − 2zv)

+ (zv3 − ze2 ) + (zv3 − ze3 )

+ 2ze4 − 1 +
∑

u∈e4∩e5

(1 − zu) + (1 − ze3 ) +
∑

v∈e4\(e4∩e5∪e3)

(2 − 2zv)

+ 2ze5 − 1 +
∑

u∈e5∩e4

(1 − zu) +
∑

w∈e5∩e1

(1 − zw) +
∑

v∈e5\(e5∩e4∪(e5∩e1))

(2 − 2zv).
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We write the sums explicitly and obtain

�(C,σ)(z) = +2ze1 − 1 + (1 − zv1) + (1 − zu1) + (1 − ze2)
+ (zv3 − ze2) + (zv3 − ze3)
+ 2ze4 − 1 + (1 − zv5) + (1 − ze3) + (2 − 2zu4)
+ 2ze5 − 1 + (1 − zv5) + (1 − zv1) + (1 − zu1)
= 2(ze1 − ze2 − ze3 + ze4 + ze5 − zv1 − zu1 + zv3 − zu4 − zv5) + 7.

�

Example 1 suggests that, when the function is written explicitly, the coeffi-
cients in the function �(C,σ)(z) exhibit a certain pattern. This different expression
of �(C,σ)(z) is formalized in the next lemma.

Lemma 2. Given a signed closed walk (C, σ) in G with k ≥ 3, we have

�(C,σ)(z) =
∑

i∈[k]
σ(i)=−

(2zei + 1) −
∑

i∈[k]
σ(i)=+

2zei +
∑

i∈[k]
σ(i−1)=σ(i)=+

2zvi +
∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

2(1 − zv)

+
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2(1 − zv) − 2|{i ∈ [k] : σ(i − 1) = σ(i) = −}|. (5)

Using Definition 2, we obtain the following result.

Proposition 1. Simple odd β-cycle inequalities are Chvátal-Gomory inequali-
ties for FR(G) and can be written in the form

∑

i∈[k]
σ(i)=−

zei
−

∑

i∈[k]
σ(i)=+

zei
+

∑

i∈[k]
σ(i−1)=σ(i)=+

zvi
−

∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

(zv − 1) −
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

(zv − 1)

≥ 1 − |{i ∈ [k] : σ(i) = −}|
2

− |{i ∈ [k] : σ(i − 1) = σ(i) = −}|.

(6)

Proof. Let (C, σ) be an odd signed closed walk in a hypergraph G. From Lemma
1 we obtain that �(C,σ)(z) ≥ 0 holds for each z ∈ FR(G). Lemma 2 reveals
that in the inequality �(C,σ)(z) ≥ 0, all variables’ coefficients are even integers,
while the constant term is an odd integer. Hence, the inequality divided by 2
has integral variable coefficients, and we can obtain the corresponding Chvátal-
Gomory inequality by rounding the constant term up. The resulting inequality
is the simple odd β-cycle inequality (4) scaled by 1/2 and has the form (6). This
shows that simple odd β-cycle inequalities are Chvátal-Gomory inequalities for
FR(G). ��

It follows from Proposition 1 that, under some conditions on (C, σ), simple
odd β-cycle inequalities are in fact {0, 1/2}-cuts (see [3]) with respect to FR(G).
Some classes of such cutting planes can be separated in polynomial time, in
particular if the involved inequalities only have two odd coefficients. In such a
case, these inequalities are patched together such that odd coefficients cancel
out and eventually all coefficients are even. We want to emphasize that this
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generic separation approach does not work in our case since our building block
inequalities may have more than 2 odd-degree coefficients. Nevertheless, the
separation algorithm presented in the next section is closely related to the idea
of cancellation of odd-degree coefficients.

4 Separation Algorithm

The main goal of this section is to show that the separation problem over simple
odd β-cycle inequalities can be solved in strongly polynomial time (Theorem
2). This will be achieved by means of an auxiliary undirected graph in which
several shortest-path computations must be carried out. The auxiliary graph is
inspired by the one for the separation problem of odd-cycle inequalities for the
maximum cut problem [1]. However, to deal with our different problem and the
more general hypergraphs we will extend it significantly.

Let G = (V,E) be a hypergraph and let ẑ ∈ FR(G). Define T := {(e, f, g) ∈
E : e ∩ f �= ∅, f ∩ g �= ∅, e ∩ f ∩ g = ∅} to be the set of potential subsequent
edge triples. We define the auxiliary graph

Ḡ = (V̄ , Ē) = (V̄+ ∪ V̄− ∪ V̄E, Ē−,−,− ∪ Ē+,−,+ ∪ Ē+,−,− ∪ Ē+,+,±)

and length function �̄ : Ē → R as follows.

V̄+ := V × {±}
V̄− := {e ∩ f : e, f ∈ E, e �= f, e ∩ f �= ∅} × {±}
V̄E := E × {±}

Ē−,−,− := {{(e ∩ f, p), (f ∩ g,−p)} : (e, f, g) ∈ T , p ∈ {±}}
�̄{(U,p),(W,−p)} := min

e,f,g
{soddf,U,W (ẑ) : U = e ∩ f, W = f ∩ g for some (e, f, g) ∈ T }

Ē+,−,+ := {{(e, p), (g,−p)} : e, g ∈ E, e ∩ f �= ∅ and f ∩ g �= ∅

for some f ∈ E with e ∩ f ∩ g = ∅, p ∈ {±}}
�̄{(e,p),(g,−p)} := min

f
{stwo

e,f,g(ẑ) : f ∈ E, e ∩ f �= ∅, f ∩ g �= ∅, e ∩ f ∩ g = ∅}

Ē+,−,− := {{(e, p), (f ∩ g,−p)} : (e, f, g) ∈ T , p ∈ {±}}
�̄{(e,p),(U,−p)} := min

f,g
{sonef,U,e(ẑ) : (e, f, g) ∈ T , U = f ∩ g}

Ē+,+,± := {{(v, p), (e, p)} : v ∈ e ∈ E, p ∈ {±}}
�̄{(v,p),(e,p)} := since,v(ẑ)

We point out that the graph Ḡ can have parallel edges, possibly with different
lengths. We immediately obtain the following corollary from Lemma 1.

Corollary 1. The edge lengths �̄ : Ē → R are nonnegative.

We say that two nodes ū, v̄ ∈ V̄ are twins if they only differ in the second
component, i.e., the sign. We call a walk W̄ in the graph Ḡ a twin walk if its



Simple Odd β-Cycle Inequalities 189

end nodes are twin nodes. For a walk W̄ in Ḡ, we denote by �̄(W̄ ) the total
length, i.e., the sum of the edge lengths �̄e along the edges e in W̄ . In the next
two lemmas we study the relationship between odd signed closed walks in G and
twin walks in Ḡ.

Lemma 3. For each odd signed closed walk (C, σ) in G there exists a twin walk
W̄ in Ḡ of length �̄(W̄ ) ≤ 1 + s, where s is the slack of the simple odd β-cycle
inequality (4) induced by (C, σ) with respect to ẑ. In particular, if the inequality
is violated by ẑ, then we have �̄(W̄ ) < 1.

Proof. Let (C, σ) be an odd signed closed walk with C = v1-e1-v2-e2-v3-· · · -
vk−1-vk−1-vk-ek-v1. For i ∈ [k], let pi :=

∏i
j=1 σ(j) be the product of signs of

all edges up to ei. Moreover, define p0 := σ(0) = σ(k). For each i ∈ [k], we
determine a walk W̄i in Ḡ of length at most 2, and construct W̄ by going along
all these walks in their respective order. The walk W̄i depends on σ(i − 1), σ(i)
and σ(i + 1):

W̄i :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(vi, pi−1) → (ei, pi) → (vi+1, pi) if i ∈ I+,+,+

(vi, pi−1) → (ei, pi) if i ∈ I+,+,−
(ei, pi) → (vi+1, pi) if i ∈ I−,+,+

(ei, pi) (length 0) if i ∈ I−,+,−
(ei−1, pi−1) → (ei ∩ ei+1, pi) if i ∈ I+,−,−
(ei−1 ∩ ei, pi−1) → (ei+1, pi) if i ∈ I−,−,+

(ei−1 ∩ ei, pi−1) → (ei ∩ ei+1, pi) if i ∈ I−,−,−
(ei−1, pi−1) → (ei+1, pi) if i ∈ I+,−,+.

The walks W̄i help to understand the meaning of the different node types:
the walk W̄i starts at a node from V̄+ if σ(i − 1) = σ(i) = +, it starts at a node
from V̄− if σ(i−1) = σ(i) = −, and it starts at a node from V̄E if σ(i−1) �= σ(i)
holds. Similarly, the walk W̄i ends at a node from V̄+ if σ(i) = σ(i + 1) = +, it
ends at a node from V̄− if σ(i) = σ(i + 1) = −, and it ends at a node from V̄E if
σ(i) �= σ(i + 1) holds.

Note that all edges traversed by each W̄i are indeed in Ē. It is easily verified
that, for each i ∈ [k − 1], the walk W̄i ends at the same node at which the
walk W̄i+1 starts. Hence W̄ is indeed a walk in Ḡ. Since vk+1 = v1 holds, C is
closed and (C, σ) is odd, it can be checked that W̄ is a twin walk. Finally, by
construction, �̄(W̄ ) ≤ �(C,σ)(ẑ) holds, where the inequality comes from the fact
that the minima in the definition of �̄ need not be attained by the edges from
C. By definition of s we have �(C,σ)(ẑ) = 1 + s, thus �̄(W̄ ) ≤ 1 + s. ��

Lemma 4. For each twin walk W̄ in Ḡ there exists an odd signed closed walk
(C, σ) in G whose induced simple odd β-cycle inequality (4) has slack �̄(W̄ ) − 1
with respect to ẑ. In particular, if �̄(W̄ ) < 1 holds, then the inequality is violated
by ẑ.
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Proof. Let W̄ be a twin walk in Ḡ. We first construct the signed closed walk
(C, σ) by processing the edges of W̄ in their order. Throughout the construction
we maintain the index i of the next edge to be constructed, which initially is i :=
1. Since the construction depends on the type of the current edge ē = {ū, v̄} ∈ W̄
(where W̄ visits ū first), we distinguish the relevant cases:

Case 1: ē ∈ Ē+,+,± and ū ∈ V̄E. Hence, ū = (e, p) and v̄ = (v, p) for some
v ∈ e ∈ E and some p ∈ {±}. We define vi := v and continue.

Case 2: ē ∈ Ē+,+,± and ū ∈ V̄+. Hence, ū = (v, p) and v̄ = (e, p) for some
v ∈ e ∈ E and some p ∈ {±} as well as �ē = since,v. We define ei := e and
σ(i) := +. We then increase i by 1 and continue.

Case 3: ē ∈ Ē+,−,− and ū ∈ VE. Hence, ū = (e, p) and v̄ = (f ∩ g,−p) for some
(e, f, g) ∈ T as well as �ē = sonee,U,f (ẑ). We define vi (resp. vi+1) to be any node in
e ∩ f (resp. f ∩ g), ei := f and σ(i) := −. We then increase i by 1 and continue.

Case 4: ē ∈ Ē−,−,−. Hence, ū = (e ∩ f, p) and v̄ = (f ∩ g,−p) for some
(e, f, g) ∈ T as well as �ē = sodde,U,W (ẑ). We define ei := f , σ(i) := − and vi+1 to
be any node in f ∩ g. We then increase i by 1 and continue.

Case 5: ē ∈ Ē+,−,− and ū ∈ V−. Hence, ū = (e ∩ f, p,−) and v̄ = (g,−p) for
some (e, f, g) ∈ T with �ē = sonee,U,f (ẑ). We define ei := f , σ(i) := − and vi+1 to
be any node in f ∩ g. We then increase i by 1 and continue.

Case 6: ē ∈ Ē+,−,+. Hence, ū = (e, p) and v̄ = (g,−p) for some (e, f, g) ∈ T
as well as �ē = stwo

e,f,g(ẑ). We define vi (resp. vi+1) to be any node in e ∩ f (resp.
f ∩ g), ei := f , σ(i) := −, ei+1 := g and σ(i + 1) := +. We then increase i by 2
and continue.

After processing all edges of W̄ , the last defined edge is ei−1 and thus we
define k := i − 1 and C := v1-e1-v2-e2-v3-· · · -vk−1-vk−1-vk-ek-v1. By checking
pairs of edges of W̄ that arise consecutively, one verifies that for each i ∈ [k], we
also have vi ∈ ei−1 ∩ ei.

To see that (C, σ) is odd, we use the fact that the endnodes of W̄ are twin
nodes. When traversing an edge ē from ū to v̄, the second entries of ū and v̄
differ if and only if we set a σ-entry to −. Note that in Case 6 we set two such
entries, but only one to −. We conclude that σ(i) = − holds for an odd number
of indices i ∈ [k].

By construction we have �̄(W̄ ) = �(C,σ)(ẑ). The slack of the simple odd β-
cycle inequality induced by (C, σ) with respect to ẑ is then �(C,σ)(ẑ) − 1 =
�̄(W̄ ) − 1. ��

Theorem 2. Let G = (V,E) be a hypergraph and let ẑ ∈ FR(G). The separation
problem for simple odd β-cycle inequalities (4) can be solved in time O(|E|5 +
|V |2 · |E|).

Proof. Let n := |V | and m := |E| and assume m ≥ log(n) since otherwise we
can merge nodes that are incident to exactly the same edges. First note that,
regarding the size of the auxiliary graph Ḡ, we have |V̄ | = O(m2 + n) and
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|Ē| = O(mn+m3). For the construction of Ḡ and the computation of �̄ we need
to inspect all triples (e, f, g) ∈ T of edges. This can be done in time O(m3n)
since for each of the m3 edge triples (e, f, g) we have to inspect at most n nodes
to check the requirements on the intersections of e, f and g.

According to Lemmas 3 and 4 we only need to check for the existence of a twin
walk W̄ in Ḡ with �(W̄ ) < 1. This can be accomplished with |V̄ |/2 = O(m2 +n)
runs of Dijkstra’s algorithm [12] on Ḡ, each of which takes

O(|Ē| + |V̄ | · log(|V̄ |)) = O((mn + m3) + (m2 + n) · log(m2 + n))

time when implemented with Fibonacci heaps [14]. If m2 ≥ n, then the total
running time simplifies to O(m5), and otherwise we obtain O(n2m). ��

The main reason for this large running time bound is the fact that |V̄−| can
be quadratic in |E|.

Clearly, our separation algorithm requires that the edge lengths �̄ of the
auxiliary graph Ḡ are nonnegative. This in turn requires ẑ ∈ FR(G), i.e., that
the flower inequalities with at most two neighbors are satisfied. As we already
mentioned, the number of these flower inequalities is bounded by a polynomial
in |V | and |E|. We like to point out that one can combine the separation of these
flower inequalities with the construction of Ḡ, i.e., one can determine violated
inequalities while constructing the auxiliary graph.

5 Relation to Non-simple Odd β-Cycle Inequalities

In this section we relate our simple odd β-cycle inequalities to the odd β-cycle
inequalities in [5].

A cycle hypergraph is a hypergraph G = (V,E), with E = {e1, . . . , em},
where m ≥ 3, and every edge ei has nonempty intersection only with ei−1 and
ei+1 for every i ∈ {1, . . . , m}, where, for convenience, we define em+1 := e1 and
e0 := em. If m = 3, it is also required that e1 ∩ e2 ∩ e3 = ∅. Given a closed walk
C = v1-e1-v2-e2-· · · -vk-ek-v1 in a hypergraph G = (V,E), the support hypergraph
of C is the hypergraph G(C) = (V (C), E(C)), where E(C) := {e1, e2, . . . , ek}
and V (C) := e1 ∪ e2 ∪ · · · ∪ ek.

Lemma 5. Let (C, σ) be a signed closed walk in a hypergraph G and assume
that the support hypergraph of C is a cycle hypergraph. Let E− := {ei : i ∈
[k], σ(i) = −}, E+ := {ei : i ∈ [k], σ(i) = +}, S1 := (

⋃
e∈E− e) \

⋃
e∈E+ e, and

S2 := {v1, . . . , vk} \
⋃

e∈E− e. Then

�(C,σ)(z) = −
∑
v∈S1

2zv +
∑

e∈E−
2ze +

∑
v∈S2

2zv −
∑

e∈E+

2ze + 2|S1|

− 2|{i ∈ [k] : ei−1, ei ∈ E−}| + |E−|.

In particular, the simple odd β-cycle inequality corresponding to (C, σ) coincides
with the odd β-cycle inequality corresponding to (C, σ). Furthermore, in a cycle
hypergraph, every odd β-cycle inequality is a simple odd β-cycle inequality.
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Proof. It suffices to observe that
∑

i∈[k]
σ(i−1)=σ(i)=+

2zvi =
∑

v∈S2

2zv,
∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

2zv +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2zv =
∑

v∈S1

2zv,

∑

i∈[k]
σ(i−1)=σ(i)=−

v∈ei−1∩ei

2 +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2 = 2|S1| and
∑

i∈[k]
σ(i)=−

1 = |E−|.

The statement for cycle hypergraphs G follows by inspecting the definition of
the odd β-cycle inequalities. ��

As a consequence, we can use the two following known results in order to
gain insights about simple odd β-cycle inequalities.

Proposition 2 (Example 2 in [5]). There exists a cycle hypergraph for which
the Chvátal rank of odd β-cycle inequalities can be equal to 2.

Proposition 3 (Implied by Theorem 1 in [5]). Flower inequalities are
Chvátal-Gomory cuts for SR(G).

Theorem 3. Simple odd β-cycle inequalities can have Chvátal rank 2 with
respect to SR(G).

Proof. Combining Proposition 3 with Proposition 1 shows that simple odd β-
cycle inequalities have Chvátal rank at most 2. Lemma 5 and Proposition 2 show
that the Chvátal rank of simple odd β-cycle inequalities for cycle hypergraphs
can be equal to 2. ��

For the second insight, we consider a strengthened form of Theorem 5 in [5].

Proposition 4 (Theorem 5 in [5], strengthened). Let G = (V,E) be a
cycle hypergraph. Then ML(G) is described by all odd β-cycle inequalities and
all inequalities from FR(G).

The strengthening lies in the fact that in the original statement of Theorem 5
in [5] all flower inequalities are used rather than only those with at most two
neighbors. This strengthening of the original statement can be seen by inspecting
its proof in [5]. By applying Lemma 5 to Proposition 4 we immediately obtain
the following result.

Theorem 4. Let G = (V,E) be a cycle hypergraph. Then

ML(G) = {x ∈ FR(G) : x satisfies all simple oddβ-cycle inequalities}.

Future Research. We would like to conclude this paper with a couple of open
questions that could be investigated. An interesting research direction is a
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computational investigation of simple odd β-cycle inequalities, especially in rela-
tion to the applications discussed in Sect. 1, i.e., the image restoration problem
in computer vision and the low auto-correlation binary sequence problem in
theoretical physics.

The next research direction has a more theoretical flavor. The LP relaxations
defined by odd-cycle inequalities [1] for the cut polytope and the affinely isomor-
phic correlation polytope (see [11]) have the following property: when maximiz-
ing a specific objective vector, then one can remove a subset of the odd-cycle
inequalities upfront without changing the optimum. More precisely, the removal
is based only on the sign pattern of the objective vector (see Theorem 2 in [17]).
Since the simple odd β-cycle inequalities can be seen as an extension of the odd
cycle inequalities for the cut polytope, the research question is whether a similar
property can be proven for simple odd β-cycle inequalities.

The final research direction is that of redundancy of simple odd β-cycle
inequalities for which we provide some insight in the full version of the paper [10].
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