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Introduction

Artificial intelligence (AI) is becoming increasingly important in everyday life. It
has led to applications such as face recognition[l] and virtual personal assistants in
the form of Siri, Alexa and Cortana[2]. Al is even capable of outperforming humans
at complex games such as Go[3] and Dota2[d]. In general, Al mimics the problem
solving and decision making capabilities of the human mind. A subdiscipline of Al
is machine learning (ML). ML focuses on developing systems that are capable of
deriving a desired behaviour from data. Among the most common implementations
of ML, artificial neural networks (ANNs) are commonly used. These brain-inspired
networks can be trained towards a specific functionality. The relation between Al,
ML and ANNSs is illustrated in Figure [I.Ip. In general, ANNs are implemented to
perform tasks that are difficult to solve by hard coding[5], such as face recognition[I].

One of the first artificial neuron (AN) models was already proposed in the 1940s when
McCulloch and Pitts defined the MP (McCulloch-Pitts) neuron. This neuron takes
binary inputs, of which the sum is compared with a threshold to give a 1 or 0 output[6].
In the 1950s, Rosenblatt expanded this concept by allowing real-valued inputs that
are subsequently weighted (linearly multiplied by a so-called weight value). This AN
was the building block for the first ANNs; also known as the perceptron[7]. In the
1960s these building blocks were implemented in the first ANNs[8]. At this point,
ANN training was limiting their size. Techniques now used in training ANNs, such
as backpropagation[9], were already developed at that time. However, until the late
1980s, these techniques were only used for small networks[8]. Nowadays computers
are significantly more powerful than 40 years ago. This has led to the realisation
of large ANNs that, together with the gradient descent[I0] learning approach, are
leading ML applications[IT].
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Figure 1.1: a, Overview of the relation between artificial intelligence (AI), machine
learning (ML), neural networks (NNs) and deep learning (DL). b, Schematic repre-
sentation of a feed-forward artificial neural network (ANN), where the black arrows
indicate the weights applied to the outputs of the nodes in the previous layer.

Figure shows an illustration of a small ANN with only a single hidden layer
(a layer of nodes between the input and output layer). The black lines indicate the
weights of a multiply and accumulate (MAC) operation, including a bias. The nodes
in the hidden layer represent a nonlinear activation function. Many of the real-world
implementations of ANNs are realized using deep learning (DL). As illustrated in
Figure[I.Th, DL is a subdiscipline of ANNs. An ANN becomes a so-called deep neural
network (DNN) when it has multiple hidden layers[I2]. When such a network is large
enough, it could theoretically be used as a universal function approximator, meaning
that the multiplication weights and biases, in the MAC layers, can be tuned such
that the network reproduces any possible input-output relation.[I3]. When learning,
for example, to recognise your face, the weights and biases of the MAC layers are
optimised such that the network performs the function that links the image of your
face to you (unlocking your phone). However, as one can imagine, creating very big
DNNs that can perform very complex tasks requires storing many weights and biases
and performing numerous MAC operations. Both of these currently are limiting
factors to the size of DNNs.

Conventional digital computers, used to implement DNNs, are limited by the Von
Neumann architecture[I4]. In this architecture memory and processing are separated.
Due to the large number of weights and biases stored when using a DNN, the sep-
aration between the processor and memory units requires substantial data transfer.
However, transferring data is energy-intensive and relatively slow, limiting the size
of efficient DNNSs[I5]. At the same time, the increasing computing requirements of
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DNNSs also come with the need for more processing power. Regarding the processing
power of conventional computers, Moore’s law states that the number of transistors
in integrated circuits (ICs) doubles every two years[16]. This law has been the driving
force behind the IC. However, we are getting closer to the physical limits where a sin-
gle transistor reaches the size of a few atoms. Both the data transfer and processing
power limitations of ICs have given rise to the field of neuromorphic engineering[17].

1.1 Neuromorphic Engineering

The term neuromorphic engineering describes the development of hardware that is
inspired by the structure of the brain. Based on the neurons in the brain, physical
artificial neurons (ANs) are being developed. When connected in a network, physical
ANs are capable of basic Al functionality. Such neuromorphic hardware needs to be
trainable and aims to exploit parallelism and in-memory computing[I8]. The data
of neuromorphic hardware are mostly presented using one of two methods. The first
method, concerns neurons for which the datasets used are introduced as numerical
values for analogue computation[I9]. In the second method, the information is en-
coded in the timing and amplitude of spikes[20]. These spiking ANs are inspired by
the spike-based communication in the brain. Due to their event-based nature, spikes
are very energy efficient since the signal is not always on. Because of this efficiency,
many neuromorphic hardware implementations utilise spikes[§].

There are quite a few neuromorphic engineering approaches that use standard tech-
nologies to implement physical ANs. These ANs can be implemented in the dig-
ital, analogue or hybrid domain. In the digital domain, designing neurons is eas-
ier since they are more robust, while analogue neurons could perform more efficient
computing[2I]. The robustness and simplicity of the digital approach lends itself well
to big companies such as IBM, which developed TrueNorth, one of the first neuro-
morphic chips in 2014[22]. This thumb-sized chip implements a network of a million
spiking neurons in an integrated circuit. Later, Intel followed the digital path with
Loihi (2018)[23] and Loihi2 (2021)[24]. Loihi2 also has a million neurons but claims
to be faster in both processing and communication as compared to previous digital
neuromorphic chips[25]. The promise of efficient computing has led researchers to
focus more on the analogue domain. This research aims to implement a network of
memory elements capable of parallel information processing. One approach utilises
flash memory for the memory part of an artificial neuron[26]. The advantage of using
flash technology is the existing knowledge from its implementation in data storage.
Especially in the analogue domain, neuromorphic engineers are looking for novel ma-
terials to implement physical ANs.
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A class of devices based on novel materials are memristors. The standard memristor
implements the memory component of a physical AN in programmable non-volatile
resistance states. In terms of the ANN in Figure[I.Ib, these resistance states achieve
an analogue implementation of the MAC operations (black lines)[27]. Another ap-
proach uses, instead of neurons, physical disordered dynamical systems. Due to the
complex time-dynamics nature of these systems, they are difficult to train. Therefore,
these dynamic systems are often combined with reservoir computing (RC)[28]. RC
uses many states (outputs) from the dynamic system and linearly maps them to a
desired output. In this case, only the linear readout layer needs to be trained, which
reducing the complexity of the training process. Hence, using RC the computational
capabilities of any complex dynamic system can be exploited[29].

Another method to exploit novel materials to achieve Al functionality uses intelligent
matter[30]. Intelligent matter needs to respond to external stimuli and be trainable
to use these stimuli to exhibit the desired behaviour. One approach that uses intel-
ligent matter is evolution-in-materio. Evolution-in-materio uses a so-called genetic
algorithm (GA) to train complex material systems[3I]. This approach to utilising
complex material systems was implemented using gold nanoparticles in 2015, the
nanoparticle network was trained to perform Boolean logic as a benchmark[32]. In
this thesis, we build on this work by utilizing dopant network processing units (DN-
PUs), networks of dopants in a semiconductor that, when operated at the correct
temperature and dopant concentration, can be used for evolution-in-materio[33]. The
DNPUs in this thesis are made from boron/arsenic doped silicon. Furthermore, we
show that DNPUs can be interconnected to perform more complex tasks[34]. By
utilising the RC framework with DNPUs, we show that it is possible to extract more
complex nonlinear behaviour. Moreover, we use this behaviour to implement the re-
quired nonlinearity of physical ANs in hardware, where a digital computer performs
all linear operations. Finally, we show that the global tuneability combined with a
flexible geometry of DNPUs allows us to reduce the number of stored parameters, and
therefore memory requirements, needed to perform nonlinear tasks using ANs. Using
this material platform as an example, we emphasize the importance of researching
novel material systems to develop intelligent matter capable of both learning complex
behaviour and incorporating the memory required to store the learned parameters.



1.2. OUTLINE OF THE THESIS

1.2 Outline of the Thesis

This thesis is structured as follows.

Chapter 2 gives an overview of the, for this thesis, relevant research performed in the
field of novel materials for neuromorphic engineering. Here we discuss memristors
that implement the MAC operations of physical ANs, reservoirs that implement dis-
ordered dynamical networks and evolution-in-materio. Finally, we elaborate on how
the physical properties of DNPUs are useful to implement evolution-in-materio.

In Chapter 3 the fabrication processes of DNPUs are described. We separately discuss
the micron-scale (wafer) processes centered around photolithography and the nano-
scale (chip) processes centered around electron beam lithography. The micron-scale
processes allow for quick fabrication of repetitive structures while the nano-scale pro-
cesses allow for a high degree of flexibility. After the fabrication sections, we describe
the measurement set-ups used to characterise DNPUs.

The first electrical characterisation of DNPUs is presented in Chapter 4. We start by
analysing the temperature dependence of the conduction and find that, when cooling
the DNPUs, they exhibit non-linear current-voltage, I-V, characteristics. By fur-
ther analysis we show that between 70-160 K (where the non-linear conduction takes
place) variable range hopping (VRH) is the dominant conduction mechanism. We
demonstrate evolution-in-materio using the reconfigurable Boolean logic benchmark.
Furthermore, we expand on this by training the DNPUs to extract the features of
2x2 pixel maps. Finally, by using the input-output relations measured on the DN-
PUs for these pixel maps, we show, by simulation, that the MNIST handwritten digit
recognition benchmark can be solved with an accuracy of 96 % by using a network of
multiple DNPUs in parallel.

Since obtaining functionality is limited by the training of the DNPU, we present a new
method for training nano-electronic devices in Chapter 5. We show that it is possible
to train a DNN that will have the same input-output behaviour as the DNPU. This
DNN model is called a surrogate model (SM) of the DNPU. Using such a SM, it is
possible to use standard deep learning techniques, such as gradient descent, to find
the desired tuning parameters (control voltages) of the DNPU. By applying these
voltages on the physical device we validate the behaviour of the SM on a physical
DNPU. Using this training method, we show that DNPUs are capable of mapping
any 2x2 pixel map to a unique discrete current level.

In Chapter 6, we analyse the computational capabilities of a single DNPU using
the Vapnik-Chervonenkis dimension (VC dimension), which quantifies the number of
binary tasks that the DNPU can solve. After this, using a single SM of the DNPU, a
network of SMs is made and trained. The behaviour of this network can be verified
by measuring the physical DNPU, from which the SM is derived, multiple times using
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the sets of control voltages found from training the SM (one set per SM used in the
network) to emulate the behaviour of a network of DNPUs. We compare a network of
DNPUs connected in a 2-2-1 structure, where the numbers ”2” and ”1” indicate how
many DNPUs are placed in parallel. This comparison shows that the 2-2-1 network
outperforms the single DNPU, giving an indication of the potential to scale towards
networks of DNPUs to perform more complex tasks.

In Chapter 7, we discuss the extraction of more computational power from a single
DNPU by operating it in a different mode (configuration). We move away from the
l-output mode that is mostly used and show that, for a DNPU with 12 electrodes,
there is an operation mode in which more nonlinearity can be extracted(2 inputs,
2 controls, and 8 outputs electrodes). Using the DNPU in this mode, we solve the
Hillenbrand vowel recognition benchmark with an accuracy of 89.9 %, by emulating
the behaviour of a network of multiple DNPUs in parallel. The network of DNPUs
requires less stored parameters than a minimal ANN with the same number of inputs
and outputs, showing the advantage of the global tuneability of DNPUs.

Finally, in Chapter 8, we analyse the potential for DNPUs for neuromorphic comput-
ing. It seems possible to create a network of interconnected DNPUs. By combining
DNPUs with other linear technologies, the complex behaviour of the DNPUs can
perform the nonlinear operations and take over some of the linear operations. This
complementary approach is the most promising path when using DNPUs for neuro-
morphic computing.
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Novel Materials for Neuromorphic Engineering

In the field of neuromorphic engineering, researchers are developing physical sys-
tems to perform brain-inspired computations[I]. Brain-inspired computation does
not mean that we aim to reproduce all detailed aspects of the brain. Instead, a
more common approach is to implement aspects of the basic building blocks of the
brain, such as neurons, tuneable synapses and spikes[2]. Such artificial neurons (ANs)
need to be able to work together to form complex networks capable of neuromorphic
computing[3]. A neuromorphic computer is a system that mimics the architecture of
neuro-biological systems to perform computation. When designing hardware to im-
plement a neuromorphic computer, there are three requirements. First, the physical
ANs in the system need to be responsive to external stimuli such that the external
information is processed. Second, the ANs need to achieve the desired response from
external stimuli. Hence, they need to be trainable. Third, the ANs need to store the
learned state in a non-volatile memory[4].

Activation
Iy Function
£ Wi 5
2 b g
£ W: 3
|3 W3

Figure 2.1: Schematic representation of a feed-forward artificial neuron as imple-
mented in digital computers.
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To better understand the different approaches to implementing partial AN function-
ality, we first look at how ANs are implemented in the software approach to creating
artificial neural networks. An illustration of an AN, with inputs I,,, is shown in Fig-
ure 2.1} There is no limitation concerning the number of inputs. The training and
memory are implemented in the weights (W, )[5]. Each input has a weight by which
it is multiplied. These I,,-W,, multiplications are accumulated to perform a multiply-
and-accumulate (MAC) operation[6]. The output of the MAC operation is passed
through a nonlinear activation function to allow a network of such neurons to learn
tasks beyond matrix multiplication. The activation function in the AN can vary from
a step function [7] to a sigmoid[8] and even a Rectified Linear Unit (ReLu)[9] can be
used [10].

Novel materials present an interesting opportunity to implement different aspects of
artificial neurons. Because Artificial Neural Networks (ANNs) are limited by the
Von Neumann bottleneck[IT], [I2], researchers have tried implement the weights of
the AN in Figure using non-volatile materials such that networks can be created
that perform the MAC operations in hardware for in-memory computing[I3]. It is
also possible to create disordered material systems that exhibit nonlinear behaviour.
Often these materials have a high degree of nonlinearity. Combining this with the
requirement that the system needs to be sensitive to external stimuli, these material
systems can be trained for brain-inspired tasks. In this case, such networks can be seen
as a combination of physical ” ANs” that implement a neuromorphic network[T4], [T5]
16]. This chapter will illustrate how novel material systems are used for neuromorphic
engineering.

2.1 Novel Materials for In-memory MAC Operations

To implement in-memory MAC operations, the material needs to exhibit multiple
non-volatile states that linearly respond to external stimuli. In other words, the
material needs to be capable of both storing and processing the weights of an AN[13].
Networks performing MAC operations are achieved in both the electronic[I7] and
optical domain[I8].

2.1.1 MAC operations using Memristors

One method to perform in-memory MAC operations uses memristive devices. In these
devices, weights are programmed as different conductance states of the memristive
material. These states can interact with external voltages. Following Ohm’s law,
an applied voltage is multiplied by the conductance of the material, resulting in a
current. In this section we will describe conductive-filament[I9] and phase-change
memory (PCM)[20] based memristors[17].
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Figure 2.2: Illustration of the working principle of memristors with the top and bottom
electrodes (TE, BE) in blue. a, The formation of a conductive filament (CF, red) in a
metal oxide memristor with the initial state (left), low-resistance state (LRS, middle)
and high-resistance state (HRS) after the first reset (right) [21].b, A PCM memristor
showing both the HRS (left) and LRS (right)[20].

Conductive-filament memristors are usually fabricated by making a metal/insulator/
metal stack[I3]. In many cases the insulator is a metal oxide such as TiO,[22],
Ta0,[23] and HfO,[24]. In these devices, the oxygen vacancies can move under the
influence of an electric field, forming a conductive filament that changes the conduc-
tance of the metal oxide material[I3] [25]. For these materials, the conductance can
be tuned by adjusting the size of the filament. A schematic illustration of this process
is shown in Figure 2:2h. In 2020 such memristors were used to create a network of
multiple memristors, together capable of solving the MNIST handwritten digit clas-
sification task. These conductive-filament memristors used a TiN/TaO,/HfO,/TiN
stack to program the different weight values[26].

Phase-change memristors achieve the different conductance states due to the differ-
ent conductivities of the material’s crystalline vs amorphous state. By heating up
the PCM material using different voltage pulse heights and widths, the ratio of amor-
phous to crystalline material can be adjusted[27]. Based on this ratio the PCM will
have a well-defined non-volatile conductance state. An illustration of a PCM device
is shown in Figure 2:2p. Such PCM memristors have been used to create arrays
that perform MAC operations[28]. The advantage of PCM memristors is that the
behaviour of PCM is well understood, making it easier to engineer the devices to
smaller structures[29).

2.1.2  MAC Operations using Optical Networks

Another approach to implement MAC operations using novel materials can be per-
formed in the optical domain. When implementing MAC operations in the optical
domain, microscale optical frequency combs (microcombs) are often used. These
combs allow different information to be programmed and addressed at different fre-
quencies in the signal. This approach is inherently parallel, allowing for scalability
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towards many operations[30]. By adding a waveshaper, the optical power of the sig-
nal emanating from the microcomb can be adjusted. This microcomb-waveshaper
combination has been implemented in two ways. In the first method, the microcomb
and waveshaper define the input signal to which the weights are applied[31]. In the
second method, the microcomb and waveshaper are used to define the weights that
are used to interact with the input data[32].

The first method again uses PCM to store the weights. By fabricating a waveguide
with a small PCM area on top, the evanescent field of the light couples to the PCM.
Based on the ratio of crystalline to amorphous material in the PCM, it will absorb a
different amount of optical power, making it possible to perform multiplications based
on the energy in the optical signal[33]. This effect is illustrated in Figure . Using
a network of multiple waveguides, each with their own PCM to store different weights,
it has been shown that to be possible to implement non-volatile MAC operations in
the optical domain [311 [34].

The second method uses the microcomb and waveshaper to define the weights of the
MAC operation. By using an electro-optical Mach-Zehnder modulator[35] to create
a linear interaction between these weights and electrically programmed input, it is
possible to perform MAC operations. This approach was first used to create an optical
AN[32] (see Figure 2.3p) and later expanded by creating an optical network capable
of large scale MAC operations where the waveshaper stores the required weights[30].

Microcomb
Input data

PCM
I
Waveglljidel Q Wave & . Output data
EI—:\:— ishaper|  Eom

Distance Weight signal

Figure 2.3: Illustration of the two optical multiplication approaches. a, Waveguide
with the PCM (top) changing the light transmission through the waveguide[33]. b,
Multiplication of the weight signal, defined by the microcomb and waveshaper (left),
with the input data using an electro-optical modulator (middle) followed by conversion
to an electrical signal using a photodetector (PD, right)[32].
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ENGINEERING

2.2 Disordered Material systems for Neuromorphic Engi-
neering

The complexity present in disordered material systems has inspired researchers to
use these materials for computation. This has given rise to two approaches, physical
reservoir computing[37, [38] and evolution-in-materio[39]. The physical reservoir com-
puting approach extracts the nonlinear behaviour of the material’s system without
tuning it. The physical reservoir states are linearly combined to perform neuromor-
phic tasks. Evolution-in-materio uses an evolution-inspired training technique to tune
the material system to perform such tasks. Here the output of the material is directly
used for the neuromorphic tasks. In this section, we describe both methods and give
some examples of material systems used to implement these concepts.

2.2.1 Physical Reservoir Computing

The physical reservoir computing (RC) approach to utilising disordered materials
systems is inspired by the RC approach to training recurrent neural networks (RNNs).
RNNs are ANNs implemented in software that have recurrency in the way they are
connected. This results in data retention in the network allowing for dynamic tasks
such as time-series prediction[40]. At the same time, this recurrency makes RNNs
difficult to train. Hence, RC is used to exploit the dynamical behaviour of RNNs
while still keeping the training simple[41]. RC treats the RNN as a reservoir without
any tuning. The inputs are mapped onto the internal reservoir states. In turn, the
reservoir states are mapped onto outputs by a trainable linear layer to perform the
desired computation.[42]. This process is illustrated using an RNN in Figure [2.h.

Physical reservoirs exploit material systems that inherently have similar properties
as a RNN. This material system is used to map inputs to a set of output states.
Just like in RC, the training is done by finding a linear layer that is capable of
mapping the output states of the material to the desired functionality[37, B8] [43].
This approach is illustrated in Figure 2:4p. Such a material-based reservoir needs to

a RNN reservoir Readout b Physical reservoir Readout

Physical
material system

..................

Figure 2.4: a, Schematic representation of a reservoir computing system with a recur-
rent neural network (RNN) reservoir[37]. b, Schematic representation of a reservoir
computing system with a physical material based reservoir[37].
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have three properties. The first is memory (memory capacity). Since RC is mainly
used for dynamical tasks, it is important that the material has some dependence
on its previous states. The second requirement is generalisability (quantified by a
generalisation rank). This requirement states that, with the same input information,
the reservoir should provide similar information in its reservoir states. This limits the
noise and requires a method to reset the memory back to its initial state. Lastly, the
reservoir needs to have a certain amount of non-linearity to be able to obtain complex
mappings from the input to the reservoir states (quantified by a kernel rank). When
these requirements are fulfilled, it is possible to optimise a reservoir for a specific
functionality[43], [44].

2.2.2  Implementations of Physical Reservoirs

Physical reservoirs can be implemented using a variety of methods. It is for exam-
ple possible to use a bucket of water as the reservoir[d5]. The broad requirements
on reservoirs have led to different implementations. These approaches can be sub-
divided into two main categories. The first category uses nonlinear components to
build up the complex system required for reservoir computing. In optical and opto-
electronic systems, this can be achieved using a single nonlinear node with time-
delayed feedback[46, 47 [48], 49, 50]. Reservoirs can be made by interconnecting the
system in a complex structure[51l [52] [53] or by creating and using memristors with
inherent fading memory|[54]. In the second category, researchers exploit physical sys-
tems that inherently have the three properties described above to be used as natural
reservoirs (reservoirs based on the inherent behaviour of matter)[37, [38]. By com-
bining these natural reservoirs with the RC framework, it is possible to exploit the
material’s complex behaviour for computation without knowing all the internal details
of the system[44] [55]. This approach is, for example, used to exploit the computa-
tional power of a network of cadmium-selenide quantum dots by making them sensi-
tive to the surroundings pH, redox potential, or specific ion concentrations[56]. The
method is also successfully implemented in organic networks of sulfonated polyani-
line (SPAN)[57] and single-walled carbon nanotube/polymer reservoirs[I5]. Using
single-walled carbon nanotube/polymer as an example, it was shown that tuning the
properties of a reservoir allows for the increase of the computational capabilities of the
reservoir. For this approach, the reservoir is tuned following the evolution-in-materio
approach.

2.2.3 Evolution-in-Materio

Evolution-in-materio is a method that uses artificial computer-controlled evolution
of complex material systems. This method was developed to use unknown chemical
and physical processes for computing applications[39]. The artificial evolution for
these systems is performed using a genetic algorithm (GA). During training with a
GA first an initial generation of genomes is defined. A genome is a set of tuneable
parameters of the material system. This genome is, together with the input data,
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Figure 2.5: Schematic representation of a genetic algorithm with the digital computer
domain on the left and the physical domain on the right[58].

applied to the configurable material. The output signal is ranked based on a so called
fitness (similarity to the desired output). Based on this fitness ranking the next
generation of genomes is created. This is done by keeping some of the old genomes,
crossbreeding among genomes, mutation of genomes and by generating completely
new genomes. This process is performed for a certain number of generations or until
a specified fitness threshold is reached[58]. A schematic representation of a GA loop is
shown in Figure [2.5] The trainability of a material using a GA makes this material a
candidate for neuromorphic engineering since the materials adheres to the requirement
of interaction with its surroundings as well as the capability to be taught a specific
response to information, only not guaranteeing non-volatile memory.

2.2.4 Implementations of Evolution-in-Materio

One of the first materials used for evolution-in-materio are liquid crystals. Liquid
crystals exist in a mesomorphic state or, in other words, a state that is in between
a liquid and a solid crystal[59]. In these materials the orientation of the crystals is
highly dependent on an externally applied electric field. Using this electric field it is
possible to tune the electronic properties. Combining this tuneability with a GA, it is
possible to train liquid crystals to perform the reconfigurable Boolean logic benchmark
task[60]. This benchmark requires both tuneability as well as complex nonlinear
behaviour. Another material system used for evolution-in-materio is a disordered
network of gold nanoparticles (AuNPs)[14]. This network is made out of AuNPs with
a diameter of 20 nm that are interconnected by insulating molecules (1-octanethiols).
At low enough temperatures (below 5 K) the nanoparticles act as single electron
transistors (SET)[6I]. By using an external electric field (by applying voltages), it
is possible to move the energy levels of the SETSs, allowing the particles to switch
between the single electron tunneling and Coulomb blockade regime[62]. This allows
tuning of the current paths through the material, which has been used to train the
device to perform the reconfigurable Boolean logic benchmark[14]. The devices under
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investigation in this thesis are a follow-up from the AuNP networks. Dopant network
processing units (DNPUs) originate from the idea that it is also possible to achieve
single electron tunneling in a so called single-atom transistor where a single atom
plays the role of a single nanoparticle[63].

2.3 Dopant Network Processing Units

DNPUs are made of a doped semiconductor. For the DNPUs used in this thesis,
we generally use boron-doped silicon. Because the ionisation energy of the dopant
atoms is higher than the charging energy of the AuNP quantum dots they function
at higher temperatures, going from an operating temperature of 5 K to 160 K. Even
room-temperature operation was achieved[I6]. At these temperatures and with the
correct doping concentration, the conduction in these devices is not solely governed
by Coulomb blockade but also by variable range hopping (VRH). Hopping conduction
occurs when the charges remain localised on impurities (dopants in the case of DN-
PUs). In this case, charges can only move from one impurity site to another through
hopping. Since the sites do not have the same energy, the hopping process between
two sites ¢ and j requires a gain or loss of energy that is associated with the emission
or absorption of a phonon. Figure 2:6h illustrates the hopping process. The hopping
rate (I';;) can be described using Equation [64]

—2rs i
I — vy exXp (%7;37%) 76”‘20 (21)
* Vo exp (ﬁ) ) €ij <0 '

ap

were 1 is a hopping prefactor, r;; is the distance between the two impurity sites,
ay represents the Bohr radius, €;; the difference between the energies of the impurity
sites and kpT' represents the thermal energy. When ¢;; is smaller than 0, the process
generates a phonon. Similarly, when ¢;; is larger than 0, the energy of a phonon is
required for the hop to occur.

Looking at Equation[2.I]there are two hopping conduction regimes, nearest neighbour-
hopping (NNH) and variable range hopping (VRH). NNH occurs when the thermal
energy is sufficiently high for the ,:bJT part the equation to become smaller than
distance dependent side. In this case, hopping occurs between sites close together,
hence between nearest-neighbour impurity sites. When the thermal energy is low, the
second term will become relevant. This results in a trade-off between the distance and
energy difference between the two impurity sites i and j. Due to this trade-off, hopping
will occur over different ranges and VRH will govern the conduction[64]. Depending
on the temperature, there are two different variable range hopping mechanisms, Mott
VRH and Efros-Shklovskii VRH[65]. For Efros-Shklovskii VRH, the thermal energy
becomes so small that the Coulomb gap starts playing a role in the conduction. This
Coulomb gap originates from the long range interaction between localised electrons
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Figure 2.6: Schematic representation of a series of hopping events under the influence
of an external electric field[67].

and results in a small gap in the density of states near the Fermi level[66]. Due to the
differences in behaviour, the conductances of these hopping mechanisms have different
temperature dependencies.

DNPUs exploit the tuneable nonlinear behavior of VRH conduction for evolution-
in-materio. By using multiple electrodes to change the electric field, the energies of
the impurity states are tuned. In this way the path charges will take through the
disordered material is changed, which changes the resistance and thus the output
current. This results in a highly tuneable nanoelectronic device that is capable of
being trained to perform basic benchmark tasks. In this thesis we use DNPUs for
classification tasks, get a first idea of the potential to connect these devices together to
obtain more complex functionality, and look at combining evolution-in-materio with
the RC approach to extract more complex nonlinear behaviour from DNPUs.
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Fabrication and Characterisation of Dopant
Network Processing Units

In this chapter, we focus on the fabrication of dopant network processing units (DN-
PUs) performed in the cleanroom of MESA+. First, we describe the main fabrication
processes. After this, we analyse which aspects of fabrication limit the yield and
propose potential methods of mitigating these aspects. Finally, we elaborate on the
electronic characterisation by describing the general set-up used to perform the ex-
periments presented in this thesis.

3.1 Fabrication of Dopant Network Processing Units

The fabrication of dopant network processing units (DNPUs) is based on silicon
technologies[I] 2] and combines micron-scale fabrication techniques, performed on
4-inch wafers, with nano-scale fabrication techniques, performed on 1x1 cm? chips.
The wafer-scale processing is centered around photolithography, which allows us to
quickly fabricate the repeating structures required for all DNPUs. At the scale of a
single chip, the processing is based on the use of electron-beam lithography (EBL)
since this method allows for the fabrication of nano-scale features. Another advantage
of EBL is the high degree of flexibility allowing us to easily change the design for each
fabrication round[3].

In principle, DNPUs can be fabricated using a wide variety of host and dopant com-
binations. The main requirement is that the device is operated in the variable range
hopping (VRH) regime such that the conduction through the doped material becomes
nonlinearly dependent on an applied electric field (see Chapter [4])
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In this chapter, the fabrication of two types of DNPUs, boron-doped silicon and
arsenic-doped silicon, is explained. The main focus will be on boron DNPUs since
such DNPUs are mostly used in the rest of the work described in this thesis. The
differences between the boron-doped and arsenic-doped DNPUs are indicated to give
an idea about the small variations that need to be considered when fabricating DNPUs
with different host-dopant combinations.

3.2 Micron-scale Fabrication

DNPUs can be fabricated using a variety of silicon wafers, from intrinsic to lightly p-
and n-type doped silicon. Choosing a wafer with a background doping concentration
lower than the concentration required for VRH will make the fabrication easier by

reducing the implantation depth due to the reduced space in the silicon. For boron
| . |
Dry oxidation

mml mm |

SiO,

BHF etch Dry oxidation
e Lo f
- D - I
Implantation Anneal + BHF etch

Figure 3.1: Schematics of the side- and top view during micron-scale fabrication. a,
Initial silicon wafer (light blue). b, The wafer after dry oxidation to grow 300 nm
SiOy (light grey). c¢, Wafer after BHF etching the SiOy window. d, Growth of 35
nm (25 nm for As) SiOs used to create the desired dopant profile in the Si. e, Ion
beam implantation of the dopants. f, Annealing to incorporate the dopants into the
Si lattice and a BHF etch to expose the highly doped silicon surface (dark blue).
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I Si 1300 nm SiO,

5mm
| 26 um

3cm

Figure 3.2: Schematic of the wafer after micron-scale fabrication. a, The 4-inch wafer.
b, Zoom in on the region of a single 1x1 ecm? chip. ¢, Zoom in on a single 26 x 60
pm? implanted region on which the DNPU will be fabricated.

doped DNPUs, we use a one-side polished n-type Si(100) wafer (resistivity, p = 1.00—
10.00 Qcm). Such a wafer has a background doping between 1.3 - 10'® and 1.5 -
106 em~3 which, is below the desired DNPU dopant concentration of approximately
5107 ecm~3 (see Chapter Eﬂ) such that this background doping does not govern
the conductance while still limiting the dopant implantation depth forcing the desired
concentration closer to the electrodes. For arsenic doping, a one-side polished p-type
Si(100) wafer (p = 5.00 — 10.00 Qcm) is used. A schematic of the cross-section of the
micron-scale fabrication steps is shown in Figure A detailed process flow can be

found in Section B.5.1]

3.2.1 Defining the Oxide Mask

To define the regions of the wafer where the dopants will be implanted, we use a
silicon oxide (SiO3) mask. To create this mask, an oxide layer needs to be grown.
Before dry oxidation, the wafer must be thoroughly cleaned. Potential organic residue
is removed using nitric acid (HNOs) after which the thin layer of native oxide still
present is removed using 1% hydrofluoric acid (HF). After cleaning, the wafer is
inserted in an ultra-clean furnace where it is placed with 10 dummy wafers in front
and behind it. These dummy wafers ensure a laminar flow in the furnace tube to
obtain a homogeneous oxide growth. After the wafers are placed in the oven, the
temperature is ramped to 1100 °C (5 °C/min) at which the oxidation is performed in
an Og atmosphere. Using this process, 300 nm SiOs is grown in 4.5 hours (see Figure

3.1p).
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Photolithography is used to define the implantation regions in this silicon oxide. For
this process, we start by spinning a monolayer of HexaMethylDiSilazane (HMDS).
On top of this primer, we spin Olin OiR 907-17 as the photoresist. After exposure
and development, we etch the SiOy in the now exposed regions using buffered HF
(BHF) (see Figure[3.1k). As the final step before implantation, dry oxidation is used
to grow 35 nm SiOy (25 nm for arsenic) at 1050 °C for 14 minutes (8 minutes for
arsenic) to realise the highest implantation concentration at the surface (see Figure
3.1d). Figure shows the simulated implantation profiles in the silicon (using an
online simulator [5]), where the green coloured box indicates the 35 nm (25 nm) SiOs.
It can be observed that the dopant concentration at the surface exceeds 10'? cm?,
which is needed to achieve an ohmic contact with the metal electrodes[].

3.2.2 Ton Implantation

The ion implantation is performed by Ion Beam Services (IBS)[7] where the wafer
is implanted at 9 KeV with 3.5 - 10'* atoms/cm?® (35 keV with 10! atoms/cm? for
arsenic) (see Figure ) After implantation, we perform rapid thermal annealing
(RTA) to incorporate the dopants in the silicon lattice[8]. This is performed at 1050
°C for 7 seconds. After RTA the thin oxide layer is removed by etching with BHF to
expose the highly doped silicon surface (see Figure [3.1f).

The final step before dicing is the fabrication of the EBL markers. These markers
are 20 x 20 pum? squares of 1 nm titanium (Ti) and 50 nm platinum (Pt). First,
the markers are defined using photolithography, using the same resist as above. The
markers are finally fabricated using a combination of sputtering and lift-off[9]. An
illustration of the final wafer (without the EBL markers) is shown in Figure|3.2| where
the light grey areas are the 300 nm SiO5 and the blue areas the doped silicon. The
blue lines that define the 1x1 cm? indicate where the wafer will be diced. The 5 mm
wide regions are there to allow for further investigation of the doping profile. The
rectangle shown in Figure is the implantation region in which the active region
of the DNPU is contacted using nano-scale electrodes.

3.3 Nanoscale Fabrication

When all micron-scale structures are fabricated, and the wafer is diced we are left
with 45 chips each having 16 implantation windows. During nano-scale processing,
metal electrodes are fabricated on top of the silicon surface of one of the chips, to form
ohmic contacts with the highly doped silicon. Next, the silicon is etched to reach the
desired doping concentration at which VRH is the governing conduction mechanism.
A schematic side view of the nano-scale fabrication is shown in Figure A detailed
process flow can be found in Section [3.5.2
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Figure 3.3: Simulation of the ion concentration profile. a, The ion concentration
profile when using boron dopants. The green box indicates the part of the dopants
trapped by the thin SiOs layer. The right edge of this box is at the surface of the
silicon. b, Same as in a when using arsenic dopants|5].

3.3.1 Electrode Fabrication

To contact the DNPU with metal electrodes, we use a combination of EBL, electron-
beam evaporation, and lift-off[9]. First, the chips are cleaned using acetone and
isopropyl alcohol (IPA). Next, a layer of 175 nm polymethyl methacrylate (PMMA)
is spin-coated to function as the EBL resist. During EBL we expose the PMMA in the
regions where we want to have electrodes. The DNPUs in this thesis either have 8 or
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Wafer Scale Metallisation
SiO,

mm S

== Dopant profile

mm Ti/Pd electrode

RIE

Figure 3.4: Schematics of the side- and top- view during the nanoscale fabrication. a,
The device after the wafer-scale fabrication, with the Si in blue, the SiOs in light grey,
and the doping concentration represented by different shades of dark blue. b, The
device after EBL, e-beam evaporation, and lift-off to fabricate the metal electrodes
(dark grey). c, The device after RIE to the desired doping concentration.

12 electrodes equally spaced on a circle with a diameter of 300 nm (see Figure for
an illustration of the final chip with 8 electrodes). Here the diameter of the circle and
resolution of EBL limits the number of electrodes. Since the width or our electrodes is
approximately 50 nm, for the 300 nm diameter used, we are limited to approximately
18-20 electrodes[10]. However, we expect that, when placing the electrodes this close
together, the influence of individual electrodes will be difficult to distinguish from one
another. An electric field similar to the one created by, for example, 3 electrodes close
together, could also be created using a single electrode. After e-beam exposure, the
PMMA is developed in a methyl isobutyl ketone:IPA (MIBK:IPA) solution (1:3) for
45 seconds after which it is rinsed with IPA.

After defining the electrode positions in the PMMA, we need to deposit the metal
on top of the chip. However, we first have to clean the exposed silicon surface using
UV-ozone for 5 mins, to remove potential organic residue, after which we etch the
native SiO5 using 1% HF for 10 s to ensure good contact between the metal and the
highly doped silicon. Here it is important not to etch the SiOs for too long such that
the underetch does not widen the pattern. Now that the chip is cleaned, the metal
is deposited using e-beam evaporation. First, 1.5 nm of titanium is deposited as a
sticking layer, after which 25 nm palladium is evaporated to form a metal layer on
top of the silicon/PMMA (25 nm aluminium for arsenic due different requirements
for n- and p- type doping). To remove the excess metal on top of the PMMA we use
lift-off. This is done by heating dimethyl sulfoxide (DMSO) to 90 °C in which we
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suspend the chip for 15 — 30 mins. When the metal layer starts to form cracks, we
perform gentle ultrasonication in a bath at 80 °C, in batches of 1 minute, until the
excess metal has been completely lifted off. After this, we end up with the structure
illustrated in Figure [3-4p.

a b
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I Doped Si 1300 nm SiO, mmmm Ti/Pd electrodes l
d C

26 m

Figure 3.5: Schematic of the chip after nano-scale fabrication. a, Full 1x1 cm? chip

with 16 DNPUs. Blue represents the doped silicon area, the areas in light grey
represent the SiOy and the dark grey structures represent the metal electrodes. b,
single device with 8 electrodes. c, The doped 26 x 60 um? area. d, The active area
with the electrodes evenly spaced in a circle with a 300 nm diameter.
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3.3.2 Reactive lon Etching

After fabricating the metal electrodes on top of the highly doped silicon, we need to
ensure that the correct doping concentration for variable range hopping is achieved.
Using Figure 3.3 we can see that, to reach a concentration of 5-10'7 cm ™3, we need to
remove approximately 70 nm for boron and approximately 30 nm for arsenic DNPUs.

We remove the excess layer of doped silicon using reactive ion etching (RIE)[IT]. This
step is performed in a gas flow of fluoroform (CHF3) at 25 cm?/min and oxygen (Os)
at 5 cm3/min while using an energy of 25 W at the back electrode for 3 — 7 minutes
(1 — 3 minutes for arsenic). Under these conditions, the metal electrodes are not
etched away and directly function as a mask to keep them in contact with the highly
doped silicon. A side schematic of the final chip can be seen in Figure 34k and a top
schematic in Figure [3.5

The yield of DNPUs is mostly limited by this etching step. The 3 — 7 minutes is
too big a variation to reliably fabricate DNPUs and is limited by the instability in
RIE when attempting to perform such a shallow etch. In combination with the small
region in which the conduction of the DNPU is governed by VRH while still being
conductive enough to measure (10 nm), this indicates that it is important to improve
the RIE fabrication process. Generally, we solved this issue by fabricating many chips
and performing trial and error to discover how long the etch time should be during
a given session. When comparing boron doping with arsenic doping, we observe
that the need to etch less deep reduces the variability in time. This is attributed to
the reduced maximum time that is needed due to the arsenic dopants being closer
to the surface. Using heavier dopants might increase this depth reduction, making
fabrication more reliable. Another method to circumvent the problem is by performing
two implantation steps with different parameters in an attempt to widen the etch
depth range in which the desired dopant concentration is achieved, increasing the
region in which DNPUs operate as desired. It must be noted, however, that besides
this RIE step the fabrication of DNPUs is relatively reliable. On average, when the
correct concentration is reached on a chip, more than half of the 16 DNPUs show the
desired behaviour. The other DNPUs tend to have broken electrodes caused by the
lift-off process.

3.4 Characterisation of Dopant Network Processing Units

A schematic of the measurement setup for the electronic characterisation of DNPUs is
shown in Figure DNPUs operate in the variable range hopping (VRH) regime. For
VRH, besides the correct dopant concentration achieved during fabrication, reaching
the correct temperature is crucial. For boron-based DNPUs, this is in the range of
70 K to 160 K, see Chapter 4[4]. For convenience, we operate DNPUs at 77 K or
liquid nitrogen temperature. To put the DNPU in liquid nitrogen, we connect it to a
printed circuit board (PCB) that is attached to a dipstick. The electronic connections
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Junction
Box NI9202] Computer

Power
_| |
Supply NI9264|
cDAQ

Various electronic
cables

Dipstick

Aluminium
wire bonds

Figure 3.6: Schematic of the measurement setup used to characterise the dopant
network processing units at 77K.

on this PCB are wired to a junction box that regulates the connections to external
electronics. To connect the PCB and junctionbox we use either flat or coax cables.
Flat cables allow us to have many wires in the limited tube size of the dipstick. Coax
cables reduce the cross-talk between the cables, improving bandwidth and reducing
noise. The PCB, device and cabling are inside the metal housing of the dipstick,
which shields the electronics inside. Using such a dipstick, the DNPU is inserted in a
dewar with liquid nitrogen, see the illustrated liquid nitrogen dewar in Figure|3.6

Based on the combination of voltages applied a DNPU will output a specific current.
Since the currents are often in the nA range, we use a low-temperature I'V-converter
to convert the small currents into voltage signals[I2]. We want this IV-converter to
be close to the device to make the signal in the wires less susceptible to cross-talk and
external noise sources. The ratio of current to voltage conversion can be tuned by the
feedback resistance of the IV converter. We have used different feedback resistances
to either reduce noise (100 M feedback resistance) or increase the output range (10
MQ feedback resistance). This consideration is crucial since the IV-converter is the
main factor for reducing noise during slow measurements (1 kHz sampling or less).
However, an increased output range increases the chance of finding the desired DNPU
behaviour. Since for most experiments, reducing noise is crucial, we mostly used the
100 MSQ feedback resistance. The IV-converter combines this feedback resistance with
an operational amplifier (op-amp). For this op-amp to function we need to supply
it with 5 V and -5 V. These voltages are provided using the external power supply
connected to the PCB in the junction box as illustrated in Figure [3.6]
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To precisely control the behaviour of a DNPU, we need accurate control over the
supplied voltages. This is achieved using a digital to analogue converter (DAC). For
the experiments presented in this thesis, we generate the voltages using a NI 9264
DAC module. This module is combined with a NI 9202 analogue to digital converter
(ADC) module to read out the voltages generated by the DNPU + IV converter.
These modules are placed in a NI compact data acquisition chassis (cDAQ). Using
a modular system allows us to adapt the number of modules and offers flexibility in
changing modules when required. This ¢cDAQ chassis with the modules is controlled
using the SkyNEt and brainspy python code (https://github.com/BraiNEdarwin)
that we have developed. This code utilises the nidaqmx python package[I3] for its
cDAQ drivers.

To connect all of this to the DNPU, we use a specially designed PCB. The PCB has
DAC channels that go from the PCB via the junction box to the NI 9264 DAC module
and ADC channels first go via the low-temperature IV converter to the junction box
and finally to the NI 9202 ADC module. We attach the DNPU to the PCB using
double-sided tape. The DNPU electrodes are connected to the PCB electrodes using
a wire bonder. This wire bonder uses an aluminium wire, with a diameter of 25
pm, to wire the PCB electrodes to the DNPU electrodes, as illustrated in the PCB
zoom-in of Figure [3.6] The created connections will determine the input and output
electrodes during the sample preparation stage.

Based on the general design presented above, we have made three additional PCB/
dipstick combinations. The first combination uses flat cables to create a PCB with
space for five devices having 35 DAC and 5 ADC channels. The second dipstick +
PCB is used for experiments that require flexibility in the number of input and output
channels. This set-up has space for one DNPU, of which the electrodes can be wire
bonded to 12 DAC and 12 ADC channels. The third set-up is used to test multiple
devices in one cooling cycle (insert of the dipstick in the liquid nitrogen). We designed
a PCB with space for eight devices. This PCB has 8 DAC and 1 ADC channels and
utilises electronic switches to define the device to which these channels are connected.
Using the above-described set-ups/PCB designs, we have performed experiments on
DNPUs. We present the results of the experiments in the following chapters.
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3.5 Appendix: Process Flow

3.5.1 Micron-scale Process Flow

Step 1: The substrate

DNPU type
Wafer

Background dopant

Resistivity

Step 2: Dry Oxidation 1

boron arsenic
Si <100> Si <100>
N/Phosphorus P /Boron

1.00 — 10.00 Q2cm 5.00 — 10.00 Qcm

Process
Temperature
Time

Process

Process
Temperature
Time

Process

Process
Temperature
Time

Process

Process
Spin Speed
Time

Process
Temperature
02 flow
Pressure
Ramp

Time

Target thickness

Cleaning in 99% HNO3; (WB 14)
Room Temperature
5min in beaker 1, 5 min in beaker 2

Quick Dump Rinse (Clean using DI water)

Cleaning in 69% HNO3 (WB 14)
95 °C

10 min
Quick Dump Rinse (Clean using in DI water)

Etching in 1% HF (WB 15)
Room Temperature
1 min

Quick Dump Rinse (Clean using DI water)

Substrate Drying (use a single-wafer spinner)
2500 rpm
60 sec

Dry Oxidation of Silicon (H1 furnace)
1100 °C

5 L/min

Standard Atmosphere

5 °C/min

4.5 hours

300 nm
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Step 3: Optical Lithography 1, defining the doped regions.

Process
Temperature
Time

Process
Spin speed
Time

Process
Spin speed
Time

Process
Temperature
Time

Process
Separation
Contact Mode
Exposure Time

Process
Temperature
Time

Process
Time

Process
Process
Spin Speed
Time
Process

Temperature
Time

38

Dehydration Bake (on a hotplate)
120 °C
5 min

Spin Coating HMDS (WB 21)
4000 rpm
30 sec

Spin Coating Olin OiR 907-17
4000 rpm
30 sec

Prebake (on a hotplate)
95 °C
90 sec

Resist exposure (Use the mask design from Figure )

50 pm
Soft Contact
4.2 sec

Postbake (on a hotplate)
120 °C
60 sec

Resist Development (WB 21)
30 sec beaker 1, 15-30 sec beaker 2

Quick Dump Rinse (Clean using DI water)

Substrate Drying (use a single-wafer spinner)
2500 rpm
60 sec

Postbake (on a hotplate)
120 °C

10 min
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Step 4: BHF Etching 1

Process
Temperature
Etch Rate
Time

Process
Process

Spin Speed
Time

Step 5: Dry Oxidation 2

Etching in Buffered HF (1:7) (WB 12)
Room temperature

60-80 nm,/min

5 min

Quick Dump Rinse (Clean using DI water)
Substrate Drying (use a single-wafer spinner)

2500 rpm
60 sec

Process
Temperature
Time

Process

Process
Temperature
Time

Process

Process
Temperature
Time

Process

Process
Spin Speed
Time

Process
Temperature

02 flow
Pressure

Ramp

Time

Target thickness

Cleaning in 99% HNOs (WB 14)
Room Temperature
10min

Quick Dump Rinse (Clean using DI water)

Cleaning in 69% HNO3 (WB 14)
95 °C

10 min
Quick Dump Rinse (Clean using DI water)

Etching in 1% HF (WB 15)
Room Temperature
1 min

Quick Dump Rinse (Clean using DI water)

Substrate Drying (use a single-wafer spinner)
2500 rpm
60 sec

Dry Oxidation of Silicon (H1 furnace)
1050 °C

5 L/min

Standard Atmosphere

5 °C/min

14 min for Boron and 9 min for Arsenic
35 nm for Boron and 25 nm for Arsenic
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Step 6: Ion Implantation

Process
Species
Energy
Dose

Process
Temperature
Time

Step 7: BHF etching 2

Ton implantation (Ion Beam Services)

Boron or Arsenic

10 kEV for Boron and 25 kEV for Arsenic

5% 10'5 atoms/cm? for Boron and 1 x 101* atoms/cm? for
Arsenic

Rapid Thermal Annealing
1050 °C
7 sec

Process
Temperature
Etch Rate
Time

Process
Process

Spin Speed
Time

Etching in Buffered HF (1:7) (WB 12)
Room temperature

60-80 nm,/min

1 min

Quick Dump Rinse (Clean using DI water)
Substrate Drying (use a single-wafer spinner)

2500 rpm
60 sec

Step 8: Optical Lithography 2, defining wafer-scale EBL markers.

Process
Temperature
Time

Process
Spin speed
Time

Process

Spin speed
Time
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Dehydration Bake (on a hotplate)
120 °C
5 min

Clean using DI wSpin Coating HMDS (WB 21)ater
4000 rpm
30 sec

Spin Coating Olin OiR 907-17
4000 rpm
30 sec
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Process
Temperature
Time

Process
Separation
Contact Mode
Exposure Time

Process
Temperature
Time

Process
Time

Process

Process
Spin Speed
Time

Process
Temperature
Time

Prebake (on a hotplate)
95 °C
90 sec

Resist exposure (Use the mask design from Figure [3.2h)
50 pm

Soft Contact

4.2 sec

Postbake (on a hotplate)
120 °C
60 sec

Resist Development (WB 12)
45-60 sec

Quick Dump Rinse (Clean using DI water)

Substrate Drying (use a single-wafer spinner)
2500 rpm
60 sec

Postbake (on a hotplate)
120 °C

10 min

Step 9: Sputtering and Lift-off 1

Process
Material 1
Thickness
Materials 2
Thickness

Process
Chemical

Time

Post Treatment

Process
Temperature
Time

Sputtering (T’COathy)
Titanium

5 nm

Platinum

45 nm

Lift-off (WB 11)

Acetone

10 min (or longer if the metal is not completely lifted-off)
Rinse with Acetone (30 sec) and IPA (30 sec)

Substrate Drying (use a single-wafer spinner)

2500 rpm
60 sec
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Step 10: Electron-beam lithography, defining chip-scale EBL marker

Process
Spin Speed
Time
Thickness

Process
Temperature
Time

Process
Dose
Current

Process
time
Post Treatment

Process
Spin Speed
Time

Spin coating PMMA
6000 rpm

45 sec

170 nm

Softbake
160 °C

3 min

Electron-beam Exposure (Raith EBPG5150)
1100 xC cm?
100 nA

PMMA Development using MIBK:IPA (1:3 vol %)
45-60 sec
rinse with IPA for 30 sec

Substrate Drying (use a single-wafer spinner)
2500 rpm
60 sec

Step 11: Sputtering and Lift-off 2

Process
Material 1
Thickness
Materials 2
Thickness

Process
Chemical

Time

Post Treatment

Process

Spin Speed
Time
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Sputtering (T’COathy)
Titanium

5 nm

Platinum

45 nm

Lift-off (WB 11)
Acetone

10 min (or longer if the metal is not completely lifted-off)

Rinse with Acetone (30 sec) and TPA (30 sec)

Substrate Drying (use a single-wafer spinner)
2500 rpm
60 sec
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Step 12: Dicing

Process
Temperature
Time

Process
Spin Speed
Time

Process
Spin Speed
Time

Process
Size

Dehydration Bake (on a hotplate)
120 °C
5 min

Clean using DI wSpin Coating HMDS (WB 21)ater
4000 rpm
30 sec

Spin Coating Olin OiR 907-17
4000 rpm
30 sec

Wafer Dicing
1x1 cm? (along the grid in Figure )
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3.5.2 Nano-scale Process Flow

Step 1: Grab and clean the chip

Process
Batch Tip

Process
Chemical 1
Time
Chemical 2
Time

Process
Time

Get 1x1 cm? chips from the diced wafer
It is recommended to perform the nano-scale fabrication
in batches of at least 4 chips.

Resist removal (WB 11)
Acetone

5 min

IPA

30 sec

Substrate Drying (use a nitrogen gun)
Until Dry

Step 2: Electron-beam lithography, defining the electrodes

Process
Spin Speed
Time
Thickness

Process
Temperature
Time

Process

Dose

Current

Dose Size Factor

Process
time
Post Treatment

Process
Time
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Spin coating PMMA
6000 rpm

45 sec

170 nm

Softbake
160 °C
3 min

Electron-beam Exposure (EBPG5150)

1100 xC cm?

10 nA

above 200 nm use 1x, between 200 nm and 50 nm use 5x
and below 50 nm use 10x

PMMA Development using MIBK:TPA (1:3 vol %)
45-60 sec
rinse with IPA for 30 sec

Substrate Drying (use a nitrogen gun)
Until Dry



3.5. APPENDIX: PROCESS FLOW

Step 3: Electron-beam Evaporation + Lift-off

Process
Time

Process
Time

Process

Process
Time

Process
Material stack

Process

Chemical
Temperature
Time

Process
Temperature

Frequency
Power

Time

Post treatment

Process

Needed information

Surface cleaning using a UV-Ozone reactor
5 min

Native oxide strip in 1% HF (WB 13)
10 sec

Cascade Rinse (Clean using DI water)

Substrate Drying (use a nitrogen gun)
Until Dry

Electron-beam Evaporation (BAK600)
1.5 nm Titanium/ 25 nm Palladium for Boron and 25 nm
of aluminium for Arsenic

Lift-off (on a Hotplate) (for Arsenic aim at perform-
ing RIE (step 4) a.s.a.p. after lift-off)

Dimethyl sulfoxide (DMSO)

90 °C

15-30 min

Ultrasonication (WB 11)

Transfer from the hotplate at 90 °C to a sonication bath
at 80 °C

80 Hz

30 W

Batches of 1 min until lift-off is finished.

Rinse with Acetone (30 sec) and TPA (30 sec)

Atomic Force Microscopy (AFM)
The Electrode Height

Step 4: Reactive Ion Etching

Process

Time

Surface cleaning using a UV-Ozone reactor (only perform
the cleaning (ozone+HF) for Boron devices as it will
remove the aluminium)

5 min
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Process
Time

Process

process
extra info

Pressure

Power

Time

Chemical 1
Chemical 2
Other Chemicals

Process
Needed information

46

Native oxide strip in 1% HF (WB 13)
10 sec

Cascade Rinse (Clean using DI water)

Reactive Ion Etching (TEtske)

Each time use one of the chips in the batch to optimise the
time below for the desired etching depth using the AFM
(80 nm for Boron and 30 nm for Arsenic)

10 mTorr

25 W

3-7 min for Boron and 1-3 min for Arsenic.
CHF3, 25 sccm

O3, 5 sccm

0 sccm

Atomic Force Microsopy
Etch depth, use the previously save electrode height.
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Classification with a Disordered Dopant-Atom
Network in Silicon

Classification is an important task at which both biological and artificial neural networks
excel[ll 2]. In machine learning, nonlinear projection into a high-dimensional feature space
can make data linearly separable[3] 4], simplifying the classification of complex features. Such
nonlinear projections are computationally expensive in conventional computers. A promis-
ing approach is to exploit physical materials systems that perform this nonlinear projection
intrinsically, because of their high computational density[5], inherent parallelism and energy
efficiency[0], [7]. However, existing approaches either rely on the systems’ time dynamics,
which requires sequential data processing and therefore hinders parallel computation|5, [6, [§],
or employ large materials systems that are difficult to scale up[7]. Here we use a parallel,
nanoscale approach inspired by filters in the brain[I] and artificial neural networks[2] to per-
form nonlinear classification and feature extraction. We exploit the nonlinearity of hopping
conduction[9 10, [I1] through an electrically tunable network of boron dopant atoms in sili-
con, reconfiguring the network through artificial evolution to realize different computational
functions. We first solve the canonical two-input binary classification problem, realizing all
Boolean logic gates[I2] up to room temperature, demonstrating nonlinear classification with
the nanomaterial system. We then evolve our dopant network to realize feature filters[2] that
can perform four-input binary classification on the Modified National Institute of Standards
and Technology handwritten digit database. Implementation of our material-based filters
substantially improves the classification accuracy over that of a linear classifier directly ap-
plied to the original data[l3]. Our results establish a paradigm of silicon-based electronics
for small-footprint and energy-efficient computation[I4].

This Chapter is based on: T. Chen, J. van Gelder, B. van de Ven et al. Classification
with a disordered dopant-atom network in silicon. Nature 577, 341-345 (2020). doi:
10.1038/s41586-019-1901-0

Contributions: Measurements and data analysis.
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CHAPTER 4. CLASSIFICATION WITH A DISORDERED DOPANT-ATOM
NETWORK IN SILICON

4.1 Introduction

Doping is a crucial process in semiconductor electronics, where impurity atoms are
introduced to modulate the charge carrier concentration. Conventional semiconduc-
tor devices operate in the band regime of charge transport, where the delocalization
of the charge carriers gives rise to high mobility and a linear response to an ap-
plied electric field. At sufficiently low doping concentration and temperature[d] [15],
however, delocalization is lost, and carriers move sequentially from dopant atom to
dopant atom. This is referred to as the hopping regime[I0, [IT) [I6], which exhibits
higher resistivity and nonlinearity. Nonlinearity is often undesired, but it is a valu-
able asset for unconventional computing, that is, for systems that do not follow the
Turing model of computation[6l, [7, 8, 17, I8 19]. Rather than excluding nonlinearity,
we can exploit it[I2] and manipulate our physical system with artificial evolution to
solve computational problems[I7]. This evolution in materio has been used, for exam-
ple, for frequency distinguishing by liquid crystals[I8] and robot control with carbon
nanotubes[T9]. We recently showed that a disordered network of gold nanoparticles
acting as single-electron transistors can be evolved into any Boolean logic gate at
sub-kelvin temperatures[I2]. By exploiting the physics of materials for computation
at the nanoscale through evolution, we may realize systems with unprecedented com-
putational density and efficiency that are too complex to design[20].

Here, we fundamentally advance our previous work[I2] by expanding the functional-
ity, exploiting the well established platform of silicon technology and demonstrating
operation up to room temperature. According to Cover’s theorem[4], complex, lin-
early inseparable classification problems, when nonlinearly and sparsely mapped to
a higher-dimensional space, can transform into linearly separable problems. The
essence of this nonlinear mapping is illustrated in Figure for the XOR clas-
sification problem. To save resources, this projection is often done implicitly by
using kernel functions in machine learning, that is, without explicit computation of
high-dimensional coordinates[3]. In artificial neural networks (ANNs), the nonlin-
ear projection is learned by adjusting internal weights, traditionally through back-
propagation, leading to powerful feature extractors[2]. However, emulating ANNs
with conventional complementary metal-oxide-semiconductor (CMOS) technology
is known to be power-inefficient[21], and CMOS scaling is not keeping pace with
ANNs[14]. To avoid the area and power costs of emulating neurons and synapses,
reconfigurable[2] material systems with intrinsic complexity and diversity of nonlin-
ear operations[6], 22] 23] are strongly sought after.
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4.1. INTRODUCTION

Figure 4.1: Simplifying classification by nonlinear projection. a, In the XOR classi-
fication problem two classes of data (red circles for (1,0), (0,1) and blue squares for
(0,0), (1,1)) cannot be linearly separated in two dimensions (z1, xo; left). When non-
linearly transformed to three dimensions (¢1, @2, ¢3; middle), the data can be linearly
separated according to their distances d (right) to a decision boundary (yellow plane
in the middle panel). b, Schematic representation of the potential landscape of the
dopant network. In the hopping regime, the potentials of N dopants (purple spheres)
span a highdimensional feature space. Yellow spheres represent charge carriers. The
voltage—time (V—t) diagrams on the left schematically show the voltage combinations
applied to the input electrodes (red), affecting the potential landscape and project-
ing information nonlinearly to the feature space. Note the difference between the
potential landscapes in the top and bottom panels for different input voltages. The
characteristics of the output current (yellow electrode) are tunable by the control
voltages (grey electrodes).

o1
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NETWORK IN SILICON

4.2 Dopant Networks

Our system consists of a disordered network of boron dopants in silicon (Si:B) and
is illustrated in Figure [{:2h, b. The boron atoms were implanted in n-type silicon
with a concentration of 2 - 109 ¢m™3 at the surface (section Figure . A
300-nm-diameter active region was defined by eight electrodes. The central silicon
region was etched (about 80 nm deep) so that the boron concentration at the receded
surface was reduced to about 5 -10'7 ¢m ™3, as confirmed by secondary-ion mass
spectroscopy. The current—voltage (I-V) characteristics (Figure 7 Figure
become increasingly nonlinear with decreasing T, and can be modelled as electric-
field-activated hopping conduction at low temperatures (section [4.7.2). The
network’s potential landscape (Figure ) depends in a highly nonlinear way on the
input and control voltages, and spans a high-dimensional space. The output current is
determined by this complex potential landscape. The nonlinear projection is realized
when a combination of two or more input voltages is converted to an output current.

To identify the charge transport regimes, we focus on the low-bias conductance G =
dIp/dVsp|vsp=—10mv [I1], where Ip is the drain current and Vgp is the source—drain
voltage:

G(T) = Gyel=0/¥0T) 4 G~ (Tw/T (4.1)

where the first term describes band (b) conduction and the second term describes
hopping (h) conduction. G} and G}, are pre-factors with a much weaker temperature
(T) dependence than the exponential terms, ¢, is the dopant ionization energy, Ty, is a
characteristic temperature of hopping conduction and kp is the Boltzmann constant.
The exponent p depends on the specific hopping model[I1]. The resistance R = 1/G
as a function of inverse temperature 1/7 is shown in Figure . At T > 250 K,
hole-band conduction dominates. The extracted ¢, is about 130 meV, three times
larger than the value of boron in bulk silicon, about 45 meV. We attribute this
increased ionization energy to dopant deactivation[24] 25]: for hydrogen-like dopants
near the silicon surface, the decreased dielectric screening leads to stronger electron
confinement, and therefore a larger ionization energy. We adopt the method proposed

by Zabrodskii et al.[15] to distinguish the hopping regime and extract p (section[4.6.2)).
For 70-160 K, we find p = 0.342 £ 0.023, in agreement with p = 1/3 predicted for
two-dimensional Mott variable-range hopping (Mott-VRH) [T} 26] (Figure[d.2). The
two-dimensional nature implies that the dopants participating in transport are located
close to the silicon surface, because the hopping resistance increases exponentially with
inter-dopant distance[I1], which is lowest near the surface. This is consistent with
the dopant deactivation observed in the band-conduction regime. Above about 160
K, band conduction starts to contribute, becoming dominant above about 250 K.
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Figure 4.2: Device structure and charge transport mechanism. a, Scanning electron
microscope image, indicating the source (S) and drain (D) contacts for I-V measure-
ments. b, Schematic crosssection, illustrating the doping profile and the p—n junction
(vellow dashed line). ¢, I-V characteristics at different temperatures (7') showing
nonlinear behaviour below about 250 K. d, Resistance R versus inverse temperature
at Vsp = 10 mV. Band transport is observed for 250-295 K (indicated by the red
line in the main figure and the inset, which shows the high-T region). e, Logarithmic
derivative of the low-bias conduction G with respect to T. The linear segment for
70-160 K indicates hopping conduction (blue line). Inset, semi-logarithmic plot of R
versus 1/T"/3, indicating two-dimensional variable-range hopping for 70-160 K (blue
line) with Th = 7.7 - 10* K, falling well within the range reported for Mott’s VRH

model[16].
4.3 Re-configurable Boolean Logic
To demonstrate classification in the hopping regime (Section |4.7.3H4.7.7), we followed

the evolutionary approach of ref. [12] (section [4.6.6) and configured the system into
Boolean logic (Figure [4.3p—c, Figs. [4.844.7)) at 77 K. The working-temperature win-
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Figure 4.3: Evolution of Boolean logic. a, Schematic electrode configuration, indicat-
ing input voltages (Vin1, Vina), control voltages (V.1—V.5) and output current (I,y¢)-
b, Input waveforms. The logic 0 and 1 are represented here by two different voltages,
0V and 0.5 V, respectively (see also section. ¢, Major Boolean logic gates at 77
K (experimental current values in red, desired output normalized to the experimental
data in black). We reproduced all Boolean logic gates in seven devices. d, ANN with
two hidden neurons (green filled circles) emulated by the dopant network device. The
ANN requires six (linear) weight multiplications, three (linear) summations and three
(nonlinear) activations. e, Total abundance of logic gates (defined in section [4.6.5])
as a function of temperature. The dashed line marks the onset of band conduction.
The blue and red curves correspond to fitness thresholds of F' > 1 (noise level) and
F > 2, respectively. f, XOR and XNOR gates evolved at room temperature with a
backgate voltage of about 12 V.

dow for a set of control voltages (about 30 K) is approximately 15 times wider than in
our previous nanoparticle system[I2] (about 2 K). The retention period of the gates
is over two months in liquid nitrogen, and the device characteristics remain virtually
unchanged after thermal cycling, indicating the robustness of the dopant network.
Boolean logic represents a prototypical two-input binary classification problem[3],
and the XOR classification problem is a poignant example of a single-layer percep-
tron’s inability to solve problems with linearly inseparable vectors[27]. Hence, solv-
ing the linearly inseparable X(N)OR problem demonstrates the system’s separation

ability[3| 22, 23] (Figure [{.1h).

As realizing all Boolean logic gates with a standard ANN requires at least one hidden
layer of two neurons[3] (corresponding to nine linear and three nonlinear operations),
our dopant network can be considered to emulate at least such a neural network in
hardware (Figure ) Importantly, the dopant network has only a 300-nm-diameter
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footprint and an average power consumption of about 1 uW (section [£.6.7). Using
established monolithically integrated readout circuits (section 4.6.4} Figure 4.11]), the
bandwidth of the readout circuitry can be increased from 40 Hz in our current setup
to over 100 MHz. With optimization (section and section , the energy
efficiency of the dopant network at 77 K is projected to exceed 100 tera-operations
per second per watt (TOPs~*W~1), where OP is one typical linear operation of a
neural network|28]), one order of magnitude higher than a state-of-the-art customized
CMOS neural network accelerator|29] (Section Figure [4.12p). However,
recent simulation results indicate that bandwidth might be limited by dopant network
[30]. Kinetic Monte Carlo simulations of the hopping process show that the bandwidth
of the dopant network is 1 MHz. The projected energy efficiencies for both bandwidths
are presented in section and .

To investigate the correlation between the functionality of our devices and the trans-
port mechanism, we performed random searches with 10,000 sets of control voltages
as a function of temperature. We define the total abundance A, representing the over-
all probability of finding Boolean logic, with two fitness F thresholds for each logic
gate[12] (section [.6.5). For both fitness thresholds F > 1,2, the total abundance
drops to below 5% when band conduction sets in at around 160 K (Figure )
Hence, functionality is highly correlated to the hopping regime.

Led by this correlation, we tried to increase the operating temperature by suppress-
ing band conduction. With increasing temperature, dopants near the p—n junction
(Figure ) are expected to be ionized first, as they are less subject to deactivation
than dopants far away from the junction. By depleting the junction using a back-
gate, we indeed observe nonlinearity, and can evolve all six major logic gates at room
temperature (Figure , Figure . The confirmed correlation between function-
ality and the charge transport mechanism can serve as a guiding tool towards robust
functionality at room temperature.

4.4 Handwritten Digit Classification

To demonstrate the ability of our device to perform more complicated classification
tasks, we performed four-input binary classification in the form of filtering 16 2 x 2
black (1) and white (0) pixel features, as shown in the inset of Figure [{.4h. The four
pixel values are encoded as four input voltages to our dopant network, together with
three control voltages and one output current. We use the three control voltages to
evolve a single network into 16 different filters at 77 K. Each filter should make one of
the 16 features distinguishable from all the others, which is realized by evolving the
dopant network such that it yields the maximal or minimal output current for that
specific feature (Figure , Figure . If we feed a feature to a group of 16 filters,
each of which distinguishes one feature, then the 4-dimensional data are mapped to
a 16-dimensional vector, and each feature vector is separated from the others in one
of the dimensions (section [4.7.9).
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Figure 4.4: Feature filtering and handwritten digit classification. a, Current response
of one of the 16 filters. The 2 x 2 pixel black/white patterns (inset) are represented
by ‘0000’, ‘0001’, ..., ‘1111’, with black (1) and white (0) mapped to input voltages
0.5 V and 0.5 V, respectively. The output current of this filter is maximal when
the ‘1011’ pattern is presented. Error bars represent the standard deviation of ten
tests. b, Feature mapping for digit recognition. Specific filters are activated (bold
dark squares) depending on the features presented to them.For clarity, most of the
27 x 27 x 16 filters are not shown. The output of the filters is obtained from the
experimental data shown in a and Figure The ten output nodes, representing
digits 0 to 9, are connected to the filters through a weight matrix My of a linear
classifier. ¢, Confusion matrix of classification with the 10,000 MNIST test dataset,
showing that 96.0% of the digits are correctly classified.

Our approach allows the separation of data by evolving filters that are capable of
processing data in parallel and with high throughput. Compared with optical net-
works, which also allow parallel processing, our dopant networks feature tunability
and have much smaller dimensions: about 100 nm instead of centimetres[7]. Taking
advantage of the separation ability of our nanomaterial system, we used the evolved
filters as the core ingredient to classify the Modified National Institute of Standards
and Technology (MNIST) digits[I3]. The whole classification procedure consists of
a feature mapping layer of the evolved filters inspired by the convolutional neural
network[2], followed by a linear classifier in a traditional computer, which can in prin-
ciple also be realized in materio[31] (Figure [4.4b). The 28 x 28 greyscale pixels of
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each MNIST digit are converted to black and white using a threshold and divided
into 2 x 2 pixel receptive fields (overlapping in one row/column with neighbours).
The receptive fields feed their signal to the cluster of 16 filters, each filtering out
one of the features. The (28 x 28)-dimensional MNIST data are hence mapped
onto (27 x 27 x 16)-dimensional feature vectors. The linear classifier then converts
these high-dimensional feature vectors to a 10-dimensional output by a weight matrix
MW (Figure [1.4p), obtained by pseudo-inverse learning[32] with the 60,000 MNIST
training data (section . The largest of the ten outputs finally determines the
recognized digit.

Application to 10,000 test digits shows 96.0% accuracy (Figure , section m
Figure , which is better than the accuracy obtained with state-of-the-art phys-
ical reservoir computing[8] and optical networks[7]. We note that differences in the
output current scales of the different filters are irrelevant, because the weight matrix
will automatically compensate for those (section . We also simulated feature
filters with ideal characteristics, which are only activated when presented with its
corresponding feature (output 1 for target feature and 0 otherwise). The classifica-
tion of the MNIST dataset with these ideal filters results in an accuracy of 96.2%.
Therefore, as long as the data mapped to the feature space are sufficiently separated,
a linear classifier can learn the decision boundaries. The underlying reason is that ev-
ery complete set of independent vectors, be it orthogonal (ideal) or not, can represent
other vectors by linear combination. This shows the power of our dopant network
in making data linearly separable, owing to its intrinsic nonlinear transformation.
The ability to separate data, when combined with an adaptable linear readout in a
scaled-up system, can achieve universal computational power[8] 22] 23]. For instance,
in ANNS, perceptrons can be cascaded to solve more complex problems[3]. This anal-
ogy strongly suggests that a system of interconnected dopant networks can address a
much wider range of tasks, particularly because the computational power of a single
dopant network is larger than that of a single perceptron (it can solve XNOR, whereas
a single perceptron cannot).

4.5 Conclusion

At the system level, we anticipate a number of necessary developments. First, the
total evolution time of the filters, which scales linearly with their number, can be
reduced (by a factor 106; see sections[4.6.8]and [1.7.7] [4.7.8)). Besides competitive evo-
lutionary approaches[33], we will also explore gradient-based methods[34]. Second, it
will be highly advantageous to store the evolved control voltages locally, employing,
for example, memristors[31] (section[4.7.8). Third, memristive technology is also suit-
able for in materio implementation of the linear classification step in our scheme with
energy efficiency comparable to our material-based nonlinear feature filters. Fourthly,
processing analogue instead of binary signals would be more natural for our devices.
To filter more complex, non-binary features, such as edge detection by the brain[l],
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more electrodes per device are needed and/or multiple devices need to be intercon-
nected, so that more input signals can be processed in parallel. However, increasing
the number of input signals also makes it more difficult to distinguish them from one
another. This increases the difficulty of the task resulting in the need for more accu-
rate tuning of the potential landscape of the dopant network. Fortunately, increasing
the number of electrodes and or interconnecting multiple devices also allows for more
control voltages per filter (at present, three) to improve the signal-to-noise ratio and
is capable of more accurate tuning of the device. We should keep in mind that an
increased number of control electrodes might also increase the required training time.
Besides this, interconnecting multiple DNPUs will result in the need for gain, fan-out
and IV-conversion. This will take up space and energy reducing the efficiency of the
DNPU network. Lastly, for practical applications, room-temperature operation with
long retention, low-voltage supplies and without a backgate is desired, which we deem
possible by engineering the deactivation effect in a silicon-on-insulator-based system.
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4.6 Appendix A: Methods

4.6.1 Samples

300 nm of thermal oxide was grown on an n-type silicon substrate (Figure ), in
which 26 x 60 wm? implantation windows were defined by photolithography and wet
etching. Another 35 nm of oxide was thermally grown in the implantation window to
serve as a stopping layer (Figure ) After boron implantation (9 keV equivalent,
3.5-10%¢cm=2), and activation via rapid thermal annealing (1,050°C, 7 s; Figure ),
the 35-nm stopping layer was removed by wet etching. The boron concentration near
the silicon surface exceeds 2 -10%¢m ™3 to ensure Ohmic contact with the electrodes,
and decreases monotonically with depth (Figure [4.5h). After lift-off of the wire-
bonding pads (1.5 nm Ti/40 nm Pd) defined by photolithography (Figure [£.5(),
eight 1.5 nm Ti/40 nm Pd nanoelectrodes were patterned on top of the silicon by
electron-beam lithography (Figure ) The devices were annealed at 160°C' for 10
min to promote the metal/silicon contact quality. The silicon surface was further
etched by reactive ion etching to reduce the boron concentration in the active gap
area (Figure [4.5f, g; see also section [4.7.6)). The surface was finally treated with mild
oxygen plasma, followed by 1% HF etching to remove possible contaminants.

4.6.2 Charge Transport

Following Zabrodskii et al.[15], we introduce the logarithmic derivative

w = d(log(G))/d(log(T)). From equation. (1), we see that if the hopping term
Gre=Tn/T)" dominates, log(w) = log(p) + p(log(Ty) — log(T)), and p can be derived
from the slope of the log(w)-log(T) curve (Figure [£.2f), thus allowing us to identify
the exact hopping conduction model. For T < 70 K, the measurement noise level
prevents unambiguous identification of the charge transport mechanism (Figure ),
but probably VRH continues[35]. The charge transport behaviour described in the
main text has been observed in the two devices we characterized.

4.6.3 Measurements

We conducted the charge transport measurements and evolution of logic gates at dif-
ferent temperatures in a customized flow cryostat. The cryostat is equipped with
12 coaxial cables to reduce capacitive cross-talk. We use a battery-powered elec-
tronics rack (IVVI rack and matrix rack; http://qtwork.tudelft.nl) composed of
digital-to-analogue converters (DACs) and I/V converters for low-noise measurements
(Figure[4.11). The output range of the DACs is from —2 V to 2 V. The I/V converter
has four amplification settings, 1 G2, 100 M, 10 MQ and 1 M€, each corresponding
to a different measurement range. For measurements at cryogenic temperatures, 1
GS) amplification is chosen as default, by which currents from —3.4 nA to 3.4 nA can
be measured. The output of the I/V converter is sampledby a multimeter (Keithley
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Figure 4.5: Fabrication steps and dopant concentration. a, Thermal oxidation. b,
Implantation window definition and growth of 35 nm oxide. c, Ion implantation. d,
Photolithography and contact pads lift-off. e, Electron-beam lithography and nano-
electrodes lift-off. f, Reactive ion etching (RIE) of silicon. g, Height profile of the
metal electrodes with respect to silicon before (black) and after (red) RIE etching.
The etch depth of silicon is estimated by measuring the height change of the metal
electrodes with respect to the silicon surface (indicated by the black line on the atomic
force microscopy image in the inset, not to scale). Assuming that the metal is not
etched by RIE, the etch depth of silicon is around 83 nm. h, Secondary ion mass
spectroscopy of the boron dopant depth profile after implantation. On the basis of

the etch depth, the boron concentration near the recessed silicon surface is of the
order of 5-107em =3,

2000) or digitizer (ADwin-Gold II). For room-temperature evolution, the I/V con-
verter amplification is set to 10 M2, resulting in a current measurement range from
—340 nA to 340 nA. The measurements are automated with either LabVIEW or
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Python scripts. For fixed-temperature measurements, the devices were inserted into
a liquid-helium (4.2 K) or liquid-nitrogen (77 K) dewar with a customized dipstick.

4.6.4 Readout Speed

In our system, the relaxation time of hopping conduction is less than 10 ns at 77
K and even smaller at higher temperatures (section , S0 it is not the dominant
timescale in our present devices. Like in all measurements on resistive devices[36],
the readout speed of our dopant networks is constrained by a large capacitive load
(Figure [£.11p). The long, twisted pairs (about 3 m) as well as the filters of the
matrix rack amount to a large load capacitance CL (about 4 nF') that limits the
signal speed. With the existing setup, we have a bandwidth (cutoff frequency of the
resistor-capacitor (RC) circuit in Figure [4.11)

1
N 27TC‘L (Rout | |R1v)

BW ~ 40H z (4.2)

where Rjy = 1 MQ is the input resistance of the I/V converter at 1 G2 amplifi-
cation, and the dopant network output resistance Rout is typically hundreds of M2
(Figure ) By monolithically integrating a transistor-based readout circuitry
close to the dopant network[36] (Figure [4.11f), we can reduce the capacitive load
for fast readout, and also enable interconnection with other devices. With existing
CMOS technology, the load capacitance can be easily reduced to below 1 fF, and the
RC-related bandwidth can reach 160 MHz, or even more, by reducing RIV. Given
a signal intensity (the difference between high and low output current levels; see
‘Fitness functions’ below), the signal-to-noise ratio (SNR) is predominantly set by
the Johnson—-Nyquist noise from R;V, because its noise power is proportional to the
bandwidth. Therefore, for a required SNR, (computation precision), the bandwidth
and the subsequent energy efficiency, are determined by the signal intensity (section
4.7.8). The signal intensity of our devices ranges from the order of 0.1 nA to the
order of 1 nA (section [4.7.6]), thus allowing over 100 MHz bandwidth (Figure [1.12h).
However, recent kinetic Monte Carlo (KMC) simulations show that the bandwidth of
the dopant network is likely to be 1 MHz[30]. The time of a single hop is indeed less
than 10 ns at 77 K. However, relaxation of the network requires many hops. Each
of these hops have a certain probability. For the KMC simulation they find that 106
KMUC steps are required for the re-configurable Boolean logic to not be governed by
noise. This equals approximately 1 pus or 1 MHz bandwidth. Therefore it is crucial to
validate these simulations in hardware and increase this bandwidth by increasing the
operation temperature or making smaller devices. For smaller devices, the reduced
number of impurities could require less hops to stabilise.
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4.6.5 Fitness Function

For Boolean logic gate evolution, the input sequences, representing the four input
entries of truth tables (Figure [1.3p), were fed to the input electrodes (Figure [.3h)
after the control voltages were set. We monitored the output current waveform Y
and fitted it with Y = mX + C, where X is the expected output waveform of a logic
gate (logic high and low taking numerical values of 1 and 0, respectively). m is the
proportionality factor and its value thus equals the separation of the high and low
levels (signal intensity). C represents the offset. For each set of control voltages, a
fitness is evaluated by F' = m/(\/rss + kC), with r., being the fitting residual[I2]
and k an empirical constant. A larger k puts more emphasis on minimizing the offset
C in the evolution process. For the evolution of logic gates, we found that there is
minimal offset for k& = 0.2.(Figure [4.3f).

In the random search of logic gates at different temperatures, k has been set to
0.01 to give the waveform shape more weight than the offset. Then, a fitness value of
F = 1 implies that the signal intensity (related to m) almost equals the noise intensity
(related to /7s), and a fitness value of F' = 2 corresponds to more robust logic gates.
Based on the fitness, we define the abundance of each gate. For the 10,000 output
waveforms from a random search, we assessed the fitness of each output waveform for
six major logic gates. In this way, each logic gate is associated with 10,000 fitness
values. The abundance of a gate A; (where i is AND, OR, NAND, NOR, XOR,
XNOR) is defined as the number of fitness values larger than a threshold, divided
by 10,000. The total abundance is then defined as A = 1/(3>",(1/A;)). The fitness
function for the feature filter evolution was defined as F' = |Iout,i|/(avg(|Tout,ji|) +
std(Ipyt,j2i)), where Loy, ; is the output current corresponding to feature f;, and avg
and std stand for the average and standard deviation, respectively, of all the other
feature outputs I,y¢, j2;. Here, ¢ runs from 1 to 16.

4.6.6 Genetic Algorithm

The genetic algorithm mimics natural evolution. An initial generationof 20 genomes,
with the length of each genome equal to the number ofcontrol electrodes, is first
randomly generated and mapped to controlvoltages. The fitnesses of the 20 genomes
are evaluated and ranked. Then the off-spring generation of 20 genomes is produced
in the following way: (1) inheriting the five elite genomes (with highest fitnesses)
from the previous generation; (2) cross-breeding of the elite genomes to produce five
off-spring genomes; (3) mutation of the five elite genomes by a probability of 0.1,
then cross-breeding with the five elite genomes to generate five other genomes; (4)
cross-breeding of the five elite genomes with five random genomes to generate five
other genomes. The genetic algorithm keeps iterating until it reaches a satisfactory
fitness value (Figure ; see also section . A more detailed description of the
evolution procedure is given in our previous work[12].
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4.6.7 Power Consumption

To estimate the power consumption and energy efficiency of our device, we measured
the static power consumption of the six major Boolean logic gates for four different
input voltage combinations, so in total 24 configurations. To measure the current of
the i'" (i running from 1 to 8) electrode, the voltage V; (current I;) is set (measured)
by a source meter (Keithley 2401), while the voltages on the other electrodes are
set by either the DACs (control voltages and input voltages) or an I/V converter
(output electrode). For each of the 24 configurations, the total power P is calculated
as P = Z§:1 ViI; . The average power of the 24 configurations is found to be
about 1 puW. Under operational conditions, the voltage changes on the electrodes
are accompanied by charging and discharging of wire capacitances. As mentioned
above (‘Readout speed’ section), the capacitances can be reduced to below 1 fF,
making the dynamical power consumption negligible compared with the static power
consumption. The static power consumption could be substantially reduced by using
electrostatic electrodes (see also section [4.7.8)).

4.6.8 Weight Matrix Training and Test

In the digit classification task, each 28 x 28 pixel digit is divided into 27 x 27 receptive
fields of 2 x 2 pixels, overlapping by one row/column of pixels. The pixels of each
receptive field are mapped to the 4 inputs of 16 filters (with their experimentally
determined response), each of which filters 1 of the 16 distinctive 2 x 2 pixel features
shown in the inset of Figure . For the d'h digit in the Nd = 60,000 MNIST
training database, we stack the Ny = 27 x 27 x 16 = 11,664 outputs of the filters in
a feature vector Og = (Og,1, - .., Og ;). Combining the vectors Oy of 60,000 training
digits together, we obtain an Ny x N output matrix O = (Oy,...,0On,)T. The true
label of each digit is represented by a ten-dimensional label vector Ly, whose elements
are all zeros except for the (I 4+ 1)'h entry being 1, where [ € (0,...,9) is the true
label of the d*h MNIST digit. Ideally, the weight matrix My, converts the feature
vector of a digit to its corresponding label vector OyMy, = Ly. So, in matrix form,
OMy = L, where L = (Ly,...,Ly)T. The weight matrix My has a dimension of
Ny x 10, and is simply obtained by My = O"L, where O" is the pseudoinverse of
matrix O. Once the weight matrix is trained, we test it with the N; = 10,000 MNIST
test data. The feature vector of each test digit Oy, (¢t = 1,...,N;) is multiplied by
the weight matrix to acquire the predicted label vector Py, Oy My, = P;. The index
of the maximal element of Pt minus one gives the predicted label. The accuracy is
calculated as the ratio of the total counts of the correctly classified digits, that is, the
sum of diagonal entries in Figure [£.4k, to the total number of test digits N;.
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4.7 Appendix B: supplementary Information

4.7.1 Surface States

Silicon atoms at the etched surface of the device are bonded with oxygen, forming a
native oxide, which introduces localised surface states in the bandgap[37]. We rule
out the direct involvement of these surface states in the functionality for the following
reasons: Firstly, in the two devices in which the charge transport mechanism has been
studied, the extracted ionisation energies are ~ 90 and ~ 130 meV. These are much
smaller than the average energies of surface states, which are typically located at mid-
gap, viz. a few hundred meV from the band edges[37, [38, [39]. Secondly, Figure
shows that at 4.2 K nonlinearity appears with incremental etching of the same device.
If surface states would be the dominant factor, the IV characteristics would not depend
on the etching time as each incremental etching step results in similar surface states,
which contradicts the observation in Figure [{.:6p. Moreover, 2D Mott variable-range
hopping (VRH) has been widely observed in similar systems, such as in the inversion
layer of metal-oxide-semiconductor field-effect transistors[26]. Therefore, we conclude
that hopping conduction among dopants is the dominant transport mechanism.

4.7.2 1V Curves Fitting

In the main text, we elaborate on modelling charge transport at small electric field.
Here we present more details of the electric-field-activated hopping by modelling
the IV characteristics measured at different temperatures (Figure [£.2c). In vari-
ous models of electric-field-activated hopping, the conductance G is found to scale as
G x e=1/V)'"? in the strong-field regime[40]. Following Van Ancum et al.[40], we
write the hopping conductance as G(T,V) = Ghe_(kBT’L/(kBT+qE7"))1/3. Here, r is the
average hopping distance, ¢ the charge, and we assume a linear dependency of the
electric field E on the applied voltage V. Taking into account the band conduction,
we can then write the current as

(,M)lﬂ _ b
[ = VG matmm) " L Gy T (4.3)

In the high-field limit, and assuming kpT < Er, we arrive at

kpTh )1/3

I =VGpe )" 4 VGye mBT (4.4)
This model fits all the IV curves reasonably well, especially at large voltages, as shown
in Figure [{.6d, thus suggesting that Eq. 1 in the main text provides an appropriate
model for the conductance. In Figure 4.6, we plot log(G) as a function of 1/V(1/3)
at different temperatures to qualitatively reveal the effect of the temperature on the
hopping conduction. The conductance values at temperatures below 140 K are bun-
dled together in the high-voltage range (indicated by the black circle). Here the
electric-field activation, i.e. the first term on the left-hand side of Eq. S2, dominates
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Figure 4.6: Nonlinear and tunable hopping conduction. a, I-V characteristics at 4.2
K with different total etching time by RIE. As the total etching time increases, the
nonlinearity becomes increasingly prominent, signalling the dominance of hopping
conduction. b, Drain current versus control voltage for constant source—drain voltage
Vsp = 1.2 V at 4.2 K. The source (S), drain (D) and control (C) electrodes are shown
in the inset. The hysteresis for negative gate voltage is probably due to charging of the
other five floating electrodes. ¢, Schematic plot of electrochemical potential p versus
position r, illustrating the tunability. The solid lines represent impurity states and
the arrows represent hopping of carriers among states. See section [£.7.3] for detailed
discussion. d, Fitting the temperaturedependent I-V curves with the model described
by equation (2) in section m Black dashed lines represent the fitted curves. e,
Conductance versus the reciprocal of the cube root of the source—drain voltage at
different temperatures. The black circle groups data at temperatures below 140 K.
See also section for more discussion.
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the hopping current. For temperatures higher than 140 K, the curves in the high-field
range increasingly depart from the bundle of low-temperature curves, which suggests
that the influence of thermal energy kgT (in Eq. S1) on conductance dominates over
the electric field. Thus, increasing temperature decreases the tuneability of the hop-
ping conduction by the electric field, and diminishes the nonlinear projection of data.
This agrees with the observed correlation between charge transport and functionality
discussed in the main text.

4.7.3 Hopping Conductance Tuning

The IV characteristics of the dopant network are highly tuneable by the control volt-
ages. Figure shows an exemplary three-terminal measurement at 4.2 K. Two
neighbouring electrodes are used as source and drain electrodes, and another, oppo-
sitely located control electrode acts like a gate (inset of Figure ) In general,
we note that the third control electrode may also draw current. Clearly, we observe
negative transconductance (NTC) for positive control voltage, and a complex con-
ductance behaviour for negative control voltage. We hypothesise that the network
is energised by the source electrode (injecting electrons), and a percolation path is
formed between the source and drain (Figure ) Along the percolation path, elec-
trons hop consecutively along a series of dopant states. Increasing control voltage
lowers the electrochemical potential of dopant states, which elevates or lowers certain
energy barrier for hopping. The net effects over these changes in energy suppress or
enhance the overall current, thus leading to NTC and complex conductance tuning.

To obtain a qualitative understanding of the influence of the control voltages on
functionality, we consider data generated during a random search for the logic gates
with 10,000 control voltage configurations. Figure[.7p shows histograms of the values
of five genes (control voltages)[12] yielding output waveforms with fitness F' > 1.5 for
the XNOR gate (see section [4.6.5). It can be seen that one control voltage (Vc1)
peaks around a gene value of 0.7 (Figure top panel), corresponding to ~ 240mV
(the control voltage range from —600 mV to 600 mV is mapped onto the gene range
0-1). The other control voltages show no preferable ranges, indicating that there are
multiple solutions for the XNOR gate, as long as the V- is located around the critical
point. We note that it is the combination of control voltages that yields the solution,
so although the distribution of Voo — Vo is broad, they cannot be randomly chosen.
This behaviour resembles what we have observed before in the gold nanoparticle
networks[I2]. A simple picture to understand this behaviour is that the device is
mainly energised by one of the electrodes, most often a neighbouring electrode to
the output. The other electrodes function as gates to tune the potential landscape,
as explained above. Therefore, the functionality is most sensitive to voltages at the
output electrode (grounded during measurements) and the energising electrode.
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Figure 4.7: Convergence of genetic algorithm in the configuration space. a, Genetic algo-
rithm convergence for the six major Boolean logic gates at 77 K. The best fitness of the 20
genomes is plotted against generation. b, Histograms of the control voltages that configure
the dopant network to the XNOR gates with fitness F' larger than 1.5. The first control
voltage is prominently concentrated in a small range, but the others do not show a favourite
range. The ranges of the five control voltages are (600, 600), (1,200, 1,200), (1,200, 1,200),
(1,200, 1,200) and (600, 600). ¢, Control voltages for the six major logic gates. d, Control
voltages for the 16 filters, which are visualized in e. The filters ‘0110’ and ‘0010’ have the

smallest separation. See section and for more discussion. 67
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To investigate the sensitivity of the functionality to a voltage change, we applied an
offset voltage to the output electrode and found that the functionality is lost by an
offset of 10 mV'.

To see how the control voltages are distributed in the configuration space, we list
the evolved control voltages for the six major logic gates and the feature filters in
Figure [L.7c-d. For the filters, there are 16 sets of control voltages in a 3-dimensional
configuration space, which are thus less separated than the 6 sets of control voltages in
the 5-dimensional configuration space for the major Boolean logic gates. We visualise
the filters’ control voltages in a 3D plot in Figure [f.7f, where each dot represents the
control voltages of one of the 16 filters. The most closely located control voltages are
those for filters “0010” and “0110”, with a separation vector of (—84 mV, 64 mV,
—18 mV).

4.7.4 Thermal Stability

In order to study the thermal stability of the evolved logic gates, we re-tested a NAND
gate evolved at 77 K at different temperatures. With the optimal control voltages for
77 K fixed, the temperature was swept down to 5 K, then up to room temperature,
and cycled back to 77 K. The obtained fitness cycle is plotted in Figure {.8b. Above
140 K, the output current clipped to compliance (+3.4 nA). At each temperature
the fitness remains approximately the same during both the cooling and warming
phase, demonstrating the robustness of the device. Figure [£.8b also shows that the
optimal control voltages obtained at 77 K now remain applicable within a large range
of about 65-95 K, where there is no significant drop in fitness (see sectionfor the
definition of fitness). This is in contrast to our previous nanoparticle devices[12], in
which the control voltages for one gate remain functional only within a temperature
range of ~ 2 K (Figure in Ref. [12]). The larger temperature window achieved
with our dopant network device should be sufficient for practical applications. We
hypothesise that this range is correlated to the characteristic temperature Th for
Mott-VRH, which can be further optimised[TT].

4.7.5 Evolution of Logic Gates at 4.2 K, 140 K and Room Temperature

As discussed in the main text, the VRH is expected to continue to very low temper-
atures, and it should therefore be possible to evolve logic gates at low temperature.
Figure shows that these gates can indeed be evolved at a very low temperature
of 4.2 K. Figure shows the six major logic gates evolved at 140 K, which is close
to the upper temperature limit of hopping conduction in our device. The evolved
logic gates are becoming ill-defined in the sense that the ‘low’ and ‘high’ values in
the output current are not well-aligned anymore, suggesting the tuneability is van-
ishing at higher temperature. The XOR and XNOR gates can be evolved only up
to 160 K, where band conduction becomes important, which is consistent with the
random search results in Figure [£:3p. In the case of evolution at room temperature
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Figure 4.8: Evolved logic gates at 77 K. a, Abundance plot of 14 nontrivial truth tables
at 77 K. From a search with 10,000 sets of randomly generated control voltages, we
found all 16 possible truth tables that can be realized for a two-input—one-output
configuration. b, Thermal stability of a NAND gate evolved at 77 K. Above 140 K,
the output current clipped to compliance, and therefore the fitness was not extracted.
The error bars represent the standard deviation of ten tests (see also section [4.7.4)).
¢, Boolean logic gates evolved at 77 K in a device other than the one in Figure |4.3f.
Red circles are experimental output currents, and black lines represent the normalized
desired output currents. The left six panels show the six major logic gates evolved
with input voltage levels 0 V and 0.5 V. The right two panels show a NAND and
a XNOR gate evolved with input voltage levels of 0.25 V and 0.25 V', showing the
adaptability of the dopant network to different voltage levels (see also section [4.7.6)).

when depleting the p-n junction by applying a backgate voltage (Figure ), the
tuneability is marginal and comparable to that at 140 K without a backgate voltage
(Figure [£.9p). This indicates that further optimisation of the device fabrication is
required for robust room-temperature operation.
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Figure 4.9: Evolution of logic gates at two ends of hopping conduction. a, Evolved
logic gates at 4.2 K, at which the charge transport mechanism is still VRH (section
. b, Evolved logic gates at 140 K. Red circles are experimental output currents
and black lines represent the normalized desired output currents. See section |4.7.5
for a detailed discussion.

4.7.6 Reproducibility of Functionality

The characteristics of the seven devices that we investigated, and especially the output
current scale (as well as signal intensity, the current separation between ‘high’ and
‘low’ in Boolean logic), vary from one device to the other (from 0.1 nA order to 1
nA order). Figure shows the logic gates evolved at 77 K in a device different
from the one in Figure [{.3k. As can be seen, the average separation between high and
low current is approximately 3 times smaller than in Figure [£.3¢. One of the factors
contributing to this difference is the variation in dopant concentration. As discussed
in the main text, we employed RIE etching to reduce the dopant concentration in
the active region, which lacks precise control over the etching depth. The resulting
variation can be minimised by optimising the fabrication procedure to remove the
etching step.
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Figure 4.10: Backgate-induced nonlinearity and evolved logic gates at room temperature. a,
A positive voltage Vs, with respect to the drain voltage is applied to the n-type substrate
(Figure ) to make the depletion region wider at the p—n junction, and to suppress
the band conduction. b, Evolved gates at room temperature. Red circles are experimental
outputs, and black lines represent the normalized desired outputs. The output current levels,
and also the separation between these levels, are more than one order of magnitude larger
than those of the logic gates evolved at 77 K, owing to the increased hopping conductance
(section [4.7.3). The increased noise intensity is mainly due to the settings of the current

measurement circuit (section [4.6.3)). -
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We can evolve all devices to logic gates with the same control voltage range of —2 V'
to 2 V, the same output current range of —3.4 nA to 3.4 nA (see Figure 7 Figure
and Figure , and the same input voltage levels of 0 V and 0.5 V. The devices
are also able to adapt to different input values. For example, we can change the input
voltage from 0 V and 0.5 V to —0.25 V and 0.25 V. The functionality can then
be recovered by re-evolution, as demonstrated for the XNOR gate and NAND gate
in Figure (right two panels). In principle, the dopant network is more suitable
for processing information in the analogue regime without need for binarization of
the input dataset[4I]. By interconnecting multiple devices or incorporating more
electrodes on one device, we expect to solve real-life non-binary problems, such as
filtering an edge.

4.7.7 Evolution Convergence and Speed

During the evolution process, the fitness of the logic gates increases until convergence,
as shown in Figure . Occasionally, an abrupt increase of fitness is observed (e.g.
for the NOR gate), which implies that the control voltages suddenly change to reach
a better fitness. After a sufficiently good control voltage set is found, the average
fitness remains stable. Fitness fluctuations still occur due to stochastic variations in
the output current. The output current fluctuations for the NAND, NOR, XOR and
XNOR gates are also observed in Figure [4.3k. The current fluctuations are directly
related to the nature of the hopping conduction, and can be reduced at higher dopant
concentration and higher temperature[42).

For the seven investigated devices, it typically took 10-20 generations to evolve a logic
gate with sufficient fitness, corresponding to ~ 15 min in our current measurement
setup. The filters took a similar amount of generations to evolve. This translates
to ~ 1 hour, which is a factor of four longer, since the number of possible input
combinations is four times larger (16 instead of 4). Notably, the genetic algorithm
has not been optimised and it can be expected to find solutions faster if its hyper-
parameters are properly tuned to the task at hand.

The bottleneck in the evolution is the evaluation of a single control voltage configu-
ration. As discussed in section [£.6.4] our measurement setup currently has a limiting
bandwidth (cutoff frequency of the current readout circuitry) of about 40 Hz, corre-
sponding to a time constant of ~ 4ms. We usually hold each input voltage 500 ms
or longer to obtain sufficient data quality (see Figure in the main text). How-
ever, the device can be reconfigured to logic gates much faster. We have successfully
evolved functionality by setting the input holding time to 100 ms and the rise/fall
time to 20 ms, suggesting that the reading time of our device can at least reach 30
times time constant (30x4 = 120 ms). We note that this reading time is still far from
the theoretical limit. The output of a RC circuit can get to 99% of its steady-state
value in 5 time constants[d3]. The evolution speed will increase proportionally to
the bandwidth, which offers plenty of room for optimisation. Meanwhile, the total
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evolution time of filters increases linearly with their amount, making our approach
scalable in terms of time consumption.

4.7.8 Bandwidth and Energy Efficiency Scaling

The energy efficiency is limited by the bandwidth (BW) of the readout circuitry (cut-
off frequency of the RC low-pass filter in Figure —c) for our dopant network, as
this determines the throughput of operations. In turn, the bandwidth is limited by
a) the relaxation time of hopping conduction, b) the Johnson-Nyquist noise from the
I/V conversion resistor RIV (Figure )7 i2 /BW = 4kgT/Rry and c) the required
signal-to-noise ratio (precision). As mentioned in section the hopping relaxation
time 7(7T) is not the limiting timescale for the bandwidth in our present devices, be-
cause 7(T) "1 = Vphe’(Th/T)lm, where v,;, & 1012 Hz, is the “attempt frequency” [44].
At T = 77 K, the relaxation rate is larger than 100 MHz. Furthermore, for a given
signal intensity i, (defined as the output current difference between high and low lev-
els, related to m in section [4.6.5)), and a required signal-to-noise ratio SNR = i2/i2,
the maximal bandwidth is determined by

-2
zs . R[V

BW = s "MV
W= e SNR

(4.5)
We plot the bandwidth with respect to the signal intensity is at two required SNR
values (black and red solid lines) in Figure . Let us then take the average power
consumption of the dopant network 1 pWW (see section and Figure ) to
estimate energy efficiency. In analogy to a small ANN with 2 hidden units, capable of
representing arbitrary Boolean logic, the operation of our dopant network is equivalent
to performing 9 linear operations and 3 nonlinear operations when processing a single
combination of input data. To be on the safe side, we assume that the complex
operation of our network is equivalent to performing 10 linear operations, neglecting
its intrinsic ability to perform nonlinear operations. This is a conservative estimate,
as nonlinear operations[45] are generally more complicated to implement in hardware.
The output reading time for our device is taken as 30 time constants, i.e. 30/(2r BW)
~ 5/BW, also a realistic lower bound that has been experimentally confirmed (see
section . In short, our device performs equivalently at least 10 linear operations
in a time range at most 5/BW, and therefore,

(10BW) _2-10°-42- Ry
(5-10-6) = (4kgT - SNR)

Energy efficiency ~ OP/s/W. (4.6)
The energy efficiency, assuming that the bandwidth is limited by the readout circuitry,
is plotted in Figure [4.12p. If we optimise the signal intensity to 5 nA (see section
, then the energy efficiency is projected to reach 200 TOP/s/W (TOP: tera
operations) with SNR = 10. Further increase of signal intensity will not lead to
higher energy efficiency, but higher SN R, unless the power consumption is reduced
as discussed below.
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Figure 4.11: Measurement setup. a, Schematics of the existing measurement setup. b,
Equivalent circuit of the current measurement setup. I,u: and Ryt represent the output
current and output resistance of the device. Cp is the parasitic capacitance of about 4
nF. Rrv and Rp are the input resistance and feedback resistance of the I/V converter,
respectively. c, Schematic of an integrated high-speed current reading circuit. Here, Ry is
a resistor to convert current to voltage, CL is the parasitic capacitance that can be reduced
to below 1 fF. Ro is a resistor that sets the amplification.
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As mentioned in section [4.6.4] recent KMC simulations indicating that the bandwidth
of the dopant networks is likely to be 1 MHz[30]. The calculations above are still
correct, we can now substitute the 100 MHz bandwidth from the readout circuitry
with the 1 MHz found during the KMC simulation. For the signal intensity of 5 nA
and SNR of 10 this results in a projected energy efficiency of 2 TOP/s/W .

We compare this result with the energy efficiency in other leading computation tech-
nologies. At the moment, the most efficient high-performance computer from the
Green500 list is running at about 17 GOP/s/W[46], with high precision for floating-
point operations. The application-specific integrated circuit (ASIC) CMOS-based
neural network accelerator, which trades precision for energy efficiency, can reach 10
TOP/s/W at 4 bits[29] (SNR =~ 16). As mentioned in the main text, the linear clas-
sifier can be implemented with memristors[47] in fully materials-based systems, so we
also include the projected energy efficiency of memristors. Memristors are projected
to reach over 100 TOP/s/W in weight multiplications taking into account the readout
circuitry |47, 48].

The power consumption measurements demonstrate that there is a lot of room for
improvement (see section and Figure ) We found that very often a large
current flows into one electrode and out from a neighbouring electrode (Figure m:),
because the current path between two adjacent electrodes is the shortest. This ob-
servation has two implications. Firstly, the influence of a voltage applied at one
control electrode on the potential landscape is constrained by the voltages applied at
neighbouring electrodes. Secondly, most power is consumed by these parasitic current
flows. A method to solve this second problem is to couple the control electrodes elec-
trostatically to the network, avoiding parasitic current flow, while remaining effective
in tuning the potential landscape. In our previous work[12], it has been shown that
electrostatic electrodes (such as a backgate) are also effective in evolving functionality.

We further estimate the power consumption of the peripheral circuitry required to
provide the control voltages and to read the output signal. In principle, two resistive
elements, made of memristors or floating gate transistors, can form a voltage divider
and be programmed to provide a desired control voltage. With electrostatically cou-
pled electrodes, parasitic currents are avoided and the potential divider consumes
little power to supply the control voltage. In the read-out circuitry shown in Figure
[£11p, the quiescent current of the transistor can be as small as tens of nA, thus
adding only tens of nano-Watt to the overall power budget when assuming a ~ 1 V
supply voltage. Therefore, the overall power consumption can be kept to the same
level as that of the dopant network itself.
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Figure 4.12: Bandwidth and energy efficiency scaling. a, The scaling of allowed band-
width with signal intensity in a log—log plot. The back, blue and red solid lines represent
three different indicated cases. Larger required SNR (red) and smaller Rry (blue) lower
the bandwidth. The horizontal black dashed line represents the limit set by the hopping
relaxation time at 77 K, which increases with temperature. b, The scaling of equivalent
energy efficiency with signal intensity in a log—log plot. Larger SNR (red) and smaller Ry
(blue) lowers the energy efficiency. The horizontal black dashed line represents the limit at
77 K and fixed power consumption. If the dopant network power consumption is lowered,
then the limit and all three scaling trends shift upwards. The three black dotted lines mark
three representative computational technologies, the most energy efficient high-performance
computer[46], the neural network (NN) accelerator[29] and memristors[47] (section [£.7.8). c,
Current flow pattern of a NAND gate (NAND10 in d) with inputs 500 and 0 mV. There is a
large parasitic current flowing from input 1 to control electrode 2 (black curved arrow). This
parasitic current limits the energy efficiency. This can be solved by using electrostatically
coupled electrodes (section. d, Measured power consumption of a NAND gate for the
four input combinations. The standard deviations in the current are calculated from ten
measurements. The differential resistances Rg;rs are measured around the voltages in the
second column.
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4.7.9 Feature Mapping and MNIST Classification

Nonlinear mapping of data to a higher-dimensional space[d], and linear separation
of the transformed data in this higher-dimensional space are two important aspects
for efficient classification[49]. In physical reservoir computing, nonlinear temporal
behaviour of a system is needed[5] [8], together with sequential coding in the time
domain, to map data and to obtain the sparsity and separation required by the
Cover’s Theorem[d]. Whereas in our approach, the separation is achieved by the
filter’s selection of a specific feature. For instance, the “1011” feature will be separated
from the other features along the 12! dimension, because the 12" filter yields the
largest output current when the “1011” feature is presented (see Figure )

To confirm that data separation by the evolved filters is a useful approach independent
of the output current scales, we have permuted the output characteristics of filter 1011
to create another “virtual” set of filters, by shifting circularly the output current in
Figure f:4h leftwards by 1 column to create virtual filter 1010, 2 columns to create
virtual filter 1001, and so on, to create the other filters. This virtual set of filters
also led to over 96% classification accuracy. This result shows that the enhancement
of the accuracy of a linear classifier is not affected by the output current scales, but
is only caused by the separability brought about by the nonlinear mapping of the
data to a high-dimensional space. This finding is well known in machine learning[4],
where even random nonlinear mappings to a high-dimensional feature space enhance
linear separability of data. We note that we do have to evolve the filters to achieve
separation. If we set the control voltages randomly, the output currents are mostly
zero or clipped to compliance, and separation is not possible. As mentioned in the
main text, a linear classifier is immune to device-to-device variations. As long as
there exist (hyper-)planes that separate the classes of data, the weights in the linear
classifier are tuned in the training phase to adapt to the different output current
scales. To demonstrate the robustness of our approach against imperfect filters, we
performed classification with another set of filters evolved in a different device from
the one shown in Figure in which fifteen filters successfully filter the targeted
features and one does not. The accuracy still remains 96%, which suggests that the
total classification procedure is tolerant to at least one imperfect filter. These results
lead us to the conclusion that, on the system level, as long as the devices filter their
target features sufficiently well, overall classification is robust.

The tolerance of our approach to device defects and variations can be further under-
stood by comparing to other approaches to classify the MNIST handwritten digits.
For instance, dynamical memristors[§], working as physical reservoirs sequentially
processing data coded in the time domain, can also facilitate linear classification
even when the actual values of the transformed data are random. Furthermore,
the so-called extreme learning machines (ELMs), which are one-hidden-layer, feed-
forward artificial neural networks with randomly chosen, fixed weights, can boost
the accuracy of MNIST digits classification to 98%[50] (with 15,680 hidden neurons
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Figure 4.13: Experimental response of the 16 filters. Each of them is evolved to
filter the feature given in blue. The output currents corresponding to features other
than the desired one are not zero, but the output current of the targeted feature is
clearly separated from the other currents. Error bars represent the standard deviation
obtained from ten tests.

fully connected to the 784 inputs, in total almost 25 million linear operations and
15,680 nonlinear activations), close to the best deep-neural-network result trained
with backpropagation|[I3]. Therefore, in our case, the actual device output current
scales do not matter, as long as the device is evolved to separate data well enough. We
like to point out that an ELM with similar accuracy (94.8%) as ours requires 1,568
hidden neurons[50], meaning almost 2,500,000 linear operations and 1,568 nonlinear
activations. Performing all these operations on a traditional computer consumes much
more energy than our approach.

Let us consider a rough estimation of the energy consumption of this latter, 1,568
hidden neuron ELM running on the top Green500 computer. To evaluate the output
of the hidden layer, we need to perform 2.5 million operations at around 60 pJ/OP[46].
This amounts to an energy consumption of 150 uJ, disregarding the computational
cost of the nonlinear operations, which are by no means negligible. In contrast, to
obtain a similar performance with 11,664 of our devices (required for the MNIST
classification), we have a total energy consumption of 11,664-50 ns -1 uW = 0.58 nJ
per evaluation (50 ns corresponds to the signal reading time with 100 MHz bandwidth,
see section . We remark that here we consider the power consumption of the
whole device without any assumptions about the amount of operations performed by
our device. Furthermore, a small ANN trained with backpropagation should have at
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least 15 hidden neurons to achieve comparable accuracy[5l]. It requires more than
23,500 operations to activate all 15 hidden neurons, which amounts to an energy
consumption of 2.3 nJ on state-of-the-art 4-bit NN accelerators[29], 5 times more
than our solution.

The comparison with ELMs and deep neural networks suggests that we can improve
accuracy and reduce the number of devices by leveraging deep architectures. We are
very much aware that an ANN with deep architectures running on a single traditional
personal computer can classify the MNIST digits with over 99% accuracy[13]. One
should bear in mind that this accuracy is the culmination of over half a century of
development in traditional computing hardware and software.

In real applications, the output of the filters will be superimposed with noise, mainly
from the resistor Ryy (Figure , see also section [4.7.8)). The weight matrix trained
under noise-free condition tends to be sensitive to additive noise, especially when the
signal-to-noise ratio is limited (due to limited number of control electrodes, presently
3). As adding noise in training helps to boost the noise resilience[52] due to its reg-
ularisation effect, we trained the weight matrix 10 times with random white noise
(0.001 nA amplitude) added to the output of the 11,664 devices for all 60,000 train-
ing digits. The average weight matrix of the 10 separate trainings is then used to test
its resilience to noise from Rjy, which is again superimposed on the 11,664 outputs
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Figure 4.14: Enhancing robustness of the linear classifier against noise. Besides op-
timizing the SNR, the linear classifier’s tolerance to noise can also be increased by
taking noise into account during the training phase. The accuracy remains over 92%
at 0.05 nA noise amplitude (see section for a detailed discussion).

79



CHAPTER 4. CLASSIFICATION WITH A DISORDERED DOPANT-ATOM
NETWORK IN SILICON

from the feature mapping layer for the 10,000 test digits. Figure shows that the
accuracy at zero noise is about 92.2%, but remains at 92% even with up to 0.05 nA
noise, 5 times larger than the measured noise intensity of about 0.01 nA (see Figure
4.13]). This robust accuracy is still comparable to state-of-the-art results in other
materials-based systems like dynamical memristors[§] or optical networks[7]. In con-
trast to physical reservoir computers, which take milliseconds to obtain results[8], our
system involves no time dynamics and can thus process data in parallel on the order
of nanoseconds with high throughput (see above). Compared with optical diffractive
networks, which also allow parallel data processing[7], our dopant network has a much
smaller footprint (~ 100 nm vs centimetres).
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A Deep-Learning Approach to Realising
Functionality in Nanoelectronic Devices

Many nanoscale devices require precise optimisation to function. Tuning them into the de-
sired operation regime becomes increasingly difficult and time-consuming when the number
of terminals and couplings grows. Imperfections and device-to-device variations hinder op-
timisation using physics-based models. Deep neural networks (DNNs) can model various
complex physical phenomena but, so far, are mainly employed as predictive tools. Here,
we propose a generic deep-learning approach to efficiently optimise complex, multi-terminal
nanoelectronic devices for desired functionality. We demonstrate our approach for realising
functionality in a disordered network of dopant atoms in silicon. We model the device’s
input-output characteristics with a DNN, and subsequently optimise control parameters in
the DNN model via gradient descent to realise various classification tasks. When the corre-
sponding control settings are applied to the physical device, the same functionality is found
as predicted by the DNN model. We expect our approach to contribute to fast, in-situ
optimisation of complex (quantum) nanoelectronic devices.

This chapter is published as: H.-C. Ruiz Euler, M. N. Boon, J. T. Wildeboer, B. van de
Ven et al. A deep-learning approach to realizing functionality in nanoelectronic devices.
Nat. Nanotechnol. 15, 992-998 (2020). doi: 10.1038/s41565-020-00779-y

Contributions: Device Fabrication, characterisation and proof of concept measurements.
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CHAPTER 5. A DEEP-LEARNING APPROACH TO REALISING
FUNCTIONALITY IN NANOELECTRONIC DEVICES

5.1 Introduction

Exploring the behaviour of nanoelectronic devices can be a time-consuming task, re-
quiring considerable human and experimental resources. For instance, multi-terminal
nanoelectronic devices for quantum technology[Tl, 2] [3 [, [5], and hardware-based
computational paradigms(@] [7, [ @, 10] require delicate tuning of control voltages
to achieve a desired functionality. Tuning by hand becomes increasingly challeng-
ing for devices with a growing parameter space. As the number and complexity of
interconnected nanoelectronic devices increases, the demand for automated tuning
methods rises as well. Existing methods rely either on search heuristics[I], 3 [4] or,
increasingly, on machine-learning methods that combine measurements with either
image analysis[I1], 12| 13| T4} [15] or gradient estimation of the output response[5] to
iteratively converge to the desired functionality.

This article proposes the use of a deep neural network[I6] (DNN) model of a nano-
electronic device for optimising the values of the device’s control settings to achieve
a desired functionality. Tuning the corresponding control parameters of the DNN
model (also known as a surrogate model) — instead of the control settings of the phys-
ical device — has several advantages. These include a significant reduction in tuning
time, as well as in human and experimental resources since the control parameters can
be tuned in a completely automated manner with minimal physical measurements.
The model is created by training a DNN with a measured training data set that
represents the input-output characteristics of a multi-terminal nanoelectronic device.
DNNs have been shown to act as efficient function approximators[I7] of multidimen-
sional functions. Up to now, in physics, DNNs have been introduced mainly as a
predictive tool[I8, 19, 20, 2T, 22]. Here, we demonstrate that we can successfully
realise functionality in a nanoelectronic device by optimisation of its DNN model,
which acts as a proxy of the physical device, via gradient descent in a fast and fully
automated way. Stochastic gradient descent uses a cost function (see section
that describes the desired behaviour of the model. By tacking the gradient (partial
derivative) of this function with regards to the to be optimised parameter, it is pos-
sible to adjust the parameter such that the output of the systems moves to one of
the minima of the cost function. In conventional DNN approaches, all the weights of
the DNN are trained using gradient descent[23] [24], 25]. However, for the DNN model
of a nanoelectronic device, the optimisation is performed for the DNN inputs that
correspond to the tuneable parameters of the devices, see the squares in Figure [5.1

Figure [5.1] illustrates our general approach of creating a DNN model of a multi-
terminal nanoelectronic device, and the process of obtaining the desired functionality.
For the case study of this article, voltages are applied at the input terminals and
currents are measured at the output terminals. First, we sample the multidimen-
sional space of input voltages to obtain a sufficiently large amount of input-output
data. Next, we set up a DNN architecture with the numbers of inputs and outputs
matching those of the device. The DNN should have a sufficiently large number of
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hidden layers and neural nodes per layer to accurately describe the input-output data
(See section and Figure . Then, the DNN is trained with measured training
data and tested with unseen measured data. The realisation of the desired function-
ality is achieved as follows. We assign some input terminals as ‘control’ terminals
(circles in Figure . The control voltages applied at these terminals control the
input-output characteristics between the output currents and the voltages applied
at the input terminals (squares). At this stage, the control voltages that are to be
applied to the device become the learnable control parameters of the DNN. A desired
functionality, defined as a specific targeted input-output relationship, is then searched
for in the DNN model using gradient descent on the control parameters. Finally, the
obtained functionality is verified by applying the obtained corresponding control volt-
ages directly to the physical device, without the need for any further experimental
optimisation.

We demonstrate this approach for a multi-terminal nanoelectronic device recently in-
vestigated by us[6]. The device consists of an electrically tuneable network of boron
dopants in silicon (Si:B) with 8 terminals (electrodes), 7 acting as voltage inputs and
one as current output. The active area of the device has a diameter of about 300
nm. The device can be tuned to solve two-dimensional categorical nonlinear binary
classification problems|26] using an evolutionary approach|27]. Boolean functionality
is realised by applying four input voltage combinations to two input terminals, cor-
responding to the data inputs 00, 01, 10, and 11, and tuning the remaining terminal
voltages such that the four data combinations are mapped to the desired logic gate
represented by its output current levels. Figure shows typical IV-characteristics
measured at 77 K, demonstrating the nonlinear dependence of the output current I,
at terminal 8 as a function of the voltage applied at each of the other 7 terminals,
while grounding the remaining terminals.

5.2 Deep Neural Network Modelling

To train a DNN model of the device, the 7-dimensional space of its input voltages
must be sampled and the corresponding output current measured. One way to obtain
these input-output data would be to sample the input voltage space uniformly and
randomly, which would be optimal when no information on the input-output relation
is available. However, the associated abrupt voltage jumps cause a transient response,
viz. a time-dependent current related to capacitive effects. To circumvent this, pauses
of at least 20 ms (~5 times the RC time of the device in combination with the
measurement circuit) after input voltage steps could be incorporated to let the system
settle into a steady state. As the amount of voltage combinations grows exponentially
with the number of terminals, this rapidly becomes very time-consuming.

To solve this problem, we sample the space of input voltages using sinusoidal or tri-
angular modulation functions and a sampling frequency of 50 Hz (see Figure and
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Physical device (real world) Neural network (virtual world)

(1) Measure input-output data ) (2) Set up DNN with inputs and outputs matching device
3) Training & testing DNN with measured data

\/

(4)Find functionality in DNN via gradient descent on control
parameters

(5)  Verify DNN-predicted functionality by measuring <

Figure 5.1: Realising functionality in a nanoelectronic device using a DNN model.
The following steps are followed to create a DNN model that captures the input-
output characteristics of a multi-terminal nanoelectronic device with N input and
M output terminals, and to realise a desired functionality. First, input-output data
of the device are measured (1). Next, a sufficiently deep and wide DNN is set up,
with numbers of inputs and outputs matching those of the device (2). The DNN is
trained with the measured training data and tested with unseen test data (3). The
DNN is used to find the desired functionality using gradient descent on the control
parameters (4). The predicted corresponding control voltages are then applied to the
physical device to verify the functionality (5). Circles and squares pointing towards
the device/DNN indicate the control and data inputs, respectively. Circles in the
DNN represent artificial neurons and their activation function.

section. This sampling technique minimises discontinuities in the applied voltages
and therefore reduces transient effects. The efficiency of sampling this way depends
strongly on the choice of the modulation frequencies. By choosing the modulation
frequencies of the different input voltages such that the ratios of all frequency com-
binations are irrational (see Table , we guarantee that the input space is densely
covered and that no recurrences of voltage combinations occur. Also, the sampling
density can then be increased by simply increasing the sampling time. Our approach
has significant advantages over standard sampling with a predefined uniform grid in
the 7-dimensional voltage space. For the same total number of samples and highest
modulation frequency as in our approach, which is limited by remaining transient
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Figure 5.2: Sampling input-output data to train and test the DNN. (a) Typical TV-
characteristics of the Si:B device measured at 77 K, showing nonlinear behaviour.
The current between the output terminal and ground is measured while applying a
voltage to each of the input terminals and grounding the remaining terminals. (b)
Schematic representation of the device, with boron dopants represented by orange
dots (see Ref. [6] for details). Training and test data are obtained by measuring
the output current (I,,:), while applying sinusoidal (as shown in this example) or
triangular voltage modulations (V; -V7) to the input terminals (frequencies given in
Table[5.1). (c) Output current predicted by the trained DNN for the unseen test data
set against the current measured in the physical device. The solid line has slope 1.
(d) Histogram of the test error, showing an RMSE of 1.2 nA.

effects, the total sampling time in the standard approach would need to be around 5
times longer (see Table . In addition, an increase of the sampling density would
require performing a new sampling over a new grid instead of simply increasing the
sampling time.
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The input data consist of tuples of input voltages (V1-V7, in V') and the output data
are scalars representing the output currents (I,u¢, in nA). The input and output
layers of the DNN correspond to the input terminals and output terminal of the
device, respectively. We model our nanoelectronic device with a fully connected DNN
consisting of 7 inputs and 1 output. A network architecture with 5 hidden layers and
90 nodes per layer is found to have a sufficiently small test error (see Figure .
Minimisation of the mean-squared error is used for training the DNN (see section

5.

Figure [5.2k shows the output current predicted by the DNN vs the measured output
current for unseen measured test data. We observe only small deviations from the
identity curve (black), as compared to the overall range of the output. The root-
mean-square error (RMSE) in the predicted currents for the test data is 1.2 nA, see
Figure [5.2|, which is 0.27% of the total current output range. These results show
that the trained DNN predicts the unseen data accurately.

5.3 Automatic Functionality Search via Gradient Descent

A desired functionality is specified by a targeted dependence of the output current
on one or more input voltages of selected terminals. The functionality is obtained by
learning the values of the remaining input voltages, i.e. the control parameters, by
following the negative gradient of a cost function E(y,z), which is a measure of the
similarity between the predicted outcome data y and the targeted outcome data z. At
this stage, the internal weights of the DNN are kept frozen. We use a cost function
composed of a correlation factor and the logistic function (see section. In contrast
to the mean-squared error, this cost function does not target specific output current
values, but rather promotes separation of low (‘0’) and high (‘1’) output currents.
The entire process of automated optimisation by the DNN model is represented in
Figure for the case of an XOR Boolean logic gate. To demonstrate the speed and
accuracy of this approach, we apply it to solve different tasks with increasing accuracy
requirements.

5.4 Classification with DNN-optimised Nanoelectronic De-
vices

Starting with Boolean logic gates, voltages Vo and V3 on terminals 2 and 3 are used
as data inputs, as identified by the squares in Figure and the yellow and blue
coloured terminals in Figure [5.3b. Hence, there are five remaining control voltages
(Wi, Vi, Vi, Vs, V7) to realise the gates. We note that it is to a large extent a matter
of choice which terminals are used for data input and which for control.
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Figure 5.3: DNN prediction of device functionality and verification. (a) Backpropa-
gation of the gradient through the DNN to tune the control parameters realising the
desired functionality. During the tuning process, the internal weights of the DNN
are frozen. The input and control terminals are represented as squares and circles,
respectively. (b) For this example, the prediction of an XOR Boolean logic gate is
chosen, consisting of 2-dimensional input data (V5 and V3, —1.2 V for ‘0’ and 0.6 V/
for ‘1’), with the 5 remaining voltages as control parameters. The control voltages
are tuned such that the input data are mapped to the desired outputs. (c¢) To ver-
ify the predicted outcome, the tuned control voltages and the time-dependent input
voltages are applied to the physical device. Each input combination is applied for 0.1
s, resulting in a total output signal of 0.4 s, which is sufficiently long to reveal typical
fluctuations in the output current. The predicted outcome is shown in black and the
physical measurement in red. In between the different input combinations, the input
voltages are linearly ramped in 10 ms to their new values, during which the current
is masked. We note that optimisation of the devices and the interfacing equipment
may eventually lead to a readout bandwidth exceeding 100 M H z[6].
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Figure 5.4: Prediction and verification of Boolean logic. (a) Applied voltages V2 and V3 to
test the Boolean logic gates. (b) Black curves: logic gates predicted by the trained DNN. Red
curves: output current measured in the device using the control voltages predicted by the
DNN (given in Table . In between the different inputs the voltages are linearly ramped
in 10 ms to their new values, during which the current is masked. The numbers in the
panels indicate the RMSE (nA) and the normalised RMSE (in brackets), respectively. The
horizontal dashed lines indicate current levels that could be used for separating the logical

outputs ‘0’ and ‘1.
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The desired functionality (as determined by the accuracy of the benchmark task) is
generally obtained when the input terminals are not neighbouring the output terminal
or each other, which is intuitively understandable from the underlying physics of
variable-range hopping of charge carriers in between the dopants and between the
dopants and the electrodes in the electrostatic potential generated by the electrode
voltages and the dopants and charge carriers themselves[6]. During verification of
the predicted gates the input data (V2, V3) are presented to the physical device as a
time sequence in the order shown in Figure [5.3p. These input wave forms, given by
the yellow (0011) and blue (0101) signals, represent all four possible combinations of
inputs for the truth table for Boolean logic (00, 01, 10 and 11). We show in Figure
the numerical prediction and experimental verification of an XOR gate in black
and red, respectively.

Figure [5.4] shows the results for all logic gates. The voltage values corresponding to
logic inputs ‘0’ and ‘1’ are —1.2 V and 0.6 V, respectively; see Figure[5.4h. In Figure
[6.4p, we show in black solid lines the output currents for the logic gates predicted by
the DNN. To verify the predicted output currents, the predicted control voltages and
the binary input voltages are applied to the physical device. The measured output
currents are shown by red curves. A comparison shows that all gates predicted by
the DNN are also demonstrated in the physical device. Moreover, the values of the
output currents are predicted with high accuracy. The RMSEs of the predicted gates
(numbers in Figure [5.4p) are consistent with the test error of 1.2 nA in Figure [5.24.
The normalised RMSEs (numbers in brackets) display the magnitude of the error
with respect to the current scale (highest minus lowest current) of the predicted
gates. The normalised RMSEs show that the worst predicted gates (NAND and OR)
have a relative error of 5.6%. Possible threshold current values separating ‘true’ and
‘false’ for each logic gate are represented by the dashed lines in Figure [5.4b. Optimal
thresholds could be automatically determined by training a single perceptron[28] on
the output and target data.

The DNN model allows for an accelerated exploration of functionality, without per-
forming further measurements on the device after collecting the training and test
data. In our case, we are able to reduce the search of Boolean functionality from
15 minutes per gate, by performing physical measurements in combination with an
evolutionary algorithm[6], to around 10 seconds on a standard computer (Processor:
Intel®) Core™ i5-8250U CPU @ 1.60GHz, 4 cores and 8 GB RAM) by using the DNN
model, i.e. a speed-up of nearly two orders of magnitude.

Next, we study a more challenging binary classification problem, consisting of classi-
fying points in a 2-dimensional feature space with two classes: data points in an outer
ring corresponding to the label ‘0’, and data points in an inner cluster corresponding
to the label ‘1°. The points are shown as discs and crosses, respectively, in Figure[5.5h.
The two classes in this ring classification problem must be separated using a closed
decision boundary. Using in this case V; and V5 in Figure as data inputs, the
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Figure 5.5: Ring classification functionality. (a) 66 outer data points (class ‘0’, grey
discs) and 66 inner data points (class ‘17, black crosses) to be classified. In this case
V, and V5 from Figure are used as data input voltages V;, 1 and Vj, 2, while
the remaining voltages are the control parameters. The heat map shows the physical
device’s output current while sweeping V; and V5 and keeping the predicted control
voltages fixed (see Table for their values). The points undergo an affine transfor-
mation before the mapping (see Table for the scaling factor and offset voltages).
(b) Prediction by the trained DNN (black curve) and verification measurement (red
curve). Grouped in classes for visualisation, each data point is measured for 0.1 s
in the physical device and in between the data points the input voltages are ramped
up/down to the next point with a ramping time of 10 ms, to avoid transient effects.
The classes are readily separable by a threshold current (horizontal dashed line).

DNN is trained to separate the two classes such that the inner class corresponds to a
high and the outer class to a low output current. The remaining control parameters
(Vh, Va, V3, Vs and V7) are to be tuned. Additionally, we have added a scaling factor
and two bias parameters to the input voltages, enabling the DNN to determine an
affine transformation of the data by itself (see section. The resulting prediction of
the DNN is shown in Figure[5.5p by the black solid line. The physical measurements,
represented by the red curve, take 100 ms per data point. The RMSE is 0.78 nA and
the normalised RMSE is 4.4%, demonstrating the accuracy of the prediction by the
DNN model. We note that the second input voltage ranges up to 1.1 V, whereas the
DNN is only trained for voltages up to 0.6 V for this terminal. The trained DNN
thus successfully extrapolates over a 0.5 V range. To visualise the results, Figure
b5k includes a heat map created by sweeping the two input voltages in the physical
device. This demonstrates that the output current indeed maximises for the inner
class and minimises for the outer class. The two classes are separable by defining a
threshold current as decision boundary; see the dashed line in Figure [5.5p. We note
that the used data inputs V4 and V; are different from those for the Boolean gates (V5
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and V3). A good functionality can also be obtained with other choices for the data
inputs. In Figure [5.11] another good ring classification functionality is demonstrated
using Vs and V5 as data inputs (see Tables and .

5.5 Feature Mapping with DNN-optimised Nanoelectronic
Devices

We fabricated another device with the same structure as in Figures. and of
the device used for the previous experiments, and used it to perform a more complex
task. The task involves distinguishing 16 different 2x2 pixel features by the device’s
output current, which is a possible subtask of a higher-level image recognition task|[d].
Measurement of training and test data is done as before with, as differences, the use
of triangular instead of sinusoidal modulation functions and other voltage amplitudes
(see Table [5.1)). The modelling of the DNN is the same as before. The RMSE of
the predicted test data happens to have the same value of 1.2 nA as before, which
is now 0.6% of the output current range. The features are defined by 2x2 black and
white pixel combinations that are converted to high (black) and low (white) voltage
values on four input terminals, in this case V5, V3, V4 and V5. The remaining terminal
voltages V1, Vs and V7 are the learnable controls. Learnable scaling factors and bias
parameters are added to each of the four input voltages. In the search for the desired
functionality with the trained DNN, a cost function is used that promotes separation
of output currents for the 16 different pixel features (see section .

Figure visualises the main problem faced in the feature mapping. Noise and
instabilities of various origin lead to a distribution in the measured output current
when a certain pixel feature is presented to the device multiple times. For a reli-
able mapping, the separation of the output currents for the different features should
sufficiently exceed the width of this distribution. Figure demonstrates that the
functionality obtained from the DNN search satisfies this criterion. In multiple veri-
fication measurements the different features are subsequently presented to the device
for 0.1 s. The result of a specific measurement is shown in the left panel (red curve)
together with the DNN prediction (black solid curve). The right panel shows his-
tograms of the complete set of measurements, involving 1,000 measurement points
per feature obtained from a total of 10 measurements at 1,000 Hz spread over the
course of 1 minute. The dashed lines in Figure show a set of decision boundaries
determined using a naive Bayes classifier that can be used to separate the features
(see section and Figure . With these boundaries, 99.94% of the measured
data are classified correctly.
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Figure 5.6: Feature mapping task. (a) Schematic representation of the task. All four
pixels of the feature are presented as a high (black) or low (white) input voltage to a
terminal of the device, after which a histogram of the output current is obtained that
should be separated from that of other features. The voltages of the remaining control
terminals are optimised by the DNN model to maximise the difference between the
output currents of different features (see Supplementary Tables S8 and S9 for the
parameters). (b) Left: comparison of a measurement of the output current (red)
to the DNN prediction (black) for the different input features. In between different
presented features the input voltages are linearly ramped in 200 ms to their new
values, during which the current is masked. Right: histograms of the output current
of 10 measurements. The dashed lines show decision boundaries obtained with a naive

Bayes classifier (see Table [5.10)).

5.6 Conclusion

We have proposed a generally applicable deep-learning approach to realising desired
functionality in complex multi-terminal nanoelectronic devices. The method involves
the training of a deep neural network (DNN) model that emulates the device’s mul-
tidimensional input-output characteristics, followed by gradient descent on selected
control parameters of the DNN to find the desired functionality. The set-up of the
DNN model, which involves input-output data collection and training, needs to be
done only once per device. After the DNN model set-up, a variety of functionalities
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can be searched for with the model without further experimentation on the device.
We demonstrated the method for nanoelectronic devices consisting of boron dopants
in silicon (Si:B) contacted by 8 terminals. Owing to the high efficiency of input eval-
uation by a DNN, we were able to find all Boolean functionalities nearly two orders of
magnitude faster than by performing physical measurements in combination with an
evolutionary algorithm[6]. In addition, we were able to readily realise a more complex
ring classification and a 2x2 pixel feature mapping functionality, showing that the
devices have more computational capacity than previously shown[6].

We expect our approach to have a broad application range. By using standard ma-
chine learning techniques and libraries, the generality of our approach ensures the
optimisation of a broad range of physical systems where control parameters are avail-
able. Naturally, the choice of DNN architectures determines the reliability of the
functionality prediction and varies for different physical systems (see Figures

and section .

As an extension of the present work we intend to explore the coupling of many de-
vices to create hierarchical structures with many more inputs, outputs and control
parameters. Finding a desired complex functionality solely by experimentation will
then become increasingly challenging. A limitation of our approach will be the time
needed to sample the input voltage space, which scales exponentially with the number
of input terminals if the sampling density is kept constant. In the present study, the
number of input terminals is 7. If the sampling speed can be increased to 100 MHz[6]
instead of the present 50 Hz, while keeping the same sampling density, the number
of input terminals could be doubled to about 14 without increasing the sampling
time. For many more input terminals, a modular approach can be used, where DNN
models are created for separate modules with a still manageable number of terminals.
The response of the total system can then be modelled by coupling the DNNs of the
separate modules.

Our approach can also be valuable for tuning of quantum-dot architectures|29, 30} B1],
used in quantum information processing. Large systems consisting of many cou-
pled quantum dots have a large parameter space and therefore require more sophisti-
cated tuning approaches. Existing tuning methods are based on “device-in-the-loop”
approaches[32], [33] [34], i.e. measuring the real device is required during optimisation.
In contrast, parameter tuning in our approach can be performed entirely off-chip.
Because of its generality, our deep-learning approach can be readily applied to these
systems. We finally want to mention that our approach is not restricted to nanoelec-
tronic devices, but can be applied to any complex, tuneable, static system, such as
programmable metasurfaces[35], for which realising functionality is also challenging.
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5.7 Appendix A: Methods

5.7.1 Data Sampling

To perform the measurements, we use a battery-powered electronics rack comprised of
voltage sources and IV converters for low-noise measurements. All the measurements
are automated with Python using Ni-DAQmx software[36] and our in-house frame-
work SkyNEt[37]. The temperature is fixed by dipping the device in a liquid-nitrogen
(77 K) dewar.

The training and test data are sampled using sinusoidal (Boolean logic and ring
classification functionality) or triangular (2x2 pixel feature mapping) modulated input
signals to minimise capacitive transient effects. We used both input signals to test
different input distributions (see Table . The frequencies, amplitudes, and offsets
of these functions for each input terminal are given in Table We choose the
frequencies proportional to the square root of prime numbers. The ratio of any two
frequencies is then irrational, which guarantees a good coverage of the 7-dimensional
input voltage space and prevents any recurrence of voltage combinations. To ensure
that training and test data do not overlap, the training data set is generated using
modulation functions without phase shift, whereas the test set is generated with a
phase shift of 1 radian ( ~57 degrees). The training and test data sets comprise
about 3x106 and 540,000 input-output pairs, respectively. The sampling occurs at
a frequency of 50 Hz, where one out of three points is added to the data set. For
the generation of the sinusoidal and triangular voltage modulation functions an NI
9264 voltage sourcing module is used in combination with a cDAQ-9171 and cDAQ
9178 chassis. Output currents are measured after an IV conversion with either an
NI USB-6216 device or an NI 9202 voltage measuring unit in combination with the
cDAQ 9178 chassis.

5.7.2 DNN Architectures

The general methodology to determine the hyper-parameters of DNN models, espe-
cially regarding the architecture, is still an open question in the field of deep learning,
but suggestions exist to guide the construction of suitable DNN models. If there are
no previous examples of network models for the system at hand, it is advisable to start
with simple models, e.g. linear models or shallow networks, and assess their ability to
predicting the behaviour of the given system. When designing the model, one should
consider the amount of data available for the training and validation of the models, for
which no clear guidelines exist. However, as a rule of thumb, if simple models readily
overfit the data, one should focus more on data acquisition or other modelling meth-
ods suitable for small datasets. Given a suitable amount of data, it is best practice to
explore architectures with different design choices, such as depth, width, and activa-
tion function. At the beginning of the exploration, choosing the width of the hidden
layers to be larger than the input dimension often improves performance. Increasing

100



5.7. APPENDIX A: METHODS

the depth of the DNN usually boosts performance at the beginning, but once this im-
provement becomes marginal one should increase the width of the hidden layers. The
aim should be to find the architecture with the best performance on validation data
that generalises well on test data. An example of this procedure is given in Figure
.7 in section[5.8:2] If overfitting is observed, one can regularise the DNN to improve
performance. If the cost levels off at an acceptable value for different architectures, it
is advisable to take the simplest model to avoid computational overhead. If further
efficiency considerations are important after finding the best DNN model, one may
optimise the computational complexity of the model via parameter quantisation and
pruning, low-rank factorisation or knowledge distillation approaches[38]. There are,
however, important considerations when making a trade-off between accuracy and
computational/model complexity. In general, sacrificing the prediction accuracy will
result in bigger efforts in searching for functionality, because the probability of false
positives and negatives will increase (see Figures [5.815.10). We refer to section
for a detailed discussion on the consequences of this trade-off.

5.7.3 DNN Training

The neural network consists of 7 inputs and 1 output, corresponding to the physical
device’s input and output terminals, respectively. We use a fully connected feed-
forward network, consisting of 5 hidden layers with 90 nodes (see section for
the choice of this architecture) and a ReLU activation function. Training is done
by stochastic gradient descent on the mean-squared error for 3,000 epochs with a
learning rate of =10~° and a minibatch size of 128. The training data set is split
into a set (90%) used for the training and a set (10%) used for the validation. The
validation data set should not be confused with the test data set. The validation set
is used to prevent overfitting, while the test set of unseen data is used to estimate the
generalization error. For optimisation, Adam[39] is used with 8; = 0.9 and 2 = 0.75.
All hyperparameters are explored to obtain the lowest possible test error. Our DNN
model is implemented using PyTorch[40)].

5.7.4 Cost Functions

The cost function to obtain Boolean logic and ring classification functionality is given
by

where y = (y1,92,...,yn) are the actual currents, z = (21, 22,...,2,) the targeted
binary current levels (n = 4 for Boolean logic and n = 132 for ring classification),
p(y, z) is the Pearson correlation coefficient and f(z) = 1/(14¢e”) the standard logistic
function. The current values ¢ and p control the desired separation and are chosen as
3 and 5 nA, respectively. The value y.e, represents the minimum separation between
the high and low labelled data. For the data labelled as class ‘1’ (high output) the
lowest predicted current is taken and for the data labelled as class ‘0’ (low output)
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the highest predicted current is taken, which are subtracted to obtain ys.,. While
the correlation function promotes similarity between the targeted and actual outputs,
the logistic function promotes separation of the two classes.

Although the binary cross entropy loss is most often used for binary classification
tasks, its use would require mapping the output of our device to the posterior prob-
ability over the targets. This requires a linear readout to be learned together with
the control voltages. Here, we opt for a cost function that avoids introduction of
extra parameters. We designed our cost function to be a differentiable function of
the control parameters that reflects the characteristics of the fitness function used
previously to find Boolean functionality[6]. For the 2x2 pixel feature mapping we use
the following cost function,

E(y) = —Zf(lyi —ynn@)l/p) (5-2)

where, y; is the current for feature i(i = 1,...,16) and YNN(;) is the ‘nearest-
neighbour’ current (NN (i) is the feature with current closest to y;). The logistic
function promotes an initial increase in current separation and leads to a saturation
for a sufficiently large separation. We take p = 2 nA, leading to saturation of the cost
function for separations above 10 nA.

5.7.5 Control Parameters

The Boolean logic gates consist of 4 distinct combinations of 2 binary states for the
input terminals. The voltages representing these states are taken to be -1.2 V and 0.6
V, corresponding to ‘0’ and ‘1’ respectively. The voltages of the remaining 5 terminals
are the learnable control parameters. The input data set of the Boolean logic gates is
expanded such that each input combination is represented 100 times, thus leading to a
total of 400 data points in the training set. During optimisation, these data points are
randomly presented as inputs to the DNN. Stochastic gradient descent is used with
a minibatch of 100 data points and a learning rate of =0.08. A single optimisation
session for a logic gate consists of at most 600 epochs, with an early termination if
in the previous 150 iterations there has not been a significant reduction in error. To
prevent the learnable parameters from deviating too much from the voltage range of
the training data set, the parameters are regularised with an Ll-norm outside this
range. To obtain the best results, we re-initialised training 10 times per logic gate.
The predicted control voltage values with the lowest error are the ones taken in the
verification. These are given in Table |5.5

For the ring classification problem 132 input data points are used, which are shown
in Figure [5.5h. The hyperparameters used for optimisation are the same as for the
Boolean logic gate optimisation, except for the number of initialisations and maximum
amount of iterations per initialisation, which are 20 and 800, respectively. The 66
outer points are generated uniformly and randomly in a ring between circles with
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radii 0.5 and 0.6, and the 66 inner points in a circle with radius 0.1. The coordinates
(z1, x2) of these points are transformed to input voltages by

Vvin,i =T Vscaling + Voffset,i (53)

where Vicaing is a scaling voltage, taken equal for the two input electrodes, and
Vo fset,i are voltage offsets. These parameters define an affine transformation of the
data and are next to the control voltages the learnable control parameters. The
control voltages for the ring classification functionality are given in Table and the
scaling voltage and offsets of the two input voltages in Table Note that for this
example the input data terminals are 4 and 5, which are different from the Boolean
logic gates (terminals 2 and 3).

For the feature mapping functionality shown in Figure[5.6we map the 16 combinations
of 4-dimensional binary patterns to 16 distinguishable current output levels. The
binary values xpqse = 0 for ‘high’ and 1 for ‘low’ are mapped to input voltages

‘/in,i = Tbase * Vscaling,i + Voffset,i (54)

where again Vicqring,i, now taken different for the 4 input electrodes, and Viff4ct s are
added to the learnable control parameters. The final functionality is the best result
obtained after 500 random initialisations of the control parameters and training for
5,000 epochs with a minibatch of 4. The resulting control voltages are given in Table
and the scaling factors and offsets of the four input voltages in Table

5.7.6 Pixel Feature Decision Boundaries

The set of decision boundaries for the pixel features shown in Figure[5.6pb is determined
using a naive Bayes classifier with Gaussian data approximation, which optimises the
posterior probability. The collective measured data in the right panel of Figure [5.6b
are used as training set for finding the decision boundaries. Using standard Bayesian
notation, a new datapoint x is assigned to class k’ for which

P(K') - P(alk') = maz[P(k) - P(ak)] (5.5)

Here, P(k) is the prior probability, which is equal to the fraction of datapoints be-
longing to class k in the training set, and P(zk) is the probability density function
of class k in the training set. In our case the classes have an equal prior probability,
so P(k) = PyVk. The probability density function P(xk) of each class k =1,...,16
in the training set is in our case assumed to be Gaussian (see the histograms in the
right panel of Figure ) Thus, in our case a new datapoint x is assigned to the
class k that has the highest probability density for that value of x. Graphically, this
means that the decision boundaries are located at the crossings of Gaussian fits to the
histograms in the right panel of Figure [5.6b, as is shown in Figure The currents
corresponding to the decision boundaries are given in Table The classification
is done with the Gaussian naive Bayes module of the scikit-learn package[41].
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5.8 Appendix B: Supplementary

5.8.1 Comparison of Different Sampling Methods

We compare here the sampling density of three different sampling methods of the
7-dimensional input voltage space of the device: 1) a uniform grid sampling with
the fastest running input voltage (i.e. the voltage at an input electrode that swipes
the fastest through the defined grid), a one-but-fastest running input voltage, etc.,
[2]) a sinusoidal sampling with modulation frequencies with irrational ratios given in
Table and a triangular wave sampling with the same modulation frequencies
used in [2]. We obtain an estimate of the sampling density and time as follows. The
7-dimensional input voltage space is subdivided into 12 equally sized small bins per
input terminal between the lowest and highest voltage, totalling 127 bins. For all three
sampling methods, the bins containing at least one input data point are regarded as
‘sampled’ and the empty bins as ‘unsampled’. Table shows for the three different
sampling methods the fraction of sampled bins in the 7-dimensional input space as
‘density’ and the sampling time (rounded to hours) as ‘time’; for different numbers of
grid points per input terminal. To estimate the sampling time for the uniform grid, the
fastest running voltage of the grid sampling is taken to have the same frequency as the
highest modulation frequency of the sinusoidal and triangular wave sampling, which
is 0.22 Hz (see Table. For N sample voltages per terminal, the inverse modulation
frequencies of the 7 different voltage signals are proportional to N, N2, N3,..., N” and
the total sampling time in seconds is then given by N7 /(2N0.22). Tableshows only
small differences in the sampling density for the different sampling methods. However,
the sinusoidal and triangular wave sampling methods are considerably faster than the
uniform grid sampling. The triangular wave sampling becomes slightly faster than
the sinusoidal sampling with growing N.

Table 5.1: Control voltages for the alternative ring classification. Control voltages
predicted by the DNN, applied to the device to verify the alternative ring classification

in Figure @
Terminal 1 2 3 4 5 6 7
Frequency / 0.05 (Hz) V2 V3 V5 V7 V13 | V17 | V19

Amplitude (V), device 1 | 0.9 0.9 0.9 0.9 0.9 0.5 | 0.5
Offset (V), device 1 -03 | -03 | -03 | -03 | -03 | -0.2 | -0.2
Amplitude (V), device 2 | 0.85 | 0.85 | 0.85 | 0.75 | 0.75 | 0.1 | 0.15
Offset (V), device 1 -0.35 | -0.35 | -0.35 | -0.25 | -0.35 | 0.0 | 0.0

The two DNN models for the two devices in the main article are trained and tested
using data sets obtained during, respectively, 48 hours and 3 hours of sampling with
sinusoidal or triangular waves. The sampling in that case is somewhat denser than
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Table 5.2: Comparison of different sampling methods. Sampling density (sampled
fraction of 127 equally sized bins in the 7-dimensional input voltage space) and total
sampling time (rounded to hours) for three different sampling methods and different
sample voltages N per terminal. The modulation frequencies used in the sinusoidal
and triangular wave sampling are given in Table A sampling frequency of 50 Hz
is used in both methods.

Uniform grid Sinusoidal waves Triangular waves
N | Density | Time (h) | Density | Time (h) | Density | Time (h)
6 | 0.00781 30 0.00732 4 0.00738 4
7 | 0.0230 74 0.0231 13 0.0239 13
8 | 0.0585 336 0.0592 36 0.0592 33
9 0.133 336 0.135 92 0.135 78
10 | 0.279 631 0.279 240 0.280 175

N = 8 sample voltages per terminal. Besides the advantage in data acquisition time,
sampling with waves reduces the transient behaviour in the output current observed
with fast voltage changes.

5.8.2 DNN Architecture

In our optimisation of the deep neural network (DNN) architecture, we consider DNNs
with different numbers of hidden layers (1, 2, 5 and 6) and nodes per layer (15, 30,
60 and 90). Figure shows the root-mean-square error (RMSE) in the current
predicted by the trained DNN as compared to the measured validation data on the
physical device for the architectures that we considered. We observe a similar perfor-
mance for DNNs with 5 and 6 hidden layers, which both show a significantly better
performance than DNNs with less hidden layers. Increasing the number of nodes
per layer from 60 to 90 decreases the performance of the DNN with 6 hidden layers,
possibly due to a slight overfitting of the training data. The best performing DNN is
the one with 5 hidden layers and 90 nodes per layer, and we therefore used this DNN
in the modelling of our device.

If computational efficiency is a concern, one could trade predictive accuracy (here
quantified by the RMSE) for computational efficiency (here quantified by the DNN
size). Onme could, for example, take the smallest architecture for which the RMSE
levels off. In our specific case, we could choose a less computationally demanding
model with 5 hidden layers and 60 nodes per layer without any significant performance
loss (see Figure . However, in general predictive accuracy should have priority,
since failing to predict the device’s behaviour correctly significantly increases the
probability of false negatives and false positives when searching for functionality.
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Figure shows the AND gate solved by the device from the main text (red curve,
always the same) compared with different current predictions using models with ar-
chitectures as in Figure Although the same input and control voltages are used
for all models and the device, we see large variations in the predictions. The simplest
models (1L15N, 1L30N and 2L15N) fail to predict the trends in the output current,
giving a false negative in the search for functionality. Hence, this control voltage
configuration would be completely ignored. By chance, the model 1LI0ON does give
the AND functionality, however, with a large error in the current prediction. We
observe a similar behaviour for XNOR, where all models up to 2L15N fail to pre-
dict functionality (not shown). Similarly, large errors in the prediction of the output
current could result in false positives, generating control voltage configurations that
solve the task in the model but fail the validation in the device. Both tasks are solved
in model 2L30N with a separation smaller than 2 nA, however, these control voltage

Architecture Search

RMSE on validation data (nA)

m@m 1 Layer

w2 Layers

@ 5 Layers

W@ 6 Layers

0 T T T

15 30 60 90
# Nodes

Figure 5.7: Performance of different DNN architectures. The root-mean-square error
(RMSE) in the currents predicted by the trained DNNs as compared to the measured
validation data. Errors are plotted versus the number of nodes per layer in the case
of 1 to 6 layers. The inset shows the difference between DNNs with 5 and 6 hidden
layers for 60 and 90 nodes per layer.
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Figure 5.8: AND gate predictions of DNN models with different architectures. Black
curves: predicted output from DNN models with architectures given in Figure
designated as xLyN, with x layers and y nodes. Red curve: measured output current
(nA) of the device with the AND gate control voltages as in the main text (same for
all panels).

configurations could be ignored by the searching procedure since the loss function
optimizes for separation and false positive solutions with larger separations could be
prioritised. All other tasks are solved with all models, so those voltage configurations

happened to be robust to model errors due to the large differences in the “high” and
“low” levels.

Naturally, if tasks require higher accuracy, the performance of the model becomes
more relevant. Figure shows the prediction of the output current given the same
control voltages that solve the ring classification task as in the main text. We observe
again a failure of the simpler models (up to 2L15N) to predict functionality with these
control voltages. Coincidentally, the model 2L30N has low error for these inputs,
predicting functionality with a relatively large gap. However, the models 2L60N and
5L15N fail to predict the correct separation of the classes, increasing the probability
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Figure 5.9: Model comparisons for the ring classification. Same representation as in
Figure [5.8] For this task, more complex models are required to correctly predict the
control voltage configuration.

that this solution would be ignored if false positives exist with larger separation
between classes, i.e. only the models with the lowest RMSE correctly and reliably
predict the functionality with large separability between classes.

The need for more complex models in tasks with even higher accuracy requirements
is shown in Figure Here, we compare the predicted outputs for the feature
mapping task solved in the main text. The models used for the prediction of the
output are those used to estimate the RMSE curves in Figure We observe that in
this example even mid-sized models like 2L30N and 5L15N fail (blue windows). There
are two non-exclusive ways in which a model can fail in this task. First, if there is
an incorrectly predicted separation of the features, the search will result in a false
negative for this specific control voltage configuration. Second, even if the predicted
features are well separated, the order of the features can be exchanged, for instance as
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Figure 5.10: Model comparison for the 2x2 pixel feature mapping task. Same repre-
sentation as in Figure 5.8 with the addition that the red curve represents the mean
output over 10 measurements. Even the mid-sized models 2L30N and 5L15N fail in
the functionality given the control voltage configuration obtained in the main text.
The error in the models creates situations (examples of these are indicated by blue
windows) where there is no meaningful separation predicted, which makes the volt-
age configuration a false negative, or there is an output current from the device that
transposes the order of the predicted feature mapping, see e.g. 1LION.

in model 1LYON. Although technically we would accept this solution because we only
optimise for separability, the order of the features in the output would be permuted.
Hence, the assignment of the predicted output after training a naive Bayes classifier
would not correspond to the correct feature, making the functionality search rely more
heavily on the naive Bayes classifier and the validation of the functionality obtained
a posteriori.
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Table 5.3: Control voltages for the alternative ring classification. Control voltages
predicted by the DNN, applied to the device to verify the alternative ring classification

in Figure

Terminal 1 2 3 4 5
Control voltage (V) | 0.10 | -1.20 | 0.40 | 0.48 | 0.08

5.8.3 Alternative Ring Classification Functionality

Figure [5.5] in the main paper shows a ring classification functionality using V4 and
Vs of the device as data inputs. To demonstrate that other electrode choices are
also possible, Figure shows an alternative ring classification functionality using
Vs and V7 as inputs. The RMSE is in this case 0.83 nA. The control voltages for
this alternative ring classification functionality are given in Table [5.3|and the scaling
factor and offsets of the two input voltages in Table

Class 0 (‘0")

Class 1 ('x’)

Viz (V)
S
o
(N J ' of
(]
®e ©
1 o
(2]
current (nA)
current (nA)
N S~
1 1

-0.4 -0.2 0.0 0.2 0 5 10
Vint (V) time (s)

Figure 5.11: Alternative ring classification functionality. Ring functionality as in
Figure [5.5] of the main text, but now with Vi and V7 from Figure in the main
paper as data input voltages Vj, 1 and Vj, 2. (a) 66 outer points (class ‘0’, discs)
and 66 inner points (class ‘1’, crosses) to be classified, superimposed on a heat map
of the device’s output current. (b) Prediction of the current by the trained DNN
(black curve) and verification measurement (red curve). The dash black line indicates
a possible threshold value for the class assignment.
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Table 5.4: Input scaling and offsets for the alternative ring classification. Scaling
factor and offsets of the input voltages predicted by the DNN, applied to the device
to verify the alternative ring classification in Figure

Terminal 6 7
Scaling voltage (V) | 0.42 0.42
Offset voltage (V) | -0.046 | -0.517

5.8.4 Control Voltage Parameters of Optimised Functionalities in Main
Text.

Table 5.5: Control voltages for Boolean logic. Control voltages (in V) predicted by
the DNN, applied to the device to verify the Boolean logic gates in Figures. [5.3] and

b4

Terminal 1 4 5 6 7
AND -1.19 | 0.15 | -0.02 | 0.21 | -0.36
NAND | -0.48 | -1.06 | 0.23 | -0.60 | 0.30
OR -0.30 | -1.20 | -1.07 | -0.27 | -0.33
NOR -1.14 | -0.18 | -0.05 | 0.30 | 0.28
XOR -0.62 | -0.17 | -0.78 | -0.63 | 0.26
XNOR | -1.20 | 0.11 | -0.35 | 0.30 | -0.27

Table 5.6: Control voltages for the ring classification. Control voltages predicted by
the DNN, applied to the device to verify the ring classification in Figure

Terminal 1 2 3 6 7
Control voltage (V) | 0.28 | 0.60 | -1.02 | -0.02 | 0.69

Table 5.7: Affine transformation parameters for the ring classification. Scaling voltage
and offsets of the input voltages predicted by the DNN, applied to the device to verify
the ring classification in Figure

Terminal 4 5
Scaling voltage (V) | -0.80 | -0.80
Offset voltage (V) | -0.167 | 0.309
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Table 5.8: Control voltages for the pixel feature mapping. Control voltages predicted
by the DNN, applied to the device to verify the pixel feature mapping in Figure

Terminal 1 6 7
Control voltage (V) | -1.20 | 0.10 | -0.10

Table 5.9: Affine transformation parameters for the pixel feature mapping. Scaling
voltages and offsets of the input voltages predicted by the DNN, applied to the device
to verify the pixel feature mapping in Figure

Terminal 2 3 4 )
Scaling voltage (V) | 0.85 | 0.45 | -0.07 | 0.41
Offset voltage (V) | -0.35 | -0.85 | 0.46 | -0.46

0.4

0.3 1

0.2

nr. of samples (normalised )

0.1

0.0 T 1 T T T
30 35 40 45 50
output current (nA)

Figure 5.12: Decision boundaries for the pixel feature mapping. Zoom-in to the
current region 30 — 52 nA in the right panel of Figure [5.6b. The red lines show the
current histograms of two-pixel features (0010 and 1000), with Gaussian fits shown by
the black lines. The black dashed line shows the decision boundary current obtained
with a naive Bayes classifier. The DNN predictions of the current for the two features
are shown as thick black marks.
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Table 5.10: Decision boundary currents for the pixel feature mapping. Currents
defining the decision between different 2x2 pixel features in Figure [5.6b obtained

with a naive Bayes classifier.

Pixel feature decision | Decision boundary current (nA)
1111 - 1011 -100.41
1011 — 0111 -90.74
0111 - 0011 -80.14
0011 - 1101 -64.51
1101 - 1001 -54.37
1001 - 0101 -43.59
0101 - 1110 -34.48
1110 - 0001 -22.06
0001 - 1010 -13.56
1010 - 0110 -1.19

113



CHAPTER 5. A DEEP-LEARNING APPROACH TO REALISING
FUNCTIONALITY IN NANOELECTRONIC DEVICES

References

[1]

[9]

[10]

114

T. A. Baart, P. T. Eendebak, C. Reichl, W. Wegscheider, and L. M. K. Vander-
sypen. Computer-automated tuning of semiconductor double quantum dots into
the single-electron regime. Appl. Phys. Lett., 108, 2016. doi: 10.1063/1.4952624.

S. S. Kalantre, J. P. Zwolak, S. Ragole, X. Wu, N. M. Zimmerman, M. D.
Stewart, and J. M. Taylor. Machine learning techniques for state recogni-
tion and auto-tuning in quantum dots. Npj Quantum Inf., 5, 2019. doi:
10.1038/s41534-018-0118-7.

T. Botzem, M. D. Shulman, S. Foletti, S. P. Harvey, O. E. Dial, P. Bethke,
P. Cerfontaine, R. P. G. McNeil, D. Mahalu, V. Umansky, A. Ludwig, A. Wieck,
D. Schuh, D. Bougeard, A. Yacoby, and H. Bluhm. Tuning methods for semicon-
ductor spin qubits. Phys. Rev. Appl., 10, 2018. doi: 10.1103/PhysRevApplied.
10.054026.

C. J. van Diepen, P. T. Eendebak, B. T. Buijtendorp, U. Mukhopadhyay, T. Fu-
jita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen. Automated tuning
of inter-dot tunnel coupling in double quantum dots. Appl. Phys. Lett., 113,
2018. doi: 10.1063/1.5031034.

J. D. Teske, S. S. Humpohl, R. Otten, P. Bethke, P. Cerfontaine, J. Dedden,
A. Ludwig, A. D. Wieck, and H. Bluhm. A machine learning approach for
automated fine-tuning of semiconductor spin qubits. Appl. Phys. Lett., 114,
2019. doi: 10.1063/1.5088412.

T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde, H.C.
Ruiz Euler, H. Broersma, P.r A. Bobbert, F. A. Zwanenburg, and W. G. van der
Wiel. Classification with a disordered dopant-atom network in silicon. Nature,
577, 2020. doi: 10.1038/s41586-019-1901-0.

S. K. Bose, C. P. Lawrence, Z. Liu, K. S. Makarenko, R. M. J. van Damme,
H. J. Broersma, and W. G. van der Wiel. Evolution of a designless nanoparticle
network into reconfigurable boolean logic. Nat. Nanotechnol., 10, 2015. doi:
10.1038/nnano.2015.207.

O. Lykkebg, S. Nichele, and G. Tufte. An Investigation of Square Waves for
Evolution in Carbon Nanotubes Material. volume ECAL 2015: the 13th Eu-
ropean Conference on Artificial Life, pages 503-510, 07 2015. doi: 10.1162/
978-0-262-33027-5-ch088.

J. F. Miller, S. L. Harding, and G. Tufte. Evolution-in-materio: evolving com-
putation in materials. Evol. Intell., 7, 2014. doi: 10.1007/s12065-014-0106-6.

S. Stepney. The neglected pillar of material computation. Physica D, 237, 2008.
doi: 10.1016/j.physd.2008.01.028.



REFERENCES

[11]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. P. Dodson, E. R. MacQuarrie,
D. E. Savage, M. G. Lagally, S. N. Coppersmith, M. A. Eriksson, and J. M.
Taylor. Autotuning of double-dot devices in situ with machine learning. Phys.
Rev. Applied, 13, 2020. doi: 10.1103/PhysRevApplied.13.034075.

D. T. Lennon, H. Moon, L. C. Camenzind, Liugi Yu, D. M. Zumbiihl, G. A. D.
Briggs, M. A. Osborne, E. A. Laird, and N. Ares. Efficiently measuring a
quantum device using machine learning. Npj Quantum Inf., 5, 2019. doi:
10.1038/s41534-019-0193-4.

R. Durrer, B. Kratochwil, J.V. Koski, A.J. Landig, C. Reichl, W. Wegscheider,
T. Thn, and E. Greplova. Automated tuning of double quantum dots into specific
charge states using neural networks. Phys. Rev. Appl., 13, 2020. doi: 10.1103/
PhysRevApplied.13.054019.

M. Lapointe-Major, O. Germain, J. Camirand Lemyre, D. Lachance-Quirion,
S. Rochette, F. Camirand Lemyre, and M. Pioro-Ladriere. Algorithm for auto-
mated tuning of a quantum dot into the single-electron regime. Phys. Rev. B,
102, 2020. doi: 10.1103/PhysRevB.102.085301.

J. Darulova, S.J. Pauka, N. Wiebe, K.W. Chan, G.C Gardener, M.J. Man-
fra, M.C. Cassidy, and M. Troyer. Autonomous tuning and charge-state de-
tection of gate-defined quantum dots. Phys. Rev. Appl., 13, 2020. doi:
10.1103/PhysRevApplied.13.054005.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521, 2015. doi:
10.1038/nature14539.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Netw., 2, 1989. doi: 10.1016/0893-6080(89)
90020-8.

L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler. Big
data of materials science: critical role of the descriptor. Phys. Rev. Lett., 114,
2015. doi: 10.1103/PhysRevLett.114.105503.

S. V. Kalinin, B. G. Sumpter, and R. K. Archibald. Big—deep—smart data in
imaging for guiding materials design. Nat. Mater., 14, 2015. doi: 10.1038/
nmat4395.

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh. Machine
learning for molecular and materials science. Nature, 559, 2018. doi: 10.1038/
s41586-018-0337-2.

J. Carrasquilla and R. G. Melko. Machine learning phases of matter. Nat. Phys.,
13, 2017. doi: 10.1038 /nphys4035.

115



CHAPTER 5. A DEEP-LEARNING APPROACH TO REALISING
FUNCTIONALITY IN NANOELECTRONIC DEVICES

[22]

[23]

[24]

[25]

[26]

[30]

[31]

116

L.-F. Arsenault, A. Lopez-Bezanilla, O. A. Lilienfeld, and A. J. Millis. Machine
learning for many-body physics: the case of the anderson impurity model. Phys.
Rev. B, 90, 2014. doi: 10.1103/PhysRevB.90.155136.

P. Werbos and P. John. Beyond regression: New tools for prediction and analysis
in the behavioral sciences. phd dissertation, harvard univ.

D. E. Rumelhart and J. L. McClelland. Learning internal representations by
error propagation. In Parallel Distributed Processing: Fxplorations in the Mi-
crostructure of Cognition: Foundations, pages 318-362, 1987.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proc. IEEFE, 86, 1998. doi: 10.1109/5.726791.

T. M. Cover. Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition. IEEE Trans. Electron. Comput.,
EC-14, 1965. doi: 10.1109/PGEC.1965.264137.

J. F Miller and K. Downing. Evolution in materio: Looking beyond the silicon
box. In Proceedings 2002 NASA/DoD Conference on Evolvable Hardware, pages
167-176. IEEE, 2002. doi: 10.1109/EH.2002.1029882.

F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychol. Rev., 65, 1958. doi: 10.1037/h0042519.

R. Li, L. Petit, D. P. Franke, J. Pablo Dehollain, J. Helsen, M. Steudtner, N. K.
Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner, L. M. K. Vandersypen, J. S.
Clarke, and M. Veldhorst. A crossbar network for silicon quantum dot qubits.
Sci. Adv., 4, 2018. doi: 10.1126/sciadv.aar3960.

C. D. Hill, E. Peretz, S. J. Hile, M.G. House, M. Fuechsle, S. Rogge, M. Y.
Simmons, and L. C. L. Hollenberg. A surface code quantum computer in silicon.
Sci. Adv., 1, 2015. doi: 10.1126/sciadv.1500707.

M. Veldhorst, H. G. J. Eenink, C. H. Yang, and A. S. Dzurak. Silicon cmos
architecture for a spin-based quantum computer. Nat. Commun., 8, 2017. doi:
10.1038/s41467-017-01905-6.

N. M. van Esbroeck, D. T. Lennon, H. Moon, V. Nguyen, F. Vigneau, L. C.
Camenzind, L. Yu, D. M. Zumbiihl, G. A. D. Briggs, D. Sejdinovic, and N. Ares.
Quantum device fine-tuning using unsupervised embedding learning. New Jour-
nal of Physics, 22, 09 2020. doi: 10.1088/1367-2630/abb64c.

H. Moon, D. T. Lennon, J. Kirkpatrick, N. M. van Esbroeck, L. C. Camenzind,
Liuqgi Yu, F. Vigneau, D. M. Zumbiihl, G. A. D. Briggs, M. A. Osborne, D. Sejdi-
novic, E. A. Laird, and N. Ares. Machine learning enables completely automatic

tuning of a quantum device faster than human experts. Nat. Commun., 11, 2020.
doi: 10.1038/s41467-020-17835-9.



REFERENCES

[34]

[35]

[41]

J. Darulova, M. Troyer, and M. C. Cassidy. Evaluation of synthetic and ex-
perimental training data in supervised machine learning applied to charge state
detection of quantum dots. 2020. doi: 10.48550/ARXIV.2005.08131.

O. Tsilipakos, A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S. Mir-
moosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos, A. Tsioliaridou,
J. Georgiou, A. Cabellos-Aparicio, E. Alarcén, S. Toannidis, A. Pitsillides, I. F.
Akyildiz, N. V. Kantartzis, E. N. Economou, C. M. Soukoulis, M. Kafesaki, and
S. Tretyakov. Toward intelligent metasurfaces: the progress from globally tun-
able metasurfaces to software-defined metasurfaces with an embedded network
of controllers. Adv. Opt. Mater., 8, 2020. doi: 10.1002/adom.202000783.

Ni-dagmx python documentation (national instruments corp., 2017), . URL
https://nidagmx-python.readthedocs.io/en/latest.

Skynet library (darwin team of the nanoelectronics group, univ. of twente, 2020),
. URL https://github.com/BraiNEdarwin/SkyNEt|

Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model compression and
acceleration for deep neural networks. 2020. doi: 10.48550/ARXIV.1710.09282.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2014.
doi: 10.48550/ARXIV.1412.6980.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Z. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala. Pytorch: An imperative style, high-performance deep learning library. 12
2019. doi: 10.48550/arXiv.1912.01703.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(85):2825-2830,
2011.

117


https://nidaqmx-python.readthedocs.io/en/latest
https://github.com/BraiNEdarwin/SkyNEt

CHAPTER 5. A DEEP-LEARNING APPROACH TO REALISING
FUNCTIONALITY IN NANOELECTRONIC DEVICES

118



Dopant Network Processing Units: Towards
Efficient Neural-network Emulators with
High-capacity Nanoelectronic Nodes

The rapidly growing computational demands of deep neural networks require novel hard-
ware designs. Recently, tuneable nanoelectronic devices were developed based on hopping
electrons through a network of dopant atoms in silicon. These “Dopant Network Processing
Units” (DNPUs) are highly energy-efficient and have potentially very high throughput. By
adapting the control voltages applied to its electrodes, a single DNPU can solve a variety
of linearly non-separable classification problems. However, using a single device has limi-
tations due to the implicit single-node architecture. This paper presents a promising novel
approach to neural information processing by introducing DNPUs as high-capacity neurons
and moving from a single to a multi-neuron framework. By implementing and testing a small
multi-DNPU classifier in hardware, we show that feed-forward DNPU networks improve the
performance of a single DNPU from 77% to 94% test accuracy on a binary classification task
with concentric classes on a plane. Furthermore, motivated by the integration of DNPUs
with memristor crossbar arrays, we study the potential of using DNPUs in combination with
linear layers. We show by simulation that an MNIST classifier with only 10 DNPU nodes
achieves over 96% test accuracy. Our results pave the road towards hardware neural-network
emulators that offer atomic-scale information processing with low latency and energy con-
sumption.

This Chapter is published as: H.-C. Ruiz Euler, U. Allegre Ibarra, B. van de Ven et al.
Dopant Network Processing Units: Towards Efficient Neural-network Emulators with High-
capacity Nanoelectronic Nodes. Neuromorph. Comput. Eng. 1, 024002. doi: 10.1088/2634-
4386/acla’f

Contributions: Device fabrication, initial device characterisation and measurement sup-
port.
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CHAPTER 6. DOPANT NETWORK PROCESSING UNITS: TOWARDS
EFFICIENT NEURAL-NETWORK EMULATORS WITH HIGH-CAPACITY
NANOELECTRONIC NODES

6.1 Introduction

The success of deep neural networks (DNNs) comes with an exponential increase
in the number of parameters and operations, which brings along high energy costs,
high latency, and massive hardware infrastructure. Moreover, due to a slowdown
of Moore’s law, the gap between the computational demands of DNNs and the effi-
ciency of the hardware used to implement them is expected to grow. There is a broad
spectrum of research on hardware acceleration focused on obtaining state-of-the-art
performance in DNNs, while reducing associated costs. Solutions range from tradi-
tional approaches, which can be implemented on the short-term, to novel long-term
approaches trying to address fundamental problems such as that of the Von Neumann
bottleneck or the slowdown of Moore’s law [I].

6.1.1 State-of-the-Art Approaches.

General-purpose hardware approaches for DNN acceleration typically employ a vari-
ety of temporal architectures to improve parallelism of multiply-accumulate (MAC)
operations involved in convolutions and fully connected layers [2]. Specialised hard-
ware approaches improve on the bottlenecks from the design of general computing.
Since the energy consumption is dominated by the data movement during computa-
tion, these approaches are mostly focused on spatial architectures, reducing energy
consumption by increasing the data reuse from low-cost memory hierarchy via op-
timized data-flows [3]. Specialised hardware encompasses FPGA-based acceleration
[], ASIC-based acceleration [B] 6} [7, [8, 9} [10], or a combination of both [II]. Further-
more, the development of specialised hardware enables DNN algorithm optimisation
techniques to be jointly designed with the hardware [12} 13} [14] [15].

6.1.2 Neuromorphic Computing.

To reduce the impact of the data-movement bottleneck, some research aims at bring-
ing memory closer to the computation, or even integrating the memory and the com-
putation into a single architecture [3]. The latter approach encompasses the use of
memristors, non-volatile electronic memory devices that can integrate MAC opera-
tions into the memory [16] 17, [I§]. Recent developments show the potential of memris-
tor crossbar arrays for implementing DNN connectivity fully in hardware [19]. Other
research efforts try to overcome the hardware efficiency problem by taking a variety of
fundamentally different approaches, ranging from spiking neural networks, which use
sparse binary signals to compute asynchronously and in a massively parallel manner,
to new unconventional methods for material-based computation [20, 2], 22| 23]. From
all these approaches, spiking neural networks are the most mature but, although they
show high energy efficiency and low latency [24], they tend not to support state-of-
the-art DNN models, and their efficient training and proper benchmarking tends to
be problematic [3 25].
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6.1.3 A Promising Novel Technology.

Recently, tuneable nanoelectronic devices were developed capable of classifying lin-
early non-separable data, e.g. XOR [26], 27]. These so-called dopant network devices
are projected to have an energy efficiency in the order of 100 TOPS/W and a band-
width of over 100 MHz, making them an attractive candidate for novel, unconven-
tional hardware solutions for information processing. Interestingly, the ability of these
designless devices to perform the XOR operation coincides with that of individual hu-
man neocortical neurons, a recent observation that contradicts the conventional belief
that this computation requires multi-layered neural networks [28]. Motivated by the
above observations, we envision the usage of dopant network devices as high-capacity
nodes in a hardware architecture that emulates neural networks. The implementation
of these neural-network emulators would have several advantages. First, the expected
small footprint, high throughput and energy efficiency would allow portability and
low latency. Second, massive parallelisation could be possible using many indepen-
dent devices. Third, computation is performed in-materio, i.e. by physical processes
in the devices. Thus, the need of explicit arithmetic operations is greatly reduced, in
particular if this technology is combined with memristor crossbar arrays. Moreover,
in-materio computations could bypass the need of data management at the inference
step because the learned parameters would be a fixed, physical characteristic of the
system and computation would be reduced to physical processes transforming and
propagating information. Finally, high-capacity nodes may allow more compact neu-
ral network architectures that could bring additional benefits in terms of performance
and efficiency.

6.1.4 Towards Novel Neural-Network Emulators.

In this paper, we take the first steps towards realising neural-network emulators with
dopant network devices, giving new insights in its potential for this purpose. Section
reviews the state-of-the-art of this nanotechnology, which we will henceforth call
dopant network processing units (DNPUSs). In Section we estimate the capacity of
these complex, highly non-linear computational units in terms of an empirical estimate
of the Vapnik—Chervonenkis dimension for binary classification of two-dimensional
data. This general measure can be used to benchmark the computational capabilities
of small material-based systems. In order to study the viability of DNPU intercon-
nection, Section demonstrates how DNPU feed-forward network architectures can
be designed, trained and implemented in hardware to solve classification tasks more
accurately than a single device. In Section we explore novel, compact architec-
tures that would reduce the number of parameters and /or operations, if inference were
implemented with DNPU devices. We show, by simulation, that these high-capacity
nodes allow for a classifier of hand-written digits from the MNIST dataset with high
accuracy, using only 10 nodes. Section discusses potential extensions of this work
to large-scale neural-network emulators and their benefits.
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6.2 Dopant Network Processing Unit

The basis of a DNPU is a lightly doped (n- or p-type) semiconductor with a nano-scale
active region contacted by several electrodes, see Figure [6.1] Different materials can
be used as dopant or host and the number of electrodes can vary. In this paper, we
use a boron-doped silicon (Si:B) DNPU with an active region of 300 nm in diameter
and the electrode configuration represented in Figure Once we choose a readout
electrode, the device can be activated by applying voltages to the remaining electrodes,
which we call activation electrodes. The dopants in the active region form an atomic-
scale network through which the electrons can hop from one electrode to another.
This physical process results in an output current at the readout that depends non-
linearly on the voltages applied at the activation electrodes. By tuning the voltages
applied to some of the electrodes, the output current can be controlled as a function
of the voltages at the remaining electrodes. This tunability can be exploited to solve
various linearly non-separable classification tasks [26 29].
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Figure 6.1: Sketch of a DNPU with eight electrodes [26], where e,y is the readout
electrode and the others can be either input or control electrodes, e.g. e; 2 and eg 3,
respectively. To implement a classifier, voltages are applied to the input electrodes
representing the features of the data, e.g. 0 and 1. Applying a learned voltage
configuration to the control electrodes implements the classifier, e.g. XOR, as an
output current representing the classes 0 and 1.

6.2.1 Nonlinear Classification with DNPUs.

Let us assume that we want to create an XOR classifier using a single DNPU [26].
For concreteness, let us consider a DNPU with eight electrodes, which are divided
into seven activation electrodes eg_g and a single readout electrode e, as shown in
Figure From the activation electrodes, e; and e; are chosen as data input elec-
trodes. These receive voltage-encoded signals representing the binary input features of
the XOR classification task. We call these signals the input voltages. The remaining
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activation electrodes (eg3—g) are selected as control electrodes, and are used to tune
the relation between the input voltages and the output current. The voltage values
applied at these electrodes are the learnable parameters and we call them control
voltages. Historically, DNPUs have been trained exploiting the concept of evolution-
in-materio [30], which adopts a genetic algorithm to find adequate control voltages
directly on-chip [26] 27]. A more recent approach [29] creates DNN surrogate models
of DNPUs to predict the output current from the voltages applied to the activation
electrodes. These surrogate models enable learning the control voltages off-chip by
gradient descent (GD) using standard deep-learning packages. We use PyTorch [31]
for both, training the DNN surrogate model and the off-chip training in all experi-
ments. We can enable functionality, i.e. inference, by applying the control voltage
values found during off-chip GD training, along with the corresponding data input
voltages, Fig. As shown in [26], the functionality of the DNPU remains consis-
tent over time, even after switching to other voltage configurations or turning off the
device. This means that control voltage values for a particular task only need to be
found once.

6.2.2 DNPU Surrogate Models.

Before we can use the off-chip training method to find functionality in DNPUs, we
must create a DNN surrogate model of the device [29]. The input and output nodes of
the model correspond to the DNPU’s activation and output electrodes, respectively
(Fig. [6.2). This model will map the input voltages to the output current, so the
behaviour of the physical device is reproduced. With this ”digital copy” we can
then train the DNPU off-chip, i.e. without using the device during training. For
modelling, we sampled 4.5 million input-output pairs in a voltage range of [—1.2, 0.6]
V for electrodes eg_4 and [—0.7, 0.3] V for e5 6. These voltage ranges are determined
by the electrical properties of the device. With these data, we trained a feed-forward
DNN-five hidden layers, each having 90 ReLLU nodes—for 500 epochs in batches of 128
and a learning rate n = 0.0005. Using an independently sampled test set of 4.5 x 10°
samples, the root-mean-squared error is found to be 1.4 nA, corresponding to 0.35%
of the total current output range between —300 and 100 nA. This prediction error
comes from measurement contributions and physical noise in the output current.

123



CHAPTER 6. DOPANT NETWORK PROCESSING UNITS: TOWARDS
EFFICIENT NEURAL-NETWORK EMULATORS WITH HIGH-CAPACITY
NANOELECTRONIC NODES

a) b)
Modelling
Vo
Vi Off-chip
training

Figure 6.2: DNPU modelling for off-chip training. a) Cartoon of the DNPU with
control and input electrodes represented as green and black pins. The electrodes
have the same configuration as in Fig. b) Surrogate model of the DNPU. The
activation electrodes of the DNPU (a) are assigned to inputs of the DNN model.
Given data, we can train this DNN to map the voltages at the activation electrodes
to the output current of the device. At this stage, all inputs of the DNPU are treated
equally, i.e. there is no assignment yet of control electrodes. To train the DNPU, we
assign certain inputs of the DNN model to learnable parameters (green), which are
found via off-chip training targeting the desired functionality, e.g. classification. The
values found represent control voltages, which are then applied to the corresponding
control electrodes in a). Both training the model and the off-chip training are done
using conventional deep learning techniques.

6.2.3 Training DNPUs Off-Chip.

The off-chip GD training technique works as follows [29]. The internal weights and
biases of the surrogate model, shown in Figure[6.2p with purple colour, are kept frozen.
We attach learnable control parameters to the model’s inputs corresponding to control
electrodes—green pins and nodes in Figure Learning the control parameters via
GD exploits the fact that the gradient can be back-propagated to the input nodes
with control parameters attached to them. For all the results presented in this paper,
we used the following procedure and hyperparameters, unless explicitly mentioned
otherwise. We regularized during off-chip training the control parameters with an
L1-penalty outside of the working voltage ranges of the device. The penalty strength
is set to a = 1.0. We use Adam [32] with the default parameters. After off-chip
training, the control parameters found are validated by implementing the inference
step on the device. This involves measuring the complete data set by arranging the
samples sequentially in time, as shown in Figure[6.1] Then, the voltages representing
each sample are applied one after another, while the control voltages remain fixed
throughout the whole validation step. Each data point is measured by applying its
corresponding input voltages to the input electrodes for 0.8 seconds with a sampling
frequency of 100 Hz. Currently, the experimental setup has a bandwidth of around
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40 Hz, however, we decided to have longer readout times to account for the noise in
our accuracy estimates. There are already considerations to increase energy efficiency
and bandwidth (theoretical limit: 100 MHz, [26]).

6.3 Capacity of a Single Dopant Network Processing Unit

In this section, we show that a single DNPU has a computational capacity comparable
to that of a small artificial neural network. For this, we estimate the capacity of the
DNPU surrogate model, the physical device and two small neural networks. As a
measure of the computational capacity, we use an empirical estimate of the Vapnik-
Chervonenkis (VC) dimension. More specifically, given N points, they can be mapped
to {0,1} in 2V ways, i.e. there are 2 possible classifiers. Then, the capacity of a
computational system for a given N is defined as the fraction Cp of classifiers that
can be realized by the system. Loosely speaking, the VC-dimension is defined as the
largest N such that Cy = 1 [33]. By searching for all the classifiers, we can give
an empirical estimate of the computational system’s capacity in terms of the VC-
dimension. We search for all classifiers on a fixed number N of data points in the
2-dimensional plane, where N = 4, ...,10, see Figure [6.3p. These points are chosen
such that they fall within the working voltage range of the input electrodes of the
DNPU (e; and ez). The remaining electrodes eg 3_¢ are used as control electrodes.
Since XOR is the first non-trivial case, we start with N = 4 and select the first four
points of the list given in Figure [6.3h. For N = 5, we add the next point on the list
and so on. Given N, we train each classifier using binary cross-entropy loss. This
requires passing the output of the DNPU surrogate model through a decision node
consisting of a batch norm layer with a learnable affine transformation and a logistic
function. We train for 1,500 epochs with full batch, a learning rate n = 0.03 and
the Adam moment parameters (f1,52) = (0.995,0.999). The number of epochs is
chosen to give all 2V classifiers enough time to converge. However, no systematic
hyper-parameter search was performed. Furthermore, we allow for 15 attempts to
find each classifier, which is considered to be found if its accuracy is 100%.

Estimating the device’s capacity requires special attention because of the noise in the
current output. The off-chip training is an extension of [29] where we account for the
noise in the output current. While training, we add Gaussian noise to the model’s
output and reduce it after every attempt by a factor depending on the attempt’s
number n: o2, = (1 - %t)o2 with 62, the noise variance at attempt n + 1 and
02 = 1. This forces the training procedure to find robust solutions with a sufficient
signal-to-noise ratio. The solutions obtained are validated on the physical device
to determine if the classifier is found. In this case, a classifier is considered to be
found if its accuracy is above a threshold § = 1 — 0.5/N, i.e. if more than 50% of
the measurements corresponding to one of the N points can be classified correctly.
before, the predicted label is determined by the decision node which we re-train with

the measured data, leaving out at random 20% of the measurements as a test set
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(a) Input data for capacity estimates (b) Capacity curves
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Figure 6.3: a) Input data for capacity estimates: {(-0.7,-0.7), (-0.7,0.5), (0.5,-0.7),
(0.5,0.5), (-0.35,0), (0.25,0), (0,-0.35), (0,0.25), (-1.1,0.35), (0.35,-1.1)}. The classifiers
should map these points to {0,1} in all possible ways. b) Capacity of the DNPU
surrogate model, the physical DNPU, and neural networks with a hidden layer of two
(2NN) and three (3NN) neurons.

to estimate the final accuracy on hardware. Once all classifiers are validated, we
perform a new search for any failed cases and repeat this procedure one more time.
The capacity of the DNPU is compared to that of two small neural networks with
one hidden layer of 2 and 3 neurons. Both networks have logistic activation functions
and are trained with the same procedure as the DNPU’s surrogate model.

Figure shows the capacity estimates for all four systems. The capacity of the
physical device follows closely that of the neural network with two hidden nodes, both
having a VC dimension of at least 5. The DNPU surrogate model has a VC dimension
of at least 6 and the network with three hidden neurons has a VC dimension of at
least 8. As expected, we observe a steeper decay in the capacity of the device due
to noise. However, the DNPU surrogate model has a much larger capacity than a
network with two hidden neurons. This is consistent with the observation in [29] that
the nano-electronic device can solve binary classification problems with closed deci-
sion boundaries, which requires conventionally at least three hidden neurons. Hence,
we can consider the DNPU capacity curves shown in Figure [6.3p as upper and lower
empirical limits of their capacity. We want to remark at this point an important
benefit of using the DNPU device for inference. Classification with the DNPU in this
experiment requires the evaluation of the device, and only two arithmetic operations
at the decision node, but no explicit operation is required to compute the internal
representation of the data that allows for linear separability. Hence, we count three
operations to implement each classifier. In contrast, the neural network with two
hidden nodes requires at least 12 arithmetic operations without counting the contri-
bution of non-linear activation functions. The difference is even more dramatic when
compared to a network with three hidden nodes, which requires 18 operations. Inter-
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estingly, we also observe that we can solve classification tasks with fewer parameters,
see first three columns in Table 611

Table 6.1: Computational requirements for different architectures as the number of
(arithmetic) operations and parameters required in their implementation. For all
DNPU classifiers, we counted the evaluation of one DNPU as an operation. On the
contrary, we disregarded the non-linearities in the neural network architectures 2NN,
3NN and ANN-7D when counting the operations. The networks 2NN and 3NN are
small networks with two and three hidden neurons respectively, see Fig. [6.3p. The
networks ANN-7D and DNPU-7D are MNIST classifiers described in Section

Architecture DNPU | 2NN | 3NN || DNPU-7D | ANN-7D
nr. operations 3 12 18 10 140
nr. parameters 7 9 13 0 80

6.4 Multi-DNPU Network

This section explores the potential of DNPU scalability by comparing the performance
of a single DNPU device with a feed-forward network architecture of five DNPU de-
vices. Particularly, we consider a linearly non-separable binary classification problem
consisting of two classes that fall into two concentric circles with a given separation
gap, see Figure . In Ref. [29], it was shown how a single DNPU is sufficient
to resolve this classification problem with 100% accuracy for a 400 mV gap. For
the purpose of this section, the gap has been significantly reduced from 400 mV to
6.25 mV, requiring a more accurate decision boundary in order to be solved. The
data used consist of around 400 input points and their corresponding binary labels,
equally divided into training and test sets. Each class in each set has around 100 i.i.d.
samples generated from random draws over a uniform distribution on their respective
concentric circular areas, as shown in Figure [6.5h. The same data have been used
for both classifiers, the single DNPU and the DNPU network. All nodes in both
classifiers have the same input, control and output electrode configurations, namely
e1 and ey for the input, eg 3_¢ for control and e, for the output, see Figure

The DNPU network consists of two input nodes, two hidden nodes and one output
node, see Figure |6.4] This 2-2-1 architecture is implemented on hardware by time-
multiplexing the single DNPU to evaluate each node. That is, we mimic the 2-2-1
architecture using the same device, but changing sequentially the control voltages
corresponding to each node. Each input unit receives a copy of the input data. Then,
each unit in the hidden layer receives the outputs of the input layer. The output of
each unit in the input and hidden layers is standardized and mapped linearly to the
input voltage range of the units in the next layer. The last node receives the outputs
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a) Modelling the 2-2-1 DNPU architecture b) 2-2-1 DNPU architecture (time-multiplexing)
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Figure 6.4: a) Modelling the 2-2-1 DNPU architecture for off-chip training. Each
node is composed of the same DNPU surrogate model and postprocessing steps. The
latter adds to the current prediction a random number drawn from a Gaussian dis-
tribution with standard deviation given by the prediction error. This approximation
of the current is then transformed to a voltage value by rescaling and offsetting.
b) The corresponding 2-2-1 DNPU architecture is implemented ”virtually” by time-
multiplexing a single physical device. Each node is composed of the same physical
DNPU and a rescaling and offsetting made by a computer. The rescaling and offset-
ting are the same as those in the off-chip training model. The numbers next to each
node represent the sequence in which each node is operated to implement the virtual
architecture. The black arrows in a) and b) indicate how the information flows.

of the two hidden units. This network has a total of 25 control parameters, distributed
through the five electrodes eg2_¢ in each node. To demonstrate the capabilities of
the DNPU explicitly, we tackle training in two steps. First, we train the classifiers
to separate the classes as much as possible using the negative of the Fisher’s linear
discriminant criterion as the loss function. This shows directly the capability of both
DNPU systems to separate linearly non-separable classes. Second, once the data are
separated in the output of the DNPU systems, the decision threshold for assigning the
class is relegated to a simple logistic neuron.The first training step uses 400 epochs
with full batch updates and a learning rate of n = 0.0065. There was no systematic
hyper-parameter optimization. To account for the noise in the physical device, the
classifiers are trained with Gaussian noise added to the output of each node and
with a variance equal to the mean-squared test error of the DNPU model, namely
0? = 1.97.Finally, the logistic neuron is trained on the standardized output of the
DNPU system and tested to estimate the accuracy of the classifier.
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Figure 6.5: a) Input data used in the experiment with a gap of 6.25 mV between
the two classes. b) Histogram of negative Fisher values. ¢) Histogram of accuracies.
Both b) and ¢) are results from 1000 trials of the off-chip training, i.e. both the single
DNPU and the 2-2-1 DNPU architecture are modelled. d) Outputs measured over 50
runs on a hardware DNPU using the control voltages obtained from the best result
after 1,000 trials off-chip training. The outputs are separated by classes on each side
of the violin plot. e) Outputs measured by time-multiplexing the hardware DNPU
to implement the 2-2-1 DNPU architecture. The data are obtained with the same
procedure as in d).

For each classifier, we run 1,000 off-chip training trials to compare the distribution of
their solutions. Figure[6.5b shows the histogram of the negative Fisher values over all
trials for both classifiers. The best performance obtained for a single device is -1.16,
while the 2-2-1 architecture obtains -5.23, which is around 4.5 times lower, meaning a
better separation between classes. Figure[6.5c shows the accuracy histograms over all
trials for both classifiers. The highest accuracy in 1,000 trials of the off-chip training is
for a single DNPU 85%, while the best 2-2-1 architecture has an accuracy of 95%, ten
percent points more. Both results in Figures [6.5p,c show a significant improvement of
the classification performance when using the 2-2-1 DNPU architecture in comparison
to using a single DNPU. The best result of each classifier (minimum Fisher value
and maximum accuracy over the 1,000 trials) is selected for validation on hardware.
Validation is performed for both training and test sets. The measurements for the
200 samples in each dataset give approximately 16,000 current values. Similar to the
two-step procedure in the off-chip training, the device’s output separates the input
voltages of the training set into two distinct current levels. Then, to fine-tune the
classifier on hardware, we re-train the logistic output neuron on the standardized
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current outputs. To evaluate the performance on the test set, 50 validation trials
are measured over the entire set for each classifier. All these measurements are then
passed through the logistic neuron of the classifier to obtain the predicted labels. The
validation of the single DNPU classifier on hardware yields an accuracy of 77% on both
the training and test sets. Figure[6.5 shows the device’s output distribution per class
over the 50 validation trials using the test set. Since class 0 has a broad distribution
that overlaps entirely with that of class 1, we observe a failure to separate the classes
properly for a 6.25 mV gap. The validation of the 2-2-1 DNPU architecture gives an
accuracy of 97% on the training set and an accuracy of 94% on the test set. Figure
[6-5k shows the output current distribution per class over the 50 trials. Contrary to
the observations in Figure 6.5, the 2-2-1 DNPU architecture gives a good separation
of the classes, i.e. their dominant modes in the output current distribution are well
separated and have only some overlap at currents around 45 nA. The validation of
both classifiers shows consistent accuracy results. We estimated the variance of the
classification accuracy on hardware over the 50 validation trials. We observe typical
fluctuations in the accuracy of one percent point for both, the single DNPU and the
2-2-1 DNPU architecture. These fluctuations are expected due to the noise in the
output current.

6.5 DNPU Classifier for MNIST

In this section, we explore the potential of high-capacity neurons in combination with
linear layers to process high-dimensional data efficiently. This approach is motivated
by a possible integration of DNPUs with technologies that can efficiently implement
multiply-accumulate operations, such as memristor crossbar arrays [19], optical [34]
and flash memory approaches [35]. DNPUs could act as tuneable, complex activation
functions that complement other existing technologies to implement fully material-
based neural networks with computationally efficient high-capacity neurons. We show
by simulation in PyTorch how a DNPU network with only 10 high-capacity neurons
can be used for classification on the MNIST data set, consisting of hand-written single
digit (0-9) images of size 28 x 28 = 784 pixels in grey scale. There are 60,000 and
10,000 images in the training and test data, respectively. The former was split into
55,000 and 5,000 samples for training and validation, respectively. Besides flattening
the images, we standardize the grey scale of the pixels to values between -0.5 and
0.5. No other pre-processing is implemented. Our DNPU classifier consists of a linear
layer of size 784x30 and no bias parameters. This layer linearly combines all pixels
in the image. The resulting linear features are fed into an output layer consisting
of 10 DNPU nodes, each representing one class {0, ...,9} and receiving three linear
features, see Figure [6.6h. The input assignments to the DNPU models are the same
for all nodes in the classifier, namely, the inputs corresponding to Vy, Vi, Vy in Figure
6.2b are assigned as data inputs and control parameters are attached to all other
inputs. The DNPU classifier is trained using cross-entropy loss. We include weight
decay for the linear layer parameters with a regularisation factor of 0.1 to force its
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a) Classifier with 3-fold-input to DNPU nodes b) Confusion matrix of classifier with 7-fold-input
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Figure 6.6: DNPU classifier consisting of a linear input layer and a DNPU output
layer with 10 DNPU nodes; a) Classifier with 3-fold-input to each DNPU node. The
784 pixels of the images are linearly combined into 30 linear features in the linear
layer. Each of the 10 DNPU nodes receives three linear inputs, i.e. out of the 30
linear features, the first three go to the first DNPU (pink, black and yellow in the
dashed-line box), the second three go to the second DNPU and so on. For clarity
not all connections of the linear layer are shown, but we remark that all these linear
features are independent; b) Confusion matrix for MNIST classification of the DNPU
classifier with 7-fold-input (DNPU-7D). As in a) but now the linear layer has a size
of 784x70, and each DNPU node receives seven linear features instead of three.

outputs to fall within the working voltage ranges of DNPUs, which are typically
between —1 and +1 Volts. We trained for 80 epochs with a learning rate n = 2 x 107
and a mini-batch of 64 images. The accuracy after training is 97% (95%) on the
training (validation) set and 95% on the test set. There was no systematic hyper-
parameter optimization, but we observed that this result is fairly consistent across
different values of the learning rate and mini-batch size. Nevertheless, a learning
rate that is two orders of magnitude larger decreases performance significantly. As
a benchmark, we compare our DNPU classifier to a neural network with a similar
architecture consisting of a hidden layer with 30 ReLU-neurons and an output layer
consisting of 10 linear neurons, each connecting locally to three neurons of the hidden
layer. Hence, instead of the DNPU model in Fig. we have three ReLLU-neurons
each receiving a linear feature (pink, black, yellow). Their activation is then linearly
combined into the activation of the corresponding linear output neuron. We denote
this architecture ANN-3D. In this case, we have bias parameters in the hidden and the
output layers. We train ANN-3D similar to the DNPU classifier with the difference of
a higher learning rate n = 3x 10~%. This neural network achieves 95% on the test data
and 96% (95%) on the training (validation) set with a similar number of parameters to
that of the DNPU classifier. Hence, in this case, the control parameters in the DNPU
do not provide an increase in capacity. We attribute this to the reduced number of
features available to each output node. The linear dimensionality reduction mixes the

data such that the resulting class distributions are overlapped, making classification
difficult.
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Increasing the number of linear features fed to the DNPU nodes from three to seven
(Vo—6 in Figure [6.2p) increases accuracy to 96% on the test set and 98% (96%) on
training (validation) set. We denote this DNPU classifier with 7-fold-input by DNPU-
7D. Figure[6.6p shows the confusion matrix for DNPU-7D. We observe that the typical
”confusions” are also present here: the digit 9 is misclassified 2.4% of the cases as
the digits 4 and 5, and the digit 7 is misclassified 2.5% of the cases as the digits 2
and 9. For comparison, we use a similar architecture to ANN-3D, but we increase the
number of linear features per output node to seven. Thus, this network has a hidden
layer with 70 ReLU-neurons feeding to 10 linear nodes in groups of seven. This
architecture, denoted by ANN-7D, has 96% accuracy on the test set and 98% (96%)
on training (validation) set. Hence, as before, both the DNPU-7D and the ANN-
7D have similar performance. Nevertheless, neglecting the non-linearity functions,
the ANN-7D network must perform 14 arithmetic operations (seven multiplications
and seven additions) per output node to compute its activation, while a physical
realisation of DNPU-7D would require a single evaluation per node. Hence, taking
the evaluation of the DNPU as a single operation, the DNPU-7D needs 10 operations
for the output layer, while the ANN-7D requires 140 operations. In addition, each
output node in the ANN-7D network requires 8 parameters (seven synaptic weights
plus one bias), giving a total of 80 parameters in the output layer, while the DNPU
device with a 7-fold-input would not require any additional parameters, see Table
Notice that in this case, all learning is relegated to the parameters of the linear layer
and the non-linearity required for classification is provided by the DNPUs. It is the
high non-linearity of the DNPU that allows the same performance than the ANN-7D
network but with fewer parameters.

These results show that we can combine DNPUs with linear layers to solve high-
dimensional classification problems with similar accuracy to standard neural net-
works with comparable architectures. If implemented in hardware, the fundamental
advantage of these novel architectures would come from a reduction in the number of
parameters and operations required for a specific performance. Since the projected
energy efficiency of DNPUs is similar to that of memristors [26], the observed gain
in computation translates to gains in energy consumption. Hence, DNPUs comple-
ment memristor crossbar arrays to realise more efficient neural-network emulators
completely in hardware. This motivates further exploration of DNPU network archi-
tectures.
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6.6 Discussion

Motivated by recent advances in nano-electronics, we have introduced tuneable dopant
network processing units (DNPUs) as promising candidates for nodes in hardware
neural-network emulators, due to their high theoretical throughput and low energy
consumption. We have demonstrated that a single DNPU has a capacity comparable
to that of a small neural network with one hidden layer, while needing fewer learn-
able parameters. Furthermore, we have expanded previous work on a single DNPU
to a multi-node framework by training and implementing a feed-forward DNPU net-
work with five nodes. By time-multiplexing a single DNPU, this network achieves an
accuracy of 94% on a linearly non-separable binary classification task that is too chal-
lenging for a single DNPU. Our results show that DNPU networks and the proposed
training method give robust solutions to non-trivial ML tasks using noisy hardware
elements, a condition prevalent in neuromorphic hardware. Finally, we have shown
by simulation that DNPUs allow the classification of MNIST hand-written digits with
over 96% accuracy using a network with only 10 DNPUs. To the extent of our knowl-
edge, the examples presented here are the first realisations of non-biological neural
networks with high-capacity neurons. As shown here, this approach has the potential
of reducing the computational cost in neural networks by reducing the number of
operations and parameters required for a given classification performance.

Although the use of DNN models mitigate the device-to-device variation there is an
extra overhead when training DNPU networks off-chip, which becomes relevant for
large DNPU networks. Our models were not optimized for memory and computational
costs. However, there are various considerations to mitigate this. The overhead can
be significantly reduced by a systematic exploration of other architectures [36] and
using pruning methods to reduce the complexity of the network [I5]. Given the recent
support in PyTorch for parallelizing the computational graph, we are exploring this
approach for large DNPU networks to mitigate the computational footprint. Finally,
we have developed a method for on-chip training via gradient descent in-materio [37]
that bypasses surrogate models and accounts for device-to-device variation and the
noise in the output current.

6.6.1 Towards Large-Scale Hardware Neural-Network Emulators.

Expanding on the examples presented in this paper, we envision the development of
large-scale DNPU networks for efficient neural information processing, making use of
the unique feature of DNPUs to perform non-linear computations that are commonly
only performed in a neural network by combining arithmetic operations and non-
linear activation functions. First, by leveraging the expected high throughput, virtual
architectures can be implemented by time-multiplexing several independent DNPU
devices in parallel. Second, integrating DNPUs with memristor crossbar arrays would
allow the co-allocation of memory and computation by implementing connectivity in-
materio. Third, direct feed-forward interconnectivity of DNPUs in large circuits would

133



CHAPTER 6. DOPANT NETWORK PROCESSING UNITS: TOWARDS
EFFICIENT NEURAL-NETWORK EMULATORS WITH HIGH-CAPACITY
NANOELECTRONIC NODES

provide a flexible neural network emulator. The advantage of this approach is that the
learned control voltages can be applied directly to the hardware circuit for inference
and, in principle, the same hardware can be deployed for various tasks by switching to
different control voltage configurations. Furthermore, since computations in all three
approaches take advantage of the physical properties of the materials, using DNPUs
may reduce the parameters and operations required for inference.

To take advantage of this computational gain, it is necessary to develop DNPU tech-
nology to a system level where DNPUs are embedded in an optimized peripheral
circuitry. For now, DNPUs work best at 77 K but room temperature operation has
been demonstrated [26]. Hence, it is necessary to work on novel DNPU designs to
achieve efficient operation at room temperature. This will allow optimizing the pe-
ripheral circuitry and increase bandwidth to achieve an energy efficiency similar to
that of memristors. We point out that the estimate of the DNPU’s efficiency in [26]
was conservative. We believe that there is room for further improvement, but what
we can aim for will ultimately depend on the particular application, the required
accuracy, and implementation of the peripheral electronics and further development
of the DNPUs. Finally, an important aspect of our approach for future research is
the established off-chip training procedure, which makes research on neural network
architectures with high-capacity neurons possible and allows the design of ad-hoc
hardware solutions to emulate neural network functionality.
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Dopant Network Processing Units as Tuneable
Extreme Learning Machines

Inspired by the highly efficient information processing of the brain, which is based on the
chemistry and physics of biological tissue, any material system and its physical properties
could in principle be exploited for computation. However, it is not always obvious how to
use a material system’s computational potential to the fullest. Here, we operate a dopant
network processing unit (DNPU) as a tuneable, Extreme Learning Machines (ELM) and
combine the principles of evolution in-materio and ELM to optimise its computational per-
formance on a nonlinear classification benchmark task. We find that, for this task, there
is an optimal, hybrid operation mode (‘tuneable ELM mode’) in between the traditional
ELM regime with a fixed DNPU and linearly weighted outputs (‘fixed-ELM mode’) and
the regime where the outputs of the nonlinear system are directly tuned to generate the
desired output (‘direct-output mode’). We show that the tuneable ELM mode reduces the
number of parameters needed to perform the formant-based vowel recognition benchmark
task. Our results emphasise the power of in-materio computing and underline the impor-
tance of designing specialised material systems to optimally utilise their physical properties
for computation.

Chapter in preparation as: B. van de Ven, U. Alegre-Ibarra, P. J. Lemieszczuk, P. A. Bob-
bert, H.-C. Ruiz-Euler, W. G. an der Wiel, Dopant network processing units as tuneable
Extreme Learning Machines.

Contributions: Conceiving the project, fabrication, measurements, data analysis and writ-

ing
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CHAPTER 7. DOPANT NETWORK PROCESSING UNITS AS TUNEABLE
EXTREME LEARNING MACHINES

7.1 Introduction

Spurred by the increasing computational demands of artificial intelligence (AI), the
difficulties of conventional computing hardware to keep up with these demands, and
inspired by the highly efficient information processing of the brain, there is a growing
interest in harnessing chemical and physical phenomena in material systems for com-
plex, efficient computations[I]. This growing field of research goes by different names,
such as unconventional, natural or in-materio computing[2l B]. Designing a material
system as a computing device is a nontrivial task, especially on the nanoscale. Instead,
one can train certain designless material systems to exhibit functionality, a process we
refer to as ‘material learning’[4], in analogy to ‘machine learning’ in software systems.

A recent example of such a designless tuneable nanoscale material system that can be
trained for functionality using material learning is a dopant network processing unit
(DNPU)[4]. It consists of a network of donor or acceptor dopant atoms in a semi-
conductor host material, where charge carriers hop from one dopant atom to another
under the influence of input and control voltages applied at surrounding electrodes.
The output consists of the current(s) measured at one or more electrodes. For mate-
rial learning using DNPUs, their electronic properties should be tuneable, nonlinear,
and exhibit negative differential resistance (NDR). This can be realised by varying one
or more control voltages, as shown in Figure [7.Th. Among other things, DNPUs have
been shown to have the capability of solving nonlinear classification tasks[4]. There
are several methods to obtain desired functionality in DNPUs by material learning.
We have demonstrated DNPU training with evolution-in-materio[5], off-chip gradient
descent[6], and more recently, gradient descent in materio[7].

Evolution-in-materio is a material-learning approach in which (digital) computer-
controlled evolution is used to manipulate a physical system. It allows the exploitation
of complex physical effects, even if these effects are a priori unknown[8]. Off-chip
gradient descent is an approach where an artificial neural network (ANN) is trained to
emulate the behaviour of the physical DNPU. This allows the use of use standard deep-
learning methods to determine the control voltages that are needed to reach a desired
functionality[6]. Gradient descent in materio is a method that uses lock-in techniques
to extract the gradient in the output with respect to the tuneable parameters by
perturbing these parameters in parallel with different frequencies. Using the extracted
gradient, it is possible to gradually move towards a desired functionality directly in
the material system][7].
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Figure 7.1: Dopant Network Processing Units as tuneable ELM: a IV curves measured
between an input and an output electrode of a 12-electrode dopant network processing
unit (DNPU), for different control voltages applied to a third control electrode (0 V/
is applied to the other electrodes), exhibiting negative differential resistance when the
control voltage increases (orange and blue curves). Inset: atomic force microscope
image of the (DNPU). b Schematic of a DNPU used in the ‘tuneable ELM mode’,
with input (green), output (grey) and control (blue) electrodes. The final output
of the system is obtained by linearly combining the output currents with tuneable
weights. ¢ Schematic of the conventional, ‘direct-output mode’. In this case there is
a single output (without linear weight factor), while the other electrodes are either
used as input or control. d Schematic of the ‘fixed-ELM mode’: all electrodes are
either inputs or outputs, where the latter are linearly combined to form the output.
e Schematic of the ‘tuneable ELM mode’; which is a hybrid of the modes shown in ¢
and d.
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Another popular framework for utilising the complexity of disordered material sys-
tems is reservoir computing (RC). Independently developed RC schemes are echo
state networks (ESNs)[9], liquid state machines (LSMs)[I0], and the backpropagation-
decorrelation (BPDC) on-line learning rule[I1]. Generally, the concept of RC was used
in combination with recurrent neural networks (RNNs), which exhibit time-dependent
(dynamic) behaviour[I2]. Here, the network (reservoir) projects input values nonlin-
early into a high-dimensional space of its reservoir states. To train such a network
to perform a certain task, a linear, supervised reservoir readout layer is used to map
the reservoir states to a desired output. As only the weights of the readout layer
need to be trained, while the random network itself remains fixed during the training
process, the training is relatively fast and efficient as compared to other neural net-
work training methods[I3]. Its general applicability makes RC a suitable approach
to utilise disordered material-based networks to perform desired computations, as
has been shown, for example, in network of carbon nanotubes[I4] and polymers[15].
Another approach that linearly combines the output states of a network is extreme
learning machines (ELM)[I6]. Recent work shows that ELM is effectively RC without
time dynamics. An opto-electronic network is used to perform both RC and ELM
based a switch to turn a feedback loop on or off[I7]. Figure illustrates a 12-
electrode DNPU operated in the tuneable ELM mode, where the black lines indicate
the weighted connections of the readout layer mapping the DNPUs output states
(currents) to the desired output of the network.

In the present study we specifically consider a DNPU based on boron-doped silicon
with a novel geometry having 12 electrodes (see section. Operating this DNPU in
the tuneable ELM mode, we optimise the computational power that can be achieved.
This tuneable ELM approach is inspired by the work of Dale et al.[I8], who showed
that by combining the concept of RC with evolution-in-materio, it is possible to obtain
a reservoir capable of reaching higher accuracies for RC benchmark tasks[I4] [18].
Their work mainly focusses on the use of micron-scale carbon nanotube / polymer
mixtures. DNPUs are different from these systems in several ways. On the one hand,
they have a smaller footprint and are silicon-based, which may facilitate scaling and
integration with conventional electronics. On the other hand, DNPUs do not exhibit
time dynamics at the timescales of our measurements. This makes these systems, in
their present form, unsuitable to process data directly in the time domain. However,
the lack of dynamical behaviour allows DNPUs to be used with the off-chip gradient
descent approach[6]. The advantage of this training technique is that it will allow
DNPUs to be incorporated in bigger networks of coupled DNPUs and other ANN
elements to create a new combined network that can be trained in one training run,
after which the task can be implemented in the material platform. This could lead
to a universal training technique allowing for the use of different material platforms
(e.g. a DNPU as tuneable nonlinear ELM combined with memristor technology for
linear operations) to be optimised at the same time.
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We study the computational power of a DNPU in the tuneable ELM operation mode
for different numbers of control (N¢) and output (No) electrodes, using two input
electrodes. To quantify computational power we use the Vapnik-Chervonenkis, VC
dimension[I9], defined as the maximum number of non-collinear points that can be
classified into all possible binary groups. Since, it is a priori, not known how many
control and output electrodes are needed to realise the highest computational capa-
bility, we study multiple tuneable ELM modes, going from the standard direct-output
mode (N¢ =9, No =1, ﬁgure) to the fixed-ELM mode (N¢ = 0, No = 10, figure
). As an example, a tuneable ELM mode with No = 4, Npo = 6 is schematically
represented in Figure [7.Ip. First, we search for the optimal operation mode for per-
forming binary classification tasks. With the best operation mode, we demonstrate
the use of the off-chip gradient descent training technique[6] to perform the formant-
based vowel recognition benchmark task|20] with up to 5 emulated DNPUs in parallel.
Finally, we will use the vowel recognition benchmark to show that using DNPUs as
tuneable ELMs allows one to reduce the number of parameters that need to be tuned
and stored as compared to an ANN counterpart. Our results emphasise the power of
in-materio computing and underline the importance of combining different material
platforms in a way that optimises their computational capabilities.

7.2 VC Dimension Analysis

In Figure[7.2h the measurement scheme of the VC dimension analysis is presented. To
perform this analysis, 7 input points are defined in a two-dimensional voltage input
space (as represented by the two waveforms in the left part of Figure [7.2h). These
points are chosen within the working range of —1.1 to 1.1 V of the DNPU that we
used for our study. The first four input points are chosen such that for the fixed-ELM
mode all binary classifications can be realised. The other three points are chosen in a
way similar to Ruiz-Euler et al.[I9], as explained in section Using these input
points, the complexity of the task can be varied by the number of points that need to
be correctly labelled by the tuneable DNPU ELM and the linear layer (Figure ,
middle part), where a perceptron is used to determine when the points are correctly
labelled (see section [7.6). For each n input points there are 2n possible labels. In
Figure [7.2h, the DNPU and the linear layer are trained to yield as output the binary
label [0000110], which is one of the 27 = 128 labels for VC dimension 7.

The training of the DNPU is performed using a combination of a computer-assisted
genetic algorithm (GA)[2I] (to find the voltages needed to tune the DNPU) and
pseudoinverse learning[22] (to find the optimal weights in the linear readout layer).
For each genome (set of control voltages) in the genetic algorithm, new weights for
the readout layer are found using pseudoinverse learning after which the output of the
network is mapped to a class probability using a perceptron (see section |7.6[). For VC
dimension 6 (blue points) and 7 (orange points) several different tuneable ELM modes
have been studied, see Figure[7.2b: No =0, 1, 2, 4, 6 and 9 for VC dimension 6. The
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Figure 7.2: VC dimension analysis: a Schematic of the VC dimension benchmark for
the raw input waveforms on the left using the DNPU (inputs: green, controls: blue,
outputs: grey) and the readout layer in a tuneable ELM operation mode, with No =
2 control electrodes and Np = 8 output electrodes (middle). The output waveform of
label [0000110] for VC dimension 7 is displayed on the right, where only the output
at the plateaus of the input is shown. b The capacity (fraction of correct labels) for
the different operation modes, indicated by the number of control electrodes used.
Blue: VC dimension 6 (6 input points). Orange: VC dimension 7 (7 input points,
only for the tuneable ELM modes). The DNPU schematics at the x-axis show the
electrode configurations. ¢ Correlation matrix of the output currents of the DNPU
for the fixed-ELM mode (N¢ = 0) for VC dimension 6. The darker the blue, the
higher the correlation in the output currents.

Ne = 0 and No = 9 cases are the direct output and fixed-ELM modes, respectively.
All values of NC in between correspond to the tuneable ELM modes. Because for VC
dimension 6 the tuneable ELM modes have the highest computational capacity, we
only analyse these further for VC dimension 7. We observe that the No = 2 mode
has the highest computational capability since this operation mode has the highest
capacity for VC dimension 7.
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The fixed-ELM mode underperforms because some DNPU outputs highly correlate.
It is well-known that the linear separation capacity of a specific ELM network grows
with the number of independent output states (output channels)[23]. Consequently,
highly correlated ELM states reduce the expressivity of the ELM. To investigate this
behaviour, we analyse the correlations in the DNPUs output states. This is done
by calculating the Pearson correlation coefficient between all the output states of the
fixed-ELM mode, as shown in Figure[7.2k. It is observed that most of the correlations
between the outputs are relatively high (dark blue); see also section Outputs
1 and 10 as well as 5 and 6 even have a correlation coefficient of 1.00, meaning that
they provide the same information. Therefore, using output electrodes 1 and 6 instead
as control electrodes does not result in a loss of information, while allowing to tune
the DNPU towards a more complex output response. Based on this observation, the
choice of which electrodes to use as control for the No = 1, 2 modes is straightforward.
For the other two tuneable ELM modes (N¢ = 4, 6) the control electrodes were chosen
such that at least one output or input electrode is in between the control electrodes
resulting in the DNPU schematics in Figure [7.2b. To further illustrate the choice of
the electrodes for the No = 1, 2 modes we show the correlation matrices for No =
2 for two different labels in Figure and b. The reason why the No = 2 mode
performs better than the fixed-ELM mode is that correlation coefficients very close
to 1.00 do not occur anymore.

7.3 Vowel Recognition Using Tuneable DNPU ELMs

To demonstrate the capability of the DNPU to perform more complex tasks, we focus
on the Hillenbrand formant-based vowel recognition benchmark task[20]. For this
task, we emulate the behaviour of multiple DNPUs in parallel (the behaviour of all
DNPUs is derived from a single physical DNPU). Formant-based vowel recognition
is a classification benchmark with a limited number of features and classes, making
it a task that can be solved with a limited number of DNPUs. Hillenbrand et al.[20]
extracted the formants from recordings of a spoken vowel at different times, which
are broad spectral acoustic maxima caused by acoustic resonances in the human vocal
tract. This allows the transformation of a task that is commonly performed using dy-
namic systems to a static benchmark task, making it compatible with DNPUs. Adult
male/female, as well as boy/girl speakers, each pronounced 12 different vowels. From
the recordings, a dataset is constructed by first extracting the fundamental frequency
or pitch fy, which is the lowest frequency present in a spoken vowel. This frequency
is directly linked to the size of the speaker’s vocal cords. Therefore, men tend to have
a low fo and women a high fo. This is a useful measure to take into account when
classifying over different ages and genders, as is done in this benchmark[24].

After determining f;, Hillenbrand et al. extracted 4 formants before the vowel is

spoken (known as the “steady state”) and 3 formants at 20%, 50% and 80% of the
spoken vowel duration. In Figure [7.3p we show a spectrogram of the vowel “oa”
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pronounced by an adult male, where the vertical features indicate the different formant
frequencies and the horizontal lines the times at which they have been extracted. This
results in a total of 14 features to be used as the inputs for the task.

Formant DNPU

a Vowel spectogram  Frequencies (Hz) Inputs C DNPUs Vowels

1000 2000 3000 4000
Frequency (HZ)

b Classification data d
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Figure 7.3: Spoken vowel recognition task: a Left: spectrogram of an adult male
pronouncing “oa”. The horizontal lines indicate the times at which the formants
are extracted. Right: Mapping of formant frequencies to voltages Vi3 — Vi using
linear discriminant analysis (LDA). b V4 versus V; for all 12 vowels, showing overlap,
especially for V5. ¢ Vowel classification by N DNPUs in parallel, with a linear readout
layer: Vi and V5 are inputs to DNPU1, V3 and V, are inputs to DNPU2, etc. d
Classification accuracies for N clones of the physical DNPU and of a surrogate model
(SM) of the DNPU.

To use a single DNPU in the No = 2 tuneable ELM mode, we need flexibility in the
number of inputs. To reduce this number, while still using the information from all 14
features, we use a linear discriminant analysis (LDA), where the input data are linearly
mapped to a feature space where classes have the highest separation (between-class
covariance) and lowest within-class covariance. After this linear mapping, the input
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data are normalised to the DNPU input range (—1.0 to 1.0 V'). This results in 10 new
inputs ordered from the best (V1) to the worst (Vi) classifying input, see Figure .
In Figure [7.3b, V4 is plotted against V;. It is seen that the vowels have less overlap
when projected to Vi than to Vs, as is expected when using LDA. To demonstrate
the computational capabilities of the DNPUs without needing to fabricate several of
them, we use the single DNPU analysed above and measure its output currents when
either V; and Vs, V3 and Vy, etc., are applied as input voltages. This corresponds to
putting N = 1 — 5 identical ‘cloned’ DNPUs in parallel. Effectively, this corresponds
to using 5 different DNPUs, because the control voltages of the cloned DNPUs will
be different, leading to completely different input-output characteristics (in the next
paragraph we explain how the control voltages are determined). For the cases that
N < 5 the last 2 - (5 — N) inputs are discarded. Finally, we use a single linear
readout layer with as inputs the measured currents, as stored in a digital computer,
of the N times cloned DNPU; see Figure[7.3k. We call this method of performing the
vowel recognition task, where we use a physical device in combination with operations
performed in a computer, a ‘hybrid’ method. We note that the measured currents
contain noise and other uncertainties present in a fully physical implementation.

In addition to the network with the cloned physical DNPU, a network is created with
N clones of an ANN surrogate model (SM) of the DNPU that accurately emulates
its behaviour[6]. To train this network for the vowel recognition task, we use the off-
chip gradient descent-based training technique we introduced in Ref. [6]. We extend
that work by including the linear readout layer in a complete ANN model of the
full network (the SM and the linear readout layer; see Figure [7.3f). This allows us
to use standard deep-learning methods to train the complete network for the vowel
recognition task. The found N pairs of control voltages are applied to the physical
DNPU, after which the vowel recognition is performed with the hybrid method.

Figure shows the accuracies in the vowel recognition after the training, both
for the networks with N clones using the DNPU SM (orange, SM method) and the
physical DNPU (blue, hybrid method). For each N, we performed 6 training runs (see
section , of which we chose, the 5 attempts with the highest recognition accuracy
to remove potential outliers. The average values and standard deviations of these 5
attempts are used to obtain the reported accuracies and error bars. We observe an
increase in average accuracy from 71.4% to 89.9% for the hybrid method between N
=1 and N = 3. The saturation in accuracy when N is further increased, is attributed
to the limited added information in V; — Vig. This can be directly linked to the LDA
method, where the first LDA components have the largest linear separability (least
overlap) and the last LDA components the smallest. We elaborate on this in section
and illustrate this in Figure

We also observe in Figure that transferring the control voltages found in the SM

method to the hybrid method results in very limited performance loss (from 90.6% to
89.9% for N = 3). This shows the robustness of the SM method. The small difference

149



CHAPTER 7. DOPANT NETWORK PROCESSING UNITS AS TUNEABLE
EXTREME LEARNING MACHINES

is attributed to remaining model uncertainties in the SM and the inability of the
SM to account for noise. In Figure [7.7} we show that when replacing the LDA by
a trainable linear layer with 14 inputs and 2N outputs in a further extended ANN
model, we can increase the highest accuracy obtained in the vowel recognition task
from 90.6% to 92.6% for the SM method. A similar improvement is expected for the
hybrid method.

7.4 Parameter Reduction Using DNPU ELMs

In this subsection, we show that the number of tuneable parameters needed in the
vowel recognition task using DNPUs is, for a comparable accuracy, much less than
using ANNs. We consider the network structure discussed in the previous subsection;
see Figure We use ANNs with 2 inputs and 8 outputs, equal to those of the
DNPU in the optimal tuneable ELM mode (N¢ = 2, No = 8; see Figure . To
reach a comparable recognition accuracy as with (cloned) DNPUs, the ANNs can be
much smaller than the ANN used in the surrogate model (SM) of the DNPU. We use
as ANN structure a fully-connected nonlinear network between the inputs and the
outputs with a ReLU activation function (see section . Using N = 1 —5 of these
small ANNs, illustrated in Figure with the red boxes, we make a network with
the same structure as that in Figure but with the ANNs replacing the (cloned)
DNPUs. We train this network and use it to perform the vowel recognition task from
the previous subsection. Figure [7-4p compares the achieved average accuracy and
error (green) to the ones achieved using the DNPU (blue). The accuracy and error
were obtained in the same way as in the previous subsection (extracted from 5 of
the 6 training runs). We see that, especially for high N, the average accuracies of
the hybrid measurements using cloned DNPUs are quite close to those of the ANNs
(89.9% compared to 91.4% for N = 3).

Since one of the important limitations of deep learning is the storage and retrieval
of the values of the parameters used in an ANN|25], it is important to reduce the
number of parameters. For an ANN, the number of parameters is equal to the number
of weights and biases. In Figure , the number of parameters (weights + biases
for the ANNs and control voltages for the DNPU) of the ANN replacing the DNPU
in the network is plotted against N (green: 24N). For the DNPU case, the number
of parameters is equal to the number of control voltages (blue: 2/N). The reason why
the number of parameters for the DNPU case is smaller than that for the ANN case
is that the control voltages of the DNPU have a global effect on the outputs[4]. While
for the DNPU one parameter influences all outputs, for the ANN one parameter
influences only one output. We note that in the consideration of the number of
parameters, we did not take account the weights in the linear readout layer. The
reason is that we want to focus on the capabilities of the DNPU itself, which can be
exploited in various other tasks than only vowel recognition. We conclude that their
global tuning capability in combination with their non-linear input-output relation
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can make DNPUs a powerful tool for in-materio computation.
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Figure 7.4: Parameter reduction using DNPUs: (a) Same network as in Figure ,
but with the DNPUs replaced by single-layer fully-connected ANNs (red boxes). (b)
Vowel recognition accuracy for the network with ANNs (green) as compared against
the network with DNPUs (blue, same data as in Figure[7.3{). (c) Number of tuneable
parameters for the network with ANNs (green) compared against the network with
DNPUs (blue).

7.5 Discussion

We have studied the computational power of a dopant network processing unit (DNPU),
consisting of a region with boron dopants at the surface of a silicon substrate, con-
tacted with 12 electrodes that can be used as data inputs, controls and outputs. We
used the complex nonlinear dependence between input voltages and output currents
of the DNPU, tuned by voltages applied to the control electrodes, in combination with
a linear readout layer for ELM. Three modes of operation were considered: (1) the
‘fixed-ELM mode’, (2) the ‘direct-output mode’ and (3) the ‘tuneable ELM mode’.
In the fixed-ELM mode (1), where the DNPU cannot be tuned, all electrodes are
used as inputs or outputs. In the direct-output mode (2), the electrodes are used as
inputs, tuneable controls and one or more outputs, without using a readout layer.
The tuneable ELM mode (3) is a combination of (1) and (2), where the DNPU can be
partially tuned by control voltages. We found that the tuneable ELM mode provides
the highest computational power, as quantified by the Vapnik-Chervonenkis (VC) di-
mension. For the case of 2 data inputs, we found optimal computation power with 2
controls and 8 outputs. The fact that the fixed-ELM mode (10 outputs) has subopti-
mal computing power was rationalised by considering the output correlation matrix,
which shows strong correlations between the two outputs adjacent to the each of the
two inputs. In that case the computation power can be increased by using one of
these outputs to as a control electrode, leading to a total of 2 controls. We conclude
from this analysis that consideration of the output correlation matrix is important
for optimizing the operation mode of a complex tuneable ELM.
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We solved the vowel recognition benchmark task by a hybrid network of emulated
DNPUs in the optimal tuneable ELM mode in combination with a common linear
readout layer, where the dimension of the input data are reduced while maximising
the class separation (using LDA). As training method, an off-chip gradient descent
method was applied using a surrogate model (SM) of the physical DNPU, yielding
pairs of control voltages that we applied to the physical DNPU for validation. The
noise present in the physical DNPU and deviations from the SM lead to only a small
decrease in the accuracy of the vowel recognition task in this hybrid method, as com-
pared to using the SM. Since the different pairs of control voltages in the hybrid
method effectively correspond to using different DNPUs, there should be equivalence
with a network using different physical DNPUs. It should therefore be possible to
extend this approach to large and fully physical networks with a large number of
DNPUs, where also the LDA and the linear readout layer are realised by physical
systems such as memristors[26] and optical networks[27]. Since training of the latter
systems is also done by physically implementing the parameters found by artificial
neural networks (ANNs)[206] 27], it should be possible to incorporate the training of
these physical networks in the off-chip training technique in a similar way as demon-
strated in the present work. This could potentially lead to physical networks trained
for classification tasks that outperform ANNSs regarding inference. We showed that
the global, nonlinear tuneability of a DNPU requires fewer parameters than a mini-
mal ANN that has similar input-output behaviour. Since these parameters should be
stored in memory and retrieved for each recognition task, the use of DNPUs instead
of ANNs will be less memory-intensive.

The vowel recognition task demonstrated in this work was performed with an accuracy
of 89.9% on the test dataset by emulating the behaviour of multiple DNPUs from one
physical DNPU. An increase to 92.6% accuracy was shown to be possible by training
the DNPU and all linear layers instead of employing LDA. These accuracies are similar
to those reported in other work: 89% using spin-torque nano-oscillator|28] and 93%
accuracy using an optical system[29]. It should be noted however, that in both these
approaches a subset of the data was used that only included female speakers and
7 vowels making the task easier to solve. Since we include both female and male
voices of adults and children on all 12 vowels, we conclude that our work presents a
neuromorphic network approach with a high classification accuracy on the full vowel
recognition benchmark.

The present work shows the power of using designless disordered systems, such as
DNPUs, for computation and provides insight into optimally harnessing their compu-
tation power. Building on this, we have indicated how such systems can be combined
with other physical systems, exploiting each system’s optimal operation type (such
as linear vs non-linear), to create networks achieving in-materio computation that is
fast as well as energy and space efficient.
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7.6 Appendix A: Methods

7.6.1 The Dopant Network Processing Unit

The DNPU used in this work is fabricated in a similar fashion as the one in Chen
et.al.[4]. The main difference is the number of electrodes: 12 instead of 8. These
electrodes are made by e-beam evaporation of 1 nm Ti and 25 nm Pd and placed
on top of the boron doped silicon in a circle with a diameter of 300 nm. The boron
concentration under the contacts is approximately 2 - 10'® ¢m ™3, which creates an
ohmic contact between the electrodes and the substrate. Using the electrodes as a
mask, the silicon is etched such that the boron concentration at the receded silicon
surface is reduced to approximately 5-10'7 ¢m ™3, resulting in variable-range hopping
at 77 K[4].

7.6.2 Measurements

All DNPU measurements are performed using a customised dipstick to insert the de-
vice into liquid nitrogen (77 K). To measure its behaviour, the DNPU is wire bonded
to a printed circuit board (PCB) that has 12 IV converters connected, allowing us
to use up to 12 output channels. These IV convertors have either 10 M or 100
MQ feedback resistances allowing us to measure a current range of —400 nA to 400
nA or —40 nA to 40 nA, respectively. Output electrodes that are close to the in-
put/control electrodes have relatively large output currents and are connected to the
10 MQ IV converters. This allows measuring the full output current range. The elec-
trodes further away from the input/control electrodes are connected to the 100 M
IV converters, such that the relatively small output currents can be determined more
accurately. We calculate the measured voltages back to current values in nA. During
the measurements, the voltages are applied and measured using a national instru-
ments compactDAQ (NI ¢cDAQ-9132) with two modules, one for digital-to-analogue
conversion (NI-9264) and one for analogue-to-digital conversion (NI-9202). This mea-
surement system is automated using Python (https://github.com/BraiNEdarwin).

7.6.3 Vapnik Chervonenkis Dimension Training

To train the network (DNPU + linear readout layer) to yield all the binary labels
of the corresponding VC dimension n we combine a genetic algorithm[21] (GA) with
pseudoinverse learning[22]. This is done by randomly initialising a set of 25 genomes
of control voltages in the range —1.1 to 1.1 V as optimisable parameters. For each
genome the current waveforms of all the NO outputs of the DNPU are measured for
the input waveforms given in Figure [7.2h. This yields an array X of size n - No that
are linearly combined to obtain the target output waveforms. The No weights W of
this layer are calculated using the pseudo-inverse learning method, which solves[22]:

W=V, X+t (7.1)
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where Y; is the target output waveform (consisting of a sequence of 0’s and 1’s) and
X is the pseudoinverse of X. The 25 obtained network output waveforms Y = W-X
are evaluated and ranked based on their fitness (F'). In this work we define the fitness
to be the correlation between the actual and the target output waveforms (Y and Y;)
multiplied by a sigmoid function of the sep between the lowest high (binary 1) and
the highest low (binary 0) state, see equation [7.2J6]:

1

F =corr(Y,Y;) - 1+ 202

(7.2)
Based on the fitness ranking of the present genomes, the next generation of genomes
is spawned by: (1) keeping the 5 best genomes from the previous generation; (2)
slightly altering the 5 best genomes by introducing small fluctuations to the genes
(voltages); (3) generating 5 genomes by cross-breeding (blend alpha beta crossover,
BLX-alpha-beta) between the 5 best performing genomes with a certain probabil-
ity; (4) 5 genomes are obtained via crossbreeding between the top 5 and 5 random
genomes; (5) the last 5 genomes are randomly generated. For details, we refer to
https://github.com/BraiNEdarwin. The GA is performed for 25 generations.

After the GA optimization, the combination of control voltages corresponding to
the genome with the highest fitness is applied to the DNPU. To determine whether
the correct labels are obtained by the DNPU and the linear readout layer we use
a perceptron. We train the perceptron with the output waveforms and the correct
labels. The perceptron is trained for 200 epochs using adaptive moment estimation
(Adam) gradient descent for 200 epochs using a binary cross-entropy loss function|30],
with a learning rate of 7- 1073, beta coefficients for running averages of (0.9, 0.999),
a numerical stability constant ¢ = 1073, and a weight decay of 0. After training the
perceptron, the accuracy is determined by calculating the correctly obtained labels
divided by the total number of labels, where a label is noted as found when 100%
accuracy is achieved. we give a total of two attempts of running the whole algorithm to
each label. A label is correctly classified/found when an accuracy of 100% is reached
in one of the two attempts.

7.6.4 Hillenbrand Dataset

The Hillenbrand dataset consists of 12 vowels spoken by male, female, boy and girl
speakers. For each of these speakers the duration of the vowel and the fundamental
frequency is stored. Besides the fundamental frequency there are 13 formants ex-
tracted per speaker, 4 at the steady state (before speaking) and 3 at 20%, 50% and
80% of the spoken vowel. This has been done for 1,669 recordings. In some cases
not all formants could be determined. In these cases the frequency of the formant is
denoted as a zero. We removed these samples from the dataset, which leaves us with
1,373 recordings. For our analysis we do not consider the duration of the recording.
We map the formant data to voltages using a linear weight matrix, normalising the
voltages such that they lie in the DNPUs voltage range (—1.1 V, 1.1 V). The weight
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matrix is generated using the linear discriminant analysis (LDA) function from the
Python sklearn library[3T].

7.6.5 Off-Chip Gradient Descent

The off-chip gradient descent method uses an artificial neural network (ANN) trained
on the input-output data of the DNPU. This is done by following the approach used
by Ruiz-Euler et al.[6], where the number of activation electrodes (input + control
electrodes) for the case N. = 2, N, = 8 is reduced from 7 to 4 and the number of
output electrodes increased from 1 to 8. We take 4,850,000 samples to train the
ANN. This ANN consists 5 fully connected hidden layers, each with 90 nodes and
ReLU activation functions. The ANN with its weights and biases forms the surrogate
model (SM) of the DNPU.

Next, we combine N = 1 — 5 cloned SMs with a fully connected linear readout layer
(Figure ) and train the combined network for the vowel recognition task using
gradient descent with respect to the optimisable parameters, which are the 2N SM
control voltages and the weights and biases of the readout layer. The internal pa-
rameters of the SM are kept constant. For the vowel recognition training, the 1,373
recordings from which the formants are extracted are separated into train, validation
and test data (861, 256 and 256 recordings, respectively). The validation dataset is
used to prevent overfitting on the training dataset. After each training epoch, the
found set of parameters is only saved if the loss function for the validation data is
also lower than for the previous set of parameters, giving as a final result the set of
parameters with the lowest validation loss. For the calculation of the losses, the cross-
entropy loss function is implemented using pytorch[30]. The parameter optimization
was done using Adam for 500 epochs, with a learning rate of 5-1072, beta coefficients
for running averages of (0.9, 0.999), a numerical stability constant of 1-1078 and a
weight decay of 0. The results reported in the main text are obtained for the test
dataset using the final parameters. In total, 6 different random initialisations and
divisions of the training and validation data are used for training, keeping the test
data unchanged.

In the comparison of the number of parameters (Figure 7 the small ANNs, with
2 inputs and 8 outputs, have 16 weights and 8 biases. These small ANNs are incor-
porated in the network described above, where each cloned DNPU SM is replaced
by a small ANN. The training of this network occurs in exactly the same way as the
network with the cloned SMs, where the 16N weights and 8N biases take over the
role of the 2N DNPU control voltages.
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7.7 Appendix B: Supplementary Information

7.7.1 Correlation Analysis

In Figures and the correlation matrices of the output currents for the clas-
sification tasks 5 (00001 01]) and 6 (0000 11 0]) are shown for the No = 2, Np
= 8 mode after training. In contrast to Figure[7.2F in the main text, no correlation
coeflicients very close to 1.00 occur, while even negative correlation coefficients occur.
This explains why the No = 2 mode has a higher computational power than the N¢
= 0 mode of Figure in the main text.
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Figure 7.5: a Correlation plot for label 5 ([0 0 0 0 1 0 1]) of the outputs of the DNPU
in the No = 2 mode. b Correlation plot for label 6 ([0 0 0 0 1 1 0]) of the outputs of
the DNPU in the N¢ = 2 mode. ¢ Input points used for the VC dimension analysis
presented in the voltage input space.
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In Figure the voltages Vj,1, Vina used for these input combinations are shown. As
mentioned in the main text, points 1 —4 are chosen within the voltage range (—1.1 V,
1.1 V) and optimised for the fixed-ELM mode. To avoid collinearity, the other points
are chosen by placing them collinearly on the line connecting two points and shifting
them a little away from this line to lift collinearity. Point 5 is placed in between point
1 and 3 and shifted along the V;,; input. Point 6 is placed in between points 2 and
4 and shifted along the V;,2 axis. Point 7 is placed in between points 1 and 4 and
shifted both along the V;,; and Vj,2 axis. The shifts are chosen in a similar way as
in Ruiz-Euler. et. al.[T9] and such, that a good spread of points is obtained.

7.7.2 Linear Discriminant Analysis and Classification

To perform the formant-based vowel recognition task, the linear discriminant analysis
(LDA) method was used to map the 14 formant features to feature space of reduced
dimensionality, while maximizing the linear separability of the classes. By normalising
these values, we obtain 10 DNPU input voltages Vi — Vig. The LDA involves one
mapping that is kept constant, so that we stay closer to the ELM approach, where
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Figure 7.6: a Inputs and corresponding vowel labels for the second (cloned) DNPU. b
Same, for the third (cloned) DNPU. ¢ Same, for the fourth (cloned) DNPU. d Same,
for the fifth (cloned) DNPU.
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inputs to the ELM are kept fixed during training). As mentioned in the main text,
V1 —Vip are ordered from the best (V1) to the worst (V1) least meaningful information
to separate the classes. Figure[7.3p in the main text shows V5 vs V; for all 12 vowels,
which are used as inputs to the first (cloned) DNPU. Figure shows similar plots
for the other voltages (a: V4 vs V3, inputs to the second (cloned) DNPU, b: V5 vs
Vs, inputs to the third (cloned) DNPU, c: Vg vs V7, inputs to the fourth (cloned)
DNPU, d: Vig vs Vg, inputs to the fifth (cloned) DNPU). As is clearly seen, the data
separability in the output of the LDA layer of V; gradually decreases with I as can be
seen from the overlapping sets of labels.

7.7.3 DNPUs as Tuneable Activation Functions

It is also possible to replace the LDA layer by a trainable linear layer. Using the
off-chip gradient descent-based training method, this can be achieved by increasing
the size of the combined ANN model and treating the formant features as the input
of this combined ANN model, where the DNPU acts as tuneable activation function.
In this case L2 regularization is used to keep the input voltages inside the DNPU
voltage range (in the rare case that an input voltage falls outside the DNPU voltage
range the output is classified as false). This alternative method is applied with the
surrogate model (SM) of the DNPU. Figure gives classification accuracies for
this alternative method using N (cloned) DNPU SMs that can be compared to the

100

classification accuracy (%)

2 3 4
number of DNPUs (N)

Figure 7.7: Classification accuracies of the vowel recognition task using various num-
bers of (cloned) DNPU surrogate models when the linear layer that maps formant
features to voltages is retrained for each number of DNPUs.
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classification accuracies in Figure of the main text, where the LDA is used. For
a single DNPU SM (N = 1) the classification accuracy for the alternative method
is worse than when using the LDA, because in the LDA the best classifying inputs
V1 and V5 are used for this case. However, with increasing N the alternative method
starts to outperform the corresponding LDA-based method, finally increasing the
classification accuracy from 90.6% to 92.6%.
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Conclusions and Outlook

In this thesis, we analysed whether DNPUs have an advantage for neuromorphic
computing applications. In this final chapter, we reflect on the obtained results,
compare them with the requirements for neuromorphic computing and propose future
research directions and application areas.

After introducing the DNPU concept, we showed that DNPUs have tuneable nonlinear
behaviour attributed to the variable range hopping (VRH) conduction regime. Based
on this tuneable nonlinear behaviour, we showed that DNPUs can be tuned to exhibit
a variety of input-output relations. When connecting multiple DNPUs together, they
can solve more complex benchmark tasks than an individual DNPU. This indicates
that creating networks of DNPUs could be a viable approach to creating neuromor-
phic hardware. In another approach, we combined DNPUs with linear layers. This
approach of realising neuromorphic hardware can be combined with memristive or
optical technologies for linear operations. We showed that in this neuromorphic net-
work DNPUs can perform multiple linear and nonlinear operations. Hence, DNPUs
can help reduce the number of required components.

Although DNPUs can have advantages in neuromorphic applications, some aspects
require further research and optimisation. To be a viable technology, DNPUs need
to operate at room temperature and be energy efficient. When making a network of
DNPUs they need to have gain to allow the signal to propagate through the network.
At the same time, to eliminate the Von Neumann bottleneck, non-volatile memory is
also important. Finally, for their general applicability, the fabrication yield of DNPUs
needs to be increased. Below we suggest possible approaches that can improve these
five aspects of DNPUs.
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8.1 Room Temperature Operation of DNPUs

For most of the measurements in this thesis, the DNPUs are operated at 77 K. This
is inefficient regarding the energy needed for cooling and the required infrastructure.
Since DNPUs are mainly advantageous for edge computing, operation at room tem-
perature is crucial. In Chapter [l we showed that it is possible to operate a DNPU
consisting of a silicon substrate with boron dopants at room temperature. The prob-
lem with this approach is that the ”back-gate” is decoupled via a p-n junction. This
results in a leakage current that governs the output current and the noise. There-
fore, we propose to use a silicon-on-insulator wafer[I] to reduce the leakage from the
back-gate. By combining this with a different substrate-dopant combination, we can
increase the ionisation energy, making it easier to obtain VRH at higher temperatures.
This combination could allow operation at higher temperatures without substantial
leakage.

8.2 Increasing the Energy Efficiency of DNPUs

The main goal of neuromorphic engineering is fast, energy-efficient computation to
perform tasks at which the brain excels. In Chapter [ we initially estimated the
energy efficiency of DNPUs to be more than 100 tera-operations per second per watt
(TOP s~! W~1). Although competitive, this energy consumption estimate is based
on three considerations. First, reconfigurable Boolean logic requires an ANN with
ten linear operations. Second, the limiting factor for the bandwidth is determined by
the IV-converter (100 MHz). Third, the estimate is based on a measurement of the
power consumption when performing Boolean logic.

Since DNPUs can perform the reconfigurable Boolean logic benchmark. We estimate
that a DNPU can perform at least ten linear operations. Since reconfigurable Boolean
logic also requires nonlinear operations, of which we do not take into account the added
computational requirements, this is a conservative estimate. As mentioned in Chapter
the bandwidth estimate is based on the assumption that, since the hopping rate is
high, the relaxation time of the network is significantly faster than the bandwidth of
the I'V converter. However, this does not account for the required number of hops and
the hopping probability. Kinetic Monte Carlo simulations indicate that this will likely
decrease the bandwidth to 1 MHz, reducing the energy efficiency to 1 tera-operations
per second per watt[2]. It is important to measure the bandwidth limit of DNPUs to
verify this.

Regarding the third consideration, we showed that the power consumption is governed
by currents that do not directly contribute to the functionality of the DNPU. We
observed that the current at the output electrode is in the nA range while the currents
at the other electrodes go up to 1 pA, indicating that redundant currents are running
through the DNPU. Since the electrodes far away from the output tune the potential
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landscape of the DNPU, it is expected that we can increase the energy efficiency by
changing some of these electrodes from Ohmic to capacitive coupling. This capacitive
coupling can be achieved using a high-quality oxide layer between the metal and
the dopant network. The top and side views of a DNPU with capacitively coupled
electrodes (dark grey) are illustrated in Figure

SiO; mm S
== Dopant profile
AR — e Ohmic Ti/Pd electrode
mmm Electrostatic Ti/Pd electrode

High quality oxide
Electrostatic electrodes

Figure 8.1: Illustration of the side (left) and top (right) of a DNPU where some of
the electrodes (dark grey) are electrostatically coupled to the DNPU.

8.3 Achieving Gain in DNPUs

Multiple DNPUs have to be interconnected to create a network capable of solving
complex, real-life neuromorphic tasks. In Chapter [6] we took the first step in this
direction. In this work we used a digital computer to map the output currents of
the DNPU to optimal input voltages of the next DNPU by performing normalisation
and re-scaling. In principle, these operations can also be performed using electronic
components such as op-amps[3]. However, these consume extra energy, making them
a non-ideal approach for realising an interconnected network of DNPUs.

Therefore, it is crucial to try and implement the current to voltage mapping by
combining the DNPU and a single resistance. When the input electrodes mainly have
an electrostatic influence on the output current, it might be possible to achieve a
sensitive enough response in DNPUs. However, when considering the Boolean logic
benchmark, for the XNOR task presented in Chapter [} we observe that a 0.5 V
change in the voltage at an input electrode results in a 0.1 nA change in the current
at the output electrode. To map this change in current back to a 0.5 V change in
voltage we would need a resistance in the order of 5 Gf2, which is higher than the
resistance of the DNPU, reducing the output current change.

We thus have to increase the sensitivity of the output current to the input voltages.
When performing a task such as X(N)OR, requiring negative differential resistance
(NDR), an input voltage changes the output current by adjusting the potential land-
scape in the DNPU. By placing the input electrode closer to the output electrode we
can increase the sensitivity. However, the current from the input may directly flow
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to the output. The change in this ”direct” current may be larger than the change
in current caused by changing the potential landscape, overruling NDR and thus
impeding the realisation of X(N)OR functionality. Fortunately, for electrostatically
coupled electrodes illustrated in Figure [8.1] it is possible to place the input electrode
closer to the output without the direct current problem. Hence, for electrostatically
coupled electrodes we can increase the sensitivity, changes in the output current due
to changes in the input voltage without overruling NDR. If this sensitivity is large
enough, the IV converting resistance could be taken small enough to allow for the
propagation of information when interconnecting DNPUs.

8.4 DNPUs and Non-volatile Memory

In this thesis, we have shown that DNPUs can performing analogue neural network-
like operations with a reduced number of parameters, as shown in Chapter [6] and [7]
However, one of the requirements of neuromorphic hardware is the removal of the Von
Neumann bottleneck by performing in-memory computations. By combining DNPUs
with linear in-memory computing components, we showed that it is possible to use the
linear layer as the non-volatile memory components of the neuromorphic architecture.
When using only DNPUs, they need to have non-volatile memory themselves. By
building on the electrostatic approach shown in Figure[8.1] it could be possible to use
flash memory technology to implement this non-volatile memory by storing charge
on electrostatically coupled electrodes[d]. Another method is to use the DNPUs as
proposed in Chapter [B] where a linear weight layer tunes the mapping of the task
input to all device electrodes (except for the output electrode). In this method,
DNPUs only perform non-linear operations and do not require non-volatile memory.
The memory should then be present in the weight layer, which could for example, be
achieved using a memristive crossbar array[5].

8.5 Improving the Yield of DNPU Fabrication

Increasing the yield of DNPU fabrication results in a more scalable process and makes
research on different DNPU designs easier. As mentioned in Chapter [3] the yield is
mainly limited by the reproducibility of the dopant concentration at the silicon surface
after the reactive ion etching (RIE). We can improve this fabrication step in a few
ways. First, using heavier dopants will require less RIE since the desired concentration
is closer to the surface. Another approach is to create a wider range in which the
desired concentration is reached. We can achieve this by using multiple implantations
with different implantation energies and concentrations to create a high concentration
at the surface and a platform at the desired concentration. This is illustrated in Figure
by an implantation simulation[6] using and implantation with 5 keV and 1 -10'*
ions/cm? (blue) combined with an implantation with 20 keV and 2 - 1012 ions/cm?
(orange). Here, the green line is the result of the two implantation steps, having a
plateau at the operating concentration.
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Figure 8.2: Simulation of the ion concentration profile when performing two ion im-
plantation steps. Implantation step 1 (blue) is performed using 5 keV and 1 - 104
ions/cm?. Implantation step 2 (orange) is performed using 20 keV and 2 - 10'2
ions/cm?. The green line shows the implantation profile when performing implan-
tation steps 1 and 2 on the same wafer [6].

When incorporating DNPUs in neuromorphic hardware, combining the DNPUs with
linear components is expected to be the next step. Since the other components can
perform the tasks of non-volatile memory and gain, the focus in DNPU research
should be on room temperature operation and energy efficiency. When creating a
neuromorphic system with combined technologies the signals need to be compati-
ble. Assuming this is the case, the viability of technologies using DNPUs will mainly
depend on the bandwidth. When the bandwidth of DNPUs is limiting the energy
efficiency of the total system, implementing DNPUs in networks of combined tech-
nologies will be inefficient. In this case, the bandwidth of the DNPUs need to be
improved, which could be realized using smaller networks or higher temperatures. A
smaller network has fewer dopants and thus requires fewer hops to stabilise. At higher
temperatures, the hopping rate will increase due to the presence of extra phonons. In
short, we have shown in this thesis the advantage of using the nonlinearity of DNPUs
in neuromorphic hardware.
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Summary

The rise of artificial intelligence (AI) is driven by the increase in processing power
of our digital computers and the availability of large amounts of data. This allows
a subset of AI that is defined using digital computers, also known as artificial neu-
ral networks (ANNs), to become present in today’s world. However, the growth of
these ANNSs is limited by both the Von Neumann bottleneck and the impending end
of Moore’s law. The Von Neumann architecture separates memory and processing.
Since ANNs require many memory accesses, communication between the memory and
processor limits the size of ANNs. Simultaneously, Moore’s law states that the num-
ber of transistors in an integrated circuit doubles every two years. However, we are
approaching transistors that need to consist of only a few atoms. This combination
results in the requirement for unconventional computing approaches. Neuromorphic
hardware, an example of unconventional computing, is inspired by the efficiency of
the brain and uses interconnected computing units (similar to neurons in the brain)
for AT applications. Neuromorphic engineering focuses on developing computational
elements that can be trained and interconnected to perform brain-inspired compu-
tation tasks. In this work, we analyse the capabilities of dopant network processing
units (DNPUs) in neuromorphic hardware.

As described in Chapter[2] we introduce the three main requirements for neuromorphic
systems. First, the system needs to be responsive to external stimuli, such that
information is processed. Second, this system needs to achieve the desired response
from external stimuli, they need to be trainable. Third, learned states need to be
stored in non-volatile memory. We explain the concept of evolution-in-materio (EIM),
where a disordered system is trained using a genetic algorithm to perform the desired
functionality. Finally, we explain variable range hopping (VRH) and indicate how
VRH combined with Coulomb blockade allows DNPUs to be compatible with EIM.

The important aspects of the fabrication and electronic characterisation of DNPUs are
described in Chapter [3| The fabrication part is divided into 4-inch, wafer-scale and
1x1 ecm?, chip-scale. On the wafer-scale, masking SiO, is used to define the dopant
implantation region. These dopants (boron or arsenic) are implanted using ion beam
implantation. After implantation, we dice the wafer in 45 1x1 cm? chips. These
chips are processed using electron beam lithography to define the electrode positions.
These electrodes are fabricated using electron beam evaporation and lift-off and are
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made of Ti/Pd for boron-doped or Al for arsenic-doped DNPUs. In the final step,
we use reactive ion etching to reach the correct dopant concentration for VRH at
77 K. For the electrical characterisation, the DNPUs are placed in liquid nitrogen
using a dipstick. This dipstick houses the electronic cables that connect the DNPU
to the digital-to-analogue converter (DAC for input voltages) and analogue-to-digital
converter (ADC for output voltages). The nA output of the device is mapped to a
voltage using a low-temperature IV converter. The converter is placed close to the
DNPU to reduce noise.

In Chapter [4] we show that, between 70 K and 160 K, the conduction of DNPUs
is governed by variable range hopping (VRH). The tuneable nonlinear behaviour
from this VRH is exploited to perform the reconfigurable Boolean logic and feature
extraction benchmark. Using the input-output behaviour of the 16 extracted 2x2 pixel
features, we simulate that the MNIST handwritten digit classification benchmark can
be solved with an accuracy of 96% when combining DNPU feature extractors with a
linear layer. For the benchmark tasks in this chapter, the DNPUs are trained using a
genetic algorithm performing EIM. The trainability of DNPUs for complex nonlinear
tasks makes them interesting for neuromorphic engineering. By applying a back-gate
to suppress the conduction from band to VRH, we show that it is possible to perform
the reconfigurable Boolean logic benchmark at room temperature.

The disadvantage of using a genetic algorithm to train DNPUs is the large number
of measurements involved. When training many benchmarks, a GA becomes time
intensive. To find a faster way of training multiple or complex tasks, in Chapter [b| we
show that it is possible to train an artificial neural network (ANN) model to behave
similarly to the DNPU. This ANN model is trained on the input-output relation of
a DNPUs 7-dimensional input space. Using this trained ANN model, also known
as a surrogate model (SM), we can use standard deep learning approaches to train
the networks. At the initial cost of measuring all the input-output data, subsequent
training runs are faster. In Chapter [5] using the SM to train the DNPUs, we show
that DNPUs can perform the ring classification benchmark. This ring classification
task consists of two sets of concentric rings (classes) separated by a certain distance
from one another.

In Chapter [6] we use an SM and Vapnik-Chervonenkis (VC) dimension benchmark
to analyse the computational capabilities of DNPUs. VC dimension defines the com-
plexity of a network as the number of binary output tasks this network can perform.
We show that a physical DNPU has similar capabilities as a 2-hidden-node ANN.
The computation capabilities of the SM are in between an ANN with 2 and 3 hid-
den nodes. We compare the number of parameters needed to show that, in terms of
memory usage, DNPUs have an advantage over fully connected ANNs. Following this
analysis, we use the ring classification benchmark task to analyse the added compu-
tation capabilities of a network of interconnected DNPUs. Using SMs to train the
DNPUs, we attempt to perform the ring classification task for a small separation.
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We compare its classification accuracy to that of a network of 5 DNPUs connected in
a 2-2-1 configuration. We observe that the network of 5 DNPUs can reach a higher
accuracy on this ring classification task. Finally, by using the SM to create a net-
work of multiple SMs, we show that it is theoretically possible to solve the MNIST
handwritten digit classification task using a linear input layer and 10 DNPUs. An
accuracy of 95 % is achieved on the test data.

In Chapter [} we move past the standard 1-output DNPU configuration. Utilising
multiple output electrodes, we attempt to extract more non-linear computation from
the DNPU. This approach is inspired by the field of extreme learning machines (ELM)
and reservoir computing (RC) where the network creates a complex mapping from the
input to its internal states. These internal states are linearly mapped to the desired
output to perform the benchmark task. In this Chapter, we show that the ELM
framework allows us to extract the non-linear behaviour from a single 12 electrode
DNPU. We build on this concept by showing that DNPUs require a certain degree
of control to create a potential landscape capable of extracting more varied nonlinear
behaviour. This extra variation allows us to move from solving VC-dimension 5 (5
inputs) to VC-dimension 7 (7 inputs). This increase shows that we can solve 96
extra binary classification tasks. Operating the DNPU in the tuneable ELM mode,
using the nonlinearity of 3 DNPUs in parallel, the formant-based vowel recognition
benchmark can be solved with an accuracy of 89.9 %. Furthermore, by comparing
DNPUs to ANNs the number of parameters/ memory accesses needed is reduced from
72 to 6 and scales better for DNPUs.

The results in this thesis show both the potential and limitations of using DNPUs
for neuromorphic computing. The highly tuneable nonlinear response combined with
global tuneability allows DNPUs to perform complex tasks that require multiple op-
erations in standard Al implementations. By combining the non-linearity of DNPUs
with the memory of linear implementations for neuromorphic engineering, it seems
likely that networks combining different material platforms can be created that effi-
ciently perform brain-inspired computation. Using DNPUs, we show the advantages
of using the tuneable nonlinear behaviour of disordered networks for neuromorphic
hardware.
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De opkomst van kunstmatige intelligentie (KI) wordt gedreven door de groei in
rekenkracht van onze digitale computers en de beschikbaarheid van grote hoeveel-
heden data. Hierdoor zijn kunstmatige neurale netwerken (KNN) een subgroep van
KI, die gebruikt worden in ons dagelijkse leven. Maar, de groei van KNN’s wordt
beperkt door het Von Neumann knelpunt en het naderende einde van de wet van
Moore. De Von Neumann-architectuur scheidt geheugen en processor. Omdat een
KNN vaak informatie uit het computergeheugen nodig heeft, limiteert de communi-
catie tussen de processor en het geheugen de grote van een KNN. De wet van Moore
stelt dat het aantal transistoren in een Geintegreerde schakeling elke twee jaar ver-
dubbelt. Maar, we komen steeds dichterbij een transistor die uit een paar atomen zou
moeten bestaan. Deze combinatie zorgt voor de vraag naar onconventionele comput-
ers chips. Neuromorphische hardware, een voorbeeld van zo’n onconventionele chip,
wordt geinspireerd door de efficiéntie van het brein en maakt gebruik van onderlinge
verbindingen tussen individuele rekeneenheden (vergelijkbaar met de neuronen in het
brein) om KI te implementeren in hardware. Het ontwerpen van neuromorphische
computers is gericht op het ontwikkelen van zulke rekeneenheden die, door ze aan
elkaar te koppelen, taken waar het brein goed in is efficiént uit kunnen voeren. In dit
werk kijken we naar de potentie van wanordelijke doterings netwerken (DNPUs) voor
neuromorphische computers.

Zoals beschreven in hoofdstuk 2, introduceren we de drie belangrijkste vereisten voor
neuromorphische systemen. Ten eerste moet het systeem reageren op externe signalen
zodat het systeem deze informatie kan gebruikt om de gewenste berekeningen uit te
voeren. Ten tweede moet het mogelijk zin om het systeem te beinvloeden om het
gewenste gedrag te vertonen, het moet te trainen zijn. Ten derde moet het systeem in
staat zijn dit geleerde gedrag op te slaan in niet-vluchtig geheugen. In het hoofdstuk
introduceren we het concept van evolutie-in-materie (EIM). Met EIM is het mogelijk
een wanordelijk system te trained door gebruik te maken van een genetisch algoritme
(GA). Ten slotte beschrijven we hoe hopping in combinatie met Coulomb blokkade
ervoor zorgt dat DNPU’s gebruikt kunnen worden voor EIM.

De belangrijkste aspecten van de fabricage en elektronische karakterisatie van DNPU’s
worden beschreven in hoofdstuk 3. De beschrijving van de fabricage is opgesplitst in
de 4-inch waferschaal processen en de 1x1 c¢cm? chip processen. Op de waferschaal
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gebruiken we SiOs om het implantatie gebied te definiéren. In het gebied met minder
SiO; doteren we de DNPU, met borium of arseen, door ionen straal implantator
te gebruiken. Na de implantatie wordt de wafer in 1x1 cm? chips gezaagd. Op
deze chips worden de posities van de elektroden gedefinieerd door elektronen bundel
lithographie. De elektroden worden gefabriceerd door metaal te verdampen met een
elektronen straal waarna het metaal een laag vormt op de chips. Hierna gebruiken
we lift-off om de Ti/Pd (voor boor gedoteerd Si) of de Al (voor arseen gedoteerd Si)
elektroden te vormen. In de laatste stap etsen we het gedoteerde silicium met reactieve
ionen om de juiste doterings concentratie voor hopping bij 77 K te bereiken. Voor de
elektrische karakterisering plaatsen we de DNPU’s in vloeibare stikstof met behulp
van een dipstick. Deze dipstick bevat de elektronische kabels die de DNPU verbindt
met de digitaal-naar-analoog-omzetter (voor ingangsspanningen) en de analoog-naar-
digitaal-omzetter (voor uitgangsspanningen). De nA stroom van de DNPU wordt
omgezet naar een spanning met behulp van een IV-converter. De converter is dicht
bij de DNPU geplaatst om ruis te verminderen.

In hoofdstuk [4] laten we zien dat, tussen 70 K en 160 K, hopping (VRH) conduc-
tie plaats vindt door de DNPU’s. Het trainbare, niet-lineaire gedrag gelinkt aan
VRH wordt benut om herconfigureerbare Booleaanse logica en de kenmerk extractie
taken uit te voeren. Met behulp van het in-uit gedrag van de 16 2x2 pixel ken-
merken, simuleren we dat de MNIST handgeschreven cijferclassificatie taak kan wor-
den opgelost met een nauwkeurigheid van 96% door het gedrag van de DNPU kenmerk
extractie taak te combineren met een lineaire laag. Voor de taken die zijn uigevo-
erd in dit hoofdstuk, trainen we de DNPU’s met behulp van een genetisch algoritme
dat EIM uitvoert. De trainbaarheid van DNPU’s voor complexe niet-lineaire taken
maakt ze interessant voor neuromorfische toepassingen. Door een spanning op het
substraat aan te brengen kunnen we de band geleiding onderdrukken. In dit geval
vindt voornamelijk VRH conductie plaats. Hiermee laten wezien dat het mogelijk is
om de herconfigureerbare Booleaanse logica taak uit te voeren op kamertemperatuur.

Het nadeel van het gebruik van een genetisch algoritme (GA) om DNPU’s te trainen
is het grote aantal metingen dat nodig is om het gewenste gedrag te vinden. Bij het
trainen van veel verschillende taken wordt een GA tijdrovend. Een snellere manier
om DNPUs te trainen laten we in Hoofdstuk [ zien. Dit doen we door een model
van een KNN te trainen om zich op dezelfde manier te gedragen als de DNPU. Dit
KNN-model is getraind op het ingangs-uitgangs gedrag van de 7-dimensionale input
dimensie van DNPU’s. Met behulp van dit getrainde KNN-model, ook bekend als
een surrogaatmodel (SM), kunnen we standaard deep learning technieken gebruiken
om de DNPUs te trainen. Tegen de initi€le kosten van het meten van al het ingangs-
uitgangs gedrag, kunnen alle daaropvolgende trainingen sneller worden uitgevoerd.
In hoofdstuk [5] waarbij we het SM gebruiken om de DNPU’s te trainen, laten we
zien dat DNPU’s de ringclassificatie taak kunnen uitvoeren. Deze ringclassificatie
taak bestaat uit twee concentrische ringen (klassen) die met een bepaalde afstand van
elkaar zijn gescheiden.
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In Hoofdstuk [6] gebruiken we een SM en de Vapnik-Chervonenkis (VC) dimensie
taak om de rekencapaciteiten van DNPU’s te analyseren. VC-dimensie definieert de
complexiteit van een netwerk als het aantal binair uitvoerbare taken dat het netwerk
kan leren. We laten zien dat een fysiecke DNPU een vergelijkbare rekencapaciteit heeft
als een KNN met 2 twee nodes in de verbogen laag. De rekencapaciteit van het SM
zit tussen dat van een KNN met 2 en 3 in de verbogen laag. We laten zien dat het
aantal parameters dat een DNPU nodig heeft voor een beaaplde taak lager is dan
bij een volledig verbonden KNN. Na deze analyse gebruiken we de ringclassificatie
taak om de toegevoegde rekencapaciteit van een netwerk van onderling verbonden
DNPU’s te analyseren. Door SM’s te gebruiken om DNPU’s te trainen laten we
zien dat een enkele DNPU niet goed is in de ringclassificatie taak wanneer scheiding
tussen de twee datasets klein is. We vergelijken de uitslag van deze enkele DNPU
met een netwerk van 5 DNPU’s die zijn aangesloten in een 2-2-1-configuratie. Hier
zien we dat het netwerk van 5 DNPU’s in staat is om een hogere nauwkeurigheid te
bereiken voor de ringclassificatie taak. Ten slotte, met behulp van SM’s, laten we zien
dat het theoretisch mogelijk is om de MNIST handgeschreven cijferclassificatie taak
op te lossen met behulp van een lineaire invoerlaag en 10 DNPU’s. Op de testdata
wordt een nauwkeurigheid van 95 % behaald. Hiermee is de theoretische hoeveelheid
DNPU’s nodig voor deze taak flink verlaagd.

In Hoofdstuk [7] bouwen wij verder op de standaard gebruikte 1-uitgang DNPU-
configuratie. Door gebruik te maken van meerdere uitgangselektroden, proberen we
meer niet-lineaire gedrag uit de DNPU te halen. Deze benadering is geinspireerd door
extreme learning machines (ELM) en reservoir computing (RC), waarbij het netwerk
een complexe mapping creéert van de informatie in de ingangs elektrode naar zijn in-
terne toestanden. Op Deze interne toestanden wordt een lineaire operatie toegepast
die de staten naar het gewenste gedrag transfomeerd. De waarde van de lineaire el-
emented worden getrain om de juiste taak uit te voeren. In dit hoofdstuk laten we
zien dat het gebruik van de ELM technieken ons in staat stelt meer niet-lineair gedrag
uit een enkele DNPU met 12 elektroden te halen. We bouwen voort op dit concept
door te laten zien dat DNPU’s een zekere mate van externe invloed vereisen om een
staat te creéren die meer gevarieerd niet-lineair gedrag vertoont. Deze extra variatie
zorgt ervoor dat we nu in plaats van VC-dimensie 5 (5 datapunten), VC-dimensie 7
(7 datapunten) in onze rekenkracht taak kunnen bereiken. Deze toename geeft aan
dat we nu 96 extra binaire classificatietaken kunnen oplossen. Door de DNPU in de
trainbare ELM-modus te gebruiken, met behulp van de niet-lineariteit van 3 DNPU’s
in parallel, kan een klinkerherkennings taak worden opgelost met een nauwkeurigheid
van 89,9 %. Bovendien, door DNPU’s te vergelijken met KNN’s, wordt het aan-
tal benodigde parameters/geheugentoegangen verminderd van 72 naar 6. Hiernaast
schaalt de groei van de hoeveelheid benodigde parameters beter bij het gebruik van
DNPU’s.
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De resultaten in dit proefschrift laten zowel de potentie als de beperkingen van
DNPU’s voor neuromorfisch computergebruik zien. Het trainbare niet-lineaire gedrag
in combinatie met de globale elektrostatische invloed stelt DNPU’s in staat om com-
plexe taken uit te voeren die meerdere operaties vereisen in standaard KI-implementaties.
Door de niet-lineariteit van DNPU’s te combineren met het geheugen van lineaire im-
plementaties voor neuromorfische chips lijkt het mogelijk om netwerken te criéren die
verschillende materialen combineert. Op deze manier ie het theoretisch mogelijk dat
hersengeinspireerde berekeningen efficiént uitgevoerd kunnen worden. Met DNPU’s
als een voorbeeld, laten we zien dat het gebruik van het trainbaar niet-lineaire gedrag
van ongeordende netwerken voordelen kan hebben voor neuromorfische toepassingen.
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