
Data-Driven Inference of Fault Tree
Models Exploiting Symmetry

and Modularization

Lisandro Arturo Jimenez-Roa1(B) , Matthias Volk1 ,
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Abstract. We present SymLearn, a method to automatically infer fault
tree (FT) models from data. SymLearn takes as input failure data of
the system components and exploits evolutionary algorithms to learn a
compact FT matching the input data. SymLearn achieves scalability by
leveraging two common phenomena in FTs: (i) We automatically iden-
tify symmetries in the failure data set, learning symmetric FT parts only
once. (ii) We partition the input data into independent modules, subdi-
viding the inference problem into smaller parts.

We validate our approach via case studies, including several truss sys-
tems, which are symmetric structures commonly found in infrastructures,
such as bridges. Our experiments show that, in most cases, the exploita-
tion of modules and symmetries accelerates the FT inference from hours
to under three minutes.

1 Introduction

Fault Tree Analysis (FTA) [23,25] is one of the most prominent methods in
reliability engineering, used on a daily basis by thousands of engineers. Fault
Trees (FTs) are a graphical model describing how failures occurring in (atomic)
system components propagate through a system and eventually lead to an overall
system failure. The quantitative and qualitative analysis of FTs is essential for
risk management of complex engineering systems.

An important challenge in FTA is the creation of faithful FT models. There-
fore, inference of FTs, also known as construction [24], synthesis [8], or induc-
tion [16], has been investigated since the 1970s. Three categories of approaches
exist: (i) Knowledge-based methods were investigated first, and are semi-
automated approaches that derives an FT from a knowledge-based representa-
tion using heuristics [3]. These deploy techniques such as decision tables [24,29],

This research has been partially funded by NWO under the grant PrimaVera number
NWA.1160.18.238 and by the ERC Consolidator grant CAESAR number 864075.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 46–61, 2022.
https://doi.org/10.1007/978-3-031-14835-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_4&domain=pdf
http://orcid.org/0000-0003-3062-8408
http://orcid.org/0000-0002-3810-4185
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-14835-4_4


Data-Driven Inference of FT Models Exploiting Symmetry 47

mini FTs [21,26], and Piping and Instrumentation Diagrams [26,31]. (ii) Model-
based techniques derive an FT by translating a system model (e.g., using
AADL [11,17], Digraphs [5,12], Simulink [30], or SysML [18,30]) into a FT.

(iii) Due to the increasing availability of inspection and monitoring data,
data-driven inference methods have emerged. These automatically infer an FT
closely matching a given structured data set, exploiting techniques like Bayesian
networks [15] and genetic algorithms [10,14]. The resulting FTs closely match the
given data set but only contain events also present in the data—and therefore
may lack rare events. Nevertheless, data-driven inference can provide a good
basis for fault tree creation. A key drawback of data-driven inference methods
is that they still lack sufficient scalability for larger systems.

In this work, we tackle the scalability challenge of FT inference by exploit-
ing two concepts commonly used in FTs: symmetries and modules. Symme-
tries between components are commonly present in real-world systems, e.g.,
due to structural properties or redundancies in safety-critical systems. Modules
correspond to subsystems and allow to subdivide the inference problem into
smaller, possibly independent, problems. Our approach, called SymLearn, auto-
matically identifies symmetries and modules, and exploits them to reduce the
solution space.

We implemented the SymLearn method in Python and numerically evaluated
it in five case studies, including three truss system models, which are structural
systems typically found in civil infrastructures such as roofs, transmission tow-
ers, and bridges. We compare SymLearn to the previous FT-MOEA implemen-
tation [10], which was shown to be faster than its predecessor FT-EA [14]. Our
experiments show that: (1) SymLearn is orders of magnitude faster than FT-
MOEA if modules and symmetries can be exploited; (2) SymLearn is in some
cases slower than inference based on Boolean formulas, it yields, however, more
compact FTs than Boolean methods.

Contributions. Our main contributions are:

(i) We define modules and symmetries based on the minimal cut sets (MCSs).
(ii) We present algorithms to automatically identify modules and symmetries

from the MCSs.
(iii) We introduce SymLearn, an approach to automatically infer FTs from fail-

ure data sets by exploiting modules and symmetries.
(iv) We implemented SymLearn in Python and numerically evaluated it in sev-

eral case studies.

The implementation and all data are available at zenodo.org/record/5571811.

Related Work. An early technique for data-driven FT inference is the IFT algo-
rithm [16], which deploys Quinlan’s ID3 algorithm to induce Decision Trees.
Inspired by Causal Decision Trees, the LIFT algorithm [20] exploits the Mantel-
Haenszel test to discover dependencies between events. While most data-driven
approaches only require information about basic events, LIFT also needs infor-
mation about failures of intermediate events. Both the ILTA [27] and MILTA [28]

https://zenodo.org/record/5571811
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algorithms make use of Knowledge Discovery in Data sets, Interpretable Logic
Tree Analysis, and Bayesian probability rules. The method in [15] first learns a
Bayesian Network and then translates it into an FT model, using blacklists and
whitelists to define missing or present arcs. The DDFTA algorithm [13] infers
FTs from time series of failure data via binarization techniques and simplification
of Boolean equations. Approaches based on evolutionary algorithms include our
earlier work FT-EA [14] and FT-MOEA [10]. FT-MOEA uses a multi-objective
cost function, which outperforms the one-dimensional cost function in FT-EA.

Since FTs encode Boolean functions, FT inference is closely related to syn-
thesis of Boolean circuits with a minimal number of gates [9,19]. Manual sim-
plification of Boolean functions in the context of FT inference is considered
in [13]. Common automated methods for simplifying Boolean functions are the
Quine–McCluskey algorithm [4] that finds the optimal solution based on prime
implicants but only works for a few variables, and the Espresso algorithm [1] that
uses efficient heuristics, but does not guarantee finding the optimal solution.

Outline. Section 2 introduces FTs. Sect. 3 defines modules and symmetries.
Section 4 details the SymLearn approach. In Sect. 5, we evaluate SymLearn on
truss system models and discuss the results. We conclude in Sect. 6 and present
future work.

2 Fault Trees

Fault Trees. A fault tree (FT) is a directed acyclic graph that models how system
component failures occur, propagate, and can lead to a system failure [23,25].

Fig. 1. Example FT.

The leaves, called basic events (BE), model
(atomic) system components. The intermediate
nodes are equipped with a logical gate and model
how failures propagate through the system. Inter-
mediate nodes with an AND-gate fail if all suc-
cessor nodes fail, nodes with an OR-gate fail if at
least one successor node fails. An FT F fails if the
root node has failed. Figure 1 depicts an FT mod-
eling a computer. Computer is equipped with an
OR-gate, Memory and Processor with AND-gates,
circles indicate BE.

Definition 1 (Fault tree). A fault tree (FT) is a rooted directed acyclic graph
(V,E) with a function Tp : V → {BE,AND,OR} satisfying Tp(v) = BE iff v is
a leaf. The successors of a node v are called the inputs of v and their set is
denoted by I(v). All nodes in V must be reachable from the dedicated root Top.

We use BEs := {v ∈ V | Tp(v) = BE} to denote all nodes of type BE. A vector
�b = 〈b1, . . . , b|BEs|〉 ∈ {0, 1}|BEs| is called a status vector. Here bi = 1 indicates
that the i-th BE has failed, and bi = 0 that it is functioning properly, respectively.
The semantics of an FT F is given by its structure function f .
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Definition 2 (Semantics of FT). Given a status vector �b, the structure func-
tion f : {0, 1}|BEs| × V → {0, 1} returns the status of node v. It is given by

f(�b, v) :=

⎧
⎪⎨

⎪⎩

bi if Tp(v) = BE and v is the i-th BE,
∧

v′∈I(v) f(�b, v′) if Tp(v) = AND,
∨

v′∈I(v) f(�b, v′) if Tp(v) = OR.

We use the shorthand f(�b) := f(�b,Top). We say FT F fails for �b if f(�b) = 1. A
status vector �b can also be given as the set C = {bi ∈ �b | bi = 1} of failed BE

and we often write f(C) instead of f(�b).

Minimal Cut Sets. Minimal cut sets (MCSs) are a common representation of
the structure function f . A MCS is a minimal set of BE s.t. the FT fails.

Definition 3 ((Minimal) cut sets). A cut set for FT F is a set C ⊆ BEs
with f(C) = 1. A minimal cut set (MCS) for F is a cut set C which is minimal,
i.e., for all proper subsets C ′ � C, f(C ′) = 0 holds. We denote the set of all
minimal cuts sets for FT F by CF .

The FT in Fig. 1 has 3 MCSs: CF = {{Mem1,Mem2} , {Power} , {CPU1,CPU2}}.

3 Modules and Symmetries

Given a failure data set D, we want to find a compact FT FD which matches D.

Table 1. Example data.

M1 M2 P C1 C2 Sys.

0 0 0 0 1 0

0 0 0 1 1 1

0 0 1 0 0 1
...

...
...

...
...

...

Failure Data Set. The failure data D is given
as a labelled binary data set indicating the failure
status of each component, together with the corre-
sponding status of the overall system. Table 1 gives
an example corresponding to the FT in Fig. 1 where
M1 corresponds to Mem1, etc. We assume the data
is coherent, i.e., once the system fails, it cannot
become operational again through further compo-
nent failures, and it is noise-free, i.e., observations
with unchanged component states always yield the same system state.

We can also identify MCSs in the failure data D. A (minimal) cut set C of D

is a (minimal) set of BEs s.t. the corresponding status vector �b yields a system
failure in D. The set of all MCSs in D is denoted by CD.

Problem Statement. We want to find an FT FD s.t. the structure function f
of FD captures failure data D as accurately as possible. To assess the quality of
the resulting FT w.r.t. input data D, we use three metrics [10]:

– Size of the FT (|FD|) is the number of nodes |FD| := |V | in the FT.



50 L. A. Jimenez-Roa et al.

– Error based on data set D (φd) is the fraction of times where FD fails and
the system (according to data set D) does not, and vice versa. Let E :={
�b ∈ {0, 1}|BEs| | f(�b) �= D(�b)

}
denote the status vectors which yield different

results for FD and D. Then the error based on D is given by φd := |E|
|D| .

– Error based on the MCSs (φc) compares the set CFD
of MCSs of the FT FD

and the set of MCSs CD derived from the data D. The metric φc computes
the similarities between both sets of MCSs based on the RV-coefficient [22],
see [10] for the details.

Formal Problem. Given a failure data set D, create a (compact) FT FD

s.t. its BEs correspond to the atomic components in D and f(�b) captures
the system failures in D as accurately as possible. In other words, φc and
φd should be (close to) zero, and |FD| should be as small as possible.

In our approach, we first create CD from D and infer the FT FCD
.

Fig. 2. FT with independent modules and further partitioning. (Color figure online)

3.1 Modules

Instead of directly inferring an FT FCD
from the MCSs CD, we aim to first

partition CD into multiple parts, infer individual FTs for each of them, and then
combine the FTs into the overall FT FCD

.

Definition 4 (MCS partitioning). Let M1, . . . ,Mn ⊆ C be a partitioning of
the set C of MCSs, i.e., Mi ∩ Mj = ∅ for all i �= j and M1 ∪ · · · ∪ Mn = C. For
a partition Mi, we let BEsMi :=

⋃
C∈Mi

C denote the set of BE occurring in Mi.
BE occurring in multiple partitions are called the shared BE.

In the case of a large number of shared BE, the inferred FTs—which each
might be optimal individually—can yield an overall FT which is sub-optimal.
For example, gates with (some of the) shared BE as input might occur in multiple
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FTs. Thus, the goal is to find a partitioning such that the number of shared BE is
as small as possible. If no BE are shared, the resulting partitioning of BEs forms
independent modules. In FTs, (independent) modules are independent subtrees,
where only the root node is connected to other parts of the FT [7]. Modules can
therefore be thought of as coherent entities in the context of the overall system,
e.g., components. Modularization is used to simplify the FT analysis.

Definition 5 (Modules). A partitioning M1, . . . Mn of the set C of MCSs
is called a module partitioning if the corresponding BEsM1 , . . . ,BEsMn form a
partitioning of BEs. A subset M of BEs is called an independent module if it is
part of a module partitioning, i.e., all BE of M are included in MCSs of a single
Mi.

An independent module M does not share BE. Thus, the BE in M are not
connected to other parts of the FT and they belong to an independent subtree.

Example 1 (Modules). The partitioning for the FT in Fig. 2 is given by colored
boxes. The BEs {A,B,C,D,E} and {F,G,H, I,K} form independent modules.
The corresponding MCSs can be further subdivided. For instance, Partition 1.1
with {{A,C} {B,C}} and Partition 1.2 with {{B,D} , {D,E}} share BE B.

Fig. 3. SymLearn tool chain overview. Blue boxes indicate novel steps. (Color figure
online)

3.2 Symmetries

Symmetries in an FT describe components, e.g., BE or complete subtrees, that
can be swapped without changing the failure behavior of the FT. In our setting,
symmetries reduce the computational effort for inferring FTs as only one of the
sub-trees must be constructed; other subtree(s) can be copied from the (original)
subtree because of the symmetry. We define symmetries on the MCSs. Applying
a symmetry on the MCSs yields the same MCSs, i.e., swapping symmetric BE
does not change the structure function of the FT.

Definition 6 (Symmetry on MCSs). A symmetry on the set C of all MCSs
is a permutation σ : BEs → BEs which preserves C, i.e., σ(C) = C where σ(C) :=
{σ(C) | C ∈ C} and σ(C) := {σ(b) | b ∈ C}.
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We denote all possible symmetries on C by SC . A symmetry between sets A,B ⊆
BEs is a symmetry σ ∈ SC with σ(A) ⊆ B and σ(B) ⊆ A. Note that we define
symmetries only on BEs and not on gates. The definition is thus more general
and allows symmetries even in cases where sub-trees are not isomorphic.

Lemma 1 (Necessary condition for symmetry). If σ ∈ SC is a symmetry
on the MCSs C, then count(b) = count(σ(b)) for all b ∈ BEs, where count(b) :=
|{C ∈ C | b ∈ C}| denotes the number of occurrences of b in C.

Example 2 (Symmetry). Consider again the FT F in Fig. 2. The permutation
σ1 = (AF )(BG)(CH)(DI)(EJ) is a symmetry in F (between the independent
modules). For example, σ1({A,C}) = {F,H} ∈ CF . Symmetries within the
modules are given by σ2 = (AE)(CD) ∈ SCF and σ3 = (FJ)(HI) ∈ SCF .

4 Exploiting Modules and Symmetries in FT Inference

Our SymLearn approach is outlined in Fig. 3 and consists of 6 steps:

Step 1 computes the set of all MCSs CD associated with input data set D.
Step 2 finds a partitioning M1, . . . ,Mn of CD s.t. the corresponding BEs form

independent modules M1, . . . ,Mn. In the worst case, no proper partitioning
is possible and the independent module consists of all BEs.

Step 3 identifies the symmetries SCD
on CD. If symmetries exist between inde-

pendent modules, then only one of these modules needs to be considered in
the following. Otherwise, SymLearn directly goes to Step 5.

Step 4 tries to further split the MCSs Mi of each module Mi via a symmetry σ ∈
SCD

. The split into M1
i and M2

i should satisfy σ(M1
i ) = M2

i and preferably
have a small number of shared BE. If a split is found, SymLearn recursively
starts again with Step 2 for M1

i ; otherwise it proceeds with Step 5.
Step 5 infers an FT FM for each partition M of the MCSs. Several approaches

can be used, e.g., FT-MOEA [10] or simplification of Boolean formulas [13].
Step 6 creates for each set of symmetric MCSs M2

i a corresponding symmetric
FT FM2

i
by copying the “original” FT FM1

i
and renaming the BEs according

to the symmetry σ. Last, all inferred FTs are joined under an OR-gate.

We provide details on all steps of SymLearn in the following.

Step 1: Compute Minimal Cut Sets. SymLearn starts by extracting all the
MCSs CD from the data D. We use the algorithm from [13], but employ an
improved computation of the MCSs from the cut sets. Here, we iteratively select
a cut set C with minimal cardinality and remove all cut sets that include C. The
runtime complexity of the algorithm is quadratic in D, i.e., O(D2) = O(22·|BEs|).
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Algorithm 1. Identifying independent modules M1, . . . ,Mn from the MCSs CD.
Input: MCSs CD.
Output: Partitioning M1, . . . , Mn of CD, corresp. independent modules M1, . . . ,Mn.

Partitioning ← {{C} | C ∈ CD}
while ∃M, M ′ ∈ Partitioning with M and M ′ sharing BE do

Partitioning ← (Partitioning \ {M, M ′}) ∪ {M ∪ M ′}
return Partitioning = {M1, . . . , Mn}, modules

{
M1 = BEsM1 , . . . ,Mn = BEsMn

}

Step 2: Identify Independent Modules. Our aim is to partition the MCSs
CD s.t. an FT for each partition can be learned individually. This allows for a
more efficient inference which could even be performed in parallel.

We start by trying to find independent modules from CD as described in
Algorithm 1. The initial partitioning uses each cut set of CD as its own partition.
If two partitions share BE, they must be merged to satisfy the constraint for
independent modules in Definition 5. We iteratively merge partitions until their
BEs are disjoint. The BEs then form the independent modules. The following
Steps 3–5 are performed for each independent module and corresponding MCSs
individually. The FTs created for the modules are combined by an OR-gate in
the end.

Example 3 (Identify independent modules). We use the MCSs CD =
{{A,C} , {B,C} , {B,D} , {D,E} , {F,H} , {G,H} , {G, I} , {I,K}} correspond-
ing to Fig. 2. Applying the algorithm, cut sets {A,C} and {B,C}, for instance,
are merged as they share BE C. In the end, the independent modules and par-
titioning are:

M1 = {A,B,C,D,E} M1 : {{A,C} {B,C} , {B,D} , {D,E}}
M2 = {F,G,H, I,K} M2 : {{F,H} {G,H} , {G, I} , {I,K}}

Extraction of BE . As an additional optimization, we automatically derive BE
which occur in all minimal cut sets of a partition. In order for the partition to
cause a system failure, all these BE must fail. Hence, they are excluded from all
MCSs and the approach continues on the reduced MCS. In the end, the excluded
BE are joined under an AND-gate with the FT resulting from the reduced MCSs.

Step 3: Identify Symmetries. Next, we identify the symmetries SCD
from CD

in a fully automated manner. The simplest way is a brute-force approach trying
out all possible permutations and checking whether they are valid symmetries
according to Definition 6. While this approach is factorial in |BEs|, we obtain
good performance in practice by exploiting two optimizations.

Symmetries Between Independent Modules. The most efficient approach is to
exploit the independent modules from the previous step. Symmetries between
two independent modules M,M′ can be quickly found by restricting the permu-
tations to only the ones matching each BE in M to one in M′.
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Algorithm 2. Splitting of MCS Mi into two symmetric parts M1
i and M2

i .
Input: MCS Mi, symmetry σ ∈ SCD

Output: Symmetric MCSs M1
i , M2

i with corresponding contained BE BEsM
1
i ,BEsM

2
i

M1
i ← ∅, M2

i ← ∅, BEs1 ← ∅, BEs2 ← ∅
Q ← CD

while C ∈ Q do
if C = σ(C) then return Mi, ∅,BEsMi , ∅
Q ← Q \ {C, σ(C)}
if |C ∩ BEs1| ≥ |C ∩ BEs2| then

M1
i ← M1

i ∪{C}, M2
i ← M2

i ∪{σ(C)}, BEs1 ← BEs1∪C, BEs2 ← BEs2∪σ(C)
else

M1
i ← M1

i ∪{σ(C)}, M2
i ← M2

i ∪{C}, BEs1 ← BEs1∪σ(C), BEs2 ← BEs2∪C
return M1

i , M2
i ,BEs1,BEs2

Fast Exclusion of Non-symmetric BEs. If only one independent module was
found in Step 2, then the symmetries must be computed by an exhaustive search.
However, we can exclude infeasible permutation candidates early on by using
Lemma 1. Two BE with different numbers of occurrences in CD cannot be sym-
metric and thus, all permutations containing such mappings are excluded.

Example 4 (Identify symmetries). Continuing Example 3, we find the symmetry
σ1 = (AF )(BG)(CH)(DI)(EK) between independent modules M1 and M2. As
a result, the symmetric set M2 of MCSs will not be considered in the remainder.
We continue by searching for symmetries within M1 according to M1. Candidate
permutations such as (AC) are quickly excluded, because count(A) = 1 �= 2 =
count(C). In the end, symmetry σ2 = (AE)(CD) is found.

Step 4: Split MCSs Using Symmetries. A symmetry σ found in the previous
step can be used to split the MCSs Mi. We restrict ourselves to splits into two
parts here, but more parts work in the same manner. A successful split creates
two symmetric subsets M1

i and M2
i of Mi with σ(M1

i ) = M2
i .

Algorithm 2 describes the split of the MCSs Mi according to a symmetry
σ ∈ SCD

. Initially, the queue Q contains all MCSs from CD. For each MCS C
we compute the symmetric MCS σ(C). If C is symmetric to itself (C = σ(C)),
a split would add the same MCS to both parts. As this would only increase the
size of the resulting FTs, we do not proceed further. If both MCSs are distinct,
we add C to the set of MCSs with which it shares the most BE. For example, we
add C to M1

i if |C ∩ BEs1| ≥ |C ∩ BEs2|. By this choice, we ensure that adding
C to M1

i does not add too many new BE to BEs1 and we keep the number of
shared BE between BEs1 and BEs2 small.
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Note that the split can still yield two parts which share a significant amount
of BE. Composing the two resulting FTs can therefore yield an FT which is
larger than the single FT inferred without the split. However, the composed FT
will capture the symmetric structure present in the given MCSs.

Example 5 (Split the MCSs). We continue with symmetry σ2 = (AE)(CD) and
MCSs M1 = {{A,C} , {B,C} , {B,D} , {D,E}} from Example 4. We start the
algorithm with MCS {A,C}. The symmetric MCS is σ({A,C}) = {D,E}. The
first split yields M1

1 = {{A,C}} and M2
1 = {{D,E}}. The next MCS {B,C} is

added to M1
1 because they both share BE C. The final split is:

M1
1 = {{A,C} , {B,C}} BEs1 = {A,B,C} ,

M2
1 = {{D,E} , {B,D}} BEs2 = {B,D,E} .

The split corresponds to the purple and dark blue sub-trees in Fig. 2.

Step 5: Infer FT. If no further partitioning of the MCSs Mi w.r.t. Steps 2–4
is possible, we use existing techniques to infer an FT from the (reduced) MCSs.
SymLearn is modular and supports the use of any learning approach in this
step, for example, based on genetic algorithms [14] or Boolean logic [13]. In our
setting, we use the multi-objective evolutionary algorithm FT-MOEA [10].

FT-MOEA starts in the first generation by default with two parent FTs:
one FT consists of an AND-gate connected to all BEs, and the other one uses
an OR-gate. In each generation, several genetic operators are applied which ran-
domly modify the FT structure. Each FT is evaluated according to three metrics
given in Sect. 3: size of the FT |F|, error based on the failure data set (φd),
and error based on the set of MCSs (φc). The aim is to minimize the multi-
objective function (|F|, φd, φc) by applying the Elitist Non-dominated Sorting
Genetic Algorithm (NSGA-II) [6] and obtain the Pareto sets. Only the best can-
didates according to the metrics are then passed to the next generation. The
algorithm stops if no improvement was made in a given number of generations
and returns the FTs ordered according to the multi-objective function.

Example 6 (FT-MOEA). Given the MCS {{A,C} , {B,C}}, we use FT-MOEA
to infer a FT. The resulting FT is the sub-tree indicated by purple color in Fig. 2.

Step 6: Copy Symmetric FTs. After obtaining an FT FM for MCSs M , we
obtain the symmetric FT FM ′ for the symmetric MCSs M ′ = σ(M) by copying
FM and replacing each BE b with its symmetric BE σ(b). The original and the
symmetric FT are then joined under an OR-gate.
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Fig. 4. Visualization of case studies TS2, TS3 and SC.

Example 7 (Copy symmetric FT). We continue with Example 6. Copying the
purple sub-tree in Fig. 2 and applying symmetry σ2 = (AE)(CD) yields the
symmetric (dark blue) FT. Joining both FTs with an OR-gate yields Module 1.

5 Experimental Evaluation

Table 2. Overview of case studies.

Case #BEs |D| |CD|
SC 6 64 4

SS 10 1024 8

TS1 10 1024 16

TS2 24 16 777 216 26

TS3 20 1 048 576 18

We implemented the SymLearn method-
ology in a Python toolchain, available at
zenodo.org/record/5571811, and evaluate
our approach on five case studies, see
Table 2: Cases SC and SS are two small
systems, depicted in Fig. 4c (case SC) and
running example of Fig. 2 (case SS). We also
consider three truss system models.

Truss System Cases. Truss systems are commonly used in civil infrastruc-
tures such as roofs, transmission towers, and bridges, see Fig. 5a. Truss systems
are composed of elements connected by nodes, generating rigid bodies with the
elements acting under tensile stresses.

Truss systems feature a high degree of symmetry and a modular structure.
Moreover, as elaborated below, they allow us to obtain the failure data sets via
structural analysis (similar to [2]). Therefore, we consider truss systems to be a
very suitable model to evaluate SymLearn in a realistic setting.

We use three truss system variants: Cases TS1 (Fig. 5a) and TS2 (Fig. 4a)
are typical configurations in bridges, while Case TS3 (Fig. 4b) is found in roofs.
Note that Case TS1 contains no independent modules, whereas TS2 and TS3
contain four and two modules, respectively.

Generation of Failure Data Set. Based on case TS1 (Fig. 5) we explain how
we use numerical truss system models to generate complete failure data sets. TS1
consists of 10 elements (interpreted as BEs), and two symmetric loads applied on
the control nodes. We model damage by reducing close to zero the cross-sectional
area of at least one element in the truss system model, and by determining the
displacements and stresses in the components due to the applied loads at the

https://zenodo.org/record/5571811
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Fig. 5. Example case TS1 modeling a symmetric truss bridge system. (a) Model.
(b) Depiction of failure/no-failure states. (c) FT inferred by FT-MOEA. (d) FT inferred
by SymLearn. Top corresponds to the truss system instability. (Color figure online)

nodes of the numerical model. We generate a synthetic failure data set D by
randomly drawing 106 data points for the status of elements in the truss model
via Monte Carlo simulation, and evaluating structural instability (S.I.) based on
the displacement of control nodes.

Experimental Setup. We compare the SymLearn tool with 3 different back-
ends in Step 5, to infer the FT from data.

– FT-MOEA is used in 4 different settings: (1) All is the default setting using
both modules and symmetries; (2) No Sym is All but without symmetries;
(3) No rec. is All but without recursive calls for further sub-division; (4) FT-
MOEA is the original implementation [10] without modules and symmetries.

– Espresso translates a set of MCSs CD into a Boolean formula
∨

C∈CD

∧
b∈C b

and simplifies it via the ESPRESSO algorithm [1] available in pyeda1. The
resulting formula is then translated into an FT.

– Sympy is similar to Espresso but uses the sympy library2 for simplification.

We ran all case studies three times on a CPU with 2.3 GHz and 8 GB of RAM.

1 https://pyeda.readthedocs.io/en/latest/2llm.html.
2 https://docs.sympy.org/latest/modules/logic.html.

https://pyeda.readthedocs.io/en/latest/2llm.html
https://docs.sympy.org/latest/modules/logic.html
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Results. We compare the FTs for case TS1 inferred via FT-MOEA (Fig. 5c) and
via SymLearn in configuration All (Fig. 5d). Colors depict the connections of the
BEs to the components in Fig. 5a. SymLearn identified the symmetry (between
yellow and blue BE) and was able to infer the left subtree using FT-MOEA while
the right subtree was obtained by simple mirroring.

Fig. 6. Results for the case studies and different metrics: (a) error φc based on the
MCSs, (b) error φd based on data set, (c) FT size |F|, and (d) runtime.

The box charts in Fig. 6 compare the different configurations in all five cases
w.r.t. the three metrics in Sect. 3: the size |F| of the FT, the error φd based on
the failure data set, and the error φc based on the MCSs. From Fig. 6a and 6b, we
see that the SymLearn configurations based on Boolean functions as a back-end
(i.e., Espresso and Sympy) always yield an FT that exactly matches the input,
i.e., φc = φd = 0. This is expected since the Boolean logic formula perfectly
encodes all the MCSs. In contrast, the other configurations using FT-MOEA
did not always yield a completely accurate FT (i.e., φc, φd > 0.0), for example,
case TS1. The error stems from the multi-objective optimization which also aims
to provide a small FT and the evolutionary algorithm which can fall into local
optima. However, for the cases TS2 and TS3 (with independent modules), all
configurations of SymLearn (All, No Sym, No rec.) outperformed FT-MOEA by
returning an FT that accurately reflects the input (φc = φd = 0.0). This shows
the clear benefit of subdividing the problem using independent modules.
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Figure 6c shows the advantage of using FT-MOEA as a back-end compared to
Boolean logic, since the sizes of the returned FTs can be considerably smaller.
The FTs inferred using Espresso or Sympy can be twice as large as the ones
resulting from FT-MOEA. The reason is that for the Boolean logic formulas,
no simplifications were performed by the libraries and the resulting FTs are
therefore exactly encoding all the MCSs. Notice that the original FT-MOEA
yields smaller or equal FT sizes than any of the configurations of SymLearn. This
smaller size can however also come at the cost of losing accuracy, as demonstrated
by case TS2. The larger FTs in SymLearn mostly stem from the composition
of partitions where shared BE occur in both sub-trees, see for example Fig. 5c
and 5d. While explicitly capturing the symmetries can therefore increase the size
of the resulting FT, it also provides more insights into the system.

Figure 6d shows that SymLearn (All) runs significantly faster than FT-
MOEA alone. If independent modules are present (cases TS2, TS3, SC and SS),
SymLearn yields an FT within at most 2 min while FT-MOEA requires at least
1 h. The benefit of exploiting symmetries and modules can also be seen when
comparing configuration All to No Sym and No. rec. which both run longer.
Note that for SymLearn nearly all computation time is spent in the FT-MOEA
backend (Step 5). Computing the modules and symmetries (Steps 2–4) took
50 ms at most whereas the computation of the MCSs (Step 1) took 43 s at most
(for case TS2). Configurations based on Boolean functions always yield a result
within minutes, but yield significantly larger FTs.

6 Conclusions

We presented SymLearn, a data-driven algorithm that infers a Fault Tree model
from given failure data in a fully automatic way by identifying and exploiting
modules and symmetries. Our evaluation based on truss system models shows
that SymLearn is significantly faster than only using evolutionary algorithms
when modules and symmetries can be exploited.

In the future, we aim to further improve the scalability by optimizing the
inference process. First, the current partitioning of the MCSs requires the top
gate to be an OR-gate. We aim to support the AND-gate as well. In addition, the
inference back-end can be improved by either optimizing FT-MOEA or devel-
oping new inference approaches.

We also plan to relax restrictions on the input data. In the current approach,
the resulting FTs are only as good as the given input data, which may be incom-
plete, e.g., due to rare events not present in the data. Moreover, the input may
not completely represent the reality due to noise in the data. Hence, we aim to
extend our approach to account for missing information and noise.

Acknowledgment. We thank Milan Lopuhaä-Zwakenberg for useful comments on an
earlier version of this paper.
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