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A B S T R A C T   

Proximal femur fractures represent a major health concern, and substantially contribute to the morbidity of 
elderly. Correct classification and diagnosis of hip fractures has a significant impact on mortality, costs and 
hospital stay. In this paper, we present a method and empirical validation for automatic subclassification of 
proximal femur fractures and Dutch radiological report generation that does not rely on manually curated data. 
The fracture classification model was trained on 11,000 X-ray images obtained from 5000 electronic health 
records in a general hospital. To generate the Dutch reports, we first trained an embedding model on 20,000 
radiological reports of pelvic region fractures, and used its embeddings in the report generation model. We 
trained the report generation model on the 5000 radiological reports associated with the fracture cases. Our 
report generation model is on par with state-of-the-art in terms of BLEU and ROUGE scores. This is promising, 
because in contrast to those earlier works, our approach does not require manual preprocessing of either images 
or the reports. This boosts the applicability of automatic clinical report generation in practice. A quantitative and 
qualitative user study among medical students found no significant difference in provenance of real and 
generated reports. A qualitative, in-depth clinical relevance study with medical domain experts showed that from 
a human perspective the quality of the generated reports approximates the quality of the original reports and 
highlights challenges in creating sufficiently detailed and versatile training data for automatic radiology report 
generation.   

1. Introduction 

Proximal femur fractures represent a major public health concern 
around the globe. These fractures are predominantly seen in the elderly 
population, where they are one of the most common contributors to both 
hospitalisation and mortality [1]. The one-year mortality is conserva-
tively estimated at 20% [2], where the life-time risk of sustaining a hip 
fracture varies between 4.6–11% and 13.9–22.7% in men and women 
respectively [3]. Furthermore, fewer than 50% of patients return to an 
independent lifestyle [4]. 

To diagnose a hip fracture in the Netherlands, radiological exami-
nations (X-Rays) as described in the Dutch national guideline Proximal 

Femur fracture are employed [5]. In accordance with the guideline, 
fractures can be sub-classified according to the AO [6] and Garden 
standard [7]. A report is written by a radiologist on their findings with 
regards to the X-Rays. The classification of and the reporting on such 
examinations can be both time consuming and prone to inter-rater 
variability [8]. This, coupled with an expected increasing number of 
patients with proximal femur fractures [9], has raised the question of 
whether it would be valuable to automate these processes [10]. 

While previous work addressed automation of proximal femur frac-
ture classification [10–12] and automated report generation [13–15] 
based on X-Rays, the clinical adaption of such systems is still hindered by 
several problems. One problem for fracture classification is the artificial 
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setting in which experiments are conducted. Both Gale et al. [10] and 
Jimenez-Sanchez et al. [11] rely on extensive pre-filtering of their 
datasets, which is time consuming and not feasible in practice. 

We address this gap by presenting a model for fracture type sub-
classification which requires no manual pre-processing. 

Furthermore, generated medical reports as seen in related work are 
either reduced to simplistic templates as in work by Gale et al. [13] or 
are not validated by medical domain experts for their relevance and 
correctness in the clinical context, as in work by Gale et al. [10] and Jing 
et al. [15]. We address this issue by proposing a free-text based report 
generation model for X-Rays of proximal femur fractures. We evaluate 
the generated reports with both standard automated text evaluation 
metrics (BLEU and ROUGE scores [16,17]), and in qualitative and 
quantitative user studies to validate medical relevance. Specifically, our 
contributions are:  

• We present an approach for automatic radiology report generation 
that requires minimal data pre-processing for both X-Ray images and 
radiology report texts yielding state-of-the-art performance for 
fracture classification and radiology report generation.  

• We incorporate multi-view image information for classification. 
While the anteroposterior view is most commonly used in research, 
lateral views are of key clinical significance. Any view can be 
included in our architecture.  

• We propose an automatic, semantic evaluation of the generated free 
text reports based on the medical conclusion in a report.  

• In addition to the automatic evaluation, we perform qualitative and 
quantitative user studies with domain experts. While we found no 
significant difference in language quality between real and generated 
reports, our qualitative evaluation revealed concrete areas of 
improvement w.r.t. medical content in the generated reports. 

Our overall approach to report generation relies on a language model 
trained on radiology reports, a fracture classification model trained on 
X-Ray images and a report generation model combining the output of 
both to generate textual radiology reports. Section 4 describes the ar-
chitectures and interplay between those models. In addition to the 
technical evaluation (cf. Section 6), we present two user studies in 
Section 7, evaluating overall language quality (cf. Section 7.1) and 
medical content quality (cf. Section 7.2). We present a joint view on the 
implication of our results in Section 8 and conclude our work in Section 
9. 

2. Proximal femur fractures 

Proximal femur fractures are predominantly seen in the elderly 
population [2], and are well-known to contribute to the morbidity and 
the mortality of this patient group [1]. This is further stressed by the 
observation that admitted patients suffered a cumulative mortality of 
20% at four months after trauma [18,19]. The incidence of hip fractures 
is higher for women, who generally suffer more from osteoporotic bone 
degeneration and other factors linked to their higher average life ex-
pectancy [1,5]. Worldwide, the incidence of these types of fractures is 
estimated to increase from a yearly incidence in 1990 of 1.66 million to 
6.26 million by 2050 [9]. In the Netherlands 13,000 elderly patients 
with hip fractures were recorded in 2012, which is expected to rise to 
21,000 elderly patients by 2040 [20]. In 2010, hip fractures represented 
53% of all healthcare expenses on osteoporotic-related fractures, where 
the mean total costs at 2-years follow up are over 19 thousand euros 
[21,22]. 

The Dutch national guideline “Proximale Femurfractuur” [5] de-
scribes the approaches to treat a patient with a suspected hip fracture. 
Initially, all patients are subjected to radiographic examination, with 
both anteroposterior (AP) and axial imaging directions, to classify the 
fracture according to the AO [6] and Garden standard [7]. As 3–4% of all 
patients harbour an occult fracture, these examinations may be 

inconclusive and thus needing further imaging in the form of CT or MR 
scan to be performed [5,23]. In addition to the identification of the 
fracture, the correct sub-classification of the fracture according to the 
AO standard has a significant impact on diagnosis, treatment and 
prognosis [8]. The classification is a process that is error-prone, as 
among residents and experts only up to 71% agreement was reached on 
the type of fracture [8]. This disagreement in combination with poten-
tial delays, incurred from having to resort to other imaging techniques, 
could lead to increased mortality [24,25], prolonged hospital stay [26] 
and compounding costs [27]. 

Based on the examinations the proximal femur fracture can be 
classified and grouped into two types of femoral neck fractures and three 
types of pertrochanteric fractures [5,6]: i) femoral neck fractures 
without displacement, ii) femoral neck fractures with displacement of 
the neck, iii) stable pertrochanteric fractures (AO type A1), iv) unstable 
pertrochanteric fractures (AO type A2), and v) unstable reversed type 
pertrochanteric fractures (AO type A3). Note that the subtrochanteric 
femur fracture is not considered here. The sub-classification of a fracture 
plays an important role in both choosing the correct operative treatment 
as well as having implications for the potential recovery of a patient [8]. 
The treatment options of these fractures generally fall into two cate-
gories; the so-called internal fixation (IF) option and the prosthetic op-
tion. In both cases surgical intervention is required, as a nonoperative 
treatment plan is rarely ever advised [5]. 

3. Related work 

In this section we review work on classification of proximal fractures 
and automatic generation of radiology reports in natural language. 
Additionally, we provide an overview on user studies assessing the 
quality of generated reports. 

3.1. Automatic proximal femur fracture classification 

Transferring from standard computer vision tasks, CNN-based 
models have been applied to the task of classifying proximal femur 
fractures. Most notably, Gale et al. [10] reported an accuracy of 97% on 
the fracture versus no fracture task, comparable to expert performance, 
where over 53,000 images were used in total. In their work a three-part 
pipeline for identifying a Region of Interest (ROI), excluding non-AP 
images and classifying a fracture was employed. In comparable works 
an even greater emphasis was placed on this ROI identification and 
extraction, as the authors argued that a network should be optimised for 
a localisation loss as well as a classification loss [11,28]. These networks 
are trained using spatial transformers, where an affine transformation of 
an input image is used to automatically extract a specific part of the 
image [29]. 

In the works of Kazi et al. [28] and Jiménez-Sánchez et al. [11] a 
fracture was further subclassified into one of six types according to the 
AO classification standard for types A1–A3 and B1–B3. In both works the 
manual extraction of a ROI showed the most promising results, where an 
average six-class classification accuracy of 66% and 46% were reported 
respectively. In more recent work by Krogue et al. [30] an entirely 
different set of class labels were used and an accuracy of 90.4% was 
obtained. An effort to improve performance by Jiménez-Sánchez et al. 
[12] manifested in the grouping of all pertrochanteric (AO type A) and 
column (AO type B) fractures, which resulted in a better classification 
accuracy of 91%. 

Limited test set sizes, differing class labels and different datasets 
make it impossible to directly compare these results. Additionally, 
manual preprocessing of the dataset is an integral component of the 
discussed related work. Here either manual selection of data or manual 
extraction of ROI's is necessary to attain published results. In this work 
hard selection or preprocessing of the data is not performed in an effort 
to reduce manual and subjective labelling of the dataset. The advantages 
and novelties of this approach are two-fold. First, by using data as-is a 
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realistic performance measure can be obtained with regards to images as 
they'd come available in clinical practice. Furthermore, the use of lateral 
views in addition to the standard AP views enables us to leverage in-
formation from both image sources in a committee voting approach to 
improve upon state-of-the-art proximal femur fracture classification. 

3.2. Automated report generation 

In addition to deriving whether an image contains a fracture or not, a 
report has to be written on these findings. These reports contain further 
information on the classified image, but can be cumbersome to write as 
many of these reports will be very repetitive and the writing of such 
reports is not the top priority of a radiologists' workflow [31]. Yet these 
reports are very important, as they serve as a communication tool of a 
summary of key information between doctors. In 2016, Xu et al. [32] 
created a model which automatically generates a caption based on an 
input image. The authors proposed an encoder-decoder architecture 
with a CNN as encoder, and an RNN decoder to generate text. 

These ideas were extended to proximal femur fractures in work by 
Gale et al. [13]. They found that a physician was much more likely to 
accept a classification generated by a model if it was accompanied by a 
textual explanation in the form of a radiological report. Additionally, the 
ability to generate medically relevant textual descriptions of X-rays has 
the potential to standardise reporting on diagnostic imaging with only 
relevant information, to alleviate time-related burdens radiologists face, 
to reduce miss-classifications and consequently increase report quality 
and reduce costs. In their efforts to construct such a system, however, 
Gale et al. found it challenging to overcome the problems linked to the 
high variability in the content of radiological reports. To combat this a 
scaffold sentence was created in which several words were filled in by 
the model, which despite showing success was evidently a significant 
simplification of the original problem. A more realistic solution was 
offered by Wang et al. [14] who added multi-level attentions on a model 
initially trained solely for classification. They showed that it was 
possible to create accurate free-text radiological reports based on chest 
X-Rays. This is corroborated further by Han et al. [33], who showed 
similar success for reporting spine radiographs. 

In this work the free-text based line of thinking is continued. The 
novelty introduced in this work is the direct encoding of input images 
based on free text radiology reports by using the proximal femur fracture 
classification model. This enables a tandem evaluation of the generated 
reports with the classification model. Additionally, this work is the first 
to use Dutch as a primary language for the report generation aspect in 
combination with the target field of proximal femur fracture 
classification. 

3.3. Evaluating with users 

There has been, to our knowledge, relatively little work on the topic 
of qualitative analysis of generated medical reports and image 
captioning in general. Jing et al. [15] mention qualitative analysis 
briefly, but also indicate that the authors themselves were the ones 
evaluating. Li et al. [34] approached non-domain experts as participants 
where each participant had to match a real report to the best option out 
of several generated reports. In their work to automatise medical text 
summarization MacAveny et al. [35] had their results analysed quali-
tatively by a single radiology expert. Recently, Li et al. [36] approached 
medical domain experts in their analysis but only asked them to rank 
several generated reports. These works all focused on chest X-ray based 
reports. On the topic of proximal femur fractures [13], experts were also 
recruited but were only subjected to a ranking question setup. Qualita-
tive evaluations are far more common in other fields, were the open 
coding in grounded theory framework is one of the avenues used to 
evaluate the responses of domain experts [37,38]. We subject our 
method to user studies with medical domain experts assessing both, 
language quality and medical content of the generated reports. We apply 

inductive category development [39] to identify open issues and key 
motifs [40]. By presenting a thorough explanation of both our method as 
well as our evaluation we intend to inspire future work and serve as good 
practice for evaluations of Deep Learning based models in a clinical 
setting. 

4. Approach 

Given a case C containing a set of radiology images taken for a 
certain patient, the goal is to (i) determine if the patient has suffered a 
fracture, and if so which sub-type it is, and (ii) automatically generate an 
accurate radiological report. 

To generate a report, three machine learning models are combined as 
shown in Fig. 1. The classification model f( ⋅ ) is used to obtain image 
embeddings. A language model trained on radiology reports outputs 
word embeddings as representation of radiology reports. The final 
report generation model is then trained to learn the connection between 
the input image embeddings and the word embeddings of the corre-
sponding radiology report. During testing phase the report generation 
outputs a radiology report text solely based on the image (embeddings). 

4.1. Fracture classification model 

To avoid information leakage from the training data, we split our 
data set on a per case basis. This means, all images taken for one patient 
during a visit are either part of the training, the test or the validation set. 

To classify fractures we train a model f( ⋅ ) that takes i as input and 
predicts a class label ŷ = f(i), where i ∈ C is a single X-ray image and the 
class label ŷ ∈ {no fracture, column fracture, trochanter fracture}. Our 
classification task consists of two fracture classes and a no fracture class 
even though the clinical classification standard uses five fracture clas-
sification types. Similar to related work [12], we chose to aggregate 
fracture types with few training samples, and only distinguish column 
and trochanter fractures. The clinical impact of this decision is largely 
cost-related and not of influence on the outcome for the patient [5]. The 
corresponding ground truth class labels were obtained from the original 
radiological reports using the extraction described in Appendix A.3. 

The decision for a case is obtained by aggregating the decisions for 
all images in C. More specifically, we calculate the mean posterior 
probabilities over all predictions for a single image and assign the label 
with the maximum average score. This approach also mimics the clinical 
decision making process closely; in this setting all images are used to 
reach a conclusion instead of finding a conclusion for each image 
separately. 

The classification model learns a representation of the images. The 
latent representations in later layers also capture information about the 
type of fracture. More specifically, we use the features from the penul-
timate dense layer, which represents a 1024 dimensional encoding of an 
input image. These latent representations serve as input to the report 
generation model. 

4.2. Language model 

The language model is specifically trained on the language used in 
radiological reports and serves to guide the construction of generated 
reports. It is used to learn embeddings of words found in the reports such 
that they may be used as input to the report generation model. To train 
this language model, a separate language model dataset is used. This 
dataset consists of radiological reports of proximal femur fracture cases 
that are largely disjoint to the main dataset (cf. Section 4.3). This sec-
ondary dataset is used solely to train the language model. 

4.3. Report generation model 

The report generation model is trained with the word embeddings for 
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a report and the image encoding for the corresponding image. The 
original, human-written report is used to compute a cross-entropy loss 
function. An overview of the model pipeline is shown in Fig. 1. 

The report generation model uses an encoder-decoder architecture. 
The encoder obtains two inputs during training: the image encoding and 
the per word level embeddings. The image encodings are processed 
through a fully connected layer (FC), and combined with the Bi-LSTM 
output of the word embeddings using element-wise vector addition. 
The combined input is fed through a fully-connected layer consisting of 
256 elements and into a softmax layer, which size corresponds to the 
number of words in the vocabulary. During testing, the word embed-
dings of the original report are not available. To bootstrap the language 
generation, the word embedding of the ‘<start>’ token is input along-
side the image embedding. The model outputs a single word at a time. A 
full sequence of words is created by maximising the joint probability of 
the predicted sentence: 

logp

(

x0:T ∣I; θ

)

=
∑T

t=0
p

(

xt∣I, x0:t− 1; θ

)

(1)  

where I represents the image encoding and θ the model parameters. The 
variable x0:T represents the words that have been generated at positions 
0 through T. The first inference method is the greedy approach. In this 
approach the next word in a sequence is found as follows: 

xt = max
w∈W

p
(

xw∣I, x0:t− 1; θ
)

(2)  

where w is a word in the vocabulary W. This method is called the greedy 
approach because it only optimizes for the next best step. For a time step 
t only the single next word at t + 1 is considered. A combination of words 
that individually might not have the highest probability is skipped even 
though their combination might have an ultimately greater joint prob-
ability. To account for this, the more computationally expensive beam 
search [41] has been proposed. At every time step t a fixed number of 
candidates are evaluated. For each of these candidates an evaluation is 
made at time t + 1 from which the sequence with the highest joint 
probability is selected. 

5. Dataset 

We apply our methods to data provided by the ZGT hospital in 
Hengelo/Almelo, The Netherlands. We obtain two datasets: a language 
model dataset with radiological reports on pelvic region fractures and 
our main data set with images and associated radiological reports. All 
reports were in Dutch. 

5.1. Data extraction 

Both datasets were extracted from the Picture Archiving & 
Communication System of the ZGT hospital. A complete description of 
the extraction criteria can be found in Appendix A.4. The reports for the 
language model dataset were sourced from a pool of radiological reports 
from the hospital data base. These reports were used because they were 
easily accessible and for the purposes of the language model dataset did 
not need to be checked for data quality. The corresponding SQL queries 
are reported in Appendix A.4. The reports of the language model dataset 
were subjected to the report extraction process as described in Appendix 
A.2. A large number of these reports used a different formatting and 
were discarded for this reason. In total over 28,000 reports were suc-
cessfully parsed and added to the language model dataset. 

5.2. Preprocessing 

We downsize the images to a resolution of 300 × 300 pixels for faster 
training of the networks.1 During training of the fracture classification 
network we transform the input images to artificially increase the 
amount of image data and their variance. All transformations are 
designed such that the expected region of interest around the femur 
head remains fully visible in the image.2 We apply the following image 
transformations: (i) random rotation by up to 40◦, (ii) random crops 
such that at least 80% of the original image remains, (iii) shearing by a 
random factor of up to 0.2, and (iv) horizontal flipping. Note that these 
image augmentation steps are only applied for training the fracture 
classification model, but not applied when training the report 

Mediale collumfractuur 
links met verkorting.*

FCCNN

[1.4, 0.85, ...,  2.32]

Collum Fracture

No Fracture

Trochanteric Fracture

'Deels' 

GloVe

image embeddings

input image

input text word embeddings

Bi-LSTMFC

FC

Encoder

Decoder

image embeddings word embeddings
Training only

Report Generation Model

Language Model

eenEr is mediale collumfractuur

met verkorting .

+

**

Fig. 1. Report generation model pipeline. The fracture classification model predicts the type of fracture for an image. The language model learns word embeddings 
for the associated radiology report. The report generation model is trained on image embeddings from the fracture classification model (FC - fully connected layer) 
and the word embeddings of the associated radiology report generated by the language model. During test time, the report generation model outputs a report solely 
based on the image embeddings. *Medial column fracture on the left side with shortening. **There is a medial column fracture with shortening. 

1 Preliminary experiments showed the same prediction accuracy compared to 
original image sizes.  

2 Confirmed by manually investigating random samples. 
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generation model. 
All textual reports are preprocessed as follows. Any personal infor-

mation is removed and multiple subsequent spaces are deleted. All non- 
alpha-numeric characters are removed. The sentence ‘There is no frac-
ture’ (in Dutch) is used as the report for all no fracture cases. This is done 
to focus the text generation on the fracture characteristics. The reports 
used for the report generation are extended by adding a start token 
‘<start>’ and an end token ‘<end>’. 

5.3. Dataset statistics 

The dataset for training the language model contains 28,329 radio-
logical reports. The main data set contains 4915 cases with their cor-
responding radiological reports and 11,606 images. Each case contains 
at least one image, with an average of 2.5 ± 0.7 images per case. Table 1 
shows an overview of the class distribution. The class label, i.e., the 
fracture type, is available for each case. Thus, all images for one case 
have the same class label, independent of whether the fracture might be 
visible in the image or not. Most reports contain between 15 and 25 
words; the distribution for the training data set is shown in Fig. 2. We 
split both datasets randomly into 70% training, 20% validation and 10% 
test data. For the main data set we use a case-based split (cf. Section 4.1). 

6. Technical evaluation 

We evaluate the fracture classification and report generation models 
separately using standard evaluation metrics. Results of the user studies 
are reported separately, in Section 7. We used Keras3 to implement all 
models and the image transformations. We trained on a Linux system 
with Ubuntu 18.04 on an Intel Xeon E-2124 CPU, 32 GB RAM and a RTX 
2080 GPU. 

6.1. Model training 

The classification model is based on the DenseNet architecture as used 
in related work [10]. Specifically, we use DenseNet-169 [42] pretrained 
on the ImageNet dataset [43]. We append two dense layers of 1024 units 
each with a ReLU activation function and a softmax layer. Both dense 
layers use a dropout rate of 0.5 [44]. We train all layers of our archi-
tecture using the Adam optimiser [45] with a learning rate of 0.00001 
and the categorical cross-entropy loss function. Our batch size is 4 im-
ages. We train for 100 epochs, and apply early stopping of 7 epochs on 
the validation loss. 

As language model, we trained a GloVe model [46] with a window size 
of 5 words, an embedding dimension of 100, a batch size of 4096 and a 
vocabulary size of 10,000. The model was trained for 100 epochs with a 
learning rate of 0.0001 and early stopping for the GloVe loss function. 

To train the report generation model we truncated the reports to a 
maximum length of 40 words. This setting keeps the majority of the 

reports but does remove some of the very long outlier reports (cf. Fig. 2). 
Shorter reports are zero-padded and a per word level embedding for 
each report is obtained from the trained GloVe model. These 100 
dimensional word embeddings are passed through a 128 dimensional Bi- 
LSTM layer resulting in a text embedding of size 256. 

The image encoding of length 1024 is obtained from the fracture 
classification model by removing the final Dense layer, which results in a 
1024 length encoding. This is then passed through a 256 fully connected 
layer in the encoder of the model. 

6.2. Performance evaluation 

For the fracture classification we measure accuracy, precision and 
recall on the test set. We use 5-fold cross-validation and report mean and 
standard deviation. In order to compare our results to related work, we 
also apply post-processing to evaluate the performance on the fracture 
vs. no-fracture task. In this post-processing step, the different fracture 
types are all considered to be ‘fracture’. 

To compare with related work, we report our results on a per-image 
basis, and additionally on a per case basis, since this is more clinically 
relevant (cf. Section 4.3). Finally, a so-called ‘committee-voting’ 
approach is applied where the information that multiple images belong 
to the same patient is leveraged. In this committee-voting evaluation 
approach the final classification is the average of all predicted model 
classifications, i.e. the raw prediction scores, for the images included in a 
case for a single patient. 

The GloVe embedding model is trained until convergence. No spe-
cific metrics are reported. 

We evaluate the report generation model using the standard text 
similarity scores BLEU-1, BLEU-2, BLEU-3, BLEU-4 [16], and ROUGE-L 
[17]. Additionally, we assess the semantic correctness w.r.t. to the final 
diagnoses by parsing the conclusions corresponding to no fracture, 
column fracture or trochanteric fracture from the generated reports and 
compare it to the ground truth. This parsing is described in detail in 
Appendix A.2. We report the percentage of agreement. Similarly to the 
classification model, we evaluate the report generation model on a per- 
patient basis using a committee voting approach by averaging the scores 
for all single predictions of a patient. 

6.3. Results and discussion 

Results for the evaluation of the fracture classification model show that 
the committee voting approach outperforms performance for single- 
image classification (cf. Table 2). This is due to the fact that the 
ground truth label is available on a per-case base, and not on a per-image 
level. A comparison of best case models shows that our approach is 
competitive with regards to related work (cf. Table 3). The classification 
model achieved an overall test set accuracy of 87 ± 2%, or 90 ± 2% with 
committee voting. These results represent an improvement over the 
upper bound models reported in [28] and [11]. Additionally, our 
approach works on data that is less clean and relies on fewer assump-
tions regarding data distribution. 

For the binary classification task our results are an improvement 
upon the results in [11], [28] and [12]. This improvement is realised 
without the extensive manual labelling necessary to create the ROI 
extraction pipelines these works propose. Compared to [10] the results 
are slightly worse, but it is unknown what effect their extensive dataset 
filtering performed has in their work. 

Our results for the report generation are shown in Table 4. We used a 
simple default sentence for the no fracture cases, which the model could 
nearly always perfectly reconstruct. As this skews our results, we also 
report results only on the reports for the fracture cases. 

Our BLEU scores are significantly lower than those reported in [13]. 
In their work, the authors use a template sentence and only asked the 
model to fill in the missing parts, resulting in a much easier task for their 
model. Additionally, it is not entirely clear which preprocessing steps 

Table 1 
Overview of the datasets.   

Type # of 
cases 

# of 
images 

# of 
reports 

Main dataset 

No fracture 2068 5068  2068 
Column fracture 1585 3606  1585 
Trochanter 
fracture 1262 2932  1262 

Total 4915 11,606  4915 
Language model 

dataset 
Fracture reports – –  28,329  

3 https://keras.io/. 
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were taken, i.e., whether the authors also do impose as little constraints 
on the original data as we do. Our results match the findings for the more 
comparable free-text based report generation [14]. Inspecting examples 
with high and low text similarity, we observe a repetition of key phrases 
such as ‘Lateral column fracture on the left side’ and ‘Medial column 
fracture on the right side’ (translated from Dutch) in the generated re-
ports. Inspecting examples of generated reports (cf. Table 6), we observe 

that the BLEU and ROUGE metrics do not capture semantic similarity 
well, even when key findings are retained. This is in line with obser-
vations in related work [47,34]. For this reason, we additionally per-
formed a semantic analysis of the reports and two user studies (cf. 
Section 7) to assess the impact on clinical decision making. For the se-
mantic analysis, we compared the conclusion from the generated re-
ports, i.e., the extracted fracture type, to the ground-truth, and we found 
a high agreement (cf. Table 5). Notably, these results are very similar to 
the performance of the fracture classification model (Table 2) indicating 
that the report generation model has learned the importance of correctly 
reporting the fracture type. 

7. User studies 

As a complementary evaluation, focusing more on the human 
perspective, we present two user studies. Namely, we evaluate the 

Fig. 2. Distribution of report lengths in the training data.  

Table 2 
Results for the four proposed experiments evaluating the fracture classification 
model. Reported are precision (prec.), recall (rec.), F1-score and accuracy (acc.) 
for the column-, trochanteric- and no fracture setup. Additionally, a fracture 
versus no fracture setup is reported upon.  

Class Standard evaluation Committee voting 

Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. 

Column 0.86 
±

0.04 

0.84 
±

0.03 

0.85 
±

0.01 

0.87 
±

0.02 

0.90 
±

0.05 

0.88 
±

0.02 

0.89 
±

0.02 

0.90 
±

0.02 
Troch. 0.88 

±

0.05 

0.77 
±

0.06 

0.82 
±

0.03 

0.93 
±

0.04 

0.82 
±

0.05 

0.87 
±

0.03 
No frac. 0.89 

±

0.02 

0.95 
±

0.02 

0.92 
±

0.01 

0.90 
±

0.02 

0.97 
±

0.02 

0.93 
±

0.01 
Frac. 0.96 

±

0.01 

0.90 
±

0.02 

0.93 
±

0.01 

0.93 
±

0.01 

0.97 
±

0.01 

0.92 
±

0.02 

0.94 
±

0.01 

0.94 
±

0.01 
No frac. 0.89 

±

0.02 

0.96 
±

0.02 

0.92 
±

0.01 

0.90 
±

0.02 

0.97 
±

0.02 

0.93 
±

0.01  

Table 3 
Results compared to related work. The 2-class setup represents a fracture vs. no-fracture experimental setup. The 3-class setup is not identical across all works, but a 
general distinction between column fractures and trochanteric fractures is made. Additionally, it is reported whether automated or manual pre-processing in either 
annotation or selection of data is used. Reported are best case models.  

Setup Author F1-score Accuracy Pre-processing 

3-Class Jimenez-Sanchez et al. [11] 0.87 – Manual 
Kazi et al. [28] 0.79 0.86 Manual 
Jimenez-Sanchez et al. [12] – 0.91 Manual 
Our work 0.91 ± 0.04 0.90 ± 0.02 Automated 

2-Class Jimenez-Sanchez et al. [11] 0.94 – Manual 
Kazi et al. [28] 0.91 0.88 Manual 
Jimenez-Sanchez et al. [12] – 0.94 Manual 
Gale et al. [10] 0.97 0.97 Manual 
Our work 0.94 ± 0.02 0.94 ± 0.01 Automated  

Table 4 
Text evaluation metrics for the report generation model on the entire data set 
(including no fracture cases), and on the fracture cases only, which require a 
more diverse description.  

Metric Entire dataset Only fracture cases 

Greedy Beam search Greedy Beam search 

BLEU-1  0.65  0.64  0.16  0.20 
BLEU-2  0.63  0.60  0.09  0.09 
BLEU-3  0.61  0.57  0.04  0.04 
BLEU-4  0.60  0.56  0.02  0.01 
ROUGE-L  0.69  0.64  0.24  0.19  
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language quality of the generated reports with 90 participants having a 
background in Technical Medicine (Study I) and the medical content 
quality in a qualitative expert evaluation with 8 medical professionals 
(Study II). For these user studies, we selected the best performing model 
(cf. Section 6), i.e. the committee voting approach for the fracture 
classification (accuracy 90%, cf. Table 2) and the greedy inference 

strategy for the report generation (cf. Table 5). In the following, we 
detail on each of the two studies, before jointly discussing their key 
findings. 

7.1. User study I: language quality 

7.1.1. Method 
We employed an online questionnaire to quantitatively evaluate the 

general language quality of the generated reports: “The report's lan-
guage quality is adequate for a medical report” (7-point Likert scale; 
from 1-strongly disagree to 7-strongly agree). In addition, we queried 
whether the report's level of detail was perceived sufficient to identify 
the medical condition, as well as its perceived provenance (human or 
machine generated). Order and selection of questions was made to 
mitigate bias, i.e., carry-over effects from perceived level of detail to 
language quality. The complete set of questions is comprised by Ap-
pendix B. Each participant was asked to answer these questions for six 
representatively sampled reports. In total, 300 reports were evaluated 
by on average 1.2 (SD = 0.4) participants each: each report received at 
least 1 rating. In the following we detail on how these reports were 
sampled. 

7.1.2. Sampled reports 
In order to evaluate a wide variety of representative reports, while 

considering the participant's effort and motivation, we created a repre-
sentative subset (sample) of reports. This allowed for each participant to 
evaluate exactly six reports that were selected in a pseudo-randomized 
fashion from in total 300 representative reports. This set consisted of 
100 reports sampled from the original (i.e., human-generated) reports, 
and 200 machine-generated reports from a trained report generation 
model. To create a representative sample and ensure fairness, we 
employed further selection criteria. Namely, we ensured that the dis-
tribution of trochanteric and column fractures in both sampled subsets 
represents their distribution in the whole data set (see Table 7). In 
addition, we introduced upper and lower bounds for the sampled 
human-generated reports (which tend to be longer than the machine- 
generated ones) to prevent participants from inferring the report's 
provenance from their length. 

7.1.3. Participants 
We recruited 63 Dutch-speaking students enrolled in a Technical 

Medicine master program via mailing lists and word of mouth (21 M, 42 
F; age: 24 (SD = 2)). We made this recruitment choice, as their back-
ground in Technical Medicine made them likely to be comfortable with 
the terminology used in the reports: all of them had completed at least 
four weeks of clinical internships, and a subject-specific Bachelor's de-
gree. This allowed them to make informed judgements on the reports' 
language quality. Nevertheless, we note that some reports might still use 
professional jargon not all students are familiar with. For this reason, we 
focus our analysis on their assessment of general language quality, and 
consider the question on the medical level of detail as additional back-
ground information. 

Table 5 
Evaluation of the report generation model where the agreement is measured between the fracture type extracted from the generated reports and the fracture type 
ground truth. The predicted labels are obtained by extracting the predicted fracture type (column, trochanteric or no fracture) from the generated reports. These are 
compared against the ground truth fracture type for the case corresponding to the report.  

Class type Standard evaluation Committee voting 

Prec. Rec. Acc. F1 Prec. Rec. Acc. F1 

Column fracture  0.91  0.87 0.89  0.89  0.92  0.90 0.92  0.91 
Trochanteric fracture  0.87  0.80  0.84  0.89  0.81  0.85 
No fracture  0.90  0.93  0.91  0.91  0.95  0.93  

Table 6 
Example reports with high and low ROUGE-L scores (R-L). Translated report 
from Dutch to English in italic.  

Original report Generated report R-L 

Mediale collumfractuur rechts met 
een varusstand. Bekkenring is 
verder intact. Beide heupen 
vertonen beginnende 
coxarthrosis. Degeneratieve 
veranderingen lumbosacrale 
overang./Medial column fracture 
on the right side with a varus 
position. Pelvic ring is intact. Both 
hips show initial coxarthrosis. 
Degenerative changes in the 
lumbosacral junction. 

Er is een collumfractuur rechts met 
trochanterhoogstand. Klein 
botfragment mediaal. Nog nagenoeg 
geen arthrose deformans. Bekkenring 
intact./There is a column fracture on the 
right side with high trochanter 
presentation. Small bone fragment 
medially. No significant arthrosis 
deformans. Intact pelvic ring.  

0.32 

collumfractuur links met 
inclavatiestand en slechts 
minimale dislocatie./Column 
fracture on the left side with valgus 
impacted position and only 
minimal displacement. 

Kalkarm skelet. Collumfractuur links 
met verkorting. Uitgebreide 
vaatverkalkingen zichtbaar./Skeleton 
low in calcium. Column fracture on the 
left side with shortening. Extensive 
calcifications of the vessels visible.  

0.33 

Mediale collumfractuur links met 
verkorting/Medial column 
fracture on the left side with 
shortening. 

Mediale collumfractuur links met 
verkorting/Medial column fracture on 
the left side with shortening.  

1.00 

Collumfractuur links met geringe 
verkorting/Column fracture on 
the left side with slight shortening. 

Er is geen fractuur./There is no 
fracture.  

0.00 

Laterale collumfractuur rechts, 
met enige dislocatie./Lateral 
column fracture on the right side, 
slight displacement. 

Normale botstructuur en kalkgehalte. 
Mediale collumfractuuur links. Verder 
fors degeneratieve veranderingen van 
de laaglumbale wervelkolom/Normal 
bone structure and level of calcium. 
Medial column fracture on the left side. 
Significant degenerative alterations of 
the low lumbal spinal column.  

0.10 

Er is geen fractuur/There is no 
fracture 

Mediale collumfractuur links met 
verkorting/Medial column fracture on 
the left side with shortening.  

0.00  

Table 7 
Distribution of original and generated reports for trochanteric and column 
fractures in the full data set and in the sampled set used in Study I, respectively. 
The distributions show that the sample is representative for the full data set.   

Full data set Samples set 

Original 
reports 

Generated 
reports 

Original 
reports 

Generated 
reports 

Trochanteric 
fracture cases 

1585 
(56%) 

168 (59%) 56 (56%) 114 (57%) 

Column fracture 
cases 

1262 
(44%) 

117 (41%) 44 (56%) 86 (43%)  
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7.2. User study II: medical content quality 

7.2.1. Method 
In order to qualitatively evaluate the medical content quality of the 

generated reports, we conducted a complimentary user study with 
medical experts. In this study, human- and machine-generated reports 
were subjected to direct comparison: for each pair of reports (i.e., a 
human- and a machine-generated report describing the same case), the 
participants reported on how they perceived the reports' similarity in 
terms of level of detail, and impact on clinical decision making. Partic-
ipants were asked to provide a concrete rating on a 7-point agreement 
scale (see Appendix B for details) and to justify their judgement in a free- 
text explanatory statement. Due to the limited number of participants in 
this study, and the resulting need for careful statistical interpretation, 
we focus our analysis on the qualitative statements instead. We analyze 
theme in-depth, using inductive category development [39], a form of 
open coding which allows one to identify open issues and key motifs 
[40]. 

7.2.2. Participants 
In order to gauge specialized quality criteria (here: medical content 

quality), expert knowledge of domain workers is essential. For this 
reason, we solicited feedback from 8 medical professionals, including 
three trauma surgeons, four resident trauma surgeons in training, and 
one nurse practitioner trauma surgery. All of them are medical health-
care providers at the ZGT Hospital. On average, our 8 participants (5 
male, 3 female, 41 (SD = 10) years old) had 12 (SD = 7) years of (post- 
graduate) experience working in the medical field. Their unique back-
ground and experience of many years allows them to comment on 
practical relevance (e.g., of reported details), and the report's supposed 
impact on their treatment decision, which contributes to ecological 
validity. Yet, their expertise also makes them sparse and thus harder to 
recruit (e.g., compared to our participants in study I). We account for 
this lower number of participants by focusing on qualitative feedback. 

7.2.3. Sampled reports 
We presented each participant with 4 cases, each including one 

human-generated and one machine-generated report. In total, we pur-
posefully selected 32 pairs of reports to match the following criteria:  

• one case includes a generated report of above average word count 
(>10 words).  

• one case includes a generated report which is a misclassification.4 

The misclassified report was marked as such.  
• the remaining two cases are randomly sampled. 

This resulted in 4 cases, including exactly one misclassification, 
presented to each participant. 

7.3. Results & discussion 

This section jointly presents and discusses the results of Study I and 
Study II. We refer to the participants from Study I as medical students, and 
to the ones from Study II as medical experts with the individual experts 
denoted as E1, E2, …, E8 where quotes are given for illustration. For the 
qualitative analysis of Study II we furthermore report on occurrences of 
specific themes (denoted as n) in all expert assessments of the cases 
(denoted as capital N, 4 cases per participant, N = 32). 

7.3.1. Human or not? Converging language quality and level of detail 
The results we obtained from Study I indicated an equivalency of the 

original (human-generated) and (machine-)generated reports in terms 

of their level of detail, language quality and humanness (see Fig. 3). 
After confirming that all collected data (questions Q1–Q3) is not nor-
mally distributed (Shapiro-Wilk test with W=0.90,df=1113,p<0.05), we 
used a Mann Whitney U test to confirm that there is no significant dif-
ference in the medical students' assessment of the original and generated 
reports in terms of level of detail U(N_o=124,N_g=247), z=14515.0, 
p>0.05, language quality U(N_o=124,N_g=247), z=14299.0,p>0.05 
and perceived humanness U(N_o=124,N_g=247), z=14225.5,p>0.05. 
We note that this test statistic is chosen, because the original and 
generated reports presented to an individual medical student are 
sampled independently from each other, resulting in the testing condi-
tions to be unpaired. 

In Study II, original and generated reports were presented to the 
medical experts alongside each other. Experts were aware of the prov-
enance (original/human or generated) and were specifically asked to 
comment on both reports' level of detail with regard to the treatment 
decision. Overall, they noted at least one type of missing information for 
10 out of the 24 correctly classified reports (we detail on mis-
classifications in the subsequent section). In the majority of these cases 
the experts found details to be missing in both, the original and gener-
ated reports (n = 5). In three cases the original report lacked information 
present in the generated report (n = 2), and in two cases vice versa (n =
2): the generated report missed information contained in the original 
report. 

These findings show that in the majority of the cases (14 out of 24), 
there was no important information missing in the correctly classified 
reports, meaning that both reports would lead to the same treatment 
decision, as illustrated by the subsequent case: 

Case RP-3. Original report: We see a pertrochanteric fracture on the 
right. The pelvic ring itself shows no abnormalities. Mild coxarthrosis on 
the left. 

Generated report: There is a pertrochanteric fracture on the right. 
Hip joints show coxarthrosis. Pelvic ring is intact. 

Expert assessment (E3): “[…] Identical reports with same level of 
detail, although the treatment plan could be influenced by a more specific 
classification of the type of fracture; pertrochanteric A1/A2/A3, column 
displacement/no displacement. […] The reports are identical w.r.t. the 
fracture, so my treatment plan would be the same.” 

Additional details that the experts found relevant for their treatment 
decision and would have liked to see in the reports, included subclas-
sification of fracture type (n = 4), displacement (n = 5), and arthrosis (n 
= 3), one mention was uncodeable (i.e., just referred to missing 
information). 

We found it noteworthy that length and overall number of details 
comprised by a report did not necessarily imply all details relevant for 
the treatment decision were present, as illustrated by the subsequent 
example. 

RP-5/E5 1/ The original report is very limited. I miss the degree of 
displacement, but now w.r.t. shortening. 2/ I don't understand the 
remark in the generated report about the varus stand. The report is 
complete by also describing other structures. 

This shows that machine learning and medical expertise need to go 
hand in hand. Only considering ROUGE and BLEU scores is insufficient 
for capturing the language quality and the level of detail required for the 
specific task. Our results show that domain knowledge is needed to 
assess the quality of a generated medical text. 

7.3.2. Data quality: ensuring sufficient quality and avoiding 
misclassification 

As previously discussed, Study I showed that the reports generated 
by our model succeed in approximating the language quality and level of 
detail of the original reports. Yet, our results also show that in both, the 
original and in the generated reports there was a similarly high 

4 We consider a report a misclassification if the machine-generated report 
does not come to the same conclusion as the human-generated report. 
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variability of ratings (coefficient of variation of 0.26 and 0.31 for the 
original and generated reports respectively). This again illustrates how 
data quality in the original reports affects the quality of the generated 
reports – and potentially also how they are classified. 

As a result of this consideration, Study II deliberately included one 
misclassified report per medical expert participant. A report was 
considered misclassified when the conclusion from the generated report 
did not match the ground truth of this case. Notably, all but one of the 
participants (n = 7) agreed that the misclassified generated report they 
were presented with was indeed misclassified. The misclassifications in 
the generated reports comprised incorrect lateralisation with respect to 
the fracture (five reports), and a misclassified type of fracture (four re-
ports). In only three cases, inaccurate information in the generated re-
ports was noted by the experts (n = 3). Interestingly, there was also a 
total of three original reports, where two of the medical experts (n = 3) 
identified misclassifications. E4 elaborates: “[…] The diagnosis of the 
original report does not match my findings in the X-Ray. […] The diagnosis of 
the generated report is a better match, here a Garden classification would 
better describe the fracture.” In one other case, E3 found both the original 
and the generated report to be misclassifications. We followed up on this 
findings with an independent expert who verified that the original re-
ports can be interpreted as misclassifications. This aligns with a phe-
nomenon known from earlier research: for instance, Mast et al. describe 
a high inter-rater variability in classifying proximal femur fractures 
[48]. 

This finding has two implications: firstly, it might explain some 
erroneous classifications in the generated reports caused by incidental 
data issues. Secondly, and more importantly, it also highlights a chal-
lenge to be addressed by future work. The construction of a reliable 
ground truth data set (not covered by the present work) is as big a 
challenge as the construction of the model itself (covered by the present 
work). As directions for future work we suggest to pay particular 
attention to crafting a set of high-quality human-generated reports 
(similar to “textbook examples”) that would then be used to further fine- 
tune the generated reports. 

7.3.3. How much detail?: impact of level of detail and options for extension 
Analysing the quantitative results from Study I, we further found a 

strong positive correlation [49] between the ratings of medical detail 

and language quality (Pearson, r(730)=.72,p<.001) This, in addition to 
not finding a significant difference in language quality between the 
original and generated reports (cf. Section 7.2), suggests that the 
generated reports contain a level of medical detail that is considered 
sufficient by the raters. Language quality and humanness, and medical 
detail and humanness were only weakly to moderately correlated: 
Pearson, r(730)=.49,p<.001 and Pearson, r(730)=.42,p<.001. This 
suggests that medical detail and language quality are related to a greater 
extent than either of these is with the humanness of a text. 

In Study II, participants were asked to comment on whether their 
treatment plan would be the same for both, the original and the 
generated report. Whether a report mentions or omits a specific detail (e. 
g., arthrosis) can potentially impact the treatment decision, as explained 
by E2: “Depending on the patient characteristics the patient would be eligible 
for a KHP or THP based on either report. If the report would mention that 
there is coxarthrosis, my attention would be more so drawn to the possibility 
of the THP procedure. This is the case for the original report.” Participants 
noted that details about the fracture (n = 1), presence and/or degree of 
displacement (n = 4), and presence of arthrosis (n = 1) are important for 
determining the treatment plan. These were found to be lacking in a 
total of five cases (n = 5), out of which half in the original reports (n =
3), and half in the generated reports (n = 3). In one case, both the 
original and the generated report lacked the required detail. 

The results with regards to the level of detail carry three implica-
tions. The first one is related to the choice of using a free-text based 
approach for the generation of reports. In related work by Gale et al. 
[13] the level of detail was fixed by using a template sentence. In this 
template sentence the details that the participants in Study II indicated 
as necessary, e.g. save for the displacement, were not present. Our 
participants from study II mentioned what details they would have liked 
to see in the reports. Incorporating this information in a template sen-
tence, or ensuring that those details are included in the training reports, 
opens up possibilities for further improvements. 

Secondly, an explanation could be found in the model structure. The 
current method of inference, using a greedy approach, is rather naive 
and work by Bengio et al. [50] has already shown methods to improve 
upon this. Incorporation of a different inference scheme could also result 
in more detailed generated reports. 

Thirdly, besides model improvements, the quality of the generated 

Fig. 3. Violin plots showing the distributions per question (Medical detail, Language quality or Humanness) per report source (original or generated).  
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reports depends on the dataset the model is trained on, as discussed in 
Section 7.3.2. The problems the participants encountered with the level 
of detail could stem from a lacking dataset. Anecdotal inspection of the 
dataset reveals that not all details deemed necessary are present in a 
majority of the training reports. This can partly be explained by the fact 
that a radiologist can judge an image on different characteristics than a 
trauma surgeon. Crafting a data set of high-quality reports with 
consistent language containing all important details could be used to 
further fine-tune the report generation model. 

7.3.4. What next?: concluding reports with a summary 
Four of the medical experts (E3, E4, E5, E7) in Study II suggested that 

the addition of a concluding sub-classification based on the Garden or 
AO classification standard to the generated report would be valuable 
[5,6]. E4 suggests “a Garden classification could describe the fracture even 
better” (translated from Dutch). 

Such conclusions could either be sourced from our classification 
model, the parsed conclusion from the report generation model, or be 
created using a summarization model. In previous work, this has already 
been successfully undertaken, e.g., by Marchawala et al. [51] on tasks as 
challenging as medical report summarization, which suggests that this is 
a viable path for future work. 

8. Implications and outlook 

We presented a competitive approach for the automated (sub-)clas-
sification of proximal femur fractures and free-text report generation 
model based on X-ray images. Even though the current efforts are suc-
cessful, several improvements are possible. Both the classification model 
and the report generation model are trained and evaluated on single 
images. This does not realistically represent the clinical setting in which 
multiple images are taken for a single patient. It also introduces a 
problem where the original report describes findings over all images in a 
single case which might not be visible in each individual image. When 
training the report generation model the description is now taken as if it 
applies to every single image, which could lead to nonsensical results 
where details on both femurs are described in a lateral aspect image. To 
resolve this, a multi-input model could be considered where the input 
consists of all images taken for a single case to avoid mismatching de-
scriptions and images. To some extent, this was implemented with the 
committee voting rule but a dedicated multi-input model would fully 
account for the specific multi-image nature of X-ray cases. 

Prior to any clinical implementation we recommend the validation of 
the found results using an externally sourced dataset. Ideally this dataset 
is sourced from the most recent cases reported in an unrelated hospital 
so that this evaluation has the potential to show the actual clinical 
performance. 

A promising addition to the current model architecture could be to 

incorporate an attention mechanism. In comparable report generation 
tasks, Xu et al. [32] and Wang et al. [14] incorporated an attention 
mechanism to improve their training performance. 

9. Conclusion 

In this work we presented a state-of-the-art approach for the auto-
mated (sub-)classification of proximal femur fractures from multi-view 
X-ray images. Additionally, we presented a free-text based report gen-
eration model based on X-ray images, obtaining competitive results in 
BLEU and ROUGE scores. The report generation model seems to lack in 
the reported text evaluation measures because of the free-text approach, 
but a confident agreement between the report generation conclusions 
and medical ground truths is shown. In contrast to existing work, both 
models require minimal data pre-processing for the included images and 
reports respectively. Thus, the assumption that data has to be cleaned 
and filtered to achieve state-of-the-art performance is substantially 
relaxed. We also successfully trained a language model underlying the 
report generation model for a language (Dutch) in which no relevant 
pretrained language model is available, thereby showing the applica-
bility of our work in a domain and a language in which pretrained 
language models are not available. 

Furthermore, we performed quantitative and qualitative user studies 
with medical domain experts. Our quantitative evaluation found no 
significant difference in language quality between the generated reports 
and the ground truth reports. Additionally, a high correlation was found 
between medical detail and language quality. The qualitative evaluation 
revealed concrete areas of improvements regarding the medical content 
of the generated reports. The medical domain experts involved 
remarked medical equivalency in several cases and noted occasional 
improvements of a generated report over the original. With such a model 
the development of a clinical application becomes feasible. 
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Appendix A. Dataset description 

The dataset used for the caption generation model consists of 2000 fracture reports. Of these 81.8% had a collum fracture of some kind, with the 
rest being trochanteric fractures. The reports were provided in a.CSV format which included a number of fields:  

• A unique identification number.  
• The original report including HTML make up.  
• A description tag added for the type of examination.  
• An indication field  
• A conclusion field  
• A code field for registering the type of fracture  
• A room description field corresponding to an X-ray examination room in the hospital. 

The description tag for the type of examination, the code field for the type of fracture and the room description field are not used. For all reports the 
identification number, indication and the report field were filled in. The conclusion field serves as a means to structure reports by offering a suggestive 
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box in the electronic patient register system. This field is not filled in for 18.15% of the included reports. 
An additional 2072 no fracture cases were included in the dataset as well. For these cases no reports were available so a standard sentence was 

included for all of the no fracture cases. This sentence read: ‘Er is geen fractuur.’. 

A.1. The ‘report’ field 

In order to train a caption generation model the raw reports found in the field containing the original report have to be preprocessed into a usable 
format. The radiological reports do seem to follow a general structure. A report contains an average of 32 ± 19 words and can be characterised by the 
following components:  

1. A header indicating the start of the medical history section. 
2. A section containing information on the medical history of a patient. This section usually contains medically relevant prior events or the medi-

cation that is being taken. It is used to indicate what the question is at hand and what transpired prior to the patients' arrival at the hospital.  
3. A header indicating the start of the radiological report.  
4. A section containing the radiological report on a taken series of X-ray images. This section describes the radiologists' findings and can include 

details on the entire pelvic area, the quality of the images and referrals to earlier examinations. If a fracture is present this is indicated alongside a 
localisation for this fracture.  

5. A header for the conclusion of the radiological report.  
6. A section containing the conclusion the radiologist reached in their report. This is generally a short sentence describing the type of fracture and its 

localisation. 

The headers for the different components of the report don't follow a standard format. In the some 2000 reports used for the caption generation 
model over 50 different variations were found for the radiological report header alone. A number of different variations were found for the medical 
history header as well. The conclusion header is not present in an unknown number of reports. As mentioned before, the conclusion field, which is 
different from the conclusion header in the report field, is not always filled in. It is not necessarily true that in those cases a conclusion header and 
section are included in the report. 

In addition to the disparities found for the report field, the report texts themselves show great inter- and intraoperator variance in terms of the 
language used. Out of a unique vocabulary of 2205 different words only 659 occurred five or more times. To alleviate the problems that such a sparsity 
of word usage could bring a word level embedding model is proposed to serve as a proxy for the input for the caption generation model. 

A.2. Parsing the report field 

Given the found disparities in the section headers and the general structure of the radiological reports, it is expected that an automatic way to parse 
the reports will be hard to develop. This notion is further supported by work of Pathak et al. [52] who found the automatic parsing of such reports to be 
a challenging task. They reported results based on a per-word labelled dataset, which is simply unfeasible to obtain for this setting. As a result, a semi- 
automatic filtering method is proposed to extract the relevant information from the reports instead. 

The filtering is done by using a manually constructed dictionary in addition to a set of regex-based filters. In an iterative approach the headers for 
the radiological report are parsed from the reports by running the corpus against the existing dictionary for matches. Any reports that fall through are 
then examined and the relevant header sections are added to the dictionary to make it possible to parse these reports. If a report is matched through a 
header from the dictionary, a regex based filter is applied to then extract the report text in the section that follows. 

A.3. Parsing the report conclusion 

Having parsed a report a conclusion is then parsed from the result. This conclusion is one of two options; a collum fracture case or a trochanteric 
fracture case. Through a set of regex filters the fracture type is extracted from the original report. A manual dictionary is then used to map from the 
different fracture types to one of the conclusions. 

A.4. GloVe word embedding 

There are generally two ways in which a word embedding can be constructed. The first method is called the one-hot encoding and this represents a 
simple mapping from an index to a word. In this scenario the word ‘fractuur’ could be assigned a number 18 for example. This method is very simple 
and quick to apply, but suffers from severe sparsity as the vocabulary size increases. Additionally, it doesn't account for the context of a certain word. 

The alternative to the one-hot encoding method is the word embedding approach. A word embedding represents a vector space encoding of a single 
word. Instead of being represented by a single number, the word ‘fractuur’ is now transformed into a vector of numbers of a specified encoding 
dimension size. This has the primary advantage that an encoding can now capture information about a word's context as well. To illustrate this, it 
would now be possible to determine how ‘close’ two words are. In the context of radiological reports the words ‘fractuur’ and ‘collum’ are probably a 
lot more likely to appear in each others' context than the words ‘fractuur’ and ‘wervelkolom’. This context knowledge is crucial to the caption 
generation step. 

Several different algorithms exist for the construction of a model that can create these word encodings. One of these algorithms is the GloVe model. 
GloVe, short for Global Vectors, is a text embedding algorithm that takes into account both the context of words as well as their global statistics in the 
given corpus [46]. Having trained such a model, a word from a report can be transformed into an embedding which can then be fed into the caption 
generation model. The following SQL queries were applied to obtain this data:  

• SELECT * FROM ZGT_RONTGEN WHERE (verslag LIKE ‘%fractuur%’ OR verslag LIKE ‘%fraktuur%’) AND verslag LIKE ‘%collum%’ AND (omschr 
LIKE ‘%Bekken+heup beiderzijds%’ OR omschr LIKE ‘%Bekken+heup links%’ OR omschr LIKE ‘%Bekken+heup rechts%’) 
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This resulted in 7595 reports.  

• SELECT * FROM ZGT_RONTGEN WHERE (verslag LIKE ‘%fractuur%’ OR verslag LIKE ‘%fraktuur%’) AND verslag LIKE ‘%collum%’ AND (omschr 
LIKE ‘%Bekken%’) 

This resulted in 13,583 reports.  

• SELECT * FROM ZGT_RONTGEN WHERE (verslag LIKE ‘%fractuur%’ OR verslag LIKE ‘%fraktuur%’) AND verslag LIKE ‘%collum%’ 

This resulted in 23,389 reports. 

Appendix B. Evaluation surveys
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In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, editors. 
Artificial neural networks and machine learning – ICANN 2018. Cham: Springer 
International Publishing; 2018. p. 270–9. 

[44] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a 
simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15 
(56):1929–58. http://jmlr.org/papers/v15/srivastava14a.html. 

[45] Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Bengio Y, 
LeCun Y, editors. 3rd international conference on learning representations, ICLR 
2015, San Diego, CA, USA, May 7-9, 2015, conference track proceedings; 2015. 
http://arxiv.org/abs/1412.6980. 

[46] Pennington J, Socher R, Manning C. Glove: global vectors for word representation. 
In: Proceedings of the 2014 conference on empirical methods in natural language 
processing (EMNLP). Doha, Qatar: Association for Computational Linguistics; 
2014. p. 1532–43. https://doi.org/10.3115/v1/D14-1162. http://aclweb.org/anth 
ology/D14-1162. 

[47] Lu S, Zhu Y, Zhang W, Wang J, Yu Y. Neural text generation: past, present and 
beyond. arXiv; 2018. http://arxiv.org/abs/1803.07133. 

[48] Mast NH, Impellizzeri F, Keller S, Leunig M. Reliability and agreement of measures 
used in radiographic evaluation of the adult hip. Clin Orthop Relat Res 2011;469 
(1):188–99. https://doi.org/10.1007/s11999-010-1447-9. https://www.ncbi.nlm. 
nih.gov/pmc/articles/PMC3008883/. 

[49] Evans JD. In: Straightforward statistics for the behavioral sciences. Belmont, CA, 
US: Thomson Brooks/Cole Publishing Co; 1996. p. 600. xxii. 

[50] Bengio S, Vinyals O, Jaitly N, Shazeer N. Scheduled sampling for sequence 
prediction with recurrent neural networks. In: Cortes C, Lawrence N, Lee D, 
Sugiyama M, Garnett R, editors. Advances in neural information processing 

O. Paalvast et al.                                                                                                                                                                                                                                

https://richtlijnendatabase.nl/richtlijn/proximale_femurfracturen/diagnostiek_en_classificatie_proximale_femurfractuur/aanvullend_onderzoek_proximale_femurfractuur.html
https://richtlijnendatabase.nl/richtlijn/proximale_femurfracturen/diagnostiek_en_classificatie_proximale_femurfractuur/aanvullend_onderzoek_proximale_femurfractuur.html
https://richtlijnendatabase.nl/richtlijn/proximale_femurfracturen/diagnostiek_en_classificatie_proximale_femurfractuur/aanvullend_onderzoek_proximale_femurfractuur.html
https://classification.aoeducation.org/
https://classification.aoeducation.org/
https://doi.org/10.1016/j.injury.2005.02.005
https://doi.org/10.1016/j.injury.2005.02.005
http://www.sciencedirect.com/science/article/pii/S0020138305000471
http://www.sciencedirect.com/science/article/pii/S0020138305000471
https://doi.org/10.1016/j.injury.2009.10.007
https://doi.org/10.1016/j.injury.2009.10.007
http://www.sciencedirect.com/science/article/pii/S0020138309005294
http://www.sciencedirect.com/science/article/pii/S0020138309005294
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523390326
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523390326
http://arxiv.org/abs/1711.06504
http://arxiv.org/abs/1711.06504
http://arxiv.org/abs/1809.10692
http://arxiv.org/abs/1809.10692
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240539474391
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240539474391
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240539474391
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240539474391
https://doi.org/10.1109/ISBI.2019.8759236
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523509619
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523509619
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523509619
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523509619
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523522490
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523522490
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240523522490
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240524111499
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240524111499
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240524143297
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240524143297
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240524143297
https://doi.org/10.1007/s00198-016-3711-7
https://doi.org/10.1007/s00198-016-3711-7
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240534383761
https://repository.ubn.ru.nl/handle/2066/137078
https://doi.org/10.1007/s00223-015-0089-z
https://doi.org/10.1007/s00223-015-0089-z
https://doi.org/10.1016/j.jemermed.2007.12.039
http://www.sciencedirect.com/science/article/pii/S0736467908002199
https://doi.org/10.1007/BF03016088
https://journals.lww.com/jbjsjournal/Abstract/1995/10000/Postoperative_complications_and_mortality.10.aspx
https://journals.lww.com/jbjsjournal/Abstract/1995/10000/Postoperative_complications_and_mortality.10.aspx
https://journals.lww.com/jbjsjournal/Abstract/1995/10000/Postoperative_complications_and_mortality.10.aspx
https://doi.org/10.4103/0019-5413.73660
https://doi.org/10.4103/0019-5413.73660
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004074/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004074/
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240536492776
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240536492776
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240536492776
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240526113202
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240526113202
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240526113202
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240526113202
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240526113202
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://www.groundai.com/project/automatic-hip-fracture-identification-and-functional-subclassification-with-deep-learning/1
https://www.groundai.com/project/automatic-hip-fracture-identification-and-functional-subclassification-with-deep-learning/1
https://www.groundai.com/project/automatic-hip-fracture-identification-and-functional-subclassification-with-deep-learning/1
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1038/s41568-018-0016-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/
http://proceedings.mlr.press/v37/xuc15.html
https://doi.org/10.1007/978-3-030-00937-3_22
http://link.springer.com/10.1007/978-3-030-00937-3_22
http://link.springer.com/10.1007/978-3-030-00937-3_22
http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation.pdf
http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation.pdf
http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation.pdf
https://doi.org/10.1145/3331184.3331319
http://arxiv.org/abs/2006.03744
http://arxiv.org/abs/2006.03744
https://doi.org/10.1007/978-3-030-15636-7_4
https://doi.org/10.1007/978-3-030-15636-7_4
https://www.researchgate.net/publication/332700157_An_Introduction_to_Grounded_Theory_with_a_Special_Focus_on_Axial_Coding_and_the_Coding_Paradigm
https://www.researchgate.net/publication/332700157_An_Introduction_to_Grounded_Theory_with_a_Special_Focus_on_Axial_Coding_and_the_Coding_Paradigm
https://www.researchgate.net/publication/332700157_An_Introduction_to_Grounded_Theory_with_a_Special_Focus_on_Axial_Coding_and_the_Coding_Paradigm
https://doi.org/10.1177/2050312118822927
https://doi.org/10.1177/2050312118822927
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318722/
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240529091630
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240529091630
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240541269677
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240541269677
https://doi.org/10.18653/v1/W17-3207
http://ttp://arxiv.org/abs/1702.01806
http://ttp://arxiv.org/abs/1702.01806
http://arxiv.org/abs/1608.06993
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240529165985
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240529165985
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240529165985
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240529165985
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1412.6980
https://doi.org/10.3115/v1/D14-1162
http://aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1803.07133
https://doi.org/10.1007/s11999-010-1447-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008883/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008883/
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240531151851
http://refhub.elsevier.com/S0933-3657(22)00046-X/rf202203240531151851


Artificial Intelligence In Medicine 128 (2022) 102281

14

systems. 28. Curran Associates, Inc.; 2015. p. 1171–9. https://proceedings.neurips. 
cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf. 

[51] Marchawala A, Patel P, Thaker KParesh, Gunjal H, Nagrecha A, Mohammed S. Text 
summarization and classification of clinical discharge summaries using deep 
learning. TechRxiv; 2020. https://doi.org/10.36227/techrxiv.12059019.v1. https 

://www.techrxiv.org/articles/preprint/Text_Summarization_and_Classification_of_ 
Clinical_Discharge_Summaries_using_Deep_Learning/12059019. 

[52] Pathak S, van Rossen J, Vijlbrief O, Geerdink J, Seifert C, van Keulen M. Post- 
structuring radiology reports of breast cancer patients for clinical quality 
assurance. IEEE/ACM Trans Comput Biol Bioinform May 2019. https://doi.org/ 
10.1109/TCBB.2019.2914678. 

O. Paalvast et al.                                                                                                                                                                                                                                

https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://doi.org/10.36227/techrxiv.12059019.v1
https://www.techrxiv.org/articles/preprint/Text_Summarization_and_Classification_of_Clinical_Discharge_Summaries_using_Deep_Learning/12059019
https://www.techrxiv.org/articles/preprint/Text_Summarization_and_Classification_of_Clinical_Discharge_Summaries_using_Deep_Learning/12059019
https://www.techrxiv.org/articles/preprint/Text_Summarization_and_Classification_of_Clinical_Discharge_Summaries_using_Deep_Learning/12059019
https://doi.org/10.1109/TCBB.2019.2914678
https://doi.org/10.1109/TCBB.2019.2914678

	Radiology report generation for proximal femur fractures using deep classification and language generation models
	1 Introduction
	2 Proximal femur fractures
	3 Related work
	3.1 Automatic proximal femur fracture classification
	3.2 Automated report generation
	3.3 Evaluating with users

	4 Approach
	4.1 Fracture classification model
	4.2 Language model
	4.3 Report generation model

	5 Dataset
	5.1 Data extraction
	5.2 Preprocessing
	5.3 Dataset statistics

	6 Technical evaluation
	6.1 Model training
	6.2 Performance evaluation
	6.3 Results and discussion

	7 User studies
	7.1 User study I: language quality
	7.1.1 Method
	7.1.2 Sampled reports
	7.1.3 Participants

	7.2 User study II: medical content quality
	7.2.1 Method
	7.2.2 Participants
	7.2.3 Sampled reports

	7.3 Results & discussion
	7.3.1 Human or not? Converging language quality and level of detail
	7.3.2 Data quality: ensuring sufficient quality and avoiding misclassification
	7.3.3 How much detail?: impact of level of detail and options for extension
	7.3.4 What next?: concluding reports with a summary


	8 Implications and outlook
	9 Conclusion
	Research data statement
	Declaration of competing interest
	Appendix A Dataset description
	A.1 The ‘report’ field
	A.2 Parsing the report field
	A.3 Parsing the report conclusion
	A.4 GloVe word embedding

	Appendix B Evaluation surveys
	References


