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Vibration isolation is essential for industrial high-precision systems to suppress external
disturbances. The aim of this paper is to develop a general identification approach to esti-
mate the frequency response function (FRF) of the transmissibility matrix, which is a key
performance indicator for vibration isolation systems. The major challenge lies in obtaining
a good signal-to-noise ratio in view of a large system weight. A non-parametric system
identification method is proposed that combines floor and shaker excitations.
Furthermore, a method is presented to analyze the input power spectrum of the floor exci-
tations, both in terms of magnitude and direction. In turn, the input design of the shaker
excitation signals is investigated to obtain sufficient excitation power in all directions with
minimum experiment cost. The proposed methods are shown to provide an accurate FRF of
the transmissibility matrix in three relevant directions on an industrial active vibration iso-
lation system over a large frequency range. This demonstrates that, despite their heavy
weight, industrial vibration isolation systems can be accurately identified using this
approach.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration isolators are widely used in high-precision systems, such as wafer scanners [1], scanning tunneling microscopes
[2,3], and measurement systems in general [4,5]. These isolators are used to isolate machinery from floor and base frame
vibrations. A key performance indicator is the transmissibility function [5,6]. For single-axis systems, the transmissibility
function describes the transfer function from base frame vibrations to payload vibrations. For multi-axis systems, the trans-
missibility function is extended to a transmissibility matrix, where its performance metric is often posed in terms of scalar
norms [6,7]. Amongst vibration isolation, the concept of transmissibility functions has a key interest in a wide range of appli-
cations, for example operational modal analysis [8,9], and operational transfer path analysis [10,11].

The frequency response function (FRF) of the transmissibility matrix can be estimated from experimental data by placing
accelerometers or geophones on both the base frame and the isolated payload of the machine [12]. In, e.g., [6,13,14], several
methods for transmissibility matrix measurements are developed where external shaker constructions are used to ensure
that the base frame is sufficiently excited. This enables an accurate estimation of the FRF, both unbiased and with a
small variance [15]. However, these methods are often not applicable because industrial machines are often too heavy for
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commercially available shakers to support and excite the system. Moreover, in industry it is important to provide sufficiently
accurate models on the one hand with the least-costly identification experiment on the other hand [16]. Therefore, estima-
tion methods that allow the machine to perform under operating conditions are highly preferred. Such methods rely on envi-
ronmental base frame excitations, e.g., floor vibrations [17]. These methods can result in a reasonable estimation, as long as
the environmental vibrations provide sufficient spectral power in all relevant directions to obtain a sufficient signal-to-noise
ratio (SNR). Available methods are restricted to those that can deal with random excitations, because the environmental
vibrations are not known beforehand and are typically non-periodic. In this regard, spectral analysis is often used [18,19],
which assumes that either the base frame or the payload excitation is measured free of noise. However, sensor noise on both
the base frame and payload measurement leads to an error-in-variables identification problem [20,21], which may subse-
quently lead to biased estimates [22,23].

Several methods are proposed in literature to improve the estimation results for systems that can only be partly identi-
fied. A first example is output-only or operational modal analysis [8,9] which can provide eigenfrequencies and mode shapes,
but does not give an FRF which represents an input–output relation. A second example is found in methods that augment FRF
measurements with finite-element modeling, e.g., [24], but these methods need intervention regarding meshing, model
order selection, and so on. A third example is frequency-based substructuring [25,26] in which separate parts of the system
are identified independently and merged afterwards, but this method is sensitive for large uncertainty propagation errors
[25]. Moreover, none of these methods provides a validation regarding the actual performance of the assembled system
in closed-loop. The latter is important, since control loops might deteriorate performance due to changing system dynamics
and noise amplification [27–29]. Therefore, none of these methods is further pursued in this paper.

Although vibration isolation is essential in high-tech equipment, there is a lack of a systematic approach to estimate the
FRF of the transmissibility matrix for heavy-weight systems. The first contribution of this paper is to show a non-parametric
identification method to estimate the FRF for such systems in multiple directions, where a combination of floor and shaker
excitations is used to maximize the base frame excitation power. The second contribution is a method to evaluate the spec-
tral power and directions of the base frame excitations, and how its result can be used for input design of the shaker exci-
tation signals. In this respect, the proposed method can be seen as optimal input design [16]. A third contribution is given by
the application of the identification and input design methods to a heavy-weight active vibration isolation system. This leads
to an accurately estimated FRF of the transmissibility matrix in the frequency range of interest, i.e. between 1 and 100 Hz,
and in three relevant directions. These results show that the presented methods, which are applicable for vibration isolation
systems in general, are particularly suited for systems that are too heavy to be sufficiently excited by shakers during oper-
ating conditions.

The paper is organized as follows. The experimental setup and the transmissibility matrix are described in Section 2. The
main problem considered in this paper is defined in Section 3. The non-parametric identification method is presented in Sec-
tion 4, and the input excitation analysis and design method is presented in Section 5. The experimental results and validation
are presented in Section 6, and the major conclusions are given in Section 7.
2. Active vibration isolation system

2.1. System description

The system used throughout this paper for validation purposes is the Active Vibration Isolation System (AVIS) shown in
Fig. 1. The AVIS consists of two main parts: (i) an isolated payload of 289 kg, and (ii) a base frame (BF) that is supported by
the floor. The payload and BF are connected by four isolator modules (IM). These isolator modules provide a low stiffness and
isolated payload

base frame

isolator

sensors
BF

shaker

Fig. 1. AVIS used for validation of the non-parametric identification method: (a) photograph, (b) schematic representation showing the base frame, payload,
four isolator module locations, and three shaker locations.
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damping through pneumatically controlled air mounts to obtain vibration isolation. At three of the four modules, horizontal
and vertical accelerometers are placed to measure the absolute BF accelerations denoted by u1ðtÞ 2 R6. Moreover, three out
of four modules contain horizontal and vertical accelerometers on the payload to measure the absolute payload accelerations
denoted by y1ðtÞ 2 R6. Measurements of u1 and y1 are filtered with analogue band-pass filters from 0.1 Hz to 450 Hz to
reduce aliasing, sensor noise, cross-talk, and drift. For ease of presentation, u1 and y1 are transformed to the same coordinate
frame, i.e. the set of Cartesian coordinates in the center of gravity (CoG) of the payload, see Fig. 1b. To this end, both the BF
and payload are considered as a rigid body, such that the BF motion is defined by xbðtÞ ¼ ½xb; yb; zb; hx;b; hy;b; hz;b�

T and the pay-

load motion is defined by xpðtÞ ¼ ½xp; yp; zp; hx;p; hy;p; hz;p�
T . In the absence of sensor noise, and only considering small displace-

ments, the Cartesian coordinates are related to the measured signals through
€xbðtÞ ¼ Tuu1ðtÞ; €xpðtÞ ¼ Tyy1ðtÞ; ð1Þ
with transformation matrices Tu;Ty 2 R6�6.
Three shakers providing vertical shaker forces rðtÞ 2 R3 are installed between the floor and the BF to increase the exci-

tation level of the BF. The shaker locations are shown in Fig. 1b. Data acquisition is performed by a 14-bit real-time digital
signal processor (DSP) running at f s ¼ 2 kHz.

2.2. The transmissibility matrix

The FRF of the ny � nu transmissibility matrix T ðjxÞ, with frequency x 2 R, defines the relation between a set of BF coor-
dinates xb 2 Rnu and a set of payload coordinates xp 2 Rny in the frequency domain. In general, a transmissibility matrix is not
uniquely defined by xb and xp only, but also depends on the locations of the floor and shaker excitation sources f causing the
responses measured at xb and xp. This property is extensively investigated in, e.g., [10] for linear time-invariant (LTI) systems.
In order to make T uniquely defined and independent of f in case of vibration isolation systems, the number of considered BF
coordinates nu must equal the number of transmission paths between the BF and the payload. Moreover, the BF sensors must
be co-located with the attachment points of the transmission paths, for example, the vertical BF acceleration of each air
mount must be measured at the point B in the IM close-up in Fig. 1b. By doing so, structural dynamics of the BF will not
be involved in the transmission path from xb to xp. Under these conditions, T becomes independent of BF dynamics and
the locations of the excitation sources, such that T can be regarded as an input–output relation from xb to xp, or
XpðxÞ ¼ T ðjxÞXbðxÞ; ð2Þ
with XpðxÞ;XbðxÞ representing the payload and BF motion expressed in the frequency domain.
An expression for T ðjxÞ could be either obtained from parametric first-principles modeling or from measured frequency

response data. A first-principles model for the transmissibility matrix is derived in Appendix A. In this model, the payload is
considered as a rigid body while the air mounts are described using the three-spring-damper model as shown in Fig. 1b. As
such, there are twelve transmission paths, i.e. four air mounts each containing three spring-damper connections between the
BF and payload. This can be reduced to six transmission paths by considering the BF as a rigid body, such that all twelve
attachment points of the transmission paths only depend on the six rigid-body degrees of freedom of the BF. Due to the mod-
eling assumptions this model is only valid at low frequencies where no structural dynamics or air mount dynamics occur.
The model is therefore not sufficient to provide an accurately estimated FRF of the transmissibility matrix in the full fre-
quency range of interest between 1 and 100 Hz. As such, the model will only be used for input design of the shaker signals,
and to validate FRF measurements of the transmissibility matrix obtained from experiments at low frequencies.

3. Problem definition

The aim of this paper is to develop a general identification approach to estimate the transmissibility matrix T for indus-
trial systems running under operating conditions, such as the system in Fig. 1. More specifically, the key interest is to mea-
sure the FRF T ðjxÞ in a broad frequency of interest, which is typically 1–100 Hz for industrial high-precision machines, and
in multiple directions. The main challenge in the identification of T lies in the fact that excitation of Xb is limited due to
physical constraints. Environmental vibrations always excite the BF, but these excitations are uncertain in spectral power
and directions. Nevertheless, these vibrations are exploited as useful excitation signal. In addition, these excitations can
be augmented with shaker excitations to sufficiently excite the BF in the remaining directions and frequencies that are
not sufficiently excited by the environment. These shaker excitations are designed carefully to obtain sufficient excitation
power with minimum experiment cost.

4. Non-parametric system identification

In this section, the non-parametric identification method to identify the FRF of T is presented. Spectral analysis is used to
simultaneously benefit from environmental floor and shaker excitations [30]. Bias analysis and 95% confidence regions are
presented to determine the quality of the measured FRF.
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Fig. 2 shows the block diagram used for non-parametric system identification. The goal is to identify T . Signals u1 and y1

represent the BF and payload motions in sensor coordinates as described in Section 2. Signal u1 is the result of two contri-
butions, i.e. ug containing the shaker excitations, and ng containing the environmental floor vibrations. The shaker block rep-
resents the transfer function from reference r to ug , with r being the output of a pseudo-random noise signal generator. The
output signal y1 consists of yp representing payload motion caused by BF vibrations, and process noise np representing pay-
load motion due to direct payload disturbances (e.g., acoustic waves). Measurements of u1 and y1 are filtered with band-pass
filters, which are assumed to behave as an ideal band-pass filter, see Assumption 1. Moreover, the measured signals contain
additive measurement noise mu and my , respectively. After sampling, the BF and payload measurements are converted to
Cartesian coordinates using the blocks Tu and Ty , respectively, which results in the signals u and y. These signals represent
sampled-data signals uðnTsÞ; yðnTsÞ having sampling time Ts and n 2 f0;1; . . . ;N � 1g.

Assumption 1 (Ideal band-pass filter). An ideal band-pass filter with a frequency band ranging from xBP;min to xBP;max

produces a band-limited output signal uBPðtÞ of input signal uðtÞ, i.e. UBPðxÞ ¼ UðxÞ for xBP;min < jxj < xBP;max, and
UBPðxÞ ¼ 0 for all other frequencies x.
4.1. Spectral analysis

To identify MIMO systems using random excitations and spectral analysis, a full record of data y;u is measured for a suf-
ficiently long time. Subsequently, the full record is split into M possibly overlapping subrecords of equal length denoted
y½l�;u½l�, with l 2 f1; . . . ;Mg. These subrecords are multiplied with a Hanning window wðnTsÞ to reduce the effects of leakage

[15, Section 2.6]. Then, the discrete Fourier transforms (DFT) Y ½l�ðxÞ and U ½l�ðxÞ of the windowed signals are defined as
Fig. 2.
filters a
motion
U ½l�ðxkÞ ¼
1
S2

XN�1

n¼0

wðnTsÞu½l�ðnTsÞe�jxknTs ; ð3Þ

Y ½l�ðxkÞ ¼
1
S2

XN�1

n¼0

wðnTsÞy½l�ðnTsÞe�jxknTs ; ð4Þ
where only the N frequenciesxk ¼ ð2pkÞ=ðNTsÞ; k 2 f0; . . . ;N � 1g are considered. In view of Assumption 1, it is assumed that
xBP;min < xk < xBP;max for all k. In the remainder of this paper, the abuse of notation x � xk is used with the intention to
improve readability. The scaling factor
S2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

n¼0
j wðnTsÞj2

r
; ð5Þ
is chosen such that the transformation preserves the root mean square (RMS) value of the signal [15, Section 7.2].

Having calculated all Y ½l�ðxÞ and U ½l�ðxÞ, estimates for the cross power spectral density (PSD) matrix bSYUðxÞ and auto PSD

matrix bSUUðxÞ are obtained by averaging over the M blocks, i.e.
bSYUðxÞ ¼ 2
f s

� �
1
M

XM
l¼1

Y ½l�ðxÞðU ½l�ðxÞÞ
H
; ð6Þ

bSUUðxÞ ¼ 2
f s

� �
1
M

XM
l¼1

U ½l�ðxÞðU ½l�ðxÞÞ
H
: ð7Þ
In (6) and (7), a scaling factor 2=f s is included to obtain a single-sided PSD matrix with the physical unit ðm=s2Þ2=Hz [31].
Neglecting the effects of leakage and windowing, and under the assumption of perfect anti-aliasing provided by the
band-pass filters, an estimate for T is obtained using the so-called H1 estimator, see, e.g. [15,32],
Block diagram for non-parametric system identification via measurements. Base frame motion is measured by u1 , payload motion by y1. Band-pass
re applied in the signal conditioners to prevent aliasing and to suppress sensor noise. The transformed signals u; y represent base frame and payload
, respectively, expressed in the same Cartesian coordinate frame, see (1).
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T̂ ðjxÞ ¼ bSYUðxÞbS�1
UUðxÞ: ð8Þ
The H1 estimator is a suitable choice when the input SNR of u is much better than the output SNR of y. Contrarily, when the
output SNR is much better than the input SNR, the H2 estimator is preferred [19]. When the input and output SNR are similar,
and there is a priori knowledge about the noise spectra, more advanced estimators can be defined that result in reduced bias,
see, e.g., [33,34]. However, in the context of vibration isolation, the SNR of u is typically much higher than the SNR of y, at
least beyond the suspension frequency where isolation occurs. Therefore, the H1 estimator typically gives the best estimates.

4.2. Bias, variance, and the 95% confidence regions

This section presents expressions for bias and variance of the H1 estimator in (8), where the variance can be used to con-
struct the 95% confidence region which is defined below. To this end, the inputs and outputs are written in the frequency
domain as
UðxÞ ¼ U0ðxÞ þ NUðxÞ;
YðxÞ ¼ Y0ðxÞ þ NY ðxÞ;

ð9Þ
with corresponding noise-free input and output
U0ðxÞ ¼ TuðUGðxÞ þ NGðxÞÞ;
Y0ðxÞ ¼ T ðjxÞU0ðxÞ;

ð10Þ
and input and output noise
NUðxÞ ¼ TuMUðxÞ;
NY ðxÞ ¼ TyðNPðxÞ þMY ðxÞÞ:

ð11Þ
In these equations, UG;NG;NP ;MU ;MY represent frequency-domain representations of the time-domain signals
ug ;ng ;np;mu;my indicated in Fig. 2.

The following assumptions are introduced regarding the noise, and are consistent with [15, Section 16.16]:

Assumption 2 (Noise disturbance). The DFTs NUðxÞ;NY ðxÞ of the noise signals in (11) are circular complex normally
distributed. This leads to the following properties:
E NUðxÞ½ � ¼ 0; E NY ðxÞ½ � ¼ 0;

E NUðxÞNT
UðxÞ

h i
¼ 0; E NY ðxÞNT

Y ðxÞ
h i

¼ 0; E NY ðxÞNT
UðxÞ

h i
¼ 0;

E NUðxÞNH
UðxÞ

h i
¼ CUðxÞ; E NY ðxÞNH

Y ðxÞ
h i

¼ CYðxÞ; E NY ðxÞNH
UðxÞ

h i
¼ CYUðxÞ:

ð12Þ
Assumption 3 (Noise disturbance – continued). The noise signals NU ;NY in (11) are independent of the signals U0;Y0 in (10).
Under Assumptions 2 and 3, and under the assumption that there is no input noise, i.e. CU ¼ CYU ¼ 0, it is shown in [15]

that the H1 estimator (8) is unbiased. The latter assumption holds if U is measured with a sufficiently large SNR, which is
discussed further in Section 5. Under the same assumptions, T̂ is asymptotically circular complex normally distributed
where an estimation for the covariance matrix of T̂ is given by [15, Section 7.2.3]
CovðvecðT̂ ðjxÞÞÞ ¼ 1
M

bS�1
UUðxÞ

� �T
� bCYðxÞ; ð13Þ
where the output noise covariance is estimated as
bCYðxÞ ¼ M
q
bSYYðxÞ � bSYUðxÞbS�1

UUðxÞbSH
YUðxÞ

� �
; ð14Þ
with q ¼ M � nu the number of degrees of freedom in the residual [15]. Eq. (13) results in an ðnynuÞ � ðnynuÞ matrix. The

entries on the main diagonal of this matrix represent estimations of the squared standard deviations r̂2ðT̂ i;jÞ for all entries
½i; j� of T̂ , with i 2 f1; . . . ;nyg; j 2 f1; . . . ;nug. Subsequently, the most compact 95% confidence region for each entry ½i; j� of T̂ is

defined as a circle with radius
ffiffiffi
3

p
r̂ðT̂ i;jÞ [15, Section 7.2.4]. This region is used to indicate the uncertainty due to output noise

in the measurements presented in Section 6.
Note that the previous conditions regarding bias and the 95% confidence region assume that CU ¼ CYU ¼ 0. Moreover, the

H1 estimator assumes that bSUU is invertible, i.e. there is sufficient uncorrelated spectral power in all input directions. How-
ever, these assumptions are violated when one or more input directions are strongly correlated or have a poor SNR due to
insufficient spectral power. As a consequence, the estimated FRF and the 95% confidence regions might become inaccurate.

To assess the quality of bSUU, an input excitation analysis and design method is presented in Section 5.
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Remark 4. In (8), the direct estimation method has been applied [15], i.e. the estimation of T is based on measurement data
of u and y only. An alternative is to use the indirectmethod [15], which also uses data of the user-defined shaker forces r and
therefore can provide unbiased estimates for T even if there is a significant contribution of (input) noise. However, the
drawback of indirect methods is that ng , which includes useful environmental floor excitations, cannot be used for
identification. Therefore, indirect methods are not useful in view of the considered problem in this paper.
5. Input excitation analysis and design

In order to accurately estimate T , the input excitations of the base frame must satisfy two requirements. First, bSUU must
be invertible, and second, the 95% confidence regions must be sufficiently small. These requirements are generally not sat-
isfied in experiments with only environmental vibrations. In that case, BF vibrations can be augmented with shaker excita-
tions. Proper design of the shaker input signals is essential to achieve sufficient BF excitation while minimizing the
experiment cost. This design problem is known in literature as optimal input design [16]. This section presents two steps
towards such an input design method. In the first step, requirements for the spectral input power are derived to accurately
estimate T . In the second step, Cartesian input directions are detected that need shaker excitations to fulfill the requirements
with minimum experiment cost.

Remark 5. Many examples can be found in literature to optimize the input signal such that a parametric model can be fitted
with a sufficiently low variance, see, e.g., [16] and the references therein. In this paper, however, the main objective is to find
an input signal to minimize the bias and variance of an estimated non-parametric model (FRF). Since the frequency data
points are independent, input design will be performed by optimizing the SNR at all frequency points of interest. Afterwards,
optimal time-domain signals for shaker excitations can be generated, see, e.g., [16,35].
5.1. Requirements on spectral input power

Requirements on spectral input power should be such that bSUU is invertible and the 95% confidence regions are suffi-
ciently small, see Section 4.2. In the following, it will be shown that these two requirements can be assessed via principal
component analysis [33,36], which evaluates the uncorrelated input excitations. For this analysis method, the original sensor

signals fU1 are used rather than the transformed Cartesian coordinates U for two reasons. First, it ensures that all sensor units
are the same, i.e. m/s2, to prevent unit scaling problems. Second, it preserves a specific structure of the noise covariance
matrix, which will be further explained in Section 5.1.1. This structure would otherwise have been lost by multiplication
of the signals with transformation matrix Tu. First, principal component analysis will be presented, and, second, conditions
are derived to satisfy the requirements.

5.1.1. Principal component analysis

The principal components are calculated by the eigenvalue decomposition (EVD) of bSeU1
eU1
, which is the PSD matrix of fU1

and which is defined similar to (7). By definition, bSeU1
eU1

is a Hermitian matrix (A ¼ AH) which has an EVD
bSeU1
eU1
ðxÞ ¼ eTQ ðxÞ~KðxÞeTH

Q ðxÞ: ð15Þ
In (15), ~KðxÞ ¼ diagð~k1ðxÞ; . . . ; ~knðxÞÞ contains the eigenvalues of bSeU1
eU1
ðxÞ that represent spectral powers of the principal

components, and the columns of the nu � nu unitary matrix eTQ ðxÞ contain the normalized eigenvectors that indicate the

directions of the principal components. Matrix eTQ can be used to transform the noisy sensor signals fU1 to the noisy principal

coordinates eQ via
eQ ðxÞ ¼ eTH
Q ðxÞfU1ðxÞ ¼ eTH

Q ðxÞU1ðxÞ þ eTH
Q ðxÞMUðxÞ; ð16Þ
with noise-free excitation signal U1 and noiseMU as defined in Fig. 2. The noise term eTH
QMU contributes to eQ , which can lead

to bias in the estimated power and directions of the principal components. To deal with this problem, the following assump-
tion is introduced regarding the noise.

Assumption 6. The noise signals in MUðxÞ are uncorrelated, have zero mean, and variance r2
accðxÞ such that U1ðxÞ has

noise covariance matrix CU1U1 ðxÞ ¼ r2
accðxÞInu .

Assumption 6, which has also been used in [36], can be motivated from the fact that accelerometers of the same type are
used to measure U1. Therefore, it is reasonable to assume that all accelerometers have uncorrelated measurement noise with
similar standard deviation. Under Assumptions 3 and 6, and for the number of averagesM ! 1, the eigenvectors of the prin-
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cipal components derived from the noisy measurements fU1 asymptotically converge to the eigenvectors of the principal
components that would be obtained from a noise-free measurement of U1. Under the same conditions, each principal com-
ponent is measured with signal-to-noise ratio
ðSNRÞiðxÞ ¼
~kiðxÞ

r2
acc;uðxÞ ; i 2 f1; . . . ;nug: ð17Þ
(see Appendix B) with ~ki the diagonal elements from ~K in (15).

5.1.2. Conditions for input SNR
The result in (17) can be used to check if the input excitations in u1 are sufficiently powerful and uncorrelated such that

the input spectrum is invertible. To ensure this, all principal components should have sufficient SNR, or
~kiðbSeU1
eU1
ðxÞÞ > ðSNRminÞr2

acc;uðxÞ; 8i; ð18Þ
with ðSNRminÞ the user-defined minimum SNR.
Given that the input spectrum is invertible, identification of T ðjxÞ with a low variance and a small 95% confidence region

is desired. To this end, conditions regarding the variance are translated to conditions on the spectral input power in Appen-
dix C. The resulting condition is given by
~ki bSeU1
eU1
ðxÞ

� �
>

1
M

r2
acc;yðxÞ

ðVARmaxÞ12ðxÞ ; 8i: ð19Þ
with M the number of averaged windows, and r2
acc;y the sensor noise level of the payload accelerometers. ðVARmaxÞ 2 R is

user-defined and gives the allowed variance relative to 1 which is the lowest singular value of T l ¼ T�1
y T Tu representing

the transmissibility matrix in local sensor coordinates, i.e. from U1 to Y1.
Conditions (18) and (19) can be replaced by the single condition
~kiðbSeU1
eU1
ðxÞÞ > max ðSNRminÞ r2

acc;uðxÞ; 1
M

r2
acc;yðxÞ

ðVARmaxÞ12ðxÞ

 !
; 8i: ð20Þ
If (20) is not satisfied for all i, the BF excitation power needs to be increased using shakers. In view of minimizing experiment
cost, only the power of insufficiently excited directions should be increased. This requires knowledge about the weakest
excited directions. This information can be obtained from a method that calculates the so-called projection similarity, which
is explained in Section 5.2.

5.2. Projection similarity

This section proposes the projection similarity, which is a performance measure that can be used to discriminate between
the input directions with sufficient and insufficient excitation power. This information can subsequently be used for input
design of the shaker signals. To determine the projection similarity, first the set of vectors fx1; . . . ; xnug representing the
Cartesian components expressed in sensor coordinates is defined:
T�1
u ¼ x1ðxÞ x2ðxÞ . . . xnuðxÞ½ �: ð21Þ
When the vectors with Cartesian components are normalized, one obtains
�xiðxÞ ¼ 1
kxik2

xi; i 2 f1; . . . ;nug; ð22Þ
with k . . . k2 representing the 2-norm. A second set of eigenvectors fq1; . . . ; qnug corresponding to the principal components
expressed in sensor coordinates is defined as
TQ ðxÞ ¼ q1ðxÞ q2ðxÞ . . . qnu ðxÞ
� �

: ð23Þ
Next, the normalized Cartesian components �xi are written as a linear combination of the principal components qi:
�xiðxÞ ¼ c1ðxÞq1ðxÞ þ � � � þ cnuðxÞqnu ðxÞ; with

c1ðxÞ
..
.

cnu ðxÞ

2664
3775 ¼ T�1

Q ðxÞ�xiðxÞ; i 2 f1; . . . ;nug: ð24Þ
Now suppose that only the first m principal components have sufficient spectral power. Then, (24) can be written as
�xiðxÞ ¼ c1ðxÞq1ðxÞ þ � � � þ cmðxÞqmðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�̂xiðxÞ

þ cmþ1ðxÞqmþ1ðxÞ þ . . .þ cnu ðxÞqnuðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�x?
i
ðxÞ

; i 2 f1; . . . ;nug: ð25Þ
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In (25), �̂xi represents the orthonormal projection of �xi in the subspace spanned by the sufficiently excited principal compo-
nents fq1; . . . ;qmg. This is because the vectors qi form an orthonormal basis for fq1; . . . ;qnug since TQ is a unitary matrix by
definition of (15). Define ðPEÞi 2 ½0;1� as the projection error of the ith Cartesian component, i.e.,
Fig. 3.
and dir
ðPEÞiðxÞ ¼ k�xiðxÞ � �̂xiðxÞk2; i 2 f1; . . . ; nug: ð26Þ
The maximum projection error equals 1, because the length of �xi is 1. From ðPEÞi, the projection similarity in the ith Cartesian
component ðPSÞi 2 ½0;1� is defined as
ðPSÞiðxÞ ¼ 1� ðPEÞiðxÞ; i 2 f1; . . . ; nug: ð27Þ
The projection similarity (PS) gives information about the ability to express a Cartesian component as a linear combination of
the sufficiently excited principal components. On the one hand, a high PS means a large spectral power in that Cartesian
component of the BF excitation. On the other hand, a low PS means that there will be little spectral power in that Cartesian
component, and shakers should be used to increase the power. As such, the PS provides a tool for input design of the shaker
signals, which is demonstrated during the experimental validation in the next section.

6. Experimental results

The results of two identification experiments are presented in this section to show the viability of the proposed approach
to deal with heavy-weight systems. In the first experiment, the shakers are switched off such that the BF is only excited by
environmental floor vibrations. The results of this experiment are used to gain insight in the spectral input power and direc-
tions of the environmental excitations. Based on these results, the shaker excitation signals are designed such that the BF
excitation power is sufficiently increased for all frequencies and in all directions.

The shaker experiment design step is described in Section 6.1. The resulting FRF estimates for the transmissibility matrix
T from both experiments are presented and validated with the parametric model in Section 6.2. For both experiments, a 10-
min long measurement sequence of u and y is conducted, which is split up into 60 sub-records of 10 s each. Each sub-record
is filtered using a Hanning window. To compensate for data loss due to windowing, a 50% overlap factor is used resulting in
averaging over M ¼ 119 subrecords. For clarity of presentation, only the directions ðz; hx; hyÞ are considered, but the results
directly apply to the directions ðx; y; hzÞ.

6.1. Experiment design: shaker signals

As explained in Section 5, the input spectral power should be such that bSUU is invertible and that the 95% confidence
region is sufficiently small. These requirements are validated by considering the SNR condition in (20). To this end, consider

the plot in Fig. 3a representing the spectral powers of the principal components of bSeU1
eU1
. For the experiment without shaker

excitation it is observed that only one principal power is above the line of minimum power in the frequency region from 2 to
15 Hz. The minimum power is defined according to (20) with ðSNRminÞ ¼ 30, such that the SNR is sufficiently above the ADC

noise floor of 3:3 � 10�12 ðm=s2Þ2=Hz, and the relative variance ðVARmaxÞ ¼ 0:1 such that the 95% confidence region is suffi-
ciently small. The local transmissibility matrix is estimated as T l ¼ T�1

y T Tu using the parametric model for T in (A.6). When
Analysis of the BF excitation for both experiments. The experiment without shaker excitation shows insufficient power in multiple frequency regions
ections. By enabling the shakers, sufficient power is obtained for almost all frequencies.
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analyzing the projection similarity (PS) plot in Fig. 3b, it is observed that for frequencies between 2 and 15 Hz the floor is
mainly exciting the BF in the z-direction, while there is almost no excitation in the hx- and hy-directions. Outside this fre-
quency region, the excitation level is clearly insufficient in all directions.

For the second experiment, shakers are used to increase the spectral input power. Since Fig. 3b shows that the floor is not
providing sufficient power in any of the three Cartesian components beyond 15 Hz, three shakers are enabled simultaneously
to increase the spectral power in all three directions. The input signals for the shakers consist of three uncorrelated white
noise signals, which are filtered such that all principal powers are exceeding the minimum required power at most frequen-
cies. Using the shakers, Fig. 3a shows that the spectral power of all principal components is greatly increased. For frequencies
below 10 Hz it is difficult to largely increase the BF excitation level due to the mechanical limits of the shakers, but the figure
shows that for frequencies beyond 4 Hz (almost) all directions now have a sufficient SNR. The figure also shows the benefit of
combining the spectral power from the floor and the shakers. The spectral power from the floor drops for frequencies beyond
10 Hz, while the shakers are not able to dominate all principal components of the floor for frequencies below 7 Hz. Consid-
ering Fig. 3b, it is observed that all three Cartesian coordinates now have a PS of 1, hence sufficient excitation, for frequencies
beyond 4 Hz. At low frequencies there is still insufficient excitation, in particular in the hx- and hy directions, to provide a reli-
able estimate. For these frequencies and directions, the parametric model can be used to estimate T .

6.2. Transmissibility matrix measurements

Bode plots are presented for both experiments to show bT as defined in (8), and the most compact 95% confidence region
as defined in Section 4.2. The measurement results are compared with the parametric model presented in Section 2.2 to val-
idate the measurements.

6.2.1. Experiment with only floor excitations

Fig. 4 shows measurement results for T̂ in the first experiment where the shakers are disabled. Below 20 Hz, only the
subplots having zb as input are trusted because the floor is mainly exciting the BF in this direction, recall Fig. 3b. Only in these
parts of Fig. 4 the confidence regions are sufficiently small, and the measured FRF generally coincides with the parametric
model. The latter indicates that the parametric model is sufficiently accurate at the lower frequencies. The measured FRFs
also show the roll-off as predicted by the model up to 20 Hz, clearly showing the benefit of vibration isolation. Moreover,
Fig. 4. Bode magnitude plot showing the transmissibility matrix T̂ for the first experiment with only floor excitations. The solid blue lines represents T̂ ,
while the shaded areas represent the 95% confidence regions as defined in Section 4.2. The dashed black lines correspond to the modeled transmissibility
matrix, see (A.6). In this experiment, T̂ is only accurate in the zb input directions between 2–10 Hz because only this region has sufficient excitation power,
see Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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all three subplots have a desired small confidence region between 2 and 10 Hz, indicating sufficient output SNR. Beyond 15
Hz, the roll-off in T̂ stops, but here the requirements regarding the input are not satisfied (see Fig. 3b), which leads to a large
uncertainty (see Fig. 4), hence an unreliable FRF estimate.

In general, the FRF measurements for this experiment should be taken with care because bSUU is ill-conditioned. Although
the projection similarity for zb is close to 1 for frequencies 2–15 Hz, the FRF could be heavily biased due to cross-coupling in
the transmissibility matrix. In that case, a small perturbation of a discarded principal component in (25) might still give a
large difference in the output responses, leading to inaccurate FRF estimates.
6.2.2. Experiment with floor and shaker excitations

Fig. 5 shows measurement results for T̂ in the second experiment with enabled shaker excitations. Along the plots, three
vertical suspension modes appear around 3–5 Hz. At 1.5 Hz, a horizontal suspension mode appears due to cross-coupling in
T and non-perfect alignment of the setup. Below 4 Hz, significant discrepancies are visible between the model and the mea-
surement. In this region, the model should be correct because below the suspension modes the main diagonal of the trans-
missibility matrix should have 0 dB magnitude while the off-diagonal terms tend to zero for lower frequencies, see Remark 7
in Appendix A. The incorrect measurement at low frequencies is mainly due to an insufficient input SNR, see Fig. 3b. For the
mid- and higher frequencies, Fig. 5 shows a good agreement between the measurement and the parametric model. Com-
pared to Fig. 4 of the first experiment, Fig. 5 shows better roll-off beyond 15 Hz in all directions, as predicted from the para-
metric model. The 95% confidence regions are very small, indicating a sufficient output SNR and a reliable FRF estimate. At
the higher frequencies, some (anti-) resonance peaks appear due to flexibilities in the BF. In fact, beyond the first resonance
frequency around 27 Hz. Then, the BF can no longer be considered as a rigid body, such that four accelerometers at the BF are
necessary to uniquely measure T . Note that the accelerometers are not perfectly aligned with the air mounts which can
induce the visibility of structural dynamics of the BF, recall Section 2.2. In addition, the first resonance frequency of the pay-
load occurs at 121 Hz, which is also responsible for the occurrence of anti-resonances at the lower frequencies.

Another potential cause of additional anti-(resonances) and bias showing up is found in the fact that horizontal BF exci-
tations are neglected. However, the shakers also induce parasitic horizontal motion at the isolator locations because the
shakers are not perfectly aligned with the isolators. Since the validation was only concerned with estimations in the direc-
tions ðz; hx; hyÞ, vertical payload motion due to horizontal BF excitation and mechanical cross-coupling in the transmissibility
matrix shows up as output noise np, which is correlated with the vertical BF excitations. As such, Assumption 2 for
Fig. 5. Bode magnitude plot showing the transmissibility matrix for the second experiment with both floor and shaker excitations. The solid red lines
represent T̂ , while the shaded areas represent the 95% confidence regions as defined in Section 4.2. The dashed black lines correspond to the modeled
transmissibility matrix, see (A.6). Compared to Fig. 4, T̂ is now accurately estimated for most frequencies and input directions due to increased excitation
power, see Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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uncorrelated output noise no longer holds, which leads to bias in T̂ . However, since both the parasitic horizontal excitation
and the horizontal-to-vertical cross-coupling are expected to be sufficiently small with respect to the vertical excitation and
the vertical-to-vertical coupling in the transmissibility matrix, it is generally considered fair to neglect this parasitic effect.

7. Conclusions

A non-parametric identification approach based on spectral analysis is presented to estimate the transmissibility matrix
of an industrial active vibration isolation system. Measurements without shaker excitation can only provide a good FRF esti-
mate for the outputs related to the zb input direction, because floor vibrations mainly occur in this input direction. This fol-
lows from the developed analysis method based on principal component analysis. Measurements with enabled shaker
excitation can provide reliable measurements for frequencies from 4 to 100 Hz in three directions. This result is obtained
by proper input design of the shaker signals as described in this paper. For lower frequencies, the shakers are unable to suf-
ficiently excite the BF. The measurements are validated using a parametric model for the transmissibility matrix, which can
be derived from the compliance function that is accurately identified. This validation generally shows a good fit of the mea-
surement with the parametric model, and completes the transmissibility matrix estimation as a whole.
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Appendix A. Derivation of the parametric model

A parametric model of the transmissibility matrix can be derived indirectly from the so-called compliance matrix C. The
latter represents the transfer function matrix from payload forces f l to payload motion xp, see Fig. A.6. Since the AVIS con-
sidered in Section 2 is a so-called active vibration isolation system, each isolator contains a horizontal and a vertical Lorentz
actuator intended for active vibration isolation and denoted by f lðtÞ 2 R8. This appendix shows that, under some modeling
assumptions, these actuators can also be used to indirectly identify T using three steps. First, the FRF of C is measured, see,
e.g., [37]. Second, a parametric model CðsÞ is fitted on the FRF to provide numerical values for the system’s mass matrix M,
damping matrix D, and stiffness matrix K. Third, the system matrices are used to derive a parametric model describing the
FRF of the transmissibility matrix T .

The first step is to measure the FRF of C. To this end, the actuator forces f l are transformed to the Cartesian coordinate
frame, such that they represent three forces acting on the payload in the directions xp; yp; zp, and three moments acting

on the payload in the directions hx;p; hy;p; hz;p. The transformed forces are denoted by f lðtÞ 2 R6 and, considering again small
displacements, are given by
Fig. A.6
payload
on a sti
f lðtÞ ¼ Bf lðtÞ; B 2 R6�8: ðA:1Þ
Fig. A.7 shows the measured FRF of C. It is shown in [37] that this FRF can be measured accurately with a low bias and vari-
ance by using periodic excitations provided by f l.

The second step is to fit the measured FRF of C with a parametric model. In this model, the BF and payload are considered
as rigid bodies. Define xp and xb as the vector with payload and BF displacements locally at each air mount, and xp and xb as

the payload and BF displacements described in Cartesian coordinates from the CoG, see (1). Furthermore, each air mount is
modeled as a combination of three springs kx;i; ky;i; kz;i and three dampers (dx;i; dy;i; dz;i), with i 2 f1;2;3;4g, see Fig. 1b. Each air
mount generates, in all three directions q 2 fx; y; zg, a reaction force �kq;iðqp;i � qb;iÞ � dq;ið _qp;i � _qb;iÞ, with qp;i; qb;i representing
the local payload and BF displacements at the location of air mount i in direction q. Then, the equations of motion are derived
from Newton’s second law applied to all six rigid-body coordinates of the payload’s CoG:
M €xpðtÞ þ D _xpðtÞ þ KxpðtÞ ¼ D _xbðtÞ þ KxbðtÞ þ f lðtÞ; ðA:2Þ
. Block diagram for the AVIS. The input vectors represent BF displacements xb and Lorentz actuator forces f l . The output vector xp represents the
displacements. The transfer functions T and C are called the transmissibility matrix and compliance matrix, respectively. Since the AVIS is placed
ff floor, and actuator forces are small, it is assumed that xb and f l can be considered as independent input signals.



Fig. A.7. Bode magnitude plot of the compliance matrix C. solid gray: measured FRF, dashed black: fitted parametric model.
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with global mass M, local damping matrix D, and local stiffness matrix K as given in Appendix D. Under the assumption that
the air mounts are perfectly aligned, there exists a transformation matrix Tb, see Appendix D, such that xb ¼ Tbxb and
xp ¼ Tbxp. Then, (A.2) is transformed to
M €xpðtÞ þ D _xpðtÞ þ KxpðtÞ ¼ D _xbðtÞ þ KxbðtÞ þ f lðtÞ; ðA:3Þ
with global damping and stiffness matrix
D ¼ DTb; K ¼ KTb: ðA:4Þ
Taking the Laplace transform of (A.3),
ðMs2 þ Dsþ KÞXpðsÞ ¼ ðDsþ KÞXbðsÞ þ FlðsÞ; ðA:5Þ
with Laplace variable s;LfxbðtÞg ¼ XbðsÞ;LfxpðtÞg ¼ XpðsÞ;Lff lðtÞg ¼ FlðsÞ. Recalling the definitions for T and C from Fig. A.6,
parametric expressions are derived from (A.5) as
T ðsÞ ¼ ðMs2 þ Dsþ KÞ�1ðDsþ KÞ; ðA:6Þ

CðsÞ ¼ ðMs2 þ Dsþ KÞ�1
: ðA:7Þ
Fig. A.7 shows a comparison between a measured FRF for C and a fit of the parametric model given in (A.7) for the direc-
tions ðz; hx; hyÞ. Note that, for clarity of presentation, the directions x; y; hz are omitted. The figure shows that the parametric
model fits well at the lower frequencies where the model assumptions are valid. In the figure, three vertical suspension
modes of the AVIS are visible in the frequency range 3–5 Hz. The system shows good decoupling for frequencies beyond
the suspension frequencies (>5 Hz). At 1.5 Hz, a horizontal suspension mode is visible due to a small cross-coupling effect
in the AVIS between the horizontal force inputs and the vertical payload motion.

The third step is to calculate the modeled FRF T ðjxÞ which can be obtained for every frequency x by substitution of
s ¼ jx in (A.6). Note that this lumped-element model does not include higher-order dynamics due to limited BF and payload
stiffness. Moreover, the model does not include higher-order dynamics due to non-perfect air mounts. Therefore, the mod-
eled FRF is expected to be valid only at low frequencies, and definitely not sufficient for the main goal of this paper as
described in Section 3.
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Remark 7. By using the same coordinate system for xb and xp, the transmissibility matrix reduces to an identity matrix at
very low frequencies, i.e. T ! I6. Indeed, at low frequencies the complete system behaves as a single rigid-body such that
xb ¼ xp. This result follows immediately from (A.6) by substitution of s ¼ jx, and taking the limit for x ! 0.
Appendix B. Proof of Eq. (19)

Using the definition of eQ from (16), its power spectrum can be written as
bSeQ eQ ðxÞ ¼ eTH
Q ðxÞbSU1U1 ðxÞeTQ ðxÞ þ eTH

Q ðxÞbSU1MU ðxÞeTQ ðxÞ þ eTH
Q ðxÞbSMUU1 ðxÞeTQ ðxÞ þ eTH

Q ðxÞbCU1U1 ðxÞeTQ ðxÞ: ðB:1Þ
By definition of the EVD in (15), eQ has a diagonal power spectrum bSeQ eQ ¼ K. Under Assumption 3 such that U1 and MU are

uncorrelated, it follows that bSU1MU and bSMUU1 asymptotically converge almost sure to zero forM ! 1. Under Assumption 6, it

holds that CU1U1 ! r2
accInu . Moreover, eTQ

eTH
Q ¼ Inu because eTQ is a unitary matrix, see (15). Then, (B.1) reduces to
~KðxÞ ¼ KðxÞ þ r2
accðxÞInu ; with KðxÞ ¼ eTH

Q ðxÞbSU1U1 ðxÞeTQ ðxÞ: ðB:2Þ
Since ~K is a diagonal matrix by the grace of (15), and r2
accInu is a diagonal matrix, it follows from (B.2) that K must be a diag-

onal matrix. In other words, the noise-free power spectrum bSU1U1 ðxÞ must have an EVD that equals bSU1U1 ¼ eTQKeTH
Q , hence

the eigenvectors of the noisy and noise-free principal components coincide. Moreover, since (B.2) represents a set of decou-
pled equations, it follows that for M ! 1 the spectral power of the ith principal component is given by
E eQ iðxÞeQH
i ðxÞ

h i
¼ ~kiðxÞ ¼ kiðxÞ þ r2

accðxÞ; ðB:3Þ
with noise-free spectral power ki. Then, the SNR is given by the total power ~ki divided by the noise power r2
acc, which results

in (17) and which completes the proof.

Appendix C. Derivation of required input power for low variance

This section derives requirements for the spectral input power to obtain a sufficiently low variance of the FRF. Recall the
expression for the covariance matrix from (13), and note that, when using local sensor coordinates, this variance is given by
CovðvecðT̂ lðjxÞÞÞ ¼ 1
M

ðbS�1eU1
eU1

ðxÞÞ
T
� bCY1 ðxÞ: ðC:1Þ
Under the assumption that ny ¼ nu, the input is measured free of noise, and the output covariance matrix is given by
CY1Y1 ðxÞ ¼ r2

acc;yðxÞInu (similar to Assumption 6), it follows that the covariance matrix has nu unique singular values given by
ri CovðvecðT̂ lðjxÞÞÞ
� �

¼ ri
r2

acc;yðxÞ
M

ðbS�1eU1
eU1

ðxÞÞ
T

 !
; i 2 f1; . . . ;nug: ðC:2Þ
This can be rewritten to
ri CovðvecðT̂ lðjxÞÞÞ
� �

¼
r2

acc;yðxÞ
M

1

ri
bSeU1
eU1
ðxÞ

� � ; i 2 f1; . . . ;nug: ðC:3Þ
Next, an upper bound on the variance is defined as ri CovðvecðT̂ lðjxÞÞÞ
� �

6 ðVARmaxÞ12ðxÞ for all i 2 f1; . . . ; nug. Here,

ðVARmaxÞ 2 R is user-defined and gives the allowed variance relative to 1 which is the lowest singluar value of
T l ¼ T�1

y T Tu representing the transmissibility matrix in local sensor coordinates, i.e. from U1 to Y1. Substitution of this upper
bound in (C.4), the following condition regarding the input spectral power is obtained:
ri
bSeU1
eU1
ðxÞ

� �
P

r2
acc;yðxÞ
M

1
ðVARmaxÞ12ðxÞ ; 8i: ðC:4Þ
Since bSeU1
eU1

is a hermitian matrix (A ¼ AH), the singular values are identical to the eigenvalues ~ki that would be obtained from

an eigenvalue decomposition. Therefore, (C.4) can also be written as
~kiðbSeU1
eU1
ðxÞÞ P 1

M
r2

acc;yðxÞ
ðVARmaxÞ12ðxÞ ; 8i: ðC:5Þ
with ~ki the eigenvalues of bSeU1
eU1

which correspond with the spectral powers of the principal components.
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Appendix D. Matrices and vectors for the parametric model

This appendix presents the matrices and vectors for the parametric model, where numerical values for the used param-
eters can be found in Table A.1.
Table A
Model p

k1x
k1y
k1z
d1x
d1y
d1z
Jxx
Jyy
Jzz
m

xm ¼ xm;1 ym;1 zm;1 xm;2 ym;2 zm;2 xm;3 ym;3 zm;3 xm;4 ym;4 zm;4
� �

xb ¼ xb;1 yb;1 zb;1 xb;2 yb;2 zb;2 xb;3 yb;3 zb;3 xb;4 yb;4 zb;4
� �

xm ¼ xm ym zm hm;x hm;y hm;z½ �
xb ¼ xb yb zb hb;x hb;y hb;z½ �
M ¼

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Jxx 0 0
0 0 0 0 Jyy 0
0 0 0 0 0 Jzz

2666666664

3777777775
D ¼

d1x 0 0 d2x 0 0 d3x 0 0 d4x 0 0
0 d1y 0 0 d2y 0 0 d3y 0 0 d4y 0
0 0 d1z 0 0 d2z 0 0 d3z 0 0 d4z

0 hzd1y hyd1z 0 hzd2y �hyd2z 0 hzd3y �hyd3z 0 hzd4y hyd4z

�hzd1x 0 �hxd1z �hzd2x 0 �hxd2z �hzd3x 0 hxd3z �hzd4x 0 hxd4z

�hyd1x hxd1y 0 hyd2x hxd2y 0 hyd3x �hxd3y 0 �hyd4x �hxd4y 0

2666666664

3777777775
K ¼

k1x 0 0 k2x 0 0 k3x 0 0 k4x 0 0
0 k1y 0 0 k2y 0 0 k3y 0 0 k4y 0
0 0 k1z 0 0 k2z 0 0 k3z 0 0 k4z
0 hzk1y hyk1z 0 hzk2y �hyk2z 0 hzk3y �hyk3z 0 hzk4y hyk4z

�hzk1x 0 �hxk1z �hzk2x 0 �hxk2z �hzk3x 0 hxk3z �hzk4x 0 hxk4z
�hyk1x hxk1y 0 hyk2x hxk2y 0 hyk3x �hxk3y 0 �hyk4x �hxk4y 0

2666666664

3777777775
Tb ¼

1 0 0 0 �hz �hy

0 1 0 þhz 0 þhx

0 0 1 þhy �hx 0
1 0 0 0 �hz þhy

0 1 0 þhz 0 þhx

0 0 1 �hy �hx 0
1 0 0 0 �hz þhy

0 1 0 þhz 0 �hx

0 0 1 �hy þhx 0
1 0 0 0 �hz �hy

0 1 0 þhz 0 �hx

0 0 1 þhy þhx 0

26666666666666666666666664

37777777777777777777777775
.1
arameters of the six-axis vibration isolator.

8455 N/m k2x 6476 N/m k3x 6476 N/m k4x 8455 N/m
7824 N/m k2y 7824 N/m k3y 6757 N/m k4y 6757 N/m
39574 N/m k2z 30376 N/m k3z 33131 N/m k4z 15401 N/m
33 N s/m d2x 12 N s/m d3x 12 N s/m d4x 33 N s/m
48 N s/m d2y 48 N s/m d3y 14 N s/m d4y 14 N s/m
173 N s/m d2z 79 N s/m d3z 70 N s/m d4z 110 N s/m
30 kg m2 hx 0.475 m
41 kg m2 hy 0.375 m
60 kg m2 hz 0.185 m
289 kg
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