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Abstract
Introduction: On-scene detection of acute coronary occlusion (ACO) during ongoing ventricular fibrillation (VF) may facilitate patient-tailored triage

and treatment during cardiac arrest. Experimental studies have demonstrated the diagnostic potential of the amplitude spectrum area (AMSA) of the

VF-waveform to detect myocardial infarction (MI). In follow-up, we performed this clinical pilot study on VF-waveform based discriminative models to

diagnose acute MI due to ACO in real-world VF-patients.

Methods: In our registry of VF-patients transported to a tertiary hospital (Nijmegen, The Netherlands), we studied patients with high-quality VF-

registrations. We calculated VF-characteristics prior to the first shock, and first-to-second shock changes (D-characteristics). Primary aim was to

assess the discriminative ability of the AMSA to detect patients with ACO. Secondarily, we investigated the discriminative value of adding

DAMSA-measures using machine learning algorithms. Model performances were assessed using C-statistics.

Results: In total, there were 67 VF-patients with and 34 without an ACO, and baseline characteristics did not differ significantly. Based on the AMSA

prior to the first defibrillation attempt, discrimination between ACO and non-ACO was possible, with a C-statistic of 0.66 (0.56–0.75). The discrim-

inative model using AMSA + DAMSA yielded a C-statistic of 0.80 (0.69–0.88).

Conclusion: These clinical pilot data confirm previous experimental findings that early detection of MI using VF-waveform analysis seems feasible,

and add insights on the diagnostic impact of accounting for first-to-second shock changes in VF-characteristics. Confirmative studies in larger

cohorts and with a variety of VF-algorithms are warranted to further investigate the potential of this innovative approach.

Keywords: Cardiac arrest, Ventricular fibrillation, Waveform analysis, Acute myocardial infarction, Acute coronary syndrome, Machine

learning
Introduction

Ventricular fibrillation (VF) out-of-hospital cardiac arrest (OHCA)

occurs frequently and carries a poor prognosis.1 In many cases,

the cause of VF is acute coronary occlusion (ACO), for which early

coronary angiography (CAG) and intervention might be beneficial.2

At present, identification of ACO is restricted to the subset of patients

regaining organised rhythm,3 which hampers timely and aetiology-

directed treatment for the VF-population as a whole. A potential tool

for earlier detection of an ACO may be analysis of the VF-waveform

of the defibrillator-derived electrocardiogram (ECG).
VF-waveform characteristics, particularly the amplitude spectrum

area (AMSA), are increasingly recognised as predictors of defibrilla-

tion success and survival.4,5 In terms of potential new treatment

options, real-time AMSA-quantification has been incorporated in

“smart” defibrillators to guide shock delivery, an innovative tech-

nique under active investigation in a randomised trial to try and

improve defibrillation success (NCT03237910).

From the perspective of diagnostic options using VF-waveform

analysis, the first in-human experimental data have recently been

published demonstrating the feasibility to detect myocardial infarction

(MI). These findings gave rise to the innovative concept of a diagnos-
es/

nds.
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tic defibrillator.6 Several clinical studies have shown associations

between MI, VF-signal characteristics and changes in VF-

morphology during the course of the arrest.7–10

However, a clinical study on the diagnostic performance of VF-

waveform analysis has not yet been performed. To provide first

insights, we present a pilot study in which we studied VF-waveform

based discriminative models to detect acute MI due to ACO in a

real-world VF-cohort.

Methods

Study population

From our OHCA-registry,11 we studied adult VF-patients transported

to the Radboudumc (Nijmegen, The Netherlands). We excluded

patients without (analysable) defibrillator ECG-recordings or with

insufficient information to determine the presence/absence of ACO.

According to local ethical legislation, written informed consent was

not necessary to obtain for this non-interventional observational

study (Dutch Act on Medical Research involving Human Subjects).11

Data acquisition

Collection of baseline characteristics (EMS and hospital records) fol-

lowed Utstein recommendations.12 ECG-signals (sampling fre-

quency 125 Hz) were obtained with defibrillator pads (Lifepak12,

PhysioControl). Signal analyses (Matlab 2020a, Mathworks) were

performed on three-second, artefact-free VF-segments prior to the

first shock for calculation of AMSA (frequency interval 2–48 Hz)

and a series of other commonly studied VF-characteristics (i.e. mean

absolute amplitude, dominant frequency, organisation index).4,6

Moreover, in patients with > 1 shock, we calculated relative changes

between the first and second shock (D-characteristics).9,13

Study aim

Primary aim was to assess the performance of a single-variable

approach to distinguish ACO from non-ACO patients, using AMSA

prior to the first defibrillation attempt. Secondarily, we studied the dis-

criminative ability of machine learning based models combining

AMSA and DAMSA-measures. Finally, we explored models combin-

ing various VF-characteristics.

Group definition

Categorisation into either ACO or non-ACO was based on previously

reported methodology using information from patient charts, CAG/

autopsy findings, and 12-lead ECGs.3,10,14 In short, we firstly
Table 1 – VF-waveform analysis in the detection of acute

Approach Method VF-waveform information

Primary aim: AMSA-only

#1 Single variable AMSA-only

Secondary aim: AMSA + DAMSA

#2 SVM model AMSA-only and AMSA-course

Exploratory analyses: Additional VF-characteristics

#3 SVM model Entire set of VF-characteristics

#4 SVM model Entire set of VF-characteristics and th

Table showing the four different approaches for constructing discriminative models.

coronary occlusion; AMSA = Amplitude spectrum area;, DF = Dominant frequency

vector machine; VF = Ventricular fibrillation; D = Relative changes in VF-character
assessed whether or not patients fulfilled the criteria of the universal

definition of myocardial infarction.3 If so, a patient was classified as

ACO (i) in case an acute occlusion was found during CAG/autopsy

and/or (ii) in case of ST-segment elevation corresponding with acute

localised MI. All other patients were categorised as non-ACO.3,14

Discriminative approaches

For the primary aim (single-variable approach), AMSA was used as

continuous test variable (Table 1). For multiple-variable approaches,

machine learning techniques were used, with the construction of

support vector machine (SVM) models, adhering to previously

reported methodology (Supplement 1).6 For internal validation,

five-fold cross-validation was used (crossval function in Matlab),

according to a cross-validation partition (cvpartition function) in which

each of the five training sets and corresponding validation sets had a

fixed 60/40 ratio of ACO and non-ACO cases.

Statistics

Continuous variables were assessed for normal distribution. In case

of non-normality, data were described as medians (interquartile

ranges) and compared using Mann Whitney U-tests. Categorical

variables were presented as numbers (percentages) and compared

using v2-tests (SPSS 25, IBM). Receiver operating characteristic

(ROC) analysis was performed (MedCalc 19.1.3, MedCalc Software)

for assessment of discriminative ability. C-statistics (95% CI) were

considered the main outcome measure for model performances,

and compared using DeLong’s method. P < 0.05 was considered

statistically significant.

Results

Baseline characteristics and VF-characteristics

Of the 253 OHCA VF-patients transported to the Radboudumc, 102

were excluded due to the lack of (analysable) ECG-tracings and 40

due to insufficient clinical information to determine ACO-status (Sup-

plement 2). Of the 111 analysed patients, median age was 62 years,

71% were men and ACO was present in 60%. No differences in

baseline characteristics were observed, except for a trend towards

higher response times in the ACO vs. the non-ACO group (8 vs. 7

minutes, p = 0.05). Seventy-five patients (68%) received > 1 shock

(Table 2). There was a significant difference in AMSA between

ACO and non-ACO patients (14.4 mVHz [7.3–16.4] vs. 8.8 [6.1–

11.9]), p = 0.005, as well as in MAA (0.14 mV [0.10–0.18] vs. 0.11

[0.07–0.14]), p = 0.01.
coronary occlusion: approaches used in this study.

Input features

AMSA

AMSA, DAMSA

AMSA, MAA, DF and OI

eir course AMSA, MAA, DF, OI, DAMSA, DMAA, DDF and DOI

Approaches #2 and #4 only apply to patients receiving > 1 shock. ACO = acute

; MAA = Mean absolute amplitude; OI = Organisation index; SVM = Support

istics between shock 1 and 2.



Table 2 – Characteristics of the study population.

All patients N = 111 ACO N = 67 Non-ACO N = 44 p-value

Demographics

Age (years) 62 (51–71) 60 (49–71) 62 (54–62) 0.45

Male sex 79 (71) 49 (73) 30 (68) 0.57

Arrest characteristics

Public arrest 49 (44) 30 (45) 19 (43) 0.87

Witnessed arrest (n = 108) 93 (86) 57 (88) 36 (84) 0.56

Bystander CPR (n = 108) 72 (77) 44 (68) 28 (65) 0.78

AED shock (n = 108) 9 (8) 5 (8) 4 (9) 0.49

Response time (min) (n = 101) 8 (6–10) 8 (6–11) 7 (5–9) 0.05

Number of EMS shocks 3 (1–6) 4 (1–6) 3 (1–5) 0.27

� 2 EMS shocks 75 (68) 47 (70) 28 (64) 0.47

Clinical outcome

Survival to discharge 52 (47) 31 (46) 21 (48) 0.88

VF-waveform

AMSA (mVHz) 9.9 (6.5–14.7) 8.8 (6.1–11.9) 14.4 (7.3–16.4) 0.005

D AMSA 1.13 (0.90–1.54) 1.17 (0.96–1.56) 1.11 (0.92–1.54) 0.63

MAA (mV) 0.12 (0.08–0.16) 0.11 (0.07–0.14) 0.14 (0.10–0.18) 0.01

D MAA 1.12 (0.85–1.40) 1.14 (0.88–1.43) 1.20 (0.88–1.45) 0.59

DF (Hz) 4.00 (2.66–5.65) 3.66 (2.66–5.32) 4.65 (2.66–6.82) 0.17

D DF 1.10 (0.86–1.50) 1.10 (0.89–1.60) 1.13 (0.88–1.41) 0.65

OI 0.47 (0.34–0.62) 0.49 (0.35–0.64) 0.45 (0.33–0.58) 0.16

D OI 0.87 (0.58–1.25) 0.82 (0.58–1.25) 0.97 (0.63–1.49) 0.19

Table showing baseline characteristics in all patients (first column), patients with an underlying ACO (second column) and patients without an underlying ACO (third

column). P-values represent comparisons between ACO and non-ACO patients. ACO = Acute coronary occlusion, CPR = Cardiopulmonary resuscitation,

AED = Automated external defibrillator, EMS = Emergency medical services, AMSA = Amplitude spectrum area, MAA = Mean absolute amplitude, DF = Dominant

frequency, OI = Organisation index, D = Relative change in VF-characteristics between shock 1 and 2 (eg, DAMSA = AMSA2/AMSA1).
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Representative examples of used VF-signals can be found in

Fig. 1.

Identification of ACO

Discrimination between ACO and non-ACO patients with the single-

variable approach (using only the AMSA prior to the first shock)

resulted in a C-statistic of 0.66 (0.56–0.75), Fig. 2, left panel. The

SVM-model using AMSA and DAMSA resulted in a C-statistic of

0.80 (0.69–0.88), Fig. 2, right panel. Models that combined AMSA-

based measures with the other studied VF-characteristics did not

improve diagnostic performance (Supplement 3).

Discussion

In the setting of cardiac arrest, we present the first clinical study on

the diagnostic performance of VF-waveform analysis of

defibrillator-derived ECG-measures. We found that AMSA was mod-

erately able to detect patients with an ACO, while incorporation of

DAMSA-measures tended to improve diagnostic performance.

These pilot-data require further confirmation, as this innovative tech-

nology may eventually contribute to earlier diagnosis and timely

triage of OHCA-victims with a treatable underlying cause.

Animal and human studies demonstrated that VF due to MI has

distinct ECG-characteristics, i.e. low voltages and lower frequency

content, with a more marked effect in acute MI than in prior MI.7–

10,15 In an animal study, acute MI could be diagnosed with a

single-variable approach, using AMSA-only (C-statistic 0.85).15

Recently, the first in-human proof of concept study was published,

demonstrating the feasibility of detection of prior MI in an experimen-
tal setting (C-statistic 0.61).6 The present real-world OHCA-study

builds on these findings, and provides data on detection of acute

MI, with a C-statistic of 0.66 for the single-variable approach

(AMSA-only).

Applying machine learning techniques combining AMSA with

DAMSA, discriminative ability tended to improve (C-statistic 0.80

vs. 0.66, p = 0.07) in the subgroup with > 1 shock. Changes in AMSA

may reflect changes in myocardial perfusion and myocardial meta-

bolic state, with improvement after chest compressions.9,13,16–22

Although on a group level, univariate comparisons showed no differ-

ence in D-characteristics between groups (Table 2), it was with

machine learning algorithms that we identified the potential distinc-

tive ability of DAMSA (Supplement 4 for a graphical illustration). In

line with our previous study, machine learning algorithms that com-

bined various VF-characteristics did not improve model

performances.6

Appreciating the clinical potential of the concept of a diagnostic

defibrillator, the main implication of our findings is that larger studies

are warranted. Current diagnostics for MI are limited to the subset of

patients regaining organized rhythm, using a 12-lead ECG, often in a

later phase of the arrest.3 VF-analysis is possible in all patients,

using a single-lead 3-second VF-recording, and in a very early phase

of the arrest, potentially shortening the delay-to-diagnosis, and facil-

itating early hospital transportation and prompt angiography. Impor-

tantly, ACO constitutes a major cause of difficult-to-defibrillate

VF.23,24 Especially this group with a treatable underlying cause

may constitute a target population for early hospital transportation

in case of refractory VF, with support of a mechanical resuscitation

devices or ECMO.25



Fig. 1 – Representative examples of in-field VF-signals used for analysis. 1a: VF-signal of a patient with an acute

coronary occlusion. 1b: VF-signal of a patient without an acute coronary occlusion. Figure showing two

representative out-of-hospital VF-signals that were used for analysis in the present study, acquired from

defibrillator read-outs. Fig. 1a shows a VF-signal of a patient with an acute coronary occlusion, with a calculated

AMSA of 9.47 mVHz, and Fig. 1b shows a VF-signal of a patient without acute coronary occlusion, with a calculated

AMSA of 13.01 mVHz. VF = Ventricular fibrillation, AMSA = Amplitude spectrum area.
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In case of confirmative data, additional optimisation of the diag-

nostic algorithms is needed, which requires multiple datasets on lar-

ger populations. Another issue that may contribute to improved

diagnostic accuracy is the possible interplay between infarct localisa-

tion and the direction of the recording ECG-lead.6,7,10

In this pilot study we focussed on the overall diagnostic ability of

the developed algorithms. Future studies may develop an optimal

cut-off point for in-field use. We propose initially focussing on a high

positive predictive value to identify patients with a high chance of

underlying ACO that most likely benefit from earlier transportation.

Importantly, a careful risk/benefit analysis must be made, where

the potential benefits of early transportation (earlier targeted therapy)

must be weighed against its downsides (costs and risks of transport

to a high-care hospital with ongoing CPR).

In terms of feasibility, currently studied “smart” defibrillators

already possess the technology for real-time AMSA-assessment.

Thus, with sufficient additional proof that early MI-diagnosis is possi-

ble, future studies with diagnostic algorithms could pave the way

towards new, more individualized, aetiology targeted strategies to

improve outcome after cardiac arrest.

Limitations

Our findings should be interpreted in the context of a pilot study,

and considered hypothesis generating. In the current study, we
used only established VF-characteristics in a cohort of limited sam-

ple size, and did not perform external validation on a separate sam-

ple. In order to provide the most robust results possible, we

performed internal 5-fold cross-validation as is common in machine

learning studies.26 Corroborative studies are warranted with larger

cohorts to improve feature acquisition and selection, develop more

accurate machine learning models, and to externally validate the

developed algorithms. Moreover, exclusions due to absence of ana-

lysable ECG-segments limit generalisability. Our findings can not be

extrapolated to paediatric patients, in whom the association

between VF-characteristics and underlying disease or outcome is

unclear.27 These limitations should be put in the context of the

study’s strength, which is that this is the first clinical study on this

potentially important topic.

Conclusion

This pilot study on OHCA-patients provides the first evidence that

detection of MI due to an acute coronary occlusion seems feasible

with use of VF-waveform analysis, particularly with input on VF-

changes from the first to second shock. These findings support the

concept of smart diagnostic defibrillators and call for further investi-

gation in larger studies.



Fig. 2 – ROC-curves for detection of acute coronary occlusion with use of the VF-waveform. Figure showing ROC-

curves of different approaches to discriminate ACO from non-ACO patients. a): AMSA-only, prior to the first shock

attempt, based on the total study population (n = 111); b): light blue represents AMSA-only, prior to the first shock

attempt, based on the subset with > 1 shock (n = 75); dark blue represents a support vector machine (SVM) model

with the AMSA prior to the first shock and the relative AMSA-change with the second shock (DAMSA), based on the

subset with > 1 shocks (n = 75). ACO = Acute coronary occlusion, VF = Ventricular fibrillation, AMSA = Amplitude

spectrum area, ROC = Receiver operating characteristic.
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