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Abstract. Static balance eliminates the inherent actuation stiffness of
flexure-based mechanisms. In this paper we investigate how, and under
which conditions, preloading in the joints can approximately balance a
flexure-based four-bar mechanism. We show that actuation reduction is
possible when the preload leverages kinematic non-linearities of the sys-
tem, resulting in a negative kinematic stiffness. The static balance con-
ditions are formulated such that they can be solved using linear algebra
and also permit kinematic insight. Application to a flexure-based Watt’s
linkage shows a reduction factor of 500 in actuator torque.
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1 Introduction

Flexure-based mechanisms—also known as compliant mechanisms—consist of
thin strips of deforming material that allow motion in compliant directions while
supporting forces in other stiff directions [6]. Since this allows for a backlash-free
motion without friction, these type of hinges are used in precision applications
where high repeatability is desired. However, the inherent stiffness of flexures
requires a continuous actuation force to deflect the mechanism, necessitating
larger motors with higher energy consumption and unwanted thermal loads.

To eliminate the actuation stiffness, a mechanism may be statically balanced.
In that case it has no preference pose and is therefore in an indifferent equilibrium
position [5]. Historically, static balance was used to counteract the pull of gravity,
but it can also be used to counteract other conservative energy fields such as
magnetic force and joint compliance. A mechanism is statically balanced when
its potential energy is constant over deflection. Therefore, a potential energy
storage, i.e. pretension, is needed with a synchronized energy release to balance
the positive energy build-up in the flexures.

Static balance of compliant structures is often performed on joint level by
adding different type of energy storages like, prestressed flexures [7], buckled
beams [4] and linear springs [9]. Design methodologies on mechanism level are
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typically based on optimization or visual inspection [8]. In [3] analytic rigid body
approximation methods were used to statically balance compliant mechanisms
with an additional zero-free-length spring.

In [1,2] redundantly actuated mechanisms with flexure joints were presented
that show the potential of static balancing. Initially, actuator redundancy of a 2-
DoF compliant mechanism was used to increase its effective workspace and sup-
port stiffness. Surprisingly, optimization showed and measurements confirmed
that the actuation stiffness of this mechanism could be reduced with a factor
of 1.9 by applying torsional preload in the flexure joints [1]. From the cited lit-
erature it is not clear how it is possible that more parallel connected flexure
joints could lead to a reduction of actuation stiffness, nor is it clear how such
mechanism could be designed.

In this paper we show how torsional preload in the flexure joints of a four-bar
mechanism can lead to approximate static balance. We present a new formalism
that allows for a closed form description of the balancing solution. Through
simulation we demonstrate the procedure on a flexure-based Watt’s linkage. This
method eliminates the actuation stiffness in one desired pose, which is considered
to be sufficient for most applications as compliant mechanisms typically are
used in a rather limited working range. We rely on the pseudo-rigid body model
(PRBM) [6] to be able to leverage kinematic insights from screw theory. Although
the findings here are confined to a four-bar linkage, the procedure may be readily
extended to other (multi-DOF) flexure-based structures as long as the PRBM
assumptions are valid.

2 Methods

2.1 Notation

In this paper we will make use of screw theory notation to describe the kinematics
and statics of the mechanism. Here, the generalized velocity of body i is denoted
by the twist ti which is the concatenation of the angular velocity ωi of the body
and the linear velocity vi of the origin of the reference frame. When the body
is in a kinematic chain, its twist may be described by the joint velocities q̇ and
screw vectors sj of the joints lower in the chain

ti =
[
ωi

vi

]
=

[
s1 · · · si 0

]
q̇, si =

[
nz

oi × nz

]
. (1)

Here, the screw vectors are the twist of the connected bodies if only that par-
ticular joint rotates with unit velocity. In this paper we confine ourselves to
planar revolute joints where nz is the out-of-plane unit vector and oi is the joint
location.

The acceleration twist of a body under constant joint velocities q̈ = 0 may
be expressed similarly

ṫi =
[
ṡ1 · · · ṡi 0

]
q̇, ṡi =

i−1∑
j=1

ad(sj)siq̇j , (2)
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where sj are the screw vectors of the joints lower in the chain. The ad(sj) denotes
the adjoint twist representation of sj

ad(sj) =
[

[nz×] 0
[(oj × nz)×] [nz×]

]
, (3)

and [a×] is the skew symmetric matrix.

2.2 Kinematics of the Four-Bar Mechanism

The four-bar linkage under investigation (Fig. 1) has four revolute joints and one
degree of freedom denoted by x. To study the static balance conditions we need
the relation between the joint angles on velocity level, i.e. Jacobian J , and on
acceleration level, i.e. Hessian H. These may be obtained from the velocity loop
closure condition matrix F . This states that the fourth body is fixed and its
twist is zero

t4 = FJẋ = 0, F =
[
s1 · · · s4

]
, q̇ = Jẋ. (4)

The Jacobian follows from the choice of independent coordinates. Here we choose
the angle of the first joint as independent coordinate x = q1. The twist of the
coupler t2 passes through pole g, while the difference in twist between the crank
and the follower t1 − t3 passes through pole h.

The Hessian H may obtained by equating the acceleration of the loop closure
to zero with the condition that ẍ = 0

∂

∂x
(FJ) =

4∑
i=1

∂

∂qi
(F )J

∂qi

∂x︸ ︷︷ ︸
av

+FH = 0, H =
∂

∂x
(J), (5)

Although this equation looks daunting it permits a geometrical interpretation.
The av is the acceleration violation of the loop closure constraint (in this case,
the acceleration of body 4) if the joint velocities were kept constant, i.e. if q̈ = 0.
The Hessian part FH then compensates this acceleration in order to satisfy the
loop closure under acceleration. The av term may be found by observing that

Fig. 1. The definition of a pseudo rigid model of a flexure-based four-bar linkage where
all joints are modelled as pin joints with rotational springs.
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only the location of joint 2 and 3 are changing, depending on the velocity of joints
1 and 4 respectively. By including the actual twists of the bodies i.e. s1q̇1 = t1,
s2q̇2 = t2 − t1, s3q̇3 = t3 − t2, and s4q̇4 = t3 we find the violation term to be

av = ad(s1)s2q̇1q̇2 + ad(s3)s4q̇3q̇4 = ad(t2)(t1 − t3) = αv

[
0
n1

]
. (6)

This is a pure translational acceleration along vector n1, which points from pole
g to pole h (Fig. 1). When either g or h is at infinity this n1 can still be found
by inspecting the limit case. Yet, when both g and h are at infinity, i.e. the
mechanism is a parallelogram, the Hessian H becomes zero and av is zero as the
crank and the follower have the same velocity t1 − t3 = 0.

2.3 Static Balance Conditions

A mechanism is statically balanced when the potential energy V is constant for
any motion. The potential energy of a mechanism with compliance in the joints
is given by

V =
4∑

i=1

1
2
ki(ei + qi)2 =

4∑
i=1

1
2ki

(pi + kiqi)2, (7)

where qi is the deflection of each joint, ei its rest length/angle, and ki its actu-
ation stiffness. Later on we use the preload pi = kiei in the joint as a design
variable. The flexure joints are here assumed to be ideal joints with no pivot
shift, constant actuation stiffness and no load dependencies. Notice also that we
assume that gravity and other conservative forces do not play a role.

In this paper we are interested in a Taylor-like approximate balance where we
set the first (resultant force/torque) and second derivatives (effective stiffness)
of the potential energy with respect to the generalized coordinates x to zero.
For first-order approximate static balance it is then required that the system is
1) in equilibrium and 2) that this equilibrium is locally indifferent i.e. that the
stiffness is zero. Therefore, we impose two conditions on the potential energy.
The “equilibrium condition” reads

∂V

∂x
=

4∑
i=1

∂V

∂qi

∂qi

∂x
=

4∑
i=1

(pi + kiqi)
∂qi

∂x
=

4∑
i=1

pi
∂qi

∂x
= 0, (8)

where we evaluated this condition around the origin (x = 0 and q = 0). In here
the partial derivate ∂qi

∂x are the elements of J , the joint Jacobian.
The “zero stiffness condition” is given by the second derivative of V

∂2V

∂x2
=

4∑
i=1

ki

(
∂qi

∂x

)2

+ pi
∂2qi

∂x2
= 0, (9)

where ∂2qi

∂x2 are the elements of H, the Hessian. Here it should be noticed that
the mixed derivatives vanish since ∂2V

∂qi∂qj
= 0 for i �= j, while ∂2V

∂q2
i

= ki.
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These balance conditions are linear in the parameters pi and ki, which may
therefore be directly solved for using linear algebra, particularly pseudo-inverse
and null-space operations. In matrix format these conditions read

J�p = 0, H�p + (J◦2)�k = 0, (10)

where p� =
[
p1 · · · p4

]� is the array of preloads in the joints, k� =
[
k1 · · · k4

]�

is an array with the joint stiffnesses, and J◦2 denotes the element-wise square of
the Jacobian.

It may be noticed that the positive elastic stiffness induced by k is to be
balanced by the preload p. This negative stiffness leverages the non-linearities
in the geometric transfer function as captured by the Hessian. This indicates
that if this non-linearity is weak, a large preload is required for static balance. It
should be emphasized that by selection of coordinates and reference frame, the
origin q = 0 can always be selected as the evaluation point.

2.4 Static Balance Solution

Although the solution for p may be readily found through linear algebra, it may
offer little insight in the meaning of the solution space of p. In this section we
include the loop closure conditions F to retain some of this insight which might
help to find the desired solution. The first-order loop closure condition denotes
that a wrench w on the constrained body does not generate any work. Therefore
without loss of generality we may therefore select the preload as

p = F�w, (11)

where w is our new design parameter. It may be observed that w is the reaction
wrench induced by p at the loop closure. So, this is the wrench required to keep
the loop intact. Therefore, with Eq. 4 we eliminate the equilibrium condition of
Eq. 10 and we obtain the following “zero-stiffness” condition

(FH)�w + (J◦2)�k = 0. (12)

The FH term is the opposite of the acceleration violation term (Eq. 5 and Eq. 6)
and the zero-stiffness condition finally reads

− a�
v w + (J◦2)�k = 0. (13)

Clearly, if the closure reaction wrench w is selected to be orthogonal to av, the
preload does not affect the stiffness of the system. However, if w is selected along
av a geometric stiffness is induced and the effective stiffness of the four-bar is
altered or even eliminated. We define the matrix W to span the reaction wrenches
that are orthogonal to av. Finally, for first-order static balance we select w as

w =
(J◦2)�k

|av|2 av + Wγ, W =
[

0 nz

n2 0

]
, a�

v W = 0. (14)

This solution approach shows that a parallelogram cannot be statically balanced
through this approach as its av and Hessian are zero. Therefore, it does not
possess sufficient non-linearity for the preload to act on. Other types of four-bar
do permit such a static balance approach.
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Fig. 2. The flexure-based Watt’s linkage (left) consisting of cross-flexure pivots and its
pseudo-rigid body model (right).

3 Case Study: Balancing the Watt’s Linkage

To show the effectiveness of the static balance procedure we will balance a par-
ticular four-bar mechanism, the Watt’s linkage (Fig. 2). This mechanism can be
used as an approximate straight line guidance in precision applications. The
joints consist of cross-flexures that have a maximum bending angle of 8◦. The
dimensions and design parameters can be found in Table 1. We first derive the
PRBM balance conditions after which we simulate the PRBM as well as a fully
non-linear flexible multibody system (FMBS) describing the mechanism for dif-
ferent preloads.

Due to the simple structure the Jacobian and the Hessian are

F =

⎡
⎢⎢⎣

nz nz nz nz

−l1 0 0 l1
−l2/2 l2/2 l2/2 l2/2

0 0 0 0

⎤
⎥⎥⎦ , J =

⎡
⎢⎢⎣

−1
−1
−1
−1

⎤
⎥⎥⎦ , H = 2

⎡
⎢⎢⎣

0
−l1/l2
−l1/l2

0

⎤
⎥⎥⎦ . (15)

Table 1. Parameters of the statically balanced flexure-based Watt’s linkage.

Name Symbol Value Unit

Crank and follower length l1 = l3 100 mm

Coupler length l2 200 mm

Base length l4 282 mm

Flexure thickness tf 0.40 mm

Flexure length lf 7.07 mm

Flexure width wf 6.66 mm

Young’s modulus E 200 MPa

Joint stiffness ki 1.00 Nm/rad

Midpoint displacement x 14.0 mm

PRMB preload p2 = −p3 −2.00 Nm

FMBS preload p2 = −p3 −2.15 Nm
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As the quadratic Jacobian is an all-ones matrix, the original unbalanced stiffness
of the system is k =

∑
ki. The acceleration violation twist is a�

v = −2l1
[
0� n�

y

]
such that reaction wrench w and the corresponding torsional preload p become

w = − k

2l1

[
0
ny

]
+

[
0 nz

nx 0

]
γ, p =

kl2
4l1

⎡
⎢⎢⎣

−1
−1
1
1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

γ1 + l1γ2

γ1

γ1

γ1 − l1γ2

⎤
⎥⎥⎦ . (16)

Figure 3 shows PRMB and FMBS simulation results of a flexure-based Watt’s
linkage under no load condition and under PRBM static balance preload. Preload
in base joints is set to zero p1 = p4 = 0. The mechanism is actuated by prescrib-
ing an x–displacement of the coupler’s midpoint. It may be clearly seen that the
maximum force required for deflection is reduced significantly from a maximum
of 5.7 N to a maximum of 9.9 mN for the PRBM. This implies a reduction of a
factor more than 500. When the preload computed for the PRBM is applied in
the FMBS-model the balance quality is significantly less, i.e. a maximum force of
0.4 N and reduction factor of only 14. A potential explanations for this difference
stems from the fact that PRBM does not take pivot-shift into account, leading
to a significant different kinematic behaviour at this stroke. When the preload
is slightly increased, the FMBS preload in Table 1, static balance is restored and
the maximum force is reduced to 7.5 mN, a reduction factor of 760.

Fig. 3. The potential energy (left), actuator force (middle) and effective stiffness (right)
of the flexure-based Watt’s linkage with and without preload.

4 Conclusion

This paper untangles the paradoxical behaviour of static balance where higher
preloads may lead to less driving torques. It is observed that if the preload
is applied in a particular manner, the change in geometry results in a negative
stiffness effect. To alter the effective stiffness, the preload-induced reaction forces
at the loop closure should be directed along the acceleration violation twist
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vector, i.e. the acceleration of the loop closure constraint when joint-velocities
are kept constant. Any preload that causes reaction force in another direction
does not change the effective stiffness. The magnitude of these non-linear effects
is inversely proportional to the required preload; highly linear systems require
large preloads. In particular, the parallelogram cannot be statically balanced
with just torsionally preloaded joints as it has a constant linear relation between
the joint velocities. It is shown that the validity of the PRBM assumptions are
critical in the effectiveness of the proposed approach. A more advanced FMBS
analysis may be needed to account for e.g. pivot-shift. Numerical simulation of
a compliant Watt’s linkage show a potential actuation force reduction of more
than 99.8%, indicating that static balance is obtained.
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