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A B S T R A C T

Semi-empirical formulae like the Yamamura model provide a quick reference of sputter yields for applications
such as sputter depth profiling and secondary ion mass spectrometry. Fit parameters in such models are prone
to errors which can propagate into the prediction of sputter yields. We compare experimental sputter yields
to predictions of the Yamamura model using a Bayesian Markov Chain Monte Carlo (MCMC) algorithm. The
model parameters Q (linear scaling) and s (power-law scaling) are explored. The results from MCMC are then
compared to propositions of Seah (Surface and Interface Analysis, 2005) and extended to a collection of target
materials by fitting simulated yields for argon and neon using TRIDYN. Q was found to be proportional to
the threshold energy and a simple relation is proposed. The simplicity notwithstanding, Q is speculated to be
dependent on a multitude of parameters such as density, energy transfer and orbital filling.
1. Introduction

Ballistic processes involved in energetic ion–target surface inter-
actions find applications in thin film physical-vapour deposition [1],
space [2] and fusion [3] research. They are also widely exploited in
metrology applications such as for sputter depth profiling [4], low-
energy ion scattering [5,6], and secondary ion mass spectroscopy. The
interactions in each case lead to a removal of target material (sputter-
ing). While this may be beneficial to some applications and detrimental
to others, in either case, the quantification of sputtering efficiency is
strongly desired. Errors in predictions could lead to a range of issues,
starting with minor ones, such as deposition of thinner (or thicker)
films which are relatively simple to correct. However, improper sputter
efficiencies can also lead to major issues such as errors in quantification
of material and sample depth in metrology applications, or to device
failure during operation of materials exposed to plasmas [7].

The quantification of sputter yields has improved with growth of
understanding of the nature of processes involved in ion–target in-
teractions. Models accounting for energy losses from an ion into the
metal via nuclear [8,9] and electronic [10,11] channels were developed
along with inter-atomic potentials [9]. Sigmund first formulated a semi-
empirical predictive equation for sputter yields [12]. Improvements
to the model led to greater precision in predictability and exten-
sion of usage to low ion energies near the sputter threshold. Modern
technology facilitated the use of computational methods like Monte
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Carlo codes [13,14] which are capable of predicting not only sputter
efficiencies, but also dynamic changes to the target composition.

Although complex computer aided predictions such as Monte Carlo
codes have become available, semi-empirical formulae are still favoured
due to their simplicity such as the Yamamura [15] and Matsunami
models [16]. The accuracy of predictions for a given semi-empirical for-
mula has also improved through either a reformulation or a constrained
understanding of the various fitting parameters used. Eckstein [17]
improved upon the Yamamura model by using a Bayesian statistics
approach to a modified sputter yield equation. While the redefined
parameters improved predictability and included descriptors for the
qualitative behaviour of sputter yields at low and high energies, the
underlying physical basis for the parameters was lacking. This need for
understanding the physical basis behind descriptors for sputter yields
is an active area with more recent works attempting to do so using
complex machine learning tools for generic sputter yield models [18].

A significant step in improving this understanding was proposed
by Seah [19,20] for popular semi-empirical models. Seah proposed the
fitting parameter Q – used in two popular predictive models, namely,
the Yamamura and Matsunami models – to scale as a function of the
interatomic spacing of the target material (density). While this provided
a physical basis to an otherwise fitting parameter (via target density),
it was only applied to one ion species, argon, for the Yamamura model.
Further, for all target elements above a mass of 100, Q was assumed
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to be effectively constant which is unphysical. The data for neon in
Seah’s work also showed random scatter and could not be described in
a consistent manner as for argon.

In this work, we look at the Yamamura model in an effort to better
understand the physicality of the parameter Q and its relation to other
ion–target parameters and find a generality for incident ion species.
We first study correlations between fit parameters by comparing the
model to experimentally determined sputter yields using a Bayesian
parameter space searching algorithm. Subsequently, we compare the
values for the parameter Q (linear scaling factor) obtained from this
method, with those proposed by Seah [19] for argon. We show that
upon observing correlations between Q and various ion–target relevant
parameters, we find consistent structure in Q as a function of the energy
transfer parameter for datasets of both argon and neon. Furthermore,
using consistent datasets obtained from Monte Carlo simulations, we
show a linear dependence between Q and Eth for the two ion species.

2. Theoretical models and MCMC

2.1. Yamamura Model

Following the initial proposition by Sigmund [12] for predicting
the sputter yield of a target irradiated by ions with energy >1 keV,
many developments to his propositions have evolved [15,16,21,22] for
ion energies near the sputter threshold. One of the most extensively
used semi-empirical models which we shall discuss in this section is
the one developed by Yamamura [15]. It builds upon Sigmund’s model
and additionally accounts for electronic energy loss as well as a sputter
threshold, and is defined as:

𝑌 (𝐸) = 0.042 ×
𝑄(𝑍2)𝛼∗

(

𝑀1
𝑀2

)

𝑈𝑆

𝑆𝑛(𝐸)
1 + 𝛤𝑘𝑒𝜖0.3

(

1 −
√

𝐸𝑡ℎ
𝐸

)𝑠

(1)

where Y is the sputter yield, which varies as a function of the incident
ion energy, E (in eV). M1 and M2 are the masses of the ion and target
atoms (in amu), respectively. 𝜖 is the reduced energy. 𝛼∗ is an energy
independent function of the ratio of ion and target masses. S𝑛 is the
nuclear stopping power of the target (in eV Å2 atom−1), E𝑡ℎ is the
sputter threshold. U𝑆 is the surface binding energy, approximated by
the sublimation energy of the target material. The factor 0.042 has units
of Å−2. 𝛤 is a parameter that factors in the contribution of reflected ions
to the recoil cascade and takes the form:

𝛤 = 𝑊 𝜖−0.2

1 + (𝑀1∕7)3
(2)

here W is taken from tabulated values (given for 32 elements) or is
therwise approximated as W = 0.35×𝑈S. k𝑒 is the correction factor
or the electronic stopping power, set to 1. A detailed treatise on the
efinitions and functional forms of parameters 𝛼∗, S𝑛(E) and 𝜖 can be
ound in [15]. Q(Z2), s and E𝑡ℎ are parameters that take values given
y Yamamura in the form of lookup tables, with E𝑡ℎ being calculated
s:

𝑡ℎ =

⎧

⎪

⎨

⎪

⎩

(

1 + 5.7𝑀1
𝑀2

)

𝑈𝑆
𝛾 , 𝑀1 < 𝑀2

6.7
(

𝑈𝑆
𝛾

)

, 𝑀1 > 𝑀2
(3)

nd,

= 4𝑀1𝑀2∕(𝑀1 +𝑀2)2 (4)

s the energy transfer factor for elastic collisions. Unlike 𝐸𝑡ℎ, the param-
ters Q and s do not have an empirical expression and their values need
o be obtained for each target element. The parameter s is tabulated in
he paper by Yamamura [15] and varies for each target element with
alues of either 2.5 or 2.8. Q is considered to be dependent on the target
nly and is a function of its atomic number. However, no functional
orm was described in the work. Instead, Q values were tabulated for
30
4 target materials by fitting experimental (and simulated) sputter yield
ata and using Q as a fit parameter. Where data was unavailable (42
arget elements), Q was set to 1.

It was shown by Seah [19], that this approximation of Q leads to
rrors in prediction of sputter yields by at least 20% for targets where

was not tabulated (set to unity). These errors can be significant for
pplications such as sputter depth profiling, low energy ion scattering
r secondary ion mass spectroscopy. In the following section, we shall
ook at the corrections proposed in [19] for the parameter Q for argon
ons.

.2. Corrections to Q: Qeff

In order to reduce the errors arising from unknown values of Q, the
ependence of Q on the target material was explored by Seah [19,20].
here, Q was considered to have a dependence (and dimensions) of
tomic density. To account for this dependence on the target density,
n average inter-atomic spacing, r, was defined as:

3 =
1024𝑀2
𝜌𝑁𝑎𝑣

(𝑛𝑚3) (5)

here 𝑁𝑎𝑣 is Avogadro’s number and 𝜌 is the density of the target
kg/m3). Q, now termed Qeff, is then allowed to scale with the mass
nd density of the target as:

eff = 𝑟−3
[

𝑎

(

exp
(

−
(𝑀2 − 𝑏)2

2𝑐2
)

)

+ 𝑑

(

1 − exp
(

−
(𝑀2 − 𝑒)2

2𝑓 2

)

)]

(6)

where a, b, c, d, e, and f are fitting coefficients – with values: 0.0202,
19.0, 14.6, 0.0166, 5, and 50, respectively for argon ion bombardment
– that include any dependence of Q on the ion specie. Albeit artificially
(due to the coefficients), Qeff now scales only with the target parameters
(mass and density). Eq. (6) reduces the number of tabulated values from
77 in total (one for each target) to 6 per ion specie, while decreasing
the relative error between predictions and experimental data to 9%
on average. The Gaussian terms are used to describe the fluctuations
in Q as a function of target mass and provide a good approximation
for elements with M2 ≤ 100 for argon ion bombardment. In [19,20],
the coefficients in Eq. (6) were tabulated for argon for the Yamamura
model. However, similar treatment was not performed for neon due to
possible correlations of Qeff with s and large Qeffr3 oscillations at low
target masses.

We shall, in the following section, describe a probabilistic method
for searching the parameter space while we simultaneously observe
correlations between model parameters and quantify uncertainty in the
parameters of the Yamamura model.

2.3. TRIDYN simulations

A comparison of the models to experiments is not always possible
to due the lack of experimental sputter yields. To circumvent this
deficiency, we rely on TRIDYN simulations of sputter yields for a wide
range of elements that are solid at standard temperature and pressure,
as a means to understand the variation in an ideal case.

Simulation codes such as TRIDYN are based on the binary collision
approximation and are subject to variations in output depending on
the material inputs such as the surface binding energy as well as
incident ion energies. This can lead to discrepancies between sim-
ulation output and experiments, especially for reactive ion species
which form compounds with the target elements or exhibit strong
diffusion effects. Despite these drawbacks, we have shown TRIDYN
to be effective for reactive ion species interacting at energies near
the sputter threshold [23,24]. Nevertheless, to minimize errors from
dynamic compositional changes and its effects on surface binding of
atoms, especially where experimental data is lacking for comparison,
we limit ourselves in this work to inert gas ions incident normal to the

target surface.
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Simulations were performed in the dynamic mode for argon and
neon ions bombarding elements with atomic number (Z) between 3 ≤
𝑍 ≤ 98. 𝑈S for the target was set to the sublimation energy in each case
and the simulations were performed until a fluence of 1×1017 ions/cm2.

maximum of 5% of gas species were allowed to be implanted and
etained within the target.

. Bayesian MCMC

In order to assess the best-fit parameters, their correlations with
ach other and their uncertainties, Bayesian analysis is a powerful
ool. The power of Bayesian analysis to map the correlations for a
arge set of fit parameters has been demonstrated for a wide variety
f fields in physics [25] and astronomy [26]. Bayesian analysis relies
n probabilistic definitions based on Bayes’ rule [27] which is given as:

(𝛩|𝐷,𝑀) = 𝑃 (𝛩|𝑀)
𝑃 (𝐷|𝛩,𝑀)
𝑃 (𝐷|𝑀)

∝ 𝑃 (𝛩|𝑀)𝑃 (𝐷|𝛩,𝑀) (7)

where 𝑃 (𝛩|𝐷,𝑀) is the posterior probability density function (PDF)
which describes the probability for a parameter set 𝛩 =

{

𝜃1, 𝜃2,… , 𝜃𝑘
}

in this case 𝜃1 = 𝑄, 𝜃2 = 𝑠, 𝜃3 = 𝐸𝑡ℎ given a certain data, 𝐷 =
{

𝑥1, 𝑥2,… , 𝑥𝑛
}

(where each 𝑥 represents a sputter yield datum for a
given ion–target combination) for a model (𝑀) [25,28]. Here, 𝑛 are
the number of data points and 𝑘 the number of model parameters.
𝑃 (𝛩|𝑀) (read as 𝛩 given M) encodes the prior knowledge of the model
parameters the probability for the parameters or our confidence in their
values, and is called the prior PDF. 𝑃 (𝐷|𝛩,𝑀) is the likelihood function
() which is defined later. The denominator, 𝑃 (𝐷|𝑀) is often termed
as the Bayesian evidence, which refers to the validity of the model in
predicting the data, and for practical purposes serves as a normalizing
factor in Eq. (7).

Bayesian Markov Chain Monte Carlo (MCMC) allows for a means
of estimating the posterior probability defined by Bayes’ theorem by
randomly sampling the PDFs for the posterior . We assume no a-priori
knowledge of the mean and distribution of the model parameters and
for simplicity, use a uniform PDF as priors for each of the model param-
eters. When uniform priors are used, the posterior PDF is proportional
to the likelihood function as:

𝑃 (𝛩|𝐷,𝑀) ∝ 𝑃 (𝐷|𝛩,𝑀) =  (8)

The random sampling is performed by using an affine invariant
ensemble sampler, emcee [29]. The affine invariant sampler is ad-
vantageous over other common sampling methods [30,31] as it is
unperturbed by affine transformations (rotations, stretching) of the
parameter space. It implies that the sampler is not sensitive to the scales
of the parameters involved. The sampling of the posterior PDF occurs
through assignment of a set (ensemble) of walkers. The walkers are k-
dimensional vectors which randomly move across the parameter space.
Their movement is governed by the likelihood function, , which for
emcee is defined as a log-likelihood:

𝑙𝑜𝑔
(

𝑃 (𝐷|𝛩)
)

= 𝑙𝑜𝑔() = −1
2

𝑛
∑

𝑖=1

[

(2𝜋e𝑖)2 +
(Y𝑖 − Yyama)2

e2𝑖

]

(9)

where Y𝑖 is the experimental yield with uncertainty e𝑖, and the subscript
i denotes a datum for n data points in a dataset D. Yyama is the yield
predicted by the model (Eq. (1)). The walkers move in a two-step
process, first by selecting a point to jump to, and then deciding whether
the jump occurs. The second step helps to map out the contours in the
parameter space and the walkers cluster around locations of highest
probability. The walker movement process is repeated thousands of
times for each walker until the entire posterior PDF is mapped and
the likelihood is maximized. As a result, the posterior PDF of each
model parameter is populated by the walkers and correlations between
parameters can be evaluated from the PDF maps. As a consequence
of this analysis, the expectations values, maximum likelihoods for
parameters and the confidence in their value can be readily obtained.
31

r

In order for defining the problem for such Bayesian analyses, a prior
PDF is important as it encodes the knowledge of the system known
a-priori. This is a subject of importance and ongoing research for a
generalized choice of priors that is ‘‘objective’’ [32]. Priors such as
Uniform priors are commonly used, and Jeffery’s prior [33] is a general
purpose prior but more complex in definition. Here, we use uniform
priors for simplicity. More complex priors may be considered for future
works.

For purposes of our analysis, Eq. (1) was used as the model (M). The
parameter space 𝛩 was the set of free-parameters: Q, s, Eth. All MCMC
calculations were performed using an ensemble of 50 walkers for a step
count of 25000 steps. The first 5000 steps were discarded (burn-in) to
negate any bias introduced by the choice of starting positions of the
ensemble. The priors were chosen to be uniformly distributed with the
starting value equal to the tabulated values (for Q and s) [15] or as
calculated using Eq. (3) for the sputter threshold (see Table 1). The
range for Q was allowed to vary over an order of magnitude (on each
side) from the tabulated value while the 𝐸𝑡ℎ was varied from 1 eV
to 60 eV (the range of variation of thresholds for most metals). For
s, the range was varied from 0 to 4. The choice of the lower bound
is the extreme case where there is no threshold effect and the model
is reduced to the initial formulation by Sigmund [12]. For the upper
bound, literature evidence [15,16] suggests optimal values of 2.5 or
2.8 depending on target material. It is possible that s can vary beyond
the tabulations and a higher limit was chosen for exploring probable
values.

Following every MCMC calculation, we present the expectation
values of the marginalized PDFs for the parameters which we shall
refer to as ‘best-fit’ estimates. These values are then used in the Yama-
mura model to depict the theoretical sputter yield curve or for further
analysis.

4. Experimental method

Sputter yields were obtained experimentally for transition metal
films of molybdenum (Mo), ruthenium (Ru), palladium (Pd) and tung-
sten (W) by measuring mass loss from a quartz crystal micro-balance
(QCM). Elemental films of 400 nm thickness were deposited on QCM
crystal substrates using a DC magnetron sputter deposition technique.
The deposition facility was baked out to a base pressure of 1 × 10−8

bar with the dominant background specie being water vapour. The
etal targets were pre-sputtered for 20 min to remove oxides and

ontaminants from target surface. Sputter deposition was carried out
nder an argon feed gas at a gas flow of 30 sccm at a constant power
f 400–500 W. The thickness during sputter deposition was monitored
sing the frequency response of the QCMs.

For the sputter yield experiments, argon and neon ions were gen-
rated using a 15 cm DC Kaufman ion source (Veeco Instruments).
he ion flux was monitored using a Faraday cup, simultaneously along
ith the mass loss. The ion energies were pre-characterized by the
araday cup (FC) which also served as a retarding field energy analyser.
on energies for obtaining sputter yield data were varied in random
rder between 50 eV and 300 eV to avoid systematic errors. QCM
requency responses were converted to thickness estimates using the Z-
atch method [34]. Sputter yields were calculated using the thickness
ifference before and after each exposure, and the irradiated fluence
easured simultaneously using the FC. Details of the experimental

etup and data processing can be found in Refs. [34,35].

. Results and discussion

.1. Experimental sputter yields and model parameters: Ar+

Using Ar+ as the bombarding ion specie, sputter yields were ex-
erimentally determined by measuring changes to the QCM frequency

esponse. The results are shown in Fig. 1. The data was compared to the
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Fig. 1. Sputter Yields obtained under Ar+ bombardment for (a) ruthenium; (b) molybdenum; (c) tungsten; and (d) palladium. Reference yields are also plotted (common legend
out of plots). The Yamamura model using ‘best-fit’ parameters from the MCMC outputs (solid lines) are compared to Yamamura model with Seah’s Qeff corrections (dashed lines).
The shaded areas represent the 1𝜎 deviation in ‘best-fit’ parameters’ influence on the yield.
predictions of the Yamamura model, replacing Q with Qeff values from
Eqs. (5) and (6) using fit parameters (a–f) from [19]. In addition, the
experimental data was used to determine posterior probabilities for the
parameters: Q, s and E𝑡ℎ from the Yamamura model which then can be
compared with values from Eqs. (5) and (6). Availability and ion energy
range of literature data on yields differ between elements Ru, Mo, Pd
and W. In order to prevent varying credibility in the best-fit values
from limited reference datasets, reference measurements were not used
as inputs into the MCMC algorithm. We shall see in a later section,
the comparison of the obtained posterior probabilities in comparison
to literature datasets.

Experimentally, the sputter yields for molybdenum, ruthenium and
tungsten are lower than reports from literature values obtained from
experiments from bulk samples [36,37] or e-beam deposited films [34].
This is possibly due to our sputter deposited films being denser (due
to energetics of the deposition process) and more flat on a nanometre
scale roughness, compared to materials previously studied in literature.
However, this hypothesis is inconsistent as can be observed in the case
of palladium films (Fig. 1(d) and as we shall see, in the case of Ne+ ion
bombardment. The dependence of sputter yields on structure, density
and roughness and the interplay between them, therefore, appears
to be a complex function of these parameters and requires dedicated
experiments. Differences arising from these parameters would exist for
every dataset (measured in this work and in literature) and precise
understanding of this interplay is beyond the scope of this paper. We
shall instead focus on a global behaviour of sputter yields. For this, we
use the ensemble sampler described in Section 3 for our dataset as well
as a collection of available literature data (see Section 5.3).

An example of the posterior probabilities generated from the MCMC
algorithm for palladium is shown in Fig. 2. Similar plots which were
generated for the other metals studied are shown in Supplementary
32

Information. The MCMC maps depict a negative correlation for Eth
with both Q and s. However, Q and s are positively correlated with
Q straying to a 12% larger value from the Qeff calculated in [19], and
50% larger than the original tabulation of Q in [15]. The threshold
for palladium sputtering by argon is found to be 80% higher than that
estimated by Eq. (3). This relatively high value for Eth arises partly due
to the lack of large sets of data below ∼50 eV.

The power of the Bayesian method lies in the updating of posterior
probabilities via better likelihood and prior estimates which are facil-
itated by availability of datasets. We shall compare the ‘best fits’ from
our dataset with a compendium of literature values in Section 5.3.

Updated Yamamura curves using the expectation values (‘best fits’)
from the MCMC sampling are shown in Fig. 1 along with a shaded
region highlighting the 1𝜎 variations in the yields from the param-
eter estimates. As an aside, an area within the 50th quantile region
(contours from Fig. 2) could be used but in most cases the 1𝜎 regions
are larger and represent ‘worse case’ estimates.Table 1 encapsulates the
priors used and posteriors obtained in each of the datasets. It is evident
that in each case, the threshold value depends on the availability of
data near the true (yet unknown) threshold.

Values of s in certain cases of the experimental data may be beyond
the set upper bound of 4 [See Supplementary Information] and likely
stem from the gradual rise of the sputter yield beyond the threshold.
The Q values obtained from the MCMC likelihood estimates, deviate
from the Qeff proposed in [19] by at most a factor 2 (molybdenum)
and at least 30% (tungsten).

5.2. Experimental sputter yields and model parameters: Ne+

Similar experiments using the QCM were carried out for the target
elements under neon bombardment. The sputter yields obtained in this

work along with references are plotted in Fig. 3. Here, the structural
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Fig. 2. Posterior probabilities for parameters from Eq. (1) for sputter yield data from palladium under Ar+ bombardment. The red circle depicts Qeff and s values from Seah [19].
The black cross-hairs show the ‘best fit’ locations and the contours depict 16th, 50th, and 84th quantiles. The histograms show the marginalized probabilities for each parameter.
Table 1
Parameters used to search the posterior probabilities for the model parameters in Eq. (1). Sputter yields from Ar+ bombardment used as input
data. The priors are described in the form: U(low, up), denoting uniform probabilities over a range with a lower (low) bound and an upper
(up) bound. The expectation values indicating the ‘best fit’ and 1𝜎 uncertainties of the expectations obtained from the Bayesian sampling is
compared to the tabulations of the Yamamura model.

Priors Expectation values Yamamura

Q s Eth Q s Eth Q s Eth

Mo U (0.17, 4.25) U (0, 4) U (1, 60) 1.93+0.31
−0.30 3.20+0.53

−0.64 40.62+7.99
−5.35 0.85 2.8 27.7

Ru U (0.26, 6.55) U (0, 4) U (1, 60) 1.76+0.56
−0.49 3.19+0.57

−0.76 36.22+8.42
−5.65 1.31 2.5 26.9

Pd U (0.17, 4.25) U (0, 4) U (1, 60) 1.25+0.07
−0.06 2.57+0.29

−0.24 27.7 +2.55
−2.70 0.85 2.5 15.4

W U (0.14, 3.60) U (0, 4) U (1, 60) 0.76+0.06
−0.05 1.75+0.13

−0.10 57.75+1.57
−2.36 0.72 2.8 33.9
dependence of the sputter yields is not apparent as the yields are
consistent with reports in literature, taken from [36,37] for (bulk)
samples immersed in a plasma.

In previously reported studies on the application of the Yamamura
model for Ne+ ion bombardment, an analysis of the dependence of Qeff
on target mass was not performed [20]. The coefficients (a–f in Eq. (6))
being unknown, we rely on the original Q proposed by Yamamura for
comparison. The Yamamura model in most cases provides suitable pre-
diction for all elements down to 100 eV. Below 100 eV, the predictions
begin to deviate from experiments.

The MCMC sampling was performed much in the same way as for
argon sputter yields. A uniform probability density between certain
bounds was chosen for the parameters as priors. The results of the
ensemble sampling for palladium sputtered by Ne+ are shown in Fig. 4.
The positive correlation of s with both Q and Eth is significantly reduced
for this dataset. Eth and s, which were previously negatively correlated
(for Ar+) still behave similarly, but the correlation is weaker. The
histograms show the marginalized PDFs of the parameters which are
Gaussian, but in the case of s, these are asymmetrically skewed. The
33
example here illustrates the difference in values of the maximum like-
lihood (highest point on the histogram) from the expectation (mean)
estimates.

The initial inputs and the expectation values obtained are summa-
rized in Table 2 along with propositions by Yamamura. We notice that
the sputter threshold from the MCMC expectation value is higher than
as predicted by Eq. (3). A higher experimental threshold is accounted
for by the MCMC parameter search. The gradual slope for Ruthenium
(s ∼ 4) implies that the threshold is beyond the probed dataset which is
also reflected in the relatively lower threshold prediction. We also find
from Fig. 4 that the energy scaling given by the exponent s, varies be-
tween elements and is correlated to Q (positively) and Eth (negatively).
The updated Yamamura curves using the expectation values (‘best fits’)
from the MCMC sampling are shown in Fig. 3 along with a shaded
region highlighting the 1𝜎 variations in the yields from the parameter
estimates.

We find that the expectation values for Q represent the experi-
mental data well but in some cases deviate from the predictions of
Qeff in Eq. (6) and Yamamura’s tabulations as is seen in Figs. 2 and
4, respectively. The elements studied here are heavy (M ∼ 100 or
2
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Fig. 3. Sputter Yields obtained under Ne+ bombardment for (a) ruthenium; (b) molybdenum; (c) tungsten; and (d) palladium. Reference yields are also plotted (common legend
ut of plots). The Yamamura model using ‘best-fit’ parameters from the MCMC outputs (solid lines) are compared to Yamamura model (dashed lines). The shaded areas represent
he 1𝜎 deviation in ‘best-fit’ parameters’ influence on the yield.
Table 2
Parameters used to search the posterior probabilities for the model parameters in Eq. (1). Sputter yields from Ne+ bombardment used as input
data. The priors are described in the form: U(low, up), denoting uniform probabilities over a range with a lower (low) bound and an upper
(up) bound. The expectation values indicating the ‘best fit’ and 1𝜎 uncertainties of the expectations obtained from the Bayesian sampling is
compared to the tabulations of the Yamamura model.

Priors Expectation values Yamamura

Q s Eth Q s Eth Q s Eth

Mo U (0.17, 4.25) U (0, 4) U (1, 60) 0.69+0.04
−0.03 1.44+0.16

−0.08 48.07+1.46
−3.25 0.85 2.8 26.1

Ru U (0.26, 6.55) U (0, 4) U (1, 60) 2.09 ± 0.01 3.99 ± 0.01 23.96+0.05
−0.04 1.31 2.5 25.9

Pd U (0.17, 4.25) U (0, 4) U (1, 60) 1.19+0.15
−0.12 1.97+0.98

−0.53 30.75+10.85
−11.41 0.85 2.5 15.1

W U (0.14, 3.60) U (0, 4) U (1, 60) 0.54+0.09
−0.06 1.71+0.59

−0.30 42.17+5.65
−8.99 0.72 2.8 40.6
1
f

o
o
f
l
t
e
i

greater). Eq. (6) predicts for heavy elements, no change in Qeff other
than that induced by the inter-atomic spacing. In the following section
we shall compare Q obtained from MCMC ensemble sampling to the
predictions of Eq. (6) using reference data for a multitude of elements
where experimental data is available.

5.3. QMCMC and Qeff

In Sections 5.1 and 5.2, we found that the values of Q and s are
correlated using the MCMC ensemble sampling method. The values
of s were found to vary from one element to the other, with no
distinct pattern observable in relation to target specific parameters. The
linear scaling factor Q (QMCMC in our study), requires some scrutiny
s its effect on the sputter yield is relatively clear. Here, we begin by
omparing the obtained QMCMC with Qeff from [19,20]. Eq. (6) predicts
hat the term Qeffr3 for argon bombardment saturates to a constant
alue for target masses > 100 amu. This plateau, while apparent in the
valuation in [19,20], would be unlikely as elemental properties are
eriodic and any initial fluctuation in Qeffr3 at low target masses would
arry forward to high masses as well. In the evaluation, experimental
putter yield datasets for a variety of target materials were studied,
owever, there was a lack of populated data for the region between
34
10 amu and 180 amu. Any fluctuations, if present in this region, would
latten out for the higher target masses.

Here we use experimental data available for a variety of elements
btained from the literature [34,36,38–43]. To supplement the lack
f sputter yield data for target masses between 110–180 amu (d and
block elements), we chose to simulate the yields for a selection of

anthanides using TRIDYN [13]. Further, to understand the limita-
ion/validity of this simulation based approach, we randomly selected
lements for which literature data was available and used them as
nputs for the MCMC ensemble sampler.

Fig. 5a depicts the expectation values of QMCMC for experimental
sputter yields from literature data (labelled literature), and for sim-
ulated yields for selected targets under Ar+ ion bombardment. For
comparison, Q values of the Yamamura model [19] are also plotted
along with the predictive function for Qeff from Eq. (6). While the
scatter in the datasets from MCMC ensemble sampling is quite large,
the behaviour of QMCMC is generally consistent with Eq. (6) for target
masses <100 amu. For 𝑀2 > 100 amu, the initial oscillation (in the
region of 20≤ M2 ≤ 70 amu), repeats and continues on up to 250 amu.
The periodicity is non-uniform and is not captured by Eq. (6), which in
this range, approximates the variation to a constant. QMCMC from Mo–
Ar+ results from QCM measurements, marked in Fig. 5a, is an outlier.
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Fig. 4. Posterior probability distributions for parameters from Eq. (1) for sputter yield
data from palladium under Ne+ bombardment. The black cross-hairs show the ‘best fit’
(expectation values) locations and the contours depict 16th, 50th, and 84th quantiles.
The histograms show the marginalized probabilities for each parameter. The blue dot
shows the tabulated values given by Yamamura [15].

Fig. 5. Q from Seah [19] (green triangles) along with corresponding Q values obtained
using the MCMC algorithm for: literature (blue), QCM experiments from this work
(black squares) and TRIDYN simulations in this work (red) for (a) Ar+ and (b) Ne+.
Qeff values for Qeff from Eq. (6) with coefficients (a, b, c, d, e, f) = (0.0202, 19, 14.6,
0.0166, 5, 50) for Ar+ also plotted (black line). Similar values for parameters for Ne
not available.
35
A significant scatter is seen for data-points between 100 amu and 110
amu, and the cause is yet unknown, however, an overall oscillatory
behaviour is observed over the range of target masses.

Data for neon bombardment is more scattered as seen in Fig. 5b.
Results not only from our MCMC analysis, but also reports from [20]
show elevated scatter in comparison to the argon data. Although a
structure for neon datasets similar to argon can be argued, the scatter
in the data prevents such a conclusive remark.

In general, considering the oscillatory behaviour of data, the two
Gaussian terms in Eq. (6) do not fully encapsulate QMCMC or Qeff for
M2 > 100 amu. A multitude of Gaussians would be needed under the
approach of Eq. (6) which becomes cumbersome with the addition of
more terms. We shall discuss in the following section an alternative
perspective to the evaluation of the datasets in an effort to encapsulate
the behaviour of both ion species.

5.4. Dependence of Q on ion and target parameters

The proposition of Eq. (6) was a significant step forward in deter-
mining an empirical relation to the scaling factor, Q, used in a multi-
tude of predictive models of sputter yields. Although it was shown [19,
20] to be valid for models such as the Matsunami formula [16] (not
discussed here), the approach was found to be insufficient for the
Yamamura model due to the scatter in the data other than for argon (in
addition to correlations between fit parameters). Further, the formula-
tion of Eq. (6) is empirical and contrasts with the original formulation
by Sigmund [12], which was also pointed out in [19].

In all previous attempts in qualifying dependence of Q on various
parameters, datasets have been heterogeneous. For example, in Yama-
mura’s original formulation [15], sputter yield data was obtained both
experimentally as well as using simulation codes. Experimental data
in themselves contain scatter due to a multitude of factors: different
surface preparation, variability in roughness, crystalline phase and
density, poorly characterized ion beams or data obtained at different
energy ranges especially for ones far away from the sputter threshold
see Fig. 1, and Fig. 3. This results in large spread in available Q and
Eth estimates which leads to difficulty in discerning trends in the data.

We attempt to remedy this discrepancy by using data obtained using
a consistent, homogeneous method. We source sputter yield data using
TRIDYN simulations for 70 common elements (excluding gases, short
lived elements and some actinides) in an energy range from the sputter
threshold to keV energies. TRIDYN has been shown to reliably simulate
sputter yields at low incident energies for a multitude of elements [35].
TRIDYN in this case, represents an ideal behaviour of a target element,
restricted by the sublimation energy and assuming binary collision
of the ion with a target atom. Data obtained in this manner does
not suffer from experimental scatter. Additionally, we can simulate a
much larger set of elements than otherwise experimentally available.
These combined advantages can assist in finding correlations between
parameters in the sputter yield data. We fit the simulated sputter yields
using the MCMC algorithm as discussed previously. Using the obtained
likelihoods, we examine the dependence of Q on various ion–target
dependent parameters.

Fig. 6 shows the Pearson correlation coefficients of various param-
eters with respect to one another. For example, we see that the target
mass, M2 is negatively correlated with the energy transfer parameter
(𝛾) for argon and neon. This is to be expected as the energy transfer
decays with increasing target mass after a certain maximum dictated
by the ion mass. The actual dependence of 𝛾 on 𝑀2 however, is more
complex as known from Eq. (4). Similarly, we find that the dependence
of Q is stronger (more positive) with respect to Eth rather than 𝜌 or 𝛾.
This dependence on 𝐸th is replicated in the neon data (Fig. 6(b).

In order to visualize the dependence of Q on three different pa-
rameters, we plot the Q values from the argon and neon datasets as
a function of 𝛾 in Fig. 7. By varying the size of the datapoints by the
corresponding threshold energy (obtained from the MCMC algorithm),
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Fig. 6. Pearson correlation coefficients between selected parameters namely: Q, thresh-
old energy (𝐸th) determined by the MCMC sampling and from Eq. (3), energy transfer
parameter 𝛾, surface binding energy 𝑈S for (a) argon sputter yields and (b) neon sputter
yields for a range of targets with atomic numbers (Z) for elements between Li and U.

we find that the higher the threshold energy, the higher is the value
of Q. This dependence is stronger in the argon data than in the neon
data as is also seen as the correlation coefficient drops from 0.90 to
0.67. Values of Q obtained from MCMC fits to sputter yields from
literature (Qlit

MCMC) are also presented in Fig. 7. Dependence of Qlit
MCMC

on 𝛾 is qualitatively similar to that from fits to TRIDYN simulated yields
(QTRIDYN

MCMC ). The deviations in absolute values of Q𝑙𝑖𝑡
MCMC could arise from

either experimental scatter (as outlined above), or from physical effects
that are unaccounted for in TRIDYN. While these deviations do not
allow to reproduce experimental Q, QTRIDYN

MCMC is smoother and covers the
full range of 𝛾 which aids in revealing trends in the data. Dependencies
of Q on M2 are similar to those on 𝛾. The choice between M2 or 𝛾 is
therefore not important for the subsequent analysis.

Sub-dividing the dataset by the location of elements in the periodic
table, we find that the peaks in Figs. 7a and 7b are composed of the
d-block elements. The p and f-block elements form their own set of
peaks while s block elements are mostly confined to valleys. The overall
structure of the Q values is similar to the variation observed by Seah
(See Supplementary Figure S7) for both Argon and Neon. However,
given the correlations, and correspondence of peaks with orbitals of
target elements, we find that the description of Q is not limited to the
density but rather a combination of multiple parameters.
36
Fig. 7. Q values obtained from MCMC fits of TRIDYN simulated sputter yields plotted
as a function of the energy transfer parameter 𝛾. Values shown for (a) argon and (b)
neon ion bombardment. The sizes of datapoints vary as a function of threshold energy
and the colours are used to show the position of elements in the periodic table. Q values
from MCMC fits to experimental sputter yields from literature are also included (black
triangles). The dashed line shows estimates of Q obtained from the linear approximation
in Eq. (10).

The simplest correlation we find for Q from the pairwise correlation
is to the threshold energy. Datasets for the pairwise correlations show
a nearly linear dependence of Q on Eth, within our best estimate of
Eth. As a simple formulation exploiting this linear dependence, we find
coefficients for a linear fit for Q as a function of the threshold energy,
𝐸th, calculated using the MCMC method. This is done using a robust
linear regression model with a Huber loss function in order to reduce
biasing by outliers. The datasets show varying slopes as a function
of the electron orbitals as seen in Fig. 8. Elements classified in the
s, p and f blocks in the periodic table exhibit Q values that are well
approximated by this linear dependence. The s block elements cover a
wide range of Eth values, with the highest corresponding to Be. Be is
also seen as a stark outlier when Q values are plotted against 𝛾 (Fig. 7)
in both literature and TRIDYN datasets. However, Q values from the
d orbital present significant scatter and the linear dependence is not
apparent. Upon further subdividing the d block elements by rows, we
find the linear dependence is restored within the subdivisions. Such
a subdivision also favours other blocks, but due to fewer number of
elements, such a procedure is counter-productive. However, such a
stratified behaviour points towards an unaccounted, periodic variable.
Understanding such a variable would be needed to gain insights into
the physical meaning of Q and its dependencies.

Speculatively, the scatter could also originate from the ensemble
clustering around a bound under some cases due to the power law term
arising in Eq. (1) [also see Figures S1–S5 in Supplementary Info]. A
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Fig. 8. QMCMC values as a function of Eth calculated from the MCMC searches on
TRIDYN simulated data for Ar+ ion bombardment. A linear dependence of Q on Eth
is found that varies upon classifying the dataset by the position of elements in the
periodic table.

similar linear dependence is also observed in the neon datasets (see
Supplementary Information Figure S9) which is in contrast to Seah’s
approach (see Fig. 5).

As a final step, in an attempt towards approximating Q values with-
out the use of lookup tables, we map the variation of Q to the threshold
predicted by the MCMC. In doing so, the number of parameters needed
to estimate Q for a given target is significantly reduced. The resulting
dependence of Q as a function of the threshold from the MCMC fits is
in accordance to:

𝑄MCMC = 𝑚 × 𝐸MCMC
th + 𝑏 (10)

Fits to this simple model to simulated data are summarized for argon
and neon in Table 3 [also see Fig. 8 and Supplementary information
37
Table 3
Best-fit values approximating Q from the sputter threshold in Eq. (3). The goodness-
of-fit (R2) for each ion specie is furnished for the linear approximation as well as the
functional form proposed by Seah [19], calculated from Eq. (6). No R2 value could be
computed from Eq. (6) for Ne+ bombardment due to absence of proposed coefficients

QMCMC = m EMCMC
th + b

Orbital Argon Neon

m b R2 m b R2

s 0.0343 −0.032 0.90 0.0407 −0.109 0.81
Linear p 0.0142 0.319 0.84 0.0216 0.195 0.82
Approximation d 0.0181 0.279 0.83 0.0069 0.570 0.12

d4 0.0134 0.505 0.64 0.0264 0.197 0.79
d5 0.0197 0.239 0.95 0.0161 0.339 0.84
d6 0.0141 0.346 0.87 0.0102 0.265 0.82
f 0.0133 0.349 0.66 0.0031 0.421 0.46

Seah [19] (Eq. (6)) 0.43 –

Figure S9 for fit results]. In order to compare the linear approximation
with the equation proposed by Seah [19], we also look at the goodness
of fit for both functional forms.

It is clear from Table 3 that the linear approximation for each orbital
type estimates Q just as well, if not better than Eq. (6). Additionally, it
reduces the set of parameters from six, down to two for a given orbital.
Expanding on the linear approximation, Eth depends on 𝛾 and U𝑆 as
per Eq. (3). The Q factor in the Yamamura model (Eq. (1)) can then be
approximated as : 𝑄 = 𝑚′𝑘𝑈𝑠∕𝛾 + 𝑏′ where 𝑚′ and 𝑏′ are the slope and
ntercept relating the sputter threshold (from Table 3), and k follows
rom Eq. (3) as 6.7 (if 𝑀1 < 𝑀2) or 1 + 5.7(𝑀1∕𝑀2) (if 𝑀1 < 𝑀2).

This approximation is valid for neon as well. Comparing the predic-
ions of Eq. (10) to the overall behaviour of Q, in Fig. 7, shows that such
simplified approach can accurately estimate a wide range of Q values.
he validity for both Argon and Neon shows promise in the capacity
f such a simplification in estimating Q values. However, the reasoning
ehind the stratification, as mentioned previously, demands for more
nvestigations into the physical nature of Q and its dependencies.

As is seen from Figs. 6 and 7, the true nature and dependence of
on target properties is multi-dimensional. Attempts at empirically

efining dependence of Q on ion or target parameters have been
ade in the past. Previous reports described the dependence of Q on
ensity [19], the energy transfer parameter [22] and even a complex
ependence on ion–target parameters [44]. We find that Q depends
ot only on the properties mentioned above, but also on the threshold
nergy and the filling of electronic orbitals. Bayesian MCMC is shown
o be a powerful technique for revealing such dependencies between
it parameters and exploring a simple 3-dimensional parameter space.
he flexibility of MCMC also allows for ease of scaling the model
o incorporate additional parameters if needed, without increasing
omplexity.

Using Pearson’s pair-wise correlation as we do here to compare
ependencies of target parameters not directly included in the model,
s limited to observing linear dependencies. Hence, the true nature and
ependence of Q on the above parameters could potentially be non-
inear and may require considering additional parameters in the model,
imilar to the work by García-Rosales [44].

Considering the above, the nature of Q is not merely a scaling
f the sputter yields to fit experimental data, but a description of a
undamental interaction of ion species with target materials.

. Conclusions and outlook

In this work we have reported the sputter yields of four transi-
ion metals relevant to semiconductor, catalysis, photo-lithography and
usion research. We have analysed the description of experimentally ob-
ained yields by the semi-empirical Yamamura model using a Bayesian
CMC parameter search. This allowed us to obtain values of the linear
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scaling factor Q, considering correlations with the sputter threshold
energy, Eth and the power-law scaling factor, s.

Further, simulating sputter yields using TRIDYN for ∼70 elemental
targets allowed us to populate Q values in a consistent manner without
experimental scatter. Using Bayesian MCMC algorithms on simulated
data enabled comparison of Q to previous semi-empirical descriptions
in literature. It was found that Q has a simple positive correlation
with the sputter threshold energy and can be reasonably predicted by
a linear relationship, provided that the data is separated according
to orbital filling, for example, s, p, d and f block elements. This
dependence can be exploited to estimate an unknown Q in a simple
manner. However, the nature of Q is deemed to be complex, depending
on the density, sputter threshold energy, energy transfer parameters as
well as more fundamentally, on the filling of orbitals. This work points
towards Q not being a mere scaling parameter, but rather a descriptor
of fundamental processes of ion–target interactions.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.nimb.2022.03.016.

See supplementary material for: Posterior probabilities for sputter
yields of Mo, Ru, and W for Ar and Ne ion bombardment; Q values
used by Seah and MCMC results plotted against the energy transfer
efficiency; Linear fits to Q against sputter threshold for Ne ion bombard-
ment; Expectation values for free-parameters of the Yamamura model
for Ar and Ne ion bombardment on ∼ 70 elements.
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